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We discuss two different approaches to synthesize holographic nonrelativistic fluid from its relativistic
counterpart. In the first approach we obtain the nonrelativistic fluid by light-cone reduction of a relativistic
conformal fluid. In the second approach we consider the bulk dual of the relativistic fluid, uplift the solution
to 10 dimensions and perform TsT transformations on the bulk solution to change the asymptotic structure.
Reducing the TsT transformed geometry over S° we find an effective 5 dimensional locally boosted
solution. We then use the bulk-boundary dictionary to compute the nonrelativistic constitutive relations. We
show that the nonrelativistic fluids obtained by these two methods are equivalent up to second order in
derivative expansion. Our results also provide explicit expressions for different constitutive relations and
transports of holographic U(1) charged nonrelativistic fluids (both parity odd and even) up to second order

in derivative expansion.
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I. INTRODUCTION

Finding holographic descriptions of nonrelativistic sys-
tems is an interesting area of research as they are realized in
low energy experiments and various condensed matter
systems. One possible way to construct such descriptions
is to take nonrelativistic limits on both sides of the
AdS/CFT duality [1-3].

There are various distinct ways to derive nonrelativistic
systems from a given relativistic theory. Light-cone reduc-
tion (LCR) is one of such techniques. The technique is
based on the fact that a relativistic system respects Poincaré
invariance whereas a system is called nonrelativistic if it
respects Galilean symmetry. It is well known that the
Galilean algebra in d space dimensions can be obtained by
reducing the Poincaré algebra so(d +1,1) in (d+1,1)
dimensions (d + 1 space directions, one time direction) on
the light-cone directions x* ~ x% £ x4*!, where x° is the
relativistic time and x“*! is a spatial coordinate. The light-
cone reduced theory respects the Galilean symmetry while
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evolving along the light-cone time x. In the same way if
we consider conformal algebra so(d + 2,2) in (d + 1,1)
dimensions, under LCR it boils down to Schrodinger
algebra [4-10] in d space dimensions.

In order to provide a holographic description of a theory
one has to first check the isometries on both sides. A
conformal theory in (d + 1,1) dimensions is dual to a
gravity theory in AdS,,; whose metric is given by,

2
ds? = —r’n,,dx*dx* + r—’; (1.1)
where 5 is a d + 1, 1 dimensional Minkowski metric and
u,v=0,...,d+ 1. The isometry group of AdS,,; is
SO(d + 2,2) which is the conformal group of the boundary
theory. In a similar spirit, the holographic dual of a theory
with Schrodinger isometry was first proposed in [11-14].
The bulk metric is given by

2

o d
ds? = r}(=2dx*dx~ — r*(dx*)? + d¥?) + 7’;
.

(1.2)
where X is a d dimensional vector. This spacetime is known
as Schrodinger spacetime, denoted by Sch,, ; and has the

'In [12] the bulk metric was proposed for Galilean symmetry
algebra with an arbitrary scaling z. z =2 corresponds to
Schrodinger algebra with an extra generator corresponds to
special conformal transformation in time direction. Here we
consider the z = 2 case.
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Schrodinger algebra as a global symmetry algebra [15,16].
Although the Schrodinger algebra of the boundary theory
can be derived from the conformal algebra by LCR, the
Schrodinger metric (1.2) cannot be obtained from the
AdS,.; metric (1.1) by LCR. However, there is a way to
get the Schy, ;3 spacetime from the AdS geometry using the
solution generating technique [17-20], know as TsT
transformation [21] (or equivalently null-Melvin twist
[17,22-24]). One can start with a AdSs geometry, uplift
the metric to ten dimensions to embed in a type IIB
solution. Identify two isometry directions in ten dimen-
sions: x~ and y, say. The TsT transformation consists of
three steps. A T-duality along x~ direction, followed by a
shiftin y: y — yw + x~ and finally a further T-duality along
x~ direction. As a result the reduced five dimensional
spacetime is given by (1.2).

LCR on the boundary and TsT in the bulk are therefore
consistent at the level of isometry, in a sense that the
asymptotic symmetry of a TsT transformed bulk spacetime
matches with the corresponding Schrodinger symmetry of
the boundary theory. Our goal is to understand the con-
sistency between the LCR and TsT transformation beyond
the geometry, in particular at the hydrodynamic scale,
which is considered to be a low energy or long wavelength
departure from local thermal equilibrium. Our starting point
is a hydrodynamic system with conformal invariance and
its gravity dual. Since hydrodynamics is an effective
description, its evolution is governed by the set of con-
servation equations (known as constitutive equations). The
holographic description of a hydrodynamic system is given
by locally boosted black brane geometry [25]. In the LCR

method, we reduce the relativistic constitutive relations
over the light-cone directions to obtain a set of equations
consistent with Schrodinger isometry and thus we get a
nonrelativistic hydrodynamic system with stress tensor,
energy current, charge current etc. In the TsT method, we
uplift the locally boosted black brane geometry to ten
dimensions, perform the TsT transformation and get a
reduced locally boosted five dimensional Schrodinger
spacetime. Then we use the bulk-boundary dictionary
of [26] to write down the conserved quantities (stress
tensor, energy current, charge current etc) of the boundary
nonrelativistic system from the reduced effective five
dimensional effective action. The question is whether
these two reduced systems are identical. We describe the
problem with help of the following commutative diagram
in Fig. 1.

A partial answer to this question was given by [27]. It
was shown that both the paths (LCR and TsT) commute up
to first order in derivative expansion. The first order
calculations were somewhat trivial and it was not clear
whether the commutativity would hold at higher orders. In
this paper we address this question more rigorously. We
consider second order U(1) charged conformal hydro-
dynamics with both parity-odd and parity-even sectors
and its gravity dual [28]. We show that the nonrelativistic
fluid obtained via LCR and TsT transformation are iden-
tical order by order in derivative expansion up to second
order in derivative expansion. As a byproduct of our
calculation we gave a complete holographic description
of nonrelativistic charged fluid with Schrodinger isometry
up to second order in derivative expansion.

Locally boosted black brane
geometry in 4+1 dimensions

Uplift to 10
dimensions

9+1 dimensional geometry
embedded in type IIB

TsT
transformations

AdS/CFT dictionary

\/
9+1 dimensional geometry Boundary relativistic fluid in
asymptomatically Schrodinger TsT LCR 3+1 dimensions
Reduction to 5
dimensions
Effective 4+1_d|menswnal Light-cone reduction
action
Bulk/boundary
dictionary > Non-relativistic fluid in 2+1 ¢
dimensions
FIG. 1. Two different paths to obtain second order nonrelativistic fluids.
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II. LOCALLY BOOSTED BLACK BRANE
GEOMETRY AND THE RELATIVISTIC FLUID

We start with Einstein-Maxwell theory in AdSs with a
Chern-Simons term

4
K abcdec gbcgde)

5= / Bx(R = 2A — G,y 0 — (2.1)
where A = —6/L? is the five dimensional cosmological
constant, G field strength of the U(1) gauge field. The
Einstein’s and the Maxwell’s equations obtained from this

action admit the following solutions

ds? ==2u,dx*dr—rf(r,m,q)u,u,dx*dx" + r*P ,,dx" dx

fq

W=7 U (2.2)

where

X ={v,x,y,2} (2.3)

are boundary coordinates, u* is a constant four velocity
whose different components are given by

1
Uy, =-—v7, u; = yﬁi’ VY= ~ (24)
1-p
such that u?> = —1 and
m q*
f(r,m,q):l—F—i—F. (2.5)

2r
ds®> = —2u,dx*dr — r2f(r,m, q)u, i, dx*dx” + r2P Ldx*dx? + —F2<

\/_Kq 6qr

= 2ru, (u*0,u, ) dx*dx* — 2u, ( I

I +-1 pip,gF, (r

P, =n, +uu, N = diag{-1,1,1,1}.

is the projection operator given by

P, =Ny + u,u, Nw = diag{—1,1,1,1}.  (2.6)

The solutions (2.2) are parametrized by five constant

parameters: three boosts B one mass parameter m and
one charge parameter ¢ and represent an electrically
charged black hole with horizon at r = R, given by

f(R,m,q) =0. In the rest frame (ﬁ =0) the metric
becomes the standard Reissner—Nordstrom metric written
in Eddington-Finkelstein coordinates. We have taken the
AdS radius L = 1. R

We now consider the black hole parameters 3, m and g to
be slowly varying functions of boundary coordinates x*

m — m(x*), ﬁ*ﬁ(x"), q = q(x*).

