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We construct a new family of AdS2 × S3 × S2 solutions to type IIB supergravity arising as near-horizon
geometries of D1-F1-D3-D5-NS5-D7 brane intersections preserving four supersymmetries. We show that a
subclass of these solutions asymptotes locally to the AdS6 × S2 × Σ2 solution to type IIB supergravity
holographically dual to the five-dimensional Sp(N) fixed point theory. This suggests that these solutions
can be interpreted as D1-F1-D3 line defects within this CFT. Switching off the D7-branes, we act with
SLð2;RÞ to construct a second family of solutions that can be related to an AdS3 × S3 × S3 class of
M-theory backgrounds describing surface defects within the six-dimensional (1,0) SCFT dual to
AdS7=Zk × S4. Finally, using non-Abelian T-duality we construct new classes of AdS2 × S2 × S2 solutions
to type IIA supergravity with four supercharges and elaborate on their M-theory origin.
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I. INTRODUCTION

Defects play a prominent role in our current under-
standing of quantum field theories. Moreover, if the QFT in
which they are embedded is conformal, holography pro-
vides a very powerful tool for their study [1–3]. In this
context they are typically understood as operator insertions
that realize a deformation of the ambient CFT. In the so-
called probe brane approximation, the operator insertion is
described by introducing appropriate branes in the dual
geometry, that can then be studied using standard super-
gravity techniques. The probe brane approximation breaks
down however when the number of defects is large, due to
their backreaction on the original geometry. When this
happens it becomes necessary to know the fully back-
reacted geometry to properly describe the defects holo-
graphically. In this scenario the branes that realize the
operator insertion intersect with the brane system where
the higher dimensional CFT lives, breaking some of the
isometries of its dual AdS vacuum and producing a lower
dimensional AdS solution in the near-horizon limit. These
AdS solutions contain nontrivial warpings between the

AdS space and the internal manifold and, in many cases,
asymptote locally in a certain limit to the higher dimen-
sional AdS vacuum dual to the ambient CFT [4–7].
A very useful approach to construct AdS solutions dual

to defect CFTs is to search for these solutions in lower
dimensional supergravities, and then uplift them to 10 or 11
dimensions. The reason for this is that in 10 or 11 dimensions
the parametrization of the AdS solution often hides the
presence of the higher dimensional AdS vacuum, while in
low dimensions one can directly search for solutions inwhich
the defect interpretation is manifest. Following this approach
AdS2 and AdS3 backgrounds dual to line and surface defects
within 5d and 6d CFTs have been constructed [4–13].
Constructions alike directly in 10 dimensions have been
put forward in [14,15] and also in [16–18]. Notably, in some
cases the operators causing the deformation in the higher
dimensional CFT have also been identified. Interesting
examples are the AdS2 solutions constructed in [14] and
[16–18], conjectured to be dual to baryon vertices in 4d
N ¼ 4 SYM and the 5d Sp(N) gauge theory [19], respec-
tively [20].
Besides their applications to the holographic description

of defects, low dimensional AdS solutions are interesting in
their own right, as they realize the near-horizon geometries
of large classes of extremal black holes, and thereby
provide the most promising scenarios of where to carry
out the microscopical description program. For this
reason many efforts have been devoted through the years
to scan and classify these spaces. However, due to the high
dimensionality of the associated internal manifolds, a
complete classification of these solutions is still missing.
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Recently there has been remarkable progress in the clas-
sification of AdS3 and AdS2 spaces with four super-
symmetries [9,10,14–18,21–37]. This has come along
with significant advances in our understanding of their
2d and 1d dual CFTs [9,10,14–16,18,21,30,31,38–41],
making these perfect settings where the microscopical
description program can be implemented. Of special
relevance for our studies in this paper is the interpretation
of some of these solutions as holographic duals of defect
CFTs [9,10,14–18,20,40]. In some cases the explicit
knowledge of the quiver gauge theories that describe these
CFTs in the UV has allowed to identify the defects with
concrete low dimensional vector and matter fields inserted
in the quiver gauge theories that describe the higher
dimensional CFTs in which they are embedded.
In this work we present new classes of AdS2 solutions

with four supersymmetries in type IIB and type IIA
supergravities, and focus on their defect interpretation.
We start with the construction of a general class of type IIB
solutions in Sec. II. These backgrounds are obtained as near
horizon geometries of 1=8-BPS brane intersections con-
sisting on D1-F1-D3 defect branes introduced in the D5-
NS5-D7 background branes realizing the AdS6 × S2 × Σ2

solution to type IIB supergravity constructed in [42,43] in
its near-horizon. The defect branes are taken to be com-
pletely localized within the worldvolume of the orthogonal
background branes, which is the crucial requirement1 that
allows to interpret the solutions as supergravity duals of
conformal defects. In order to be able to construct the brane
intersection we impose a second requirement, namely, that
the D7 and the NS5 branes are smeared over a shared
transverse direction. This restricts the possible AdS6
solutions arising in the UV asymptotics to the AdS6
background constructed in [42,43], which contains an S1

in the internal space and is related by (Abelian) T-duality to
the Brandhuber-Oz AdS6 solution to massive IIA super-
gravity [44].
This technical restriction is ultimately related to the fact

that the brane solutions that underlie more general AdS6
geometries in the classification in [45–47], not containing
an S1 in the internal space, are not known. The presence of
the special S1 direction allows to relate our new class of
AdS2 solutions in type IIB to the AdS2 × S3 solutions in
type IIA supergravity constructed in [16], by means of
(Abelian) T-duality. These solutions were interpreted as
holographic duals of D0-D4’-F1 baryon vertices in the 5d
Sp(N) gauge theory, dual to the Brandhuber-Oz solution
[20]. Our solutions in type IIB find an analogous inter-
pretation, this time as D1-D3-F1 baryon vertices.
In Sec. III we construct another class of solutions to type

IIB supergravity by acting with SLð2;RÞ on our previous

class of AdS2 backgrounds, restricted to the case without
D7-branes. This restriction allows us to perform a local
analysis, but at the same time spoils the AdS6 asymptotics.
This is related to the fact that AdS6 solutions with a
transverse S1 other than the one constructed in [42,43], that
contains D7-branes, are not known in type IIB supergravity.
In this case we find that the new AdS2 solutions are related
by (Abelian) T-duality to the class of AdS3 × S3 × S2

solutions to type IIA supergravity constructed in [9],2

further orbifolded by a Zk acting on the AdS3. These
solutions asymptote locally to the AdS7 solution to mass-
less type IIA supergravity constructed in [42,48], and allow
for a defect interpretation within the 6d (1,0) CFT living in
a D6-NS5 brane intersection [9].
In Sec. IV we present the whole web of dualities that

relates the two classes of solutions in type IIB connected by
S-duality to the AdS2 × S3 solutions constructed in [16]
(restricted to the massless case) and the AdS3 × S3 × S2

solutions constructed in [9], and include as well their
M-theory realisation. In Sec. V we construct new AdS2
solutions in type IIA supergravity with four supersymme-
tries by acting with non-Abelian T-duality on the two
previous S-dual backgrounds. Even if after the non-Abelian
T-duality transformation we lose a clear interpretation of
these solutions as near-horizon geometries of brane inter-
sections, we are still able to relate them to a given M-theory
intersection. Finally, Sec. VI contains our conclusions and
open directions. We have collected in an Appendix the
details of the uplifts of the solutions in Sec. V to M-theory.

II. THE D1-F1-D3-D5-NS5-D7 BRANE SETUP

In this section we construct a new family of AdS2
solutions to type IIB supergravity preservingN ¼ 4 super-
symmetries. We obtain these solutions as near-horizon
geometries of D1-F1-D3 branes ending on the D5-NS5-
D7 brane system where the 5d Sp(N) gauge theory lives.
Such an intersection reproduces a class of AdS2 × S3 ×
S2 × S1 geometries foliated over two intervals in the near
horizon. We show that a subset of noncompact back-
grounds within this class flows asymptotically (locally)
to the AdS6 × S2 × Σ2 vacuum of type IIB supergravity
constructed in [42,43]. This AdS6 vacuum geometry
was obtained acting with (Abelian) T-duality on the
Brandhuber-Oz solution to massive type IIA supergravity
[44], and is the only explicit solution within the general
classification of AdS6 × S2 × Σ2 solutions in [45–47] with
Σ2 an annulus (see [49]). This asymptotic property of our
AdS2 solutions allows us to interpret them as holographic
duals to line defects within the 5d Sp(N) fixed point theory.
In support of the aforementioned interpretation we show
that they are related by T-duality to the AdS2×S3×CY2×I
solutions constructed in [16] (for CY2 ¼ R4), which found1At least in the case of AdS2 and AdS3 solutions dual to

defects preserving four supersymmetries, as shown in
[9,10,14,15]. 2And later extended in [15] to include D8-branes.
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themselves an interpretation as line defects within the 5d
Sp(N) CFT, as shown in [9,16,20].
We start considering the brane intersection depicted in

Table I, consisting on D1-F1-D3 branes ending on a D5-
NS5-D7 system. Under certain assumptions this gives rise
to the first family of solutions to type IIB supergravity that

we construct in this paper, consisting of AdS2×S3×S2×S1

fibrations over a 2d Riemann surface.
Our assumptions are as follows. We take the D1-F1-D3

branes completely localized within the worldvolume of the
orthogonal D5-NS5-D7 system. This requirement is a
crucial property that allows to construct supergravity duals
to conformal defects (see [9,10,14,15]), for it allows one to
decouple the field equations of the defect branes, D1-F1-D3
in this case, from those of the background branes, D5-NS5-
D7 in our current system. The second important assumption
that we make is to take the D7 and NS5 charges smeared
over a shared transverse direction. This restricts one to the
D5-NS5-D7 brane setup where the 5d Sp(N) gauge theory
lives. With this assumption one recovers asymptotically
locally the AdS6 × S2 × Σ2 solution of type IIB dual to this
SCFT, constructed in [42,43].
The D1-F1-D3-D5-NS5-D7 system is described by the

following 10d metric and dilaton:

ds210 ¼ H−1=2
D7 H−1=2

D5 ½−H−1=2
D1 H−1=2

D3 H−1
F1dt

2 þH1=2
D1 H

1=2
D3 ðdρ2 þ ρ2ds2S3Þ�

þH1=2
D7 H

1=2
D5 H

1=2
D1 H

1=2
D3 H

−1
F1dz

2 þH1=2
D7 H

−1=2
D5 HNS5H

−1=2
D1 H1=2

D3 dψ
2

þH−1=2
D7 H1=2

D5 HNS5H
1=2
D1 H

−1=2
D3 ðdr2 þ r2ds2S2Þ;

eΦ ¼ H−1
D7H

−1=2
D5 H1=2

NS5H
1=2
D1 H

−1=2
F1 : ð2:1Þ

We now ask that the D1-F1-D3 defect branes are completely localized in the R4 parametrized by ρ and the S3, namelyHD1,
HF1, andHD3 are just functions of the radial coordinate ρ. Further, we impose the smearing of the NS5-D7 branes over the ψ
direction, that we assume parametrizes a circle, namely HNS5 ¼ HNS5ðrÞ and HD7 ¼ HD7ðzÞ.3 Finally, we take completely
localized D5-branes, i.e. HD5 ¼ HD5ðz; rÞ. The fluxes corresponding to this charge distribution acquire the form

Hð3Þ ¼ −∂ρH−1
F1dt ∧ dρ ∧ dzþ ∂rHNS5r2dψ ∧ volS2 ;

Fð1Þ ¼ H−1
D1HF1∂zHD7dψ ;

Fð3Þ ¼ −HD7∂ρH−1
D1dt ∧ dρ ∧ dψ −HD7∂rHD5r2dz ∧ volS2 þHF1H−1

D3HNS5r2∂zHD5dr ∧ volS2 ;

Fð5Þ ¼ −HD5HNS5∂ρH−1
D3r

2dt ∧ dρ ∧ dr ∧ volS2 þHD7∂ρHD3ρ
3volS3 ∧ dz ∧ dψ : ð2:2Þ

Given the metric (2.1) and the fluxes (2.2), the equations of motion and Bianchi identities of type IIB supergravity decouple
in two groups. One group is associated to the D1-F1-D3 defect branes,

∇2
R4

ρ
HD1 ¼ 0 with HD1 ¼ HF1 ¼ HD3; ð2:3Þ

and the other to the D5-NS5-D7 background branes,

HD7∇2
R3

r
HD5 þHNS5∂

2
zHD5 ¼ 0; ∇2

R3
r
HNS5 ¼ 0 and ∂

2
zHD7 ¼ 0: ð2:4Þ

If we now pick the following particular solution to (2.3),

TABLE I. Brane picture describing the intersection of D5-NS5-
D7 branes with D1-F1-D3 branes ending on them. This brane
setup preserves four supersymmetries, and is thus 1=8-BPS.