With such replacement the metric and gauge field (2.2) do
not solve Einstein’s as well as Maxwell’s equations any
more. In order to find the solutions with local parameters
we have to supplement the metric and gauge field in (2.2)
with extra terms proportional to the derivatives of the

parameters. Assuming m, g and ﬁ are slowly varying
functions of x*, one can solve Einstein’s equations order
by order in derivative expansion. Up to second order in
derivative expansion the solutions are given by [28],

2
1}; ;)g dxtdx¥ +§ruﬂuy(6u)dx”dx”

R ;1) > dx*dx* + r*a,, (r)dx*dx”

k
+ 3h(r)u,dx*dr + r*h(r)P,, dx"dx* — 12r? j ,P?u,dx"dx* + @u”u,,dx”dx” (2.7)
r
and
3 3 3Kkq? 3r
C, = ff u, + fwz(r) w, + T, — v3r PiD,gF Y (L 1) Var () (2.8)
2r 2r 2mr 2R8 R R 2
o, I" and the Weyl covariant derivative D, are given by
1

o = P"“P’“/’a(auﬁ) - §P”"0 - u, IH = ey 0,u,, PiD,q = P}0yq + 3(u - ou,)q. (2.9)

The functions F; and F, are given by
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rom 1 m q*\ [
P22y 2122 [Ty
(o) =3 (15 5) [

R

(- (1+5)
A AN

p(P*+p+1)

The parameters m, ¢, and R are not independent at the
leading order, they are related by

q* = R*(m — R*). (2.11)
The exact form of various scalar, vector and tensor
functions [h(r), k(r), w(r), ju(r), g.(r), and a,,(r)] can
be found in [28]. We have also presented these functions in
light cone coordinates in appendix A.

P+ + /P -211)

(2.10)

I

The metric and gauge field given by Eqs. (2.7) and (2.8)
provide holographic description of U(1) charged con-
formal fluid in flat 3+ 1 dimensions. One can use the
AdS/CFT dictionary to compute the constitutive relations
(stress-energy tensor and U(1) current) of the relativistic
fluid up to second order in derivative expansion. They are
given by

1
T = (E+ P)””MU +P7]ﬂb _2715”” +N1MAID;LO'W/ - 2./\/’2((0”/1(711/ +CUD/1(7/W) +N3 (Gﬂﬂﬁly —gplwdaﬂdaﬂ>

1
+ 4'~/\/‘4 <a),u/1w/lu + § Pﬂywaﬁwaﬂ) + NS q_l HﬂbaﬁDaDﬁq + Néq_znﬂyaﬁpaqpﬁq + N7H'Waﬂ(pal/3 + Dﬁla)

+ Ngg ' T, Dyg + Nog~'e®PHn UZ) s Dpq

and

J# = 4\3qu' — 4V/3),PD,q + & 1" + 1, P* Do}
+ 72, PP Dy + y31d

+ 714970 Dyq + 1547 0, Ds4. (2.13)
The tensors w** and I1%* is given by
1
ot = EP”“P”ﬁ(aauﬁ - aﬁua) (214)

1 2
H(l[)’/w — E <P(1;4P[)’v + PavPﬁy _ g Pa/ip;w) . (2 15)

One can independently construct this stress tensor by
demanding Weyl covariance [29]. The transport coeffi-
cients for such fluid in general depend on the temperature
and charge density. The holographic values of different
independent transport coefficients appear in (2.12) and
(2.13) are given in Table 1. mg and g appearing in different
transports are leading (unperturbed) values of m and g.
Also we have set the leading value of the horizon radius R
to be one.

(2.12)
TABLE I. Relativistic transports.
n R3
A m+R*
r 4mR
¢, 2’
m
N] 24 my log 3—y/4my—3
\/4mg=3 3+44/4mo=3
N, SN -2)
N 2
Ny =) (12(mg — 1)x2 = my)
_/\/‘5 _ (my=1)
2my
N 3(mg—1)(31og(2) — 1)
N7 ﬁK('”()_])%
N, Ny 0
71 3\/§‘10
mo
72 2‘/_%3) ?
I’ﬂo
2
73 _ ]n;]g)c
Y4 2v/3¢q log2
75 _ \/gqu(m%—48k2q§+3)
2m?

0
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III. LIGHT-CONE REDUCTION AND
NONRELATIVISTIC SECOND ORDER FLUID

As we have already discussed, a nonrelativistic fluid can
be obtained by LCR of relativistic fluid. The idea follows
from the fact that LCR of conformal algebra renders
Schrodinger algebra in one lower dimension. We start with
relativistic constitutive equations and reduce these equa-
tions along a light-cone direction. As a result, the non-
relativistic quantities like energy density, pressure, stress
tensor, charge current etc. are given in terms of different
components of relativistic stress tensor and U(1) current.

The conservation equations for a U(1) charged relativ-
istic fluid are given by

0,T" =0, 9,J* = 0. (3.1)
We are considering the fluid in a flat background and in
absence of any external electric or magnetic fields. The flat
metric in (d + 1, 1) dimensions is given by

d
ds? = —(dx°)> + (dx¥*1 )2 + 3 (ax')2. (32)
i—1
In the light-cone frame x*, defined by
0 | Ld+l 0 _ ,d+l
e Ak A (3.3)
V2 V2
the metric takes the form
d
ds® = =2dx*dx~ + Y _(dx')?. (3.4)
—1

1

It turns out that [18,20,30] under LCR the relativistic
constitutive equations boil down to the nonrelativistic
constitutive equations in one lower dimension. These
equations describe a nonrelativistic fluid in one lower
dimension.

To obtain the Schrodinger algebra one has to look for the
subalgebra of the conformal algebra where all the gen-
erators commute with P_ (translation along x~). Therefore
we consider only those solutions to the relativistic equa-
tions that do not depend on x~, i.e. x~ is an isometry
direction. To make the reduced theory consistent with
discrete light-cone quantization we reduce the theory
along x~ direction, and consider x* to be the nonrelativistic
time.

In the light-cone frame (x* = {x,x~, x'}) the nonzero
components of metric and partial derivatives are given by

+—

g g7 =g =1

o ={-0_,-0,.0;}.

=g+ =-1

0, = {0..0_.0,}. (3.5)

After reduction, the relativistic constitutive equations are
given by

0+T+_ + aiTi_ - O,
0.TH +0,T' =0,

0. T+ +9,T* =0,
0,Jt + 0,0 =0.

These equations can be interpreted as dynamical equations
governing the motion of nonrelativistic fluid if we identify
different components of energy-momentum tensor and
charge current with nonrelativistic quantities as follows

1
TH =e+-p1?,

Tttt = ,
P 2

T+ — ﬂ’l)i,

TV =i, o=J", ji=JL (3.6)
A relativistic fluid in four space time dimensions is
described in terms of its normalized four velocity u*,
temperature 7" and charge density g. On the other hand
the nonrelativistic fluid in one lower dimension is described
in terms of its mass density p, pressure p, spatial velocity v’
and charge density Q. Hence the number of fluid variables
in both the theories are the same and a mapping between
them can be found. Since fluid dynamics admits derivative
expansion, the relations between the nonrelativistic and
relativistic fluids can be obtained order by order in
derivative expansion.

LCR of conformal uncharged and charged fluid up to
first order in derivative expansion have been derived in
[18,20,27,30]. In a recent paper [31] LCR of conformal
uncharged second order fluid has been considered thor-
oughly. It was shown that the Rivlin-Ericksen fluid [32] is a
subclass of such nonrelativistic fluid. In this paper we
further extend those calculations. We light-cone reduce a
(34 1) dimensional second order Weyl invariant U(1)
charged fluid (2.12), (2.13) and obtain the corresponding
second order charged nonrelativistic fluid.

To perform the reduction we need to consider two sets of
constraints relations. The first set of relations is derived
from the conservation laws of the first order corrected stress
tensor and charge current. We list the independent first
order data in Table II. We have categorized the non-
relativistic fluid data in scalar, vector, and tensor with
respect to the SO(2) symmetry group, as the nonrelativistic
fluid has an SO(2) symmetry (rotation about z axis).

The second set of constraints can be derived by taking
derivatives of the zeroth order conservation laws. The
independent second order data are given in Table IIL. &;;
and @,; are given by
@i = ol — i,

61 = o'/ + v’ — 8ok, (3.7)

The angle brackets denote symmetric traceless combinations

AYBJ) = (A'B/ + A/B/ — 8 A*B,). (3.8)
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TABLE II. Independent nonrelativistic fluid data at first order.
Data Constraint Independent data
Scalar 0, T, 0., 9,T"" =0, 0,0, €Va;;
€ija),-j, a+u+, aiui aﬂTﬂ_ = 0, 6”.]" =0
Vector o;T, 0;p, du™, o, u' 0,T" =0 0,7, 0;U, Ol
€*0,T.e*0p, e*o,u™ e*o,z, €*ow, €*opu,,
Tensor o'l &'
TABLE III. Independent nonrelativistic fluid data at second order.
Data Constraint Independent data
Scalar AT, 3¢, 0.0,T" =0, 0%z, v
tut, BT, ¢, 0,9,T"~ =0, Pty
?ut, o, 0 0,0,T" = 0,
0,9,J* =0
Vector 0,6, 0;", 0.0,T" =0, 0,6, 0;@"
d out, du 0,0,T"* =0, ello'*, ello @™
0,0;T, 0,0, ¢ 0;0,T"~ =0
€9, ¢l o,w'* 0,0,J* =0
Tensor 0T, 00/ ¢p, 0,0,T" =0 oigiz, aligily
doiut, 9,0, 0,
e*okaiut, ek T elikokaiy, | elikogkoilr,
ek gp elkokoily

The nonrelativistic temperature and U(1) chemical potential
are defined as,

r ¢
=7, n=7 (3.9)
The relativistic  variables satisfy Euler relation:

E+ P —q¢ =TS. Using the relation between relativistic
fluid variables and nonrelativistic fluid variable at leading
order [18,20,27]

E-P
e:T, Q:4\/§qu+

(3.10)

p=(E+P)(u")’. p=P,

we see that the nonrelativistic variables satisfy

%)
€E+p—ppu—pu\l—72=| =718 3.11
p=rp u<4\/§ (3.11)
where p,, is given by,
= ! (3.12)
Pm 2(ut)? :

and s = u™ S is the entropy density of the nonrelativistic fluid.
This equation is interpreted as the Euler relation for the
nonrelativistic fluid with an extra fluid variable p,,, which can
be considered as chemical potential associated with particle
number conservation [30]. In [27] a new basis has been
introduced in terms of reduced chemical potential v and
redefined mass chemical potential y,, given by,

v=", Oitty, = (ut)30,p,, iy, =ut.  (3.13)
In this paper we use the variables {y,,,v, 7} to express the
nonrelativistic constitutive relations.

In Tables II and III all the nonrelativistic symmetric
tensors are traceless. After using the constraint relations we
have three independent second order symmetric traceless
tensors in the parity even sector and three in the parity odd
sector. In addition to these, we have composite symmetric
traceless tensors constructed from the independent first
order vectors. We have seven such vectors in parity even
sector and seven in parity odd sector.” Thus, in total we

2. . . . .

In higher space dimensions there can be more composite
terms like o' 6%/ which identically vanishes in two space
dimensions.
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have 10 parity even and 10 parity odd second order
independent symmetric traceless tensors. The light-cone
reduced fluid stress tensor is expected to depend on these
independent data.

After a careful computation and using the set of con-
straints we finally write down the stress tensor in a
simplified form given by,

1 = pvivl + pdil — ny 57 4 ny 000X, + ¢85 M)
+ ¢,,0 X, 00X, + g%k X, + g %0, X, 0 X,

pry (3.14)

+ gioe'

The indices @, b run over 1, 2 and 3, X, = {u,,,v, 7}
denotes an array of nonrelativistic parameters, c,;, and g,
are 3 x 3 transport matrices given by

c c3/2 ¢y/2 94 95 Yo
c=|c3/2 ¢ /2. g=|95 97 9s (3.15)
cs/2 c6/2 96 93 9o

The other nonrelativistic fluid variables: mass density p,
pressure p, velocity v', energy density e, energy current e;,
and nonrelativistic transports are given in appendix B.

The nonrelativistic charge current which comes with
eleven parity even and eleven parity odd transports are
given by,

J'= Qv+ q,0X, + 4,6%0, X, + n{ 0,5 + ny o, @™ + ny ', 5™ + n el o,

+ 7% o X, + ¢l "0 X, + +¢ (00K’ X, + g7 e'6% 0, X, + g7 e @™ 0, X, + g7 (9, vF)e0,X, (3.16)
where
= {’Iq’ q} q {’1 5- ~q}v CJ = {Cl ,C4 ’ } cj = {02 ’ CS ’ }
c~7—{c3,c6, } g/ = {g { } g/ :{92’95’98 }, g7 _{92’96 9} (3.17)

are different transport arrays. The nonrelativistic charge
density Q and different charge transports are given in
appendix B.

As a consistency check we see that in the limit ¢ — 0 all
the constitutive relations reduce to those for uncharged
fluid found in [31]. In [31] the stress tensor at second order
was written in terms of a quantity BY = d'a’/ + d/a'+
2(0"v*)(6/vy). The acceleration a’ for charged fluid is
given by,

(3.18)

In order to match our results with [31] one has to replace
B using the above expression of a’ (with ¢ = 0) and trade
d'u,, with a' using the above relation.

Our next goal is to construct a holographic description of
the nonrelativistic fluid studied in this section.

IV. HOLOGRAPHIC DESCRIPTIONOF SECOND
ORDER NONRELATIVISTIC FLUID

TsT transformation is a solution generating technique in
string theory which has been used to generate a black
hole solution with asymptotically Schrodinger isometry

|
[17,22,33-39]. The idea behind is based on the fact that
supergravity has more symmetry than the string theory. If
we perform TsT transformation on a string theory solution
then it generates new solution of string theory, which is
guaranteed to be a solution of supergravity theory. To
perform the TsT transformation on a five dimensional
geometry we first need to uplift the solution to ten
dimensions to embed in string theory [17,37,39]. This
uplift can be performed such that the 10 dimensional metric
is the direct sum of the five dimensional metric (AdS part)
and a five sphere which is written as a fibration over CP2.
Such ten dimensional uplift of the five dimensional metric
will be a solution of type IIB string theory.

We write the five dimensional metric and the gauge field
in the following form,

ds* = =2u,dx*dr + Su,dx*dr + S,,,dx"dx*

C=C,dx* =C,dx". (4.1)
The exact form of § and S, depend on the solution we are
considering. Since we are interested in the bulk dual of
second order charged fluid (2.7) and (2.8), S and §
given by
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S =3n(r)
rom

22
Sﬂyz—rzf(rm q)u,u, +rP + F, <R R

2
)aﬂb +- 3 Tul J(ou) = 2ru, (u*ou,)

V3kg? 6qr . lr
- 2u”< mr® b+ PD;qF) <R R4>> + r?ay, (r) + r*h(r)P,, — 1217 j,Piu, + %uﬂuu
3 3 3 35
C V3q +\/_wz(r)u kg’ | V37 PiDgF O (L 2 +Qg (). (42)
o2 212 T 2T RS R’ R* L

To uplift the five dimensional metric to ten dimensions we
introduce the five dimensional Sasaki-Einstein manifold,

2
dsip = (du/+P—7§C> + ds?. (4.3)
where,
1
P= (d}m + dy,) — sin® a(dy, sin® § + dy, cos® §)

ds? . = da + sin® adf?
+ sin? a cos? a(cos? Bdy; + sin® fdy,)?
—dy,)*.

+ sin® asin? B cos? B(dy, (4.4)

We uplift the five dimensional metric (4.1) to ten dimen-
sions as a fibration over CP2. The ten dimensional metric is
given by

dst, = —2u,dx*dr + Su,dx*dr + S, dx"dx"

2
+ (dl//—F’P—%C) +dSCP2 (45)
supported by a five form field strength
Fs=2(1+ )[(d +P 2C>/\J l*g AJ
= * [ - R
5 10 U4 NG 2 /3 5 2
1

a two form field strength G = dC and a dilaton @ = 0.
To perform the TsT transformation on the ten dimen-
sional solutions (4.5) and (4.6) we need to identify two
isometry directions. One such isometry direction is y,
|

2
SIO_MA (dx +K1) +M(dl//+73—7§c

=AA <du/+P—iC),

1
.7:3:9/\d7), gIEdC_,

*Here we set the twist parameter to 1.

|
useful to fabricate a nonrelativistic symmetry from the
relativistic one [40]. To identify the other isometry direction
we introduce the bulk light-cone coordinates x*

xt = (v+2),

(v=2)

xt =

(4.7)

t\)l'—‘

and choose x~ to be the second isometry direction.
In the light-cone frame the ten dimensional metric can
be written as,

2
dsiy=A(dx"+K,)*+dsi+ <dw+P——C> +dsg,

V3
(4.8)
where,
Al - S__,
1 Y
K, = s <S+_a’x+ —u_dr+ S_;dx' + Eu_d;f),
ds? = —2uzdxdr + Suzdx®dr + S, 5dx"? — A\ K2. (4.9)

Here i, j are running over {x, y} and a, b are running over
{x™, x,y}. Different components of S: S, _, S_;, S;; can be
computed using (4.2) and the related expressions given in
appendix A.

The TsT transformations correspond to performing
T-duality along y direction, followed by a shift’ along
X", i.e., x~ = x~ — . Finally we perform T-duality back
along the y direction [39,41]. The TsT transformed
solutions are given by [39]

2 ,
) ras oo

Fs=Fs+ By, A Fy (4.10)

V3
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where,

M=(0+A)" and A=-MA(dx +K;). (4.11)
The TsT transformed ten dimensional fields can be trun-
cated over S° directions [19,33]. After truncation the
effective five dimensional solutions consist of a metric,
massive vector coming from 32,4 a scalar and a massless
vector field. The massless vector field was present in ten
dimensions even before the TsT transformation and it
remains unaltered after TsT and reduction. We also get
an one form in five dimensions but this one form is
not an independent excitation. The reduced five
|

1 s

dimensional metric in Einstein frame and other fields are

given by [17,19],

dst = egAl(dx_ +K\)*+ e#dsi

e = M.
(4.12)

N 1
A:—MAl(d)C_+K1), gzidC_,

It can be verified that this reduced 5 dimensional geometry
and fields are solution of five dimensional effective action
given by [20],

| )

1 4 (
§= 1671'G5 / dx® vV—g (R - § (aa¢) (6a¢) - Z eT]:ab]:ab - 4./4“./4‘1 - 4e¥<62¢ _ 4) _ g eTgabgab _ 4€2¢gaga

1 2

—4 2
- E%Aagbc/laghc - 5 es <_ %gab - 4gaAb> <

To find the boundary stress energy tensor the on-shell
variation of the action must be well defined. This can be
achieved by adding appropriate boundary terms (Gibbons-
Hawking term and counterterms) to the action [17,20]

1 4./
e T —— — 2K — a 2 .
Sboundary 1677,'G5 / df /’l( 6+ AuA + 3¢ )

(4.14)

To find the boundary stress energy tensor associated to this
five dimensional effective action we cannot directly use
Brown-York type analysis [42] as we do not have con-
formal structure at boundary, because of inhomogeneity in
the asymptotic fall off of different metric components. We
use the method developed in [26] to obtain the stress
|

2

\/§ gab _ 4gaAb> + %gabgcdcegabcde) .