Branes t ρ φ1 φ2 φ3 z ψ r θ1 θ2

D7 × × × × × − − × × ×
D5 × × × × × − × − − −
NS5 × × × × × × − − − −
D1 × − − − − − × − − −
F1 × − − − − × − − − −
D3 × − − − − − − × × ×

3In the absence of D1-F1-D3 branes and T-dualizing along the ψ direction, the D4-D8-KK system whose near-horizon geometry is
the AdS6 vacuum of massive IIA (orbifolded by Zk [50]) is reproduced. The KK-monopoles arise from the dualization of the NS5-
branes. In the presence of D1-F1-D3 branes an extra D0-F1-D40 bound state ending on the D4-D8-KK system is obtained:AdS2
solutions associated to these brane intersections were constructed in [7,10,16], and interpreted as dual to D0-F1-D4’ line defects within
the 5d Sp(N) fixed point theory.
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HD1 ¼ 1þ qD1
ρ2

; ð2:5Þ

and we take the near-horizon limit ρ → 0, the following family of backgrounds arises,4

ds210 ¼ 4−1qD1H
−1=2
D7 H−1=2

D5 ½ds2AdS2 þ 4ds2S3 � þH1=2
D7 H

1=2
D5 dz

2 þH1=2
D7 H

−1=2
D5 HNS5dψ2 þH−1=2

D7 H1=2
D5 HNS5ðdr2 þ r2ds2S2Þ;

Hð3Þ ¼ −2−1q1=2D1 volAdS2 ∧ dzþ ∂rHNS5r2dψ ∧ volS2 ; eΦ ¼ H−1
D7H

−1=2
D5 H1=2

NS5;

Fð1Þ ¼ ∂zHD7dψ ;

Fð3Þ ¼ −2−1q1=2D1 HD7volAdS2 ∧ dψ −HD7∂rHD5r2dz ∧ volS2 þHNS5r2∂zHD5dr ∧ volS2 ;

Fð5Þ ¼ −2−1q1=2D1 HD5HNS5r2volAdS2 ∧ dr ∧ volS2 − 2qD1HD7volS3 ∧ dz ∧ dψ : ð2:6Þ

These backgrounds preserve N ¼ 4 SUSY. The simplest
way to infer this is to note that they are related to the N ¼
ð0; 4ÞAdS3 × S2 solutions constructed in [10] through a
double analytical continuation.5 We thus obtained a class of
N ¼ 4AdS2 × S3 × S2 × S1 × Iz × Ir geometries defined
by the three functions HD7ðzÞ, HD5ðz; rÞ, HNS5ðrÞ satisfy-
ing Eq. (2.4) and describing the dynamics of a D5-NS5-D7
bound state wrapping an AdS2 × S3 curved geometry.

A. Line defects within AdS6 × S2 × Σ2 vacua

In our previous analysis we derived the supergravity
solution describing D1-F1-D3 branes ending on a D5-NS5-
D7 system and showed that in the near-horizon limit the
brane solution defines a class of N ¼ 4 AdS2 × S3 × S2 ×
S1 × Iz × Ir geometries. These backgrounds are defined by
the functions HD7ðzÞ, HD5ðz; rÞ, HNS5ðrÞ solving the
equations of motion of the D5-NS5-D7 bound state, given
by Eq. (2.4). As we also mentioned at the end of the
previous section our solutions can be related via double
analytic continuation to the N ¼ ð0; 4ÞAdS3 × S2 solu-
tions constructed in [10]. These solutions originate from
D3-D5-NS5 branes ending on a D5-NS5-D7 system, and
under certain assumptions can be interpreted as holo-
graphic duals to surface defects within the 5d Sp(N) fixed
point theory. One can check that the equations describing
the D5-NS5-D7 subsystem of our brane setup, given by
(2.4), are exactly the same ones that allowed to find such
defect interpretation in [10]. Therefore, we can take the
same profiles forHD7,HD5, andHNS5 in order to find AdS6
arising in the asymptotics.6 These profiles are given by [42]

HD5 ¼ 1þ qD5
ð4qNS5rþ 4

9
qD7z3Þ5=3

;

HNS5 ¼
qNS5
r

; HD7 ¼ qD7z; ð2:7Þ

where the parameters qD5, qD7, and qNS5 are the charges of
the D5, NS5, and D7 branes. As in [10], the AdS6 × S2 ×
Σ2 geometry constructed in [42,43] comes out after the
change of coordinates,

r ¼ 9−1qD7μ3 cos α2; z ¼ q1=3NS5μ sin α
2=3; ð2:8Þ

with μ > 0 and α ∈ ½0; π
2
�. Indeed, rewriting the back-

grounds (2.6) and (2.7) in this parametrization and taking
the μ → 0 limit, one obtains

ds210 ¼ s−1=3
h
4−1qD1q

2=3
NS5μ

2ðds2AdS2 þ 4ds2S3Þ þ
dμ2

μ2

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{locallyAdS6 geometry

þ 4

9
dα2 þ 9q2NS5c

−2s2=3dψ2 þ 9−1c2ds2S2
i
; ð2:9Þ

where the 6d external part of the metric describes a locally
AdS6 geometry with unit radius. From this expression it is
thus manifest that in the μ → 0 limit the N ¼ 4 solutions
take the form of a AdS6 × S2 × Σ2 vacuum, where the
Riemann surface Σ2 is an annulus parametrized by the
coordinates ðα;ψÞ. Note however that AdS6 arises only
locally since extra, subleading fluxes are also present in the
solution that breaks the AdS6 isometries. Note as well that
being the internal space in (2.9) noncompact along the μ
direction, an infinite holographic central charge for the dual
superconformal quantum mechanics arises. Indeed, sub-
stituting in the general expression for the holographic
central charge7 for AdS2 (see [51–53]) we find

chol ¼
3

8π6

Z
M8

d8y
ffiffiffiffiffi
g8

p
e−2Φ

∝ q3=2D1 q
3
D5

Z
dψ dα dμ cos3 α sin1=3α μ2; ð2:10Þ

where the integration has been performed along the M8 8d
internal manifold of the AdS2 spacetime. In this expression

4In order to have AdS2 with unitary radius we rescaled the
coordinates as t → 2−1q3=2D1 t.5See the solutions (5.13) of [10].

6For a detailed derivation see Sec. 5.3 of [10]. 7We fixed Gð10Þ
N ¼ 8π6.
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the divergence along the μ direction (which plays the role of
AdS6 radial coordinate) is manifest. This is exactly the
situation one would expect for a 1d CFT dual to a
conformal defect embedded in a higher dimensional
CFT (see [7,10,15]).
Finally, it is easy to check that the new AdS2 × S3 ×

S2 × S1 × Σ2 solutions defined by (2.6) are related by
T-duality along the ψ direction to the AdS2 × S3 × CY2 ×
I solutions to massive IIA supergravity constructed in
[16], for CY2 ¼ R4. After the duality the S2 and the ψ
direction give rise to a second S3, which together with
the r direction build up the R4. As already mentioned, it
was shown in [7,10] that these type IIA solutions
describe D0-F1-D4’ branes ending on the D4-D8 system.
Further to this, the detailed analysis of the dual field
theory performed in [16] allowed to interpret the D0-
branes as baryon vertices associated to the D8-branes of
the background, and the D4’-branes as baryon vertices
associated to the D4 branes.8 Analogously, the D1-F1-D3
defect branes present in our AdS2 solutions find an
interpretation as D1 and D3 baryon vertices for the D7
and D5 background branes underlying the type IIB AdS6
solution. The T-duality symmetry that relates these
constructions guarantees that the 1d quivers constructed
in [16], now built out of D1-D3 color branes and D7-D5
flavor branes, describe 1d QMs (quantum mechanics) that
flow in the IR to the SCQMs (superconformal quantum
mechanics) dual to our solutions.

III. AN SLð2;RÞ CLASS OF N = 4 AdS2
NEAR-HORIZONS

In this section we focus on the subclass of solutions
associated to the brane intersection depicted in Table I
in the absence of D7-branes. Acting with a rotation
included in the SLð2;RÞ S-duality group of type IIB
supergravity we obtain a covariant class of solutions
depending on the parameter associated to the SLð2;RÞ
transformation. As usual, since only SLð2;ZÞ is a
symmetry of type IIB string theory, continuous trans-
formations determine new inequivalent backgrounds in
the supergravity limit.
The exclusion of D7 branes is required such that a local

analysis of SLð2;RÞ rotations can be performed. Note that
this leaves the supersymmetries unaltered. Globally one is
of course free to take the general brane setup depicted in
Table I and perform an S-duality transformation involving
the D7-branes. We will refrain however from doing this as

we are mainly interested in the local, supergravity
description.
Remarkably, the defect interpretation within AdS6 is lost

when the D7-branes are excluded. Still, we will be able to
find an interesting defect interpretation within a 6d SCFT
once the new solutions have been T-dualized to type IIA
and uplifted to M-theory.
We start by introducing the SLð2;RÞ rotation

R ¼
�
cos ξ − sin ξ

sin ξ cos ξ

�
: ð3:1Þ

Acting with it on a “seed” background described by fluxes,
dilaton, and metric FðnÞ;s, Φs, and ds210;s, we have

�
F̂ð3Þ
Hð3Þ

�
¼

�
cos ξ − sin ξ

sin ξ cos ξ

��
Fð3Þ;s
Hð3Þ;s

�
;

τ ¼ cos ξτs − sin ξ
sin ξτs þ cos ξ

; Fð5Þ ¼ Fð5Þ;s; ð3:2Þ

where τ ¼ Cð0Þ þ ie−Φ stands for the axiodilaton. Even if
the seed solution we are going to consider is characterized
by a vanishing axion, this transformation generates a
nontrivial profile for Cð0Þ. This implies that the 3-form
flux associated to the rotated solution is given by
Fð3Þ ¼ F̂ð3Þ − Cð0ÞHð3Þ. Finally, the metric in the string
frame transforms as ds210 ¼ j cos ξþ sin ξτjds210;s.
Taking as seed solution the brane intersection described

by (2.1) and (2.2), with HD7 ¼ 1, and applying the
aforementioned rules we obtain

ds210¼Δ1=2½H−1=2
D5 ð−H−1=2

D1 H−1=2
D3 H−1

F1dt
2

þH1=2
D1 H

1=2
D3 ðdρ2þρ2ds2S3ÞÞ

þH1=2
D5 H

1=2
D1 H

1=2
D3 H

−1
F1dz

2þH−1=2
D5 HNS5H

−1=2
D1 H1=2

D3 dψ
2

þH1=2
D5 HNS5H

1=2
D1 H

−1=2
D3 ðdr2þr2ds2S2Þ�;

Δ¼c2þ HD5

HNS5

HF1

HD1
s2; ð3:3Þ

where s ¼ sin ξ and c ¼ cos ξ. The dilaton and the axion
Cð0Þ can be obtained from the axiodilaton and they have the
following form:

eΦ ¼ ΔH−1=2
D5 H1=2

NS5H
1=2
D1 H

−1=2
F1 ;

Cð0Þ ¼ Δ−1
�
HD5

HNS5

HF1

HD1
− 1

�
sc: ð3:4Þ

In turn, applying (3.2) to the fluxes (2.2) we get

8The field theory is described by quiver-like constructions
involving different nodes, and therefore different gauge groups,
for both the D4 and the D8 branes. It is worth pointing out that in
these constructions the D4 and D8 branes turn from colour
branes, where the 5d Sp(N) gauge theory lives, to flavour branes,
once the defect branes are introduced. The reader is referred to
[16,20] for more details on this description.
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Hð3Þ ¼ −c∂ρH−1
F1dt ∧ dρ ∧ dzþ c∂rHNS5r2dψ ∧ volS2 − s∂ρH−1

D1dt ∧ dρ ∧ dψ

− s∂rHD5r2dz ∧ volS2 þ sHF1H−1
D3HNS5r2∂zHD5dr ∧ volS2 ;

Fð3Þ ¼ −cΔ−1
∂ρH−1

D1dt ∧ dρ ∧ dψ þ cΔ−1HF1H−1
D3HNS5r2∂zHD5dr ∧ volS2

− cΔ−1
∂rHD5r2dz ∧ volS2 þ sΔ−1 HD5

HNS5

HF1

HD1
∂ρH−1

F1dt ∧ dρ ∧ dz

− sΔ−1 HD5

HNS5

HF1

HD1
∂rHNS5r2dψ ∧ volS2 ;

Fð5Þ ¼ −HD5HNS5∂ρH−1
D3r

2dt ∧ dρ ∧ dr ∧ volS2 þ ∂ρHD3ρ
3volS3 ∧ dz ∧ dψ : ð3:5Þ

The equations of motion and Bianchi identities are preserved by the SLð2;RÞ rotation, so HD5 and HNS5 must still satisfy
Eq. (2.4), with HD7 ¼ 1. Note that the absence of D7 branes implies however that HD3 ¼ HF1 ≠ HD1 and

∇2
R4

ρ
HD1 ¼ 0 and ∇2

R4
ρ
HF1 ¼ 0 ð3:6Þ

are satisfied instead of (2.3). We can then choose the particular solutions

HD1 ¼ 1þ qD1
ρ2

; HF1 ¼ 1þ qF1
ρ2

; ð3:7Þ

and proceed to extract the ρ → 0 limit. In this way we get a new class of N ¼ 4 AdS2 × S3 × S2 × S1 × Iz × Ir
backgrounds to type IIB supergravity of the form9

ds210 ¼ 4−1Δ1=2½q1=2D1 q
1=2
F1 H−1=2

D5 ½ds2AdS2 þ 4ds2S3 � þ q1=2D1 q
−1=2
F1 H1=2

D5 dz
2

þH−1=2
D5 HNS5q

−1=2
D1 q1=2F1 dψ2 þH1=2

D5 HNS5q
1=2
D1 q

−1=2
F1 ðdr2 þ r2ds2S2Þ�;

eΦ ¼ ΔH−1=2
D5 H1=2

NS5q
1=2
D1 q

−1=2
F1 with Δ ¼ c2 þ qF1

qD1

HD5

HNS5
s2;

Hð3Þ ¼ −2−1cq1=2D1 volAdS2 ∧ dzþ c∂rHNS5r2dψ ∧ volS2 − 2−1sq−1=2D1 qF1volAdS2 ∧ dψ

− s∂rHD5r2dz ∧ volS2 þ sHNS5r2∂zHD5dr ∧ volS2 ;