(4.13)

|
tensors and other currents. We summarize the method in the
following subsection.

A. Stress energy complex

To determine the boundary stress energy complex for
Schrodinger field theory, we consider on-shell variation of
action with respect to boundary fields [26,27,43],

1 3
Sa[} =v-=h (”aﬁ + 3/’1(1/3 + AU,A/} - EAyA},haﬁ - 2¢2haﬁ>

Sq =V —h(—n“faae%w +2A4,), Sy =—V—h (g no,p — 3¢)

4 4 8 -
5 = v/ ( (5 et 4e#AbAb) MG, +

1 T
58 = 1620 / dE*(s,56h" + %6 A, + 546 + 5°6C,,)
(4.15)
where,
8 24 16K
—=e3n” aAa - aAa - —naeaa c Cbng> 4.16
/3 (9. ) 3 bed ( )

here n“ is outward directed unit normal to the boundary, and 7,5 = K3 — Kh,s with extrinsic curvature K3 = V,ny.

As we have already mentioned, the TsT transformed asymptotic metric is not conformal to flat space time. Therefore we
cannot construct the stress tensor by naively varying the action with respect to the boundary data. In [26] a consistent
procedure has been developed to find out the stress energy complex when the boundary is degenerate. In this formalism, we
first need to write down the boundary fields (metric and other fields) in terms of tangent space indices

“To note, B, is not an independent field, as mentioned in (4.10), thus either B, or its field strength does not appear in the final reduced

action.
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p AB---

ap-- _ La .
= e €p /78

W (4.17)

and consider the variation of the boundary action with
respect to independent wA%. In our case, the set of
boundary fields consists of a metric 4%, a massive gauge
field 4%, a massless gauge field C* and a scalar. We first
write these fields in terms of their tangent space indices

af _ ,a P AB
h? = e% epn®,

p=9¢
(4.18)

A% = eq AA,

C* = each,

and consider the variation of the action with respect to e4,

A4, C?, and ¢

1
S = 165G / d& (T;eﬁée;j + 5,625 A
+ 5,00 + gaegacA> (4.19)
where,
T; = ZSZ - Sa.Aﬁ - gaCﬂ. (420)

The components of the boundary stress energy complex has
been identified as,

—_ Tt
e=TT,

i i
1, =-Tj,

e =T,

Q0 =737,

p=T=",
ji:§i

pl=TL,
(4.21)

This analysis has been done up to first order in derivative
expansion for charged nonrelativistic fluids [20,27]. Our
goal is to use this formulation to obtain the second order
stress energy complex for charged nonrelativistic fluids.

B. Holographic computation of nonrelativistic
constitutive relations

On the gravity side, the independent quantities are mass
m, charge ¢, and four velocity u* of the boosted black
brane. The other quantities temperature 7" and chemical
potential ¢ are related to mass and charge by the following
relations [44],

. 1

m= m0+x+a+m+x’aim+§
. 1

q=qo+x"01q +x'0;g +5(

. 1

ut=1+xto,u" +xou" +5

u' =x"To u' 4+ x/ou’ + 5((x+)263ru’ + (o/)205u’ + 2x*tx/0,0u).

T ¢ n°T?
=— 133y -1 =—— 1)?
m=—+)Gr=1.  g="m——F+1)
(4.22)
where,
8¢?
=¢/1+—=. 4.23
r=\1+3p0 (4.23)
The horizon radius is given by,
T
R = ET()/ +1). (4.24)

In all holographic calculations the unperturbed horizon
radius has been set to 1. So, at the leading (zeroth) order
these relations become,

\/§6Io (2 -q3)
= ] 2 = — T, = A= 10/
my + qp. ®o 5 0 r
2 2
yo = 21 90). (4.25)
(2- %)

Following Eqn. (4.21), the zeroth order nonrelativistic
quantities are given by,

p=dmo(u*)?,

0 =4V3qou*
(4.26)

P = my, € = my,

and they satisfy the nonrelativistic Euler’s equation ¢ +

D= PPm— y% = 7s with mass chemical potential p,,
given by (3.12).

1. Second order calculations

We expand the relativistic mass, charge, and velocities
about their values in local rest frame up to second order in
derivative expansion

(2R + (52 + 2x* 310, oym)
(x")20 g + (x')202q + 2x* x'0, 9,q)

(xH)22ut + (x)*0ut + 2xtxio ou™)

(4.27)

106011-10



T-DUALITY-SHIFT-T-DUALITY TRANSFORMATION ...

PHYS. REV. D 107, 106011 (2023)

TABLE IV. Independent first order data from holography.
Data Constraint Independent data
Scalar d,m, 9,4, gPE,, =0, o, el
eV, ut, o gPE,_ =0, g*M, =0
Vector d;m, 0;q, o;u™, 0, u’ gPE,; =0 aim, 9,q, du”
e*o,m,e*o,q, e*out e*o, T, e*o,q, e*ou™
Tensor o'l o'/

Following the holographic procedure described in this
subsection and using the dictionary laid down in
Eq. (4.21) we calculate the components of stress energy
complex corrected up to second order in derivative ex-
pansion. In deriving different components of stress energy
complex, we use the constraints obtained from Einstein’s
and Maxwell’s equations. In Table IV we list the indepen-
dent first order holographic fluid data coming
form equations of motion. These holographic constraints
(Table IV) are similar to the constraints obtained by LCR of
relativistic conserved currents (Table II). Using the holo-
graphic constraints we write our independent data in terms
of derivatives of m, g, and u™. In addition to these, the
holographic fluid also satisfies constraints same as given in
Table III, coming from the zeroth order holographic stress
tensor and charge current. Using those relations one can
|

obtain the independent second order scalar, vector and
tensor data in terms of derivatives of m, ¢ and u™.

We further use the holographic relations (4.22) to trade
derivatives of m and ¢ with the derivatives of nonrelativistic
fluid variables: mass chemical potential y,,, temperature 7
and chemical potential v defined in (3.9) and (3.13). At first
order the relations are given by

P) P)
oim = 4m0$ + 661(2)% + 4mo(0iptm)
0t qo(2+5¢f) 0w
0,q = 3qo L 4 IO T EE 30 (O,
q=3q0— Crd) v q0(0ittm)

and at second order they are given by

0;0;m = 4mq(0;0;u,,) + 4my aiiﬁ + 643 aijy 6q§)§2++q§)qé) ail;(z)jy + 12my alzgﬂ + 12mo0;p4,, 0t + Zj;l% ((oiv)(9j7)
+(O)(015) + 2 (0) 059) + (O (0:0) + 2228 (00,) (0) + Oyt) (0)
and 00T qo(2+5¢2) 0w Aqi(12+ 8¢3 + 5¢8) ooy deoyr
0,0, = 3q0(9;0ip,n) + 340 . + C+a) v 2+ a2y 2 + 69, ) + 64000,
23 (00) 079 + 00)(0) + 22 (@) 059 + (00) 0

3g0(2 +543)

Cra (@rn)0w)+ Oipn) O).

Finally we write the holographic constitutive relations in
terms of independent nonrelativistic fluid data give in
Table II and III.