Fð1Þ ¼ scΔ−2H−1
NS5

qF1
qD1

½∂zHD5dzþ ð∂rHD5 −H−1
NS5HD5∂rHNS5Þdr�;

Fð3Þ ¼ −2−1cΔ−1q−1=2D1 qF1volAdS2 ∧ dψ − cΔ−1
∂rHD5r2dz ∧ volS2

þ cΔ−1HNS5r2∂zHD5dr ∧ volS2 þ 2−1sΔ−1HD5H−1
NS5qF1q

−1=2
D1 volAdS2 ∧ dz

− sΔ−1HD5H−1
NS5qF1q

−1
D1∂rHNS5r2dψ ∧ volS2 ;

Fð5Þ ¼ −2−1q1=2D1 HD5HNS5r2volAdS2 ∧ dr ∧ volS2 − 2qF1volS3 ∧ dz ∧ dψ : ð3:8Þ

Here HD5 and HNS5 must satisfy the equations

∇2
R3

r
HD5 þHNS5∂

2
zHD5 ¼ 0 and ∇2

R3
r
HNS5 ¼ 0: ð3:9Þ

The above class of solutions describes ðp0; q0Þ strings and D3 branes ending on orthogonal ðp; qÞ 5-branes, and is in this
sense more general than the class of solutions constructed in Sec. II. This is reflected by the fact that the D5 and NS5 charges
are now distributed along the ðz;ψ ; ρÞ directions while the D1 and F1 charges are mixed along ðz;ψÞ. The interpretation of
these solutions should be as holographic duals to D3 baryon vertices introduced in the 5d field theory living in D5-NS5
branes, with F1 (D1) strings in the completely antisymmetric representation of the D5 (NS5) gauge groups stretched
between the D3 and the D5 (NS5) branes. It would be interesting to provide a concrete realization of this setup, along the
lines of [14,16–18].

9As in the previous section we rescaled the coordinates as t → 2−1q1=2D1 qF1t to have AdS2 with unit radius.
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It will be useful for our constructions in Sec. V to have the explicit form of the solutions (3.8) particularized to ξ ¼ 0; π
2
,

that is, the two families of solutions in this class that are S-dual to one another. For ξ ¼ 0 we have

ds210 ¼ 4−1q1=2D1 q
1=2
F1 H

−1=2
D5 ðds2AdS2 þ 4ds2S3Þ þ q1=2D1 q

−1=2
F1 H1=2

D5 dz
2

þH−1=2
D5 HNS5q

−1=2
D1 q1=2F1 dψ

2 þH1=2
D5 HNS5q

1=2
D1 q

−1=2
F1 ðdr2 þ r2ds2S2Þ;

eΦ ¼ H−1=2
D5 H1=2

NS5q
1=2
D1 q

−1=2
F1 ;

Hð3Þ ¼ −2−1q1=2D1 volAdS2 ∧ dzþ ∂rHNS5r2dψ ∧ volS2 ;

Fð3Þ ¼ −2−1q−1=2D1 qF1volAdS2 ∧ dψ − ∂rHD5r2dz ∧ volS2 þHNS5∂zHD5r2dr ∧ volS2 ;

Fð5Þ ¼ −2−1q1=2D1 HD5HNS5r2volAdS2 ∧ dr ∧ volS2 − 2qF1volS3 ∧ dz ∧ dψ : ð3:10Þ

Note that this class of solutions is a generalization of the backgrounds (2.6) (withHD7 ¼ 1) whereHD1 ≠ HF1 and there are
therefore both qD1 and qF1 quantized charges. In turn, for ξ ¼ π

2
we have

ds210 ¼ 4−1qF1H
−1=2
NS5 ðds2AdS2 þ 4ds2S3Þ þH−1=2

NS5 HD5dz2

þ qF1q−1D1H
1=2
NS5dψ

2 þH1=2
NS5HD5ðdr2 þ r2ds2S2Þ;

eΦ ¼ H−1=2
NS5 H

1=2
D5 q

1=2
F1 q

−1=2
D1 ;

Hð3Þ ¼ −2−1qF1q
−1=2
D1 volAdS2 ∧ dψ − ∂rHD5r2dz ∧ volS2 þHNS5∂zHD5r2dr ∧ volS2 ;

Fð3Þ ¼ 2−1q1=2D1 volAdS2 ∧ dz − ∂rHD5r2dψ ∧ volS2 ;

Fð5Þ ¼ −2−1q1=2D1 HD5HNS5r2volAdS2 ∧ dr ∧ volS2 − 2qF1volS3 ∧ dz ∧ dψ : ð3:11Þ
Finally, we can provide a unified expression for the central charge of the whole family of SLð2;RÞ solutions, since this

quantity is SLð2;RÞ invariant. Substituting the metric and dilaton of the backgrounds (3.8) in (2.10) we indeed find

chol ¼
3

8π6

Z
M8

d8y
ffiffiffiffiffi
g8

p
e−2Φ ¼ 3

8π6
q1=2D1 qF1VolS3VolS2

Z
dψ dr dz r2HD5HNS5; ð3:12Þ

where the ξ-parameter is not present.

IV. WEB OF DUALITIES ANDM-THEORY ORIGIN

In this section we discuss the type IIA realization
and M-theory origin of the ξ ¼ 0 and ξ ¼ π

2
solutions to

type IIB constructed in the previous section. As we already
mentioned the defect interpretation within AdS6 × S2 × Σ2

is lost. Instead, the solutions allow for an interesting
realization as line defects within the 6d (1,0) CFT dual
to AdS7=Zk × S4 in M-theory.
The two S-dual solutions with ξ ¼ 0; π

2
in (3.10) and

(3.11) are related by T-duality to the AdS2 × S3 ×R4=Zk

solutions constructed in [16],10 and to the AdS3=Zk0 × S3 ×
S2 solutions to massless IIA supergravity constructed in
[9],11 respectively. As shown in [9] these solutions share a
common origin in M-theory, in the form of AdS3 × S3 ×

S3=Zk backgrounds (AdS3=Zk0 in our case), also classified
in [9]. These solutions were shown to asymptote to
AdS7=Zk × S4 in the UV. Our solutions are thus interpreted
as duals to line defects in the 6d (1,0) CFT dual to this
background, once uplifted to M-theory.
The web of dualities connecting these classes of sol-

utions is depicted in Fig. 1, that we now explain in detail.
Starting with the bottom left solution of type IIB and
performing a T-duality along the S1ψ circle, an S3 is built up
with the S1ψ and the S2. This S3 gives rise to anR4=Zk space
together with the r-direction. Here the integer k is the
number of NS5-branes present in the type IIB solution, that
become KK-monopoles in type IIA. This solution in IIA is
contained in the class found in [16], for CY2 ¼ R4=Zk. The
corresponding type IIA brane setup is described by a D4-
KK-F1-D4’-D0 intersection studied in [7] and it is depicted
in the left-hand side of Table II.
We already referred to this T-duality transformation in

Sec. II, for the more general situation in which D7-branes
were also present. In turn, the uplift of the type IIA solution
to M-theory produces an AdS3=Zk0 space, built up with the
AdS2 and the M-theory circle (parametrized by the χ

10Restricted to the massless case, since we are not allowing for
D7-branes.