After adedicated computation we obtain the expressions for
different holographic constitutive relations and transports.
Here we present the expressions for the stress tensor, charge
density and charge current. Other nonrelativistic quantities
(mass density, energy density, pressure, velocity,energy
current) can be found in appendix C. The stress tensor is
given by,

[
1t = pv'v! + p&l — 5 4 ng 0V X, + ¢ 5@
+ €0 X, 00 X), + g.e*F 0 X, + g e %0, X, 07X,

+ gioe e ' (4.28)

where ¢&,;, and g, are holographic counterpart of ¢, and g,
defined in (3.15). Three sets of holographic transport coef-
ficients are given in Tables V, VI, and VIL
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TABLE V. List of 7;. TABLE VII. List of g;.
1 gl
ity Riut o _ 2V3xqg
ﬁZ 3—y/4my=3 . my
o log (\ /4/110-3+3) 1 9 — 3\/5’(;](5)
2\/1;(;—_3 R jl%m()x
i3 32 log (Y3 9 —
—13mi+10m3=3mo+6 708\ o= . 6ﬁ03
8um;+8um? 4u\/4m0—3 94 %
0
ﬁ4 3—4/4mp—3 e 9\/§qu
I—dm, myg log (\/4"‘(?”) 9s 2Dmgo
4mgyt 2\/4mo—3‘r .@6 3\/§qu
myt
7 3v3xq5 (945 (45 +2)—mo (5q5+2))
TABLE VI List of & 2mlay+2)
. List of ¢;. G 3k
vmlt
A 0
Cq _ mg log (3—1 /4m0—3) 99 3\/§qu
4y/4my=3 \/4mg=3+3 myz*
& 3mg log [ 22m0~ g0 _ V3xqy
24K2qg 008 \/Amy=3+3 2my
- + + 2m0 + 1
o 24/4my=3
C3 _ 3-/Amg 3
36k (my=1)° n 3(mq 1)10g( /4n10—3+3) + (mo—1)(12m3+19m3—3my+6) ) 0
I/m(z] 2,/\/4"10_3 4ym(2](m0+l) TABLE VIII. List of n;.
6‘4 3—y/4my—=3 N
_ 2 o log (,r‘m(,fm) 4 A aamy i 2V 2V3eg;
myt \/4m0—31 2myt 1)
2 s i ﬁZQ V3go(m3+4m2—15my+18)  3v/3k%q]
5 _ L — () —. - 3 —_— 3
272 (m=1)* 3(mg—1)(my+3)(7my—9) log (\/‘Wﬁ) ) 81\//:110% . 2vm]
2”2’"3 161/2mo(mo+1)\/4m0—3 ny — 34 32% - %
maT mqtT
+3(m0 3)*(mo=1) log(2) 0 0
1602 m (my+1)?
. (mo—1) (34mS+210m3+245m3 —502m3 +390m2~396my—333)
321/21n8(1n(]+1)3
C6 5 3(my—1)log (3_ Y 4”’0_3) ) . ~
_ 18 (mp—1) VAmg=3+3)  =3my—5mo+8 TABLE IX. List of 4;.
bm(zlr 41,\/4,,,0_3, 2vt+2umgt
6‘7 3o o 3—y/4my-3 /11 2\/_:<
3 6qug " 0108 famy—3+3 + 4m3+14m9—5 m0
mot* 4y /4my=37* 8mo7* 22 _ 3VBq kA (5m3—=39my+60)  3v/3(my=3)*q3 log?2
202 mi(mo+1) 42 m3 (my+1)
V33 (m{+28m; +24m +108my—369)
1607 mg (mo+1)
. . . gl \/_54m \/_l<m—l3/2
Nonrelativistic charge density Q is given by, 43 (ZmZT oo 4 O"
A ﬁq3<5mo—3) 12v/3 (mo=3)%q)
T o (mo+ 1) wmd(mg+1)
6 2 utx \/§ me —2 = R vmg(my e
Q 4\/_ql/t+ 77 el]w ij M{TU&U }-5 — o \/§(mo—3)2q3 _ \/5(’"0_3>2LI<> log2
4m0 vm (mg+1)7 2umg(my+1)7
\/_q 2 _ \/§q0(m3+55m33—67mg—15mo+42)
V40" i i 8umy (mo+1)t
m 2 U +na(00X) 26 _3\/§q8
m’t
0
3 j 20 i 2 32 (2m2—9my+15
+32,,0'X,0,X, + dape'’0,X,0,X,, (4.29) A %
j _ 3k(mo—3) g3 (2m3—Tmy—3)
Where, S 21/n13(m(,+1)‘r
3 61('(1(:;
.. 4
A A2 26)2 0 24/2 Jo/2
AQ A A ~ ~Q o 2 2
=\Jy2 2 A2 | 2°=|Ay2 o i
1 1 1 2 2 Different 7%s,and ;s are given in Table VII and
As/2 A5/2 A3 d6/2 15/2 0 i S i g

(4.30)

Table IX.
Nonrelativistic charge current can be written as,
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J'= 00" + §,0X, + q.e*0 X, + 7] 6% + hf oo™ + ] €0 6/ + hf el ok
+ &J6% 0, X, + ¢ @0 X, + ¢ (040X, + 8750 X,

+ g7l 0, X, + g7 (0,v")e'0,X,.

Again all the hatted transports are the holographic counter-
parts of the nonrelativistic transports defined in (3.17).
Holographic values of different charge transports are given
in Table X, XI, XII, and XIII.

TABLE X. List of .

ﬁ{ 2V3 IOg 344/4m—3 V3qq(me—2)
2/4my—3 3—/4my—3 2mg

rAl‘27 _ V34o(mg+2) + \/§qu3 + 40v3 10g ARVl
4 mg 2/4my-3 3—/dmy-3

0
ﬁj 3(m0—2)q(2)/<
) o om
TABLE XI. List of ¢/ and q.

2 V3RS | 2q7v/3 [(2R*+3m) _ (m+R*)
q mut mR T(3y-1) yT
+ qutV3 (V3q(2R*+3m) _ (m+R*)(3y-2)
mR m V24
6-11 grutV/3 (V3q(2R*+3m) _ (m+RY)(37-2)
mR m rdh
Ky 2qu*V/3 ((2R*+43m) _ (m+R*)
mR T(3y-1) yT
+ quuV3 (V3q(2R*+3m) _ (m+R*)(3y-2)
mR m o
1 _ 12kq? 2ut V3qut
}'LI m (1 + 3y—1 + m
a, _leg? (w+ @)
m m
,:( _ 124> 2 \/gqur
q m By-1) + m
TABLE XII. List of ¢7, ¢7 and ¢7.
5]7 2V3qy  2V3¢%q}
n‘l(zl m(?;
657 2\/?_>q(3) _ 2\/§K2(12m0—13)q3
mg mtzj
&y 0
& V3(5m24+24my-9)g3 Wi o (/AT 3vEed
8umg (mo+1) dmou/4mg=3 3—/Amy=3 2
@53 V3(11mi—4m3—23m2+12my—12) ¢, _ 3V32 g3 (12m3—1Tm2+12my—23)
SDmS(m(rH) 2um(3)(m0+1)
el 0
~J
S V3(5my=6)qy + V3qy lo 3+ty/4my=3\ V3eq
4miz 20y fAmy—3 3—/4mg—3 mgye
65;7 \/5(4m3—3m0—2)q0 _ \/§K2q3(12n10—13>
4m(2)‘r m[Z)‘r
~J
& 0

(4.31)

TABLE XIIL. List of 87, 87 and g7.

o 0
9 0
o 0
AT 2
o
~J 642K
95 ot
i 0
~J 9%k
91 mé(rm?«kl)v
~T 4
9 0

V. DISCUSSION: COMPARISON BETWEEN LCR
AND TsT

In order to compare the two approaches to obtain the
nonrelativistic constitutive relations we first note that the
stress tensor (3.14) and charge current (3.16) obtained via
LCR have exactly same form as stress tensor (4.28) and
charge current (4.31) obtained via TsT transformations. Not
only the stress tensor and charge current, one can check that
other constitutive relations like mass density, charge
density, energy density, energy current etc. have the same
structure of terms. The expressions can be found in
appendix B and C. The transport coefficients appearing
in light-cone reduced stress tensor and charge current
depend on relativistic data (i.e., relativistic transports
and fluid variables). The same is true for other light-cone
reduced constitutive relations also. These relations are very
generic and depend on the parent relativistic system (2.12)
and (2.13) and do not depend on any holographic model. In
appendix B we have listed all these transports. However, if
we use the holographic values of the relativistic transports
(I) then it turns out that the values of the transports
appearing in light-cone reduced constitutive relations
exactly match those obtained via TsT. For example let
us look at the holographic (TsT) value of 715 in table V. The
value of n3 for light-cone reduced fluid depends on the
relativistic transports and other fluid variables [see
Egs. (B1) and (B2)]. However, if one uses the holographic
values of relativistic transports (I) then it turns out that
i3 = ny. The same is true for other transports. Thus we
find that the nonrelativistic fluid obtained by LCR or by
TsT transformation are identical order by order in
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derivative expansion. Motivated by this we speculate that
the observation is true for any order in derivative
expansions.

The matching of TsT and LCR results, we think, is
nontrivial for the following reason. It was studied in [22,33]
that the TsT transformation of asymptotically AdS space
generates a new solution which has Schrodinger isometry at
the boundary. On the other hand Schrédinger in the
boundary theory can be obtained by LCR of conformal
algebra. In this paper we tried to understand this connection
in the context of hydrodynamics. LCR reduction of
relativistic constitutive equations (in particular conserva-
tion equations) renders nonrelativistic constitutive rela-
tions, namely continuity equation, Euler equations,
energy current equations and charge conservation equation
at different orders of derivative expansion. These equations
are consistent with Schrodinger isometry. Different non-
relativistic fluid data, i.e., mass density, charge density,
fluid velocity, energy current, energy density and different
transports can be obtained in terms of relativistic fluid data
and transports. Obtaining the nonrelativistic fluid via TsT
transformation is rather nontrivial. First of all we need to
obtain the correct holographic dual of a relativistic fluid.
We then uplift the solution to 10 dimensions and perform
the TsT transformation after identifying two isometry
directions. The transformation mixes different components
of the metric non trivially. In order to find the boundary
currents we first reduced the TsT transformed 10 dimen-
sional solution to 5 dimensions and wrote an effective
action (following [26]). The boundary currents are obtained
from the variation of this effective action following the
dictionary [26,27,43]. Since the variation is done with
respect to the tangent space variables of the asymptotic
fields, there is a further mixing in different components of
boundary currents.