11With the AdS3 modded out by Zk0, but this is a trivial
extension of the solutions in [9].
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coordinate), where k0 is the number of F1-strings in the type
IIA solution, that become waves, or units of momentum, in
M-theory. The M-theory intersection underlying these
solutions is depicted in the top of Table II and it is defined
by an intersection of M5’-KK-M2-M5-M0 branes. The
corresponding class of AdS3=Zk0 × S3 ×R4=Zk × Iz sol-
utions to M-theory was found in [30]. In turn, it belongs to
the more general class of AdS3 × S3 × S3=Zk × Σ2 solu-
tions constructed in [9], in our case orbifolded by Zk0.
Taking now these solutions as our starting point, but
reducing instead along the S1ψ=Zk Hopf fiber of the

S3=Zk contained in R4=Zk, we obtain a solution in type
IIA in the class constructed in [9],12 with extra k0 waves, or
units of momentum. The corresponding brane setup is
presented in the right-hand side of Table II and it is given by
an intersection of D6-NS5-D4-D2 branes with momentum
waves W. T-dualizing along the Hopf fiber of the AdS3=Zk0

subspace we finally arrive at the type IIB solution shown at
the bottom right of the figure, containing k0 F1-strings. As
expected due to their common M-theory origin, both
solutions in type IIB are related to each other by S-duality.

V. NON-ABELIAN T-DUALS
AND TYPE IIA PICTURE

In this section we present new AdS2 solutions to type IIA
supergravity preserving four supercharges obtained by
performing a non-Abelian T-duality transformation along
the S3 on the two S-dual backgrounds with ξ ¼ 0 and ξ ¼
π=2 given in (3.10) and (3.11). These type IIA backgrounds
depend on two defining functions HD5 ¼ HD5ðz; rÞ,
HNS5 ¼ HNS5ðrÞ satisfying the master equations13

TABLE II. 1=8-BPS brane setups in M-theory and type IIA
associated to Fig. 1. In M-theory one has the intersection of M2-
M5-M0 branes ending on M5’-branes with KK monopoles. The
reduction to type IIA can be performed over the coordinates χ and
ψ that parametrize the isometric directions and are respectively
associated to the momentum waves M0 and the KK monopoles.

Branes t χ ρ φ1 φ2 φ3 z ψ r θ1 θ2

M5’ × × × × × × − − − − −
KK × × × × × × × ISO − − −
M2 × × − − − − × − − − −
M5 × × − − − − − × × × ×
M0 × ISO − − − − − − − − −

Branes t ρ φ1 φ2 φ3 z ψ r θ1 θ2

D4 × × × × × − − − − −
KK × × × × × × ISO − − −
F1 × − − − − × − − − −
D40 × − − − − − × × × ×
D0 × − − − − − − − − −

Branes t χ ρ φ1 φ2 φ3 z r θ1 θ2

NS5 × × × × × × − − − −
D6 × × × × × × × − − −
D2 × × − − − − × − − −
D4 × × − − − − − × × ×
W × ISO − − − − − − − −

FIG. 1. Web of dualities that relates the new AdS2 solutions in type IIB written in (3.10) and (3.11) to the type IIA and M-theory
solutions constructed in [9] and [16].

12And later generalized to the massive case in [15].
13In this section we restore the integration constant qD3

associated to D3 defect branes in the S-dual type IIB backgrounds
(3.10) and (3.11). We recall that this parameter was fixed as
qD3 ¼ qF1 at the level of the brane solution HD3 ¼ 1þ qD3

ρ2
,

HF1 ¼ 1þ qF1
ρ2

in (3.8) by the conditions ∇2
R4

ρ
HD3 ¼ ∇2

R4
ρ
HF1 ¼ 0

and HD3 ¼ HF1 coming from the equations of motion for the
defect branes [written in (3.6)]. The freedom to keep qD3
unconstrained at the near-horizon is provided by the fact that
the condition HD3 ¼ HF1 is a particular realization of the slightly
more general condition HD3H0

F1 ¼ H0
D3HF1, implied by the

equations of motion. Outside of the near-horizon these two
conditions are equivalent and imply that qD3 ¼ qF1, but in the
ρ → 0 limit the absence of the “1” factor in the harmonic
functions HD3 ¼ qD3

ρ2
, HF1 ¼ qF1

ρ2
allows one to avoid any con-

straint on qD3 in terms of the other integration constants. The
AdS2 factor with unitary radius in the metrics of the S-dual
solutions in type IIB is realized by the rescaling of the time
direction t → 2−1q1=2D1 q

1=2
D3 q

1=2
F1 t.
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∇2
R3

r
HD5 þ

qF1
qD3

HNS5∂
2
zHD5 ¼ 0 and ∇2

R3
r
HNS5 ¼ 0: ð5:1Þ

Under non-Abelian T-duality the S3 of the original background is transformed into an open subset of R3, parametrized by
the radial coordinate R and the 2-sphere S̃2. For ξ ¼ 0 the new class of non-Abelian T-dual solutions is given by

ds210 ¼ 4−1q1=2D1 q
1=2
D3 H

−1=2
D5 ds2AdS2 þ q1=2D1 q

1=2
D3 q

−1
F1H

1=2
D5 dz

2 þ q−1=2D1 q1=2D3 H
−1=2
D5 HNS5dψ2

þ q1=2D1 q
−1=2
D3 H1=2

D5 HNS5ðdr2 þ r2ds2S2Þ þ q−1=2D1 q−1=2D3 H1=2
D5 4ðdR2 þHR2ds2

S̃2
Þ;

eΦ ¼ 8q−1=4D1 q−1=2F1 q−3=4D3 H1=4
D5 H

1=2
NS5H

1=2;

Hð3Þ ¼ −2−1q1=2D1 q
1=2
D3 q

−1=2
F1 volAdS2 ∧ dzþ ∂rHNS5r2dψ ∧ volS2

þ ∂zHRdz ∧ volS̃2 þ ∂rHRdr ∧ volS̃2 þ ∂RððH − 1ÞRÞdR ∧ volS̃2 ;

Fð2Þ ¼ −4−1qD3dz ∧ dψ ;

Fð4Þ ¼ d½2−1q−1=2D1 q1=2F1 q1=2D3 ð3=2þ ðH − 1Þ−1ÞR2volAdS2 ∧ dψ �
þ 4q−1D1HR3HD5dz ∧ dψ ∧ volS̃2 − 4−1qD1HD5HNS5r2dz ∧ dr ∧ volS2