Thus after very dedicated calculations we see that the
two sides indeed match exactly at every order in derivative
expansion which is very nontrivial as well as interesting in

|

1
122

6m0

its own right. It is worth mentioning that, while performing
the TsT transformation, not all of the isometry choices will
provide the Schrédinger isometry at the boundary. Here our
specific choice of isometry directions is goal driven. As we
have mentioned in this paper, the LCR of relativistic
conformal algebra boils down to Schrodinger algebra
and the TsT transformed black brane solution has
Schrodinger isometry at the boundary. Hence, it is not
very surprising to expect that such identifications hold
between the constitutive relations of a light-cone reduced
conformal fluid and a holographic fluid obtained from a
TsT transformed local black brane solution. However, this
agreement is not very straightforward to see. We had to go
through very rigorous calculations at each order in deriva-
tive expansion to verify the matching. We believe that it
requires further study to understand this agreement at the
fundamental level. We keep that for future endeavors.
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APPENDIX A: RELATIVISTIC BULK METRIC

Here we have written down the leading order pieces of
the components of bulk charged relativistic metric which
appear in the second order correction.

Scalars:

—— (2(0;u™)? +2(0, u')? + 2(0,u”)* 4 2(dyu*)? + (O™ — oyu?)?) + O(ls)
.

(202 m +20?m + 6my(0;u™)? + 16my(0;u™) (0 u’) — 22my(d,u’)> — 11my(0, u*)?

= 3m(0,u*)? = 3mg(0yu?)? + 6mg(0yu*)? + 16mg(0,u*) (0,17 ) — 34mg(9,u*) (0yu”)) + (’)<i>

24m3r

(1 + mg)(=3go03m — 3qo0?m — +4myd.q + 4myd?q + 20mo(0,.q) (0, u™)

+20m0(0;q) (94 u') + T2moqo (9, u™)? + T2moqo(9, u')* + 4qomo((9;9)* + (91q)* + 9g5(0, u™)?
+9g3(0,.u')? + 6q0(0,.q) (0, u™) + 640(0:9) (0,.u')) — 32v/3ggmoke’’ ((9;q) (0. u;)

= 0)(0) = 3000,°) Ou) + 3an(0 ) 0e”) = 0,0)0) + O )
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Vectors:
H 1 v A v A 1
Ju(r) = 12 (P Do, + Py Dyw;) + O =
2 3¢°« 1 3V342 V3q*K?
— _ P'D A _ P'D A
g/l(r) \/§q0r7 <2m2 ( 61/4) 8m0 " A0y 4m2 ) 200y
V3qlog2 V3q
- fafplq +1 6m§ (m3 — 48¢3x* + 3)60,’11),1(1)
0
Tensors:
1 P, P,
Gy =~ <a)Ma,’} + ®,,0} + 0,501 — T”o'aﬁaaﬂ - ww) — Tﬂw“ﬁwaﬁ>
1 1
+ m <./\/1(u’1D,10"”) +N2(0)”16M + a)”,lo“l”) +N3 <6”16/1y - §Pﬂydaﬂ6aﬂ>

1
+ N, <a)",1wﬂ” +3 Pﬂvwaﬂwaﬁ> + N5 (TP D, Dyn) + N ¢ (P D,nDyn)

2
+ N7 <Hﬂyaﬁ(Dalﬂ + Dﬂla) - €a/}y;4uaaﬂ(auuy) - €a/3yuuaaﬁ(aﬂuy) + g (laaa)P/w>>
Here i, j runs over (x,y) and u, v over (4, —,x,y).

APPENDIX B: NONRELATIVISTIC CHARGED FLUID FROM LCR
The transport coefficients involved in the stress tensor are given by,
ny=nut, ny = Vyit3T + 7470 + 71y, n3 = 37, ny = voity + g,
CcH) = 551/375 + 561/01% + G379 + 571'% + C47p + Co,

C3 = 2551/07:(2) + EGT% ‘I‘ 531'0 + 2}713'[0,

Cqy = 25‘51/(2)7,'0 —|— 2561/070 + 5'31/0 + 26’770 + 54 + 21/0713 + 2714, C5 = 5‘57,'%,
Cﬁ = 26‘51/0’[0 + E’ﬁTO —|— 2}7l3, C7 = 5511(% —|— 561/0 + 57
91 = 70(Govo + 33) + G, 92 = G270, 93 = Govo + G,

9a = 7o(§7v§70 + 2051070 + 2G5t + JoTo + 206) + G4 g5 = 70(Js70 + G7vt + G0 + Js),
96 = G7370 + 201070 + Javo + Fsvo + GoTo + T3 + Je 97 = G773, g3 = JgTo + J77V + Oo,

_ . . N
9o = 2Gsvo + G115 + Jo. o = —77
where,

2
- nr . 1
iy = “apy iy = _—16p(2)q0 (2po(N'1q0 + 3N'560) (94 1) — 8N'sp§(049) — qo(0sp)n,?).
B 1
e T (2po(N'1g0 + 3N'590)(9rp) — 8N'sp§(9rq) — qo(drp)n,?)

090
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%)

c3

55:

97 =

 64piqd

gg =

9o =

1

= (N N AN P - 30,

Po
1

= —— (po((2N| = N3 = 4N,)(94p) = 4n,(04m,)) + 4(0sp)n,?),

16p5
1
= Top2 (Po(CN = N3 = 4N ) (0rp) = 41,(0rm) +4(0rp)n ).
0
~ 1382 (1OPB (N 30 + 3N'600) 03) (944) + 40N 140 + 3N500) (%)
0410

= po(((20N} + 4N, + N3 — 4N ) qd + 108N sq3 + 36N 6q3) (9yp)* + 843 (0,p)n,(04n,)
+845(95p)n) = 64p3(N6(959)* + N5q0(959)) + 1745(94p)*n.),

L (16p3((4N'sdo + 3N50) (0r)(252) + (4N'sdo + 3N'540) (0p)(3r4)

+ qo(N'190 + 3N'590)(9497p)) = Po((95p) (20N} +4N5 + N3 — 4N ) g5
+ 108N'sq3 + 36N '6q3) (0rp) + 4adn, (0rn,)) + 4adn,((0rp)(04n,) + 2(0,0rp)n,))
— 64p3(N6(0pq)(0rq) + N'sq0(0,0rq)) + 1743(0,p)(0rp)n,?).

1
————— (16p§(2(4N'5q0 + 3N'640) (9rp) (0rq) + 90(N1q0 + 3N 540)(07.p))
128 pyq;

— po(((20N| + 4N, + N3 — 4N ) g5 + 108N '5g5 + 36N 6q5) (0rp)* + 845 (0rp)n,(0rn,)
+ 845(%p)n,?) — 64p3(Ns(0rq)* + Ns5qo(03q)) + 17g5(orp)*n,*)

1 1
-N7, G = —m(/\@(aﬂ’))’ g3 = —— (N7(9rp)) Js = N5
1

4po
((8N7q0 + (6N's = 3N9)q0)(9,p) +4(No = 2Ng) po(dyq))
32poqo
1

32poqo
1

64340
1

" 64p3d0

+2po((2N'g + No)(0rp)(94q) + 8N790(9497p)))
1

~ 64p3ao

((8BN7g0 + (6N's = 3N)qo)(9rp) +4(No — 2Ng) po(9rq))

(4(2N's +No)po(940)(949) = 3(8N7q0 + (2N's + N9)q0)(9yp)* + 16N7poq0(95p))

((9pp)(2(2Ng +No) po(0rq) — 3(8N7q0 + (2N's +No)qo) (0rp))

The transports appearing in the charge current are given by,

I <\/§q _V3qTu*(9rp) 3q2(0¢p)> ; <\/§(3q0rp — 4Porg)Tu* | 3q(3¢9yp ~ 4P0M)>
q - r r

q

Put 4p? 8ut P2 P 2utpP

_n (_ V3qT(ut)*(0rp) 3q2(0¢p)> LA <\/§(3qarp —4Porq)T(u")? | 34Ba%p — 4P0¢q)>

T 4p? 8ut P2 T P 2utP

Gy =1 (_ M) s (ﬁ(isqa,ﬁp - 4P6¢q)T>’

4p? P

106011-16
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1 =—¢ LJF (0rp)Tu* n (V3q9,p)
a "\ut 4P 8utpP
& (GO V@) (@) -
4 T 4p SutP )’ 4 "\ 4P
e =&/ +utwe] +uted], o =& +utwed +utcey, ef =& +utwel +uteed
o =vute] +¢f, of =vuted +¢, e =wute] + e
e =utzey, e =uteed, ¢ =utze]
g =5/ +utwg] +utcy, 9 =g +uttwgl +uttgy, @ =3 +utwg! +utcg)
g =vuty] +3 . o =ty +w. @ =ty +a
g =uteg!. gl =utegl. gl =utcy] (BS)
where,

s =V3peao(N| + 120,4,) + 271 p2 + V3qon?
ny = 2
17— ~2V3Pogo N1 +6n,4,) + 2(r1 + 12) Pg + V3q0n?