þ r2RðqF1q−1D3HNS5∂zHD5dr − ∂rHD5dzÞ ∧ volS2 ∧ dR; ð5:2Þ

where we have defined

H ¼ qD1qD3
qD1qD3 þ 16R2HD5

: ð5:3Þ

In turn, for ξ ¼ π
2
we find the new class,

ds210 ¼ 4−1q1=2F1 q
1=2
D3 H

−1=2
NS5 ds

2
AdS2

þ q−1=2F1 q1=2D3 HD5H
−1=2
NS5 dz

2 þH1=2
NS5q

1=2
F1 q

1=2
D3 q

−1
D1dψ

2

þ q1=2F1 q
−1=2
D3 HD5H

1=2
NS5ðdr2 þ r2ds2S2Þ þ 4q−1=2F1 q−1=2D3 H1=2

NS5ðdR2 þ H̃R2ds2
S̃2
Þ;

eΦ ¼ 8H1=2
D5 H

1=4
NS5q

−1=2
D1 q−1=4F1 q−3=4D3 H̃1=2;

Hð3Þ ¼ −2−1q1=2F1 q
1=2
D3 q

−1=2
D1 volAdS2 ∧ dψ

þ ðqF1q−1D3HNS5∂zHD5dr − ∂rHD5dzÞr2dψ ∧ volS2 þ dððH̃ − 1ÞRvolS̃2Þ;
Fð4Þ ¼ −d½2−1q1=2D1 q

−1=2
F1 q1=2D3 ð3=2þ ðH̃ − 1Þ−1ÞR2volAdS2 ∧ dz�

þ r2ð4−1qF1HD5HNS5drþ R∂rHD5dRÞ ∧ dψ ∧ volS2

− 4−1qD3R−1ðH̃ − 1Þdz ∧ dψ ∧ volS̃2 ; ð5:4Þ

where we have defined

H̃ ¼ qF1qD3
qF1qD3 þ 16R2HNS5

: ð5:5Þ

The fluxes of these solutions are compatible with the
brane configurations shown in Table III. We point out
that, as usual for non-Abelian T-dual solutions, a clear
prescription to construct the full brane solutions describ-
ing the setups of Table III and reproducing (5.2) and
(5.4) in the near-horizon limit, is not available. Never-
theless we can consider their M-theory uplifts. In Sec. IV
we discussed the M-theory interpretation of the Abelian
T-duals of the type IIB backgrounds with ξ ¼ 0 and

ξ ¼ π
2
, observing that the two corresponding 11d solutions

arise from the same intersection in M-theory (with
different smearing of brane charges). Even if for the
non-Abelian T-dual backgrounds we do not have full
control over the brane solutions behind the AdS2 back-
grounds (5.2) and (5.4), it is possible to show that their
M-theory uplifts are related to each other, provided that
one makes some assumptions on the spacetime depend-
ence of the function HD5, which implies a particular
choice of the charge distribution of branes underlying the
non-Abelian T-dual solutions.
The backgrounds (5.2) and (5.4) can be uplifted to M-

theory by choosing the same gauge potential for the Fð2Þ
flux, namely
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Cð1Þ ¼
qD3
8

ðψdz − zdψÞ; ð5:6Þ

which is invariant under the following relabeling of the
coordinates, ðz;ψÞ → ðψ ;−zÞ. The explicit 11d solutions
are given in the Appendix in Eqs. (A1) and (A2). We
observe that the parameter qD3, whose inclusion in the non-
Abelian T-dual backgrounds was discussed in footnote 13,
gains a natural interpretation in M-theory as KK monopole
charge.
It was shown in [54] that the Abelian T-dual of a certain

background can be obtained from the corresponding non-
Abelian T-dual one by sending the radial direction of the dual
space R3 to infinity and further compactifying it to the
interval ½0; π�. Taking this limit in the solution (5.2), we
recover the Abelian T-dual of the ξ ¼ 0 solution (3.10),
where now R ∈ ½0; π�. Then we can take the uplift to 11d
along the χ direction, rotate the coordinates as ðχ; RÞ →
ðR;−χÞ and go back to type IIA. Doing this we recover the
Abelian T-dual of the ξ ¼ π

2
solution. Such a procedure

confirms the reliability of the non-Abelian T-dual back-
grounds, since the corresponding Abelian T-duals are shown
tobe related to theS-dual solutions in type IIBwith ξ ¼ 0 and
ξ ¼ π

2
. Furthermore, the two circular coordinates ðχ; RÞ

parametrize the 2-torus in M-theory that provides the geo-
metrization of the S-duality transformation in type IIB.
As was expected, the 11d uplifts of the solutions (5.2)

and (5.4), given by Eqs. (A1) and (A2), are not related

anymore by a simple rotation of the coordinates as for
their Abelian limits. This is reflecting an “exotic” charge
distribution as underlying the intersections depicted in
Table III, which modifies the standard chain of dualities
connecting type IIB string theory to M-theory. Such an
“exotic” charge distribution could be related to the presence
of dyonic membranes, which, as shown in [55], define an
additional warping between the AdS factor and the internal
space, as in (5.2) and (5.4).

VI. CONCLUSIONS

In this paper we have constructed and studied various
examples of N ¼ 4 AdS2 × S3 × S2 × S1 backgrounds
fibered over two intervals in type IIB supergravity. Such
solutions have been obtained by extracting the near-horizon
limit of a brane solution describing the intersection of D1-
F1-D3 branes ending on the D5-NS5-D7 bound state.
As a first example we considered the particular solution

for the D5-NS5-D7 bound state reproducing in its near-
horizon limit the AdS6 × S2 × Σ2 vacuum with Σ2 an
annulus. This vacuum geometry is the Abelian T-dual of
the Brandhuber-Oz solution of massive type IIA super-
gravity. The intersection of D1-F1-D3 branes with the D5-
NS5-D7 backreacted geometry gave rise to a noncompact
AdS2 × S3 geometry fibered over a line admitting an
asymptotic local description in terms of the AdS6 × S2 ×
Σ2 solution. Such a behavior allowed us to propose an
interpretation of the AdS2 solution as holographically dual
to aN ¼ 4 superconformal quantum mechanics realizing a
defect within the N ¼ 2 SpðNÞ 5d SCFT dual to the AdS6
geometry.
Second, we focused on the particular subclass of N ¼ 4

AdS2 × S3 × S2 × S1 solutions fibered over two intervals
featured by the absence of D7 branes. Even if this require-
ment implies that the defect interpretation in AdS6 is lost,
this subclass is interesting since we could act locally with
an SLð2;RÞ transformation to generate a vast class of
inequivalent backgrounds parametrized by a continuous
parameter ξ ∈ ½0; π

2
�.

We then focused on the two S-dual backgrounds with
ξ ¼ 0 and ξ ¼ π

2
, and studied their type IIA realization by

acting with Abelian T-duality along the S1 present in both
backgrounds. In this way we constructed the entire chain of
dualities providing the M-theory origin of our S-dual pair
of solutions. This allowed us to show that they belong to the
general class of N ¼ ð0; 4Þ AdS3 solutions to M-theory
classified in [30]. Remarkably, we showed that the T-dual
of the ξ ¼ π

2
solutions is related to the AdS3 × S3 × S3

backgrounds studied in [9], which were shown to asymp-
tote locally to the AdS7=Zk × S4 vacuum geometry of M-
theory. Thus, in the absence of D7-branes we lost the line
defect interpretation within AdS6 in type IIB, but we
recovered a surface defect interpretation within the
N ¼ ð1; 0Þ 6d SCFT dual to the AdS7=Zk solution in
M-theory.

TABLE III. Brane setups compatible with the fluxes of the non-
Abelian T-dual solutions (5.2) and (5.4). The coordinates
ðR; χ1; χ2Þ parametrize the open subset of R3 generated by the
action of non-Abelian T-duality on the S3 factor of the type IIB
backgrounds.

Branes t ρ R χ1 χ2 z ψ r θ1 θ2

D4 × × − × × − × − − −
D2 × × − − − − × − − −
NS5 × × × × × × − − − −
D20 × − × − − − × − − −
D40 × − × × × − × − − −
F1 × − − − − × − − − −
D400 × − × − − − − × × ×
D6 × − × × × − − × × ×
NS50 × − − − − × × × × ×

Branes t ρ R χ1 χ2 z ψ r θ1 θ2

D4 × × − × × × − − − −
D2 × × − − − × − − − −
NS5 × × × × × − × − − −
D20 × − × − − × − − − −
D40 × − × × × × − − − −
F1 × − − − − − × − − −
D400 × − × − − − − × × ×
D6 × − × × × − − × × ×
NS50 × − − − − × × × × ×
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We concluded by deriving the non-Abelian T-duals in
type IIA of the S-dual pairs with ξ ¼ 0 and ξ ¼ π

2
and

discussing their embeddings in M-theory.
Our results in this paper contribute to deepen our

understanding of the interrelations between N ¼ 4 AdS2
and N ¼ ð0; 4Þ AdS3 solutions to type II and M-theories
with four (small) supersymmetries. In this scenario there
are two research directions that we think would be
interesting to pursue in the future. First, it would be
interesting to construct a more general and systematic
classification of N ¼ 4 AdS2 × S3 solutions to type IIB
supergravity, in particular including an additional warping
between the AdS2 and the S3 factors. One could try to
search for these solutions in lower dimensional gauged
supergravities, as initiated in [7]. These more general
backgrounds would be described in term of a brane
intersection involving dyonic membranes, as it has been
highlighted in M-theory for AdS3 × S3 backgrounds [55].
A second interesting research direction is the construction
of the quiver defining the superconformal quantum
mechanics dual to the AdS2 solution studied in Sec. II A,
following the ideas of [9,15,56]. Such a field theory would
explicitly describe a conformal line defect within the

5d SCFT dual to the AdS6 × S2 × Σ2 background emerging
in the asymptotics.
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APPENDIX M-THEORY UPLIFTS OF THE
NON-ABELIAN T-DUAL BACKGROUNDS

In this appendix we provide the M-theory uplift of the
two backgrounds (5.2) and (5.4) obtained by acting with
non-Abelian T-duality on the S-dual solutions (3.10) and
(3.11). If one introduces the gauge potential (5.6), the 11d
uplift of the background (5.2) is given by

ds211 ¼ 16−1q2=3D1 q
1=3
F1 qD3H

−2=3
D5 H−1=3

NS5 H
−1=3ds2AdS2 þ 4−1q2=3D1 qD3q

−2=3
F1 H1=3

D5 H
−1=3
NS5 H

−1=3dz2

þ 4−1q−1=3D1 q1=3F1 qD3H
−2=3
D5 H2=3

NS5H
−1=3dψ2 þ 4−1q2=3D1 q

1=3
F1 H

1=3
D5 H

2=3
NS5H

−1=3ðdr2 þ r2ds2S2Þ
þ q−1=3D1 q1=3F1 H

1=3
D5 H

−1=3
NS5 ðH−1=3dR2 þH2=3R2ds2

S̃2
Þ

þ 16q−1=3D1 q−2=3F1 q−1D3H
1=3
D5 H

2=3
NS5H

2=3ðdχ þ 8−1qD3ðψdz − zdψÞÞ2;
Gð4Þ ¼ d½2−1q−1=2D1 q1=2F1 q

1=2
D3 ð3=2þ ðH − 1Þ−1ÞR2volAdS2 ∧ dψ �

þ 4q−1D1HR3HD5dz ∧ dψ ∧ volS̃2 − 4−1qD1HD5HNS5r2dz ∧ dr ∧ volS2

þ r2RðqF1q−1D3HNS5∂zHD5dr − ∂rHD5dzÞ ∧ volS2 ∧ dRþ ½−2−1q1=2D1 q
1=2
D3 q

−1=2
F1 volAdS2 ∧ dz

þ ∂rHNS5r2dψ ∧ volS2 þ dððH − 1ÞRvolS̃2Þ� ∧ ðdχ þ 8−1qD3ðψdz − zdψÞÞ: ðA1Þ

Using the same gauge potential (5.6) and uplifting the (5.4) solution, we obtain

ds211 ¼ 16−1q1=3D1 q
2=3
F1 qD3H

−1=3
D5 H−2=3

NS5 H̃
−1=3ds2AdS2 þ 4−1q1=3D1 q

−1=3
F1 qD3H

2=3
D5 H

−2=3
NS5 H̃

−1=3dz2

þ 4−1q−2=3D1 q2=3F1 qD3H
−1=3
D5 H1=3

NS5H̃
−1=3dψ2 þ 4−1q1=3D1 q

2=3
F1 H2=3

D5 H
1=3
NS5H̃

−1=3ðdr2 þ r2ds2S2Þ
þ q1=3D1 q

−1=3
F1 H−1=3

D5 H1=3
NS5ðH̃−1=3dR2 þ H̃2=3R2ds2

S̃2
Þ

þ 16q−2=3D1 q−1=3F1 q−1D3H
2=3
D5 H

1=3
NS5H̃

2=3ðdχ þ 8−1qD3ðψdz − zdψÞÞ2;
Gð4Þ ¼ −d½2−1q1=2D1 q

−1=2
F1 q1=2D3 ð3=2þ ðH̃ − 1Þ−1ÞR2volAdS2 ∧ dz� þ r2ð4−1qF1HD5HNS5dr

þ R∂rHD5dRÞ ∧ dψ ∧ volS2 − 4−1qD3R−1ðH̃ − 1Þdz ∧ dψ ∧ volS̃2

þ ½−2−1q1=2F1 q1=2D3 q
−1=2
D1 volAdS2 ∧ dψ þ ðqF1q−1D3HNS5∂zHD5dr − ∂rHD5dzÞr2dψ ∧ volS2

þ dððH̃ − 1ÞRvolS̃2Þ� ∧ ðdχ þ 8−1qD3ðψdz − zdψÞÞ: ðA2Þ
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