2 4p(2)
nj _ rlr_gr nj _ nrér - 4\/§C]N7

’ 2py ' N 4p
wa V3pogoN'| = 2N = N3 = 124,4,) + 2(71 = 72) P2 + V3qon?
a- 4p}
_7 V3Poqo(N| + 2Ny — 4N, + 121,4,) = 2(y, — 72)P3 — V3qon?
& = .

1

o = (V3a0(n, = 12p02 -
¢ qo(n, = 12poA,)(3n.((0rp)(94q) — (94 p)(9rq))

> 8p3((0rp)(94q) — (94p)(9rq)) T pE

+ q0(3(9pp)(9rn,) — 3(9rp)(9yn,)) + 4po((9rq) (9gn,) — (0¢61)(0Ti1r)))>
527 = m (pO(S\/gQO(NS(aquI) - 6610/1r(5¢’7r)) + (67190 — 27290 — 674610)(54)1’))
040

+V3q0(((=3N'} = 2N5 + N3)qo — 6N'5q0)(0,p) + 4qon, (9yn,)) + 874P(2)(5¢61)>

~ 1
& =——— (217%(4\/5]\/ 590(0,9) + ((r1 +72)q0 — 375490)(94P))
16540

—V3p0qo(9,0)(qo(N'| + 2N 5 + 4Ny + 124,4,) + 6N '5q0) + V3q3n2(94p) + 87517(3)(3454))

~ 1
o == S —Gapray) (Y 90(08P) 0 = 12002) G0 (01)(249) = (04p) 0r0)

+ qo(3(9yp)(0rn,) = 3(0rp)(dgn,)) + 4po((9rq)(dgn,) — (0¢Q)(0rﬂr))))
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. 1
o = g7 (Po(8V30(N'5(9r4) = 640 (Ornr)) + (6110 = 21240 = 67440)(91p)
040

+V3q0(((=3N| = 2N + N3)qy — 6N'5q0)(9rp) + qon,(9rn,)) + 8?4P%(0rq))
Z’sj = #8610 (2P(2)(4\/§N5610(5T61) + ((r1 +72)g0 — 37590)(9rp))

—V3D0q0(0rP)(qo(N| + 2N, 4+ 4N, + 121,4,) + 6/N'5q0) + V32n2(0rp) + 8}’5P(3)(0T4)>
. 1

+340((9rp)(9yn,) — (04p)(9rn,)) + 4po((94q)(Orn,) — (arq)(0¢ﬂr)))>

1 y i 23N
?]1j:4<2}’3+’7§>, 9‘7_7/3—M
Po

) Po
1

—3(9rp)(9pn,)) +4po((0rq)(9yn,) — (0,9)(0rn;,))))

1
7 =< (290(=2V3N0g0(04) + 7390(04p) + 206, (0yn,)) + 33N o304 p)
16p540

1
937 = 8p2q0 (\/§‘I0(4N7610 + 3-/\/8610)(3(/)19) - P0(4\/§N890(5¢Q) + 73‘]0(%17)))
0

1
o = 32p3((0rp)(049) - (04p)(0r0)) (

— (0yp)(9rn,)) +4po((94q)(0rn,) — (0rq)(0¢m)))>

1
937 = (Zpo(—Z\/gNqu(aTQ) + 73610(an) + ZQOfr(aT’m) + 3\/5./\/96](2)(0]"]7))
16p540

&-(0pp)(n-(3(0yp)(9rq) — 3(9rp)(949)) + 3q0((0rp)(9yn,)

I
W =g (V3a0(4N 340 + 3N'50) (0rp) = po(4V3N'50(074) + 130 (0rP)))
0

1
 32p3((0rp)(959) — (94p)(9rq)) (

— (@52)(0r1,)) + 4po((240)(Orn,) = (07a)(9m,))))-

& (0rp)(n,(3(0yp)(0rq) = 3(9rp)(949)) + 3490 ((0rp)(dyn,)

Density,

p=(E+P)(u )+ il (0u0,) + 1Y (9,0kp) + " (0,0,T) + ) (Ot ()
+ 29 (04p) (") + & (O T)(OT) + & (Ogtun) (0 ) + 22 (0,T) (0 )
+ 20 (0utn) (0°T) + & oVe; + & il + G €V (01, (0,00)
+ 30 € (0,) (0,T) + 5 €5(0,T) (9,)
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where,
o) __m oL N > Nep?
o) — AP — " (6 0 3q072(0,p) — 8 9
n; 2p 7y 240240 ((6N'spoqo(9,p) + 34017 (9, p) 5P5(059)))
} 1
iy = ———((6N'5poqo(0rp) + 3qon?(9rp) — 8N'sp§(0rq)))
24p5q9
, 1
&) = (12N + N3 — 4Ny pg + 812)
12[)0
y 1
&Y = ~ g3 (16680204 )* = 16P3(2(SN sq0 + 3Nsq0)(94p) (94) + 3N'55(05 )
010
— 24451.(04p) (04n,) — 244517 (95p)) + 64p3(N'6(959)* + N's5q0(959))))
3 1
o0 == 153,70 (0G0 0rp)? = 1603 (2(SN's0 + 3N a0)(072)(0r) + 3N548(0% )
040
+ po(((12N} + 12Ny = N3 + 4N ) gf + 132N 53 + 36N 643) (07 p)?
— 24¢%n,(0rp)(0rn,) — 2445} (95p)) + 64p3(N'6(0rq)* + Nsqo(0%q))))
~(p 1
el = =332 (517:04p) + pol(=6N'y + N3+ AN3)(9yp) +121,(0g1,))))
0
y 1
&) =g (Z1631(04p) (0rp) + 163((5N 540 + 3N a0)(940) 01 p)
010
+ (5N'sqo + 3N6q0)(9,p)(0rq) + 3N5Q(2)(01/10Tp))
+ po(—=(05p) (12N} 4+ 12N5 = N3 + 4N ) g§ + 132565 + 36N 643) (0rp)
— 12¢3n,(0rn,)) + 1243n,((04m,) (0rp) + 21,(0704p))) — 64p3(N6(0,q)(9rq) + N'5qo(040r9))))
~(p 1
) = - 217 (572 (0rp) + po((=6N'| + N3 + 4N ) (0rp) + 121,(0rn,))))
0
20 _ _PNs=dm ) Ny
7 12p0 ’ 8 3
. 1
3 = o (2N +3N5)(340(94p) — 4p(944)))
24poqo
) 1
W = (2Ng +3N9)(3q0(0rp) — 4po(074)))
24poq
~(p 1
=~ (2N = 3N5)((949)(0rp) — (941)(97q))). (BS)
24poqy
Velocity,
i ”_l M a'P_4P6,-u+ + 70y ik + 75 wik + a0 gily sl + 750 ily gk
Cut o 16P2ut ! ut Lok 2 ok 3 k 4 k

+ 80 (Optn) + & 0* (Opptn) + 25 (000%) (Oipt) + 25 0™ (04p) + 2 0 (91)

+ 2 (00%) (0;9) + o *(0,T) + &V (3,T) + & (30*) (0'T) + 7\ el o™ ()

+ 3 €™ Ogu) + 55 (00 )€™ (Otn) + 3 €'o™ (0p) + G5 e w* (0p)

+ gév)(akvk)eil(al(ﬁ) + ggv)eilglk(akT) + ggf’)eila)lk(akT) + gé@‘)(akvk)eil(alT) (BY)
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where,
~(v) _NIPO_”I% ~(v) _2-/\/1190—’7% ~(v) ~(v) _&
ny’ = 78p(2) , n,’ = 71617(2) , iy’ =0, ny, = apg’
NONS (=N + 2N, + N3)po — n? 20 _ (N1 42N, — 4N ) po — i}
' 16p2 ’ : 165
&V = ! 3(3,p)(0rq) — 3(3rp)(0,9)) - (34m,) (3, (0
—4po(9rq)) + (0rn,)(4po(949) — 3q0(94P))))
i 1
&) = “ i (=3N190(9yp) = 2N2q0(04p) + N3q0(9yp) — 6N 5q0(04p) + 8N'spo(dpq) + 4qon.(9yn,))
0
v 1
5(5 )= T oapia (N1Podo(0pp) + 2N 2p0q0(05p) + 4N 4podo(9,p) + 6N 'spoqo(9sp) — 8N'sp§(0sq) — qoni (9yp))
0
&) — ! 4pon,(0,p)(0rq)(04m,) —4pon,(04p)(9,q)(0
+ 317 (0,p) (0rp)(049) — 317 (0,2)*(9rq) — 3901, (04 P) (1) (On,) + 3qon,(9,p)*(9rn,))
) 1
Eg ) = m (BN 4+ 2N, = N3)qp + 6/N'5q0)(0rp) — 42N s po(9rq) + qon,(0r1,)))
0
) 1
& = i (PN + 2N + 4N g0 + 6N'5a0) (0r) + 8Np3(074) + aon(0rp)
0
& — ! 0-p)(31.((3+0)(3,9) — (3, )(3+q)) + qo(3(,p)(0
—3(0rp)(9yn,)) + 4po((9rq) (O4m,) — (04q)(9rn,))))
) _ ) _ N7 () _ o _ 1 B
g, =0, %= g3 =0, 9 = e i (No(4po(dpq) —3q0(94p))).
v 1 ~\U
§§ ) = ——=——(=4N740(9yp) = 3N3q0(dyp) + 4Nspo(9,9)). g<6 =,
32p5q0
5 = L Ny (apo(0rg) - 3g4(0
7 641)3%( o(4po(9rq) —3q0(9rp))),
v 1 ~\V
§§; = 2n 0 ((4/\/7(]0 + 3/\/8(]0)(5TP) - 4N8P0(5T(]))’ gé )= 0. (BlO)
32p5qo
Pressure,
=P+ " (00u) + n2 (0,0k) + i (340,T) + &) (b)) ()
+ 27 (019) (0p) + & (O T)(OT) + & () () + 25 (,T) (0¢p)
+ 2 (O4pun) (0°T) + &0V 0y; + e iy + 3 (0i0,) (0;60)
+ 35U (0,) (0,T) + 3 >e’f<aiT><a,»¢> (BI1)
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where,
() _ 1 1
" = po (n,%). iy = % (=6N5poqo(9,p) + 8Nsp§(0sq) — 3490(04p)n,%)
B 1
”gp) = ——5—(=6N5poqo(0rp) + 8Nsp§(0rq) — 340(rp)n,*)
43p540
B 1
C<1p) = Tpo(—“’?rz — 12N, po — N3po +4N4po)
P = L 160N p2a0(0,1)(944) — 96NeP2a0(0yp) (05q) — A8Ns pRGR( p)
G = 384p3q% 5P0490\9P ) (0pq 6P0490\9P)\0pq 5P0490\9% P
+ 12N, poq(04p)* + 12N, poqi(0,p)* — N3poqi(0,p)* + 4N4pogi(9,p)*
+ 132N5pog5(9,p)* + 36N poqi(0,p)* + 64Nepi(949)* + 64Nspiqo(95q)
= 24p0q5(9,2)n:-(9pn,) = 2405 (95 p)n,* + 1345(9p)*n,*)
B 1
&) = Rapid (=160Ns p5qo(97p)(9rq) — 96N piqo(0rp)(9rq) — 48Nsp5qs (07 p)
040
+ 12N, pog3(9rp)? + 12N, pogd(9rp)* — N3poqd(0rp)* + 4N4poqi(orp)*
+ 132N5poqd(0rp)* + 36N poqi(0rp)* + 64Nspi(0rq)* + 64Nspiqo(0%4q)
— 24poqd(9rp)n,(9rn,) — 24poqd (93 p)n,> + 13¢3(0rp)*n,?)
) 1
&) = Ty (=6N1po(04p) + N3po(9yp) + 4Napo(0,p) + 8(0,p)n,> + 12po(dyn,)n,)
B 1
) = 182 (=6N, po(9rp) + N3po(0rp) + 4N4po(0rp) + 8(0rp)n,* + 12po (971, )n,)
0
0 = L (C32p2(5Nsg0(0rp)(@
Ce 384‘08@%( po( SQO( Tp)( 4)‘])
+ 3N6q0(07p)(94q) + 5N5q0(9yp)(0rq) + 3Neqo(04p)(0rq) + 3Nsq3(9,0rp))
+2po(12N145(9,p)(9rp) + 12N2g5(0,p)(97p) — N3g5(,p)(9rp) + 4N4q5(d,p) (9rp)
+ 132N54;5(9,p) (9rp) + 36N6q5(04 ) (0rp) — 12q5(d7p)n,(04n,) — 12q5(0p)n,(971,)
—244¢3(0,0rp)n,?) + 128p3(Ne(04q)(0rq) + Nsqo(0401q)) + 2643(0sp)(0rp)n,*)
A _ 1 L _ _Na
& = TPO(N3PO —4n,%), &) = %
B 1
ggp) = 18pods (=6N3sq0(dyp) — INoqo (9 p) + 8Ngpo(9pq) + 12Nopo(94q)),
B 1
gép) = 48 podo (=6N3qo(0rp) = INoqo(drp) 4 8Ngpo(0rq) + 12Ngpo(rq))
B 1
W = = G5y (C2Ns(0rp)(04) + 3No(070)(040) + 2N5(94p)(9r4) = 3No(4)(9r0)) (B12)
Energy,
E-P 1 ~(€e ~(€e ~(€e ~(€
€ ==+ + i\ (00uy) + 7y (004) + 1\ (0IT) + &1 (9utu) ()

+ &7 (0e) () + 2 (A T)(OT) + & (O4ptn) (0°) + & (0,T) ()
+ 2 (Oup) () + & 66,5 + & iy + 5\ (Oipa,,) (0;6)
+ 3576 (0p) (0,T) + €11 (0,T) (0;) (B13)
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where,
A= TR L (6N pool(0pp) — 8N'spR(9yq) + a0 (0,0)
4py 481’(2)610
(e 1
iy = ————(6N'5poqo(0rp) — 8N'sp§(9rq) + 3qon?(0rp)).
48 g0
. 1
5(1 = 24 —— (12N + N3 — 4N ) po + 1153)
(e 1
&) = o (~16p3(2(5N 540 + 3N640) (9,P)(949) + 3N'sa3(3p))
384p0q0

— 24451, (9yp) (9yn,) — 24qof7r(0zp)) + 64p5 (N6(9,9)* + Ns5q0(059)) + 13q517(9,p)?)

(e 1
&) = —— = (—16p3(2(5N 5o + 3N 640) (97 p) (3rq) + 3N sg3 (3% p))
384p0q0

+ po((12N} + 12N, = N3 + 4Ny) g + 132N 53 + 36N 6q3) (0rp)?
— 244n,(0rp)(0rn,) — 2445 (97p)) + 64p3(N'6(0r9)* + Nsqo(97q)) + 13q5n7(0rp)?)

. 1
&) = — (pol(=6N| + N3 +4N,)(0,p) + 12(0,,)) + 872(9,p))

48p3
p 1
75 = 45 (PN Y N5+ AN)(91p) +12(0pn,)) + 813(0r))
0
. 1
&5 = o302 (“16PB((SN'sd0 + 3N 40) (0rP) (049) + (SN'sdo + 3N 40)(94) (979)
070

+3N'5q5(0704p)) + Po((0,p) (12N} + 12N = N3 + 4Ny)gf + 132N 543
+ 36N'645)(0rp) — 1245(9rn,)) — 12q5n,(21,(0r0,p) + (97p)(94n,))) + 6403 (N6(9,4)(rq)
+ N'5q0(0r0q)) + 13¢5 (0,p)(0rp))

o 1 4n; e N
o) W=

24 Do 6
017 = o (2N + 3N po0p) = 3a0(0pp)). 35 = 7 (2N + 3A5) (4pol0re) = 300(0rp)
01 = =g (2N = 3N5)(0rp) 049) = (090 0r4)). (B14)

Energy current,

: 1 . out 0P . A : ,
el = <€ +P +2p1)2> v+, ((I;+)2 _ 4[iu+> _ nraijv] + ﬁgeC)ako_lk + flgec‘)akwlk + ﬁgec>€llak01k

+ i el o + & (Oupn) + 5w (Ap) + 5 (040) (Oyan) + 2 0™ (0)
+ &0 () + 25 (0) (0,9) + €M (OT) + & (0,T) + & (9404) (9 >
00 Gupt) + 357 0 Oup) + 35 M) Op) + 350 (01) + 3 e (01)

+ 3 (000l (0,0) + G €l (0, T) + 5 el (0,T) + 3 (9, v%)e (0'T) (B15)
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where,

2 ec %_ZN ec ec
ﬂ—N] ) flg ):7’7 1P0’ ﬁg >:0, flg ):—N7,
4p

I

2
~(ec) _1 ~(ec) 1 ’/I%
Cy _Z(NI_ZNZ_N3)’ Cy —Z N1+2N2—4N4——

~(ec) 1

C3 - 8]70((an)(0¢£]) _ (a¢p)(0Tq)) (1’],(377,((an)(6¢6]) - (aqﬁp)(aTQ)) =+ 4[)0((6TL]) (aqﬁrlr)
—(9,9)(9rn,)) + qo(3(9yp) (0rn,) — 3(3rp)(9y,))))

64(‘“) = 16;%% (Po(((=3N| =2N5 + N3)qo — 6N'560) 9y 1) + 4q0n,(94n,)) + 8N 'sp§(0,9) + qonr (9yp))

& = mplq (=Po((N1 + 2N + 4N3)qo + 6N'560) (940) + 8N 5pf(044) + 4o (04p))

~(ec) 1
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APPENDIX C: HOLOGRAPHIC NONRELATIVISTIC CHARGED FLUID

Here we are presenting all the quantities (not presented in the main text) describing nonrelativistic charged holographic

fluid, in terms of mass, charge, and local velocities of black brane.
The pressure of the holographic fluid is given by,
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Mass density is given by,
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Nonrelativistic velocity has the following expression,
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Energy density is given by
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Finally, the energy current is given by,
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