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In this paper, we introduce new sets of boundary conditions for higher-spin gravity in AdS3 where the
boundary dynamics of spin-2 and other higher-spin fields are governed by the interacting collective field
theory Hamiltonian of Avan and Jevicki. We show that the time evolution of spin-2 and higher-spin fields
can be captured by the classical dynamics of folded Fermi surfaces in the similar spirit of Lin, Lunin, and
Maldacena. We also construct infinite sequences of conserved charges showing the integrable structure of
higher-spin gravity (for spin-3) under the boundary conditions we considered. Further, we observe that
there are two possible sequences of conserved charges depending on whether the underlying boundary
fermions are nonrelativistic or relativistic.
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I. INTRODUCTION

The dynamics of classical gravity in three spacetime
dimensions has no bulk degrees of freedom, completely
fixed by the asymptotic boundary conditions. Using the
Hamiltonian formalism for gravity in three-dimensional
anti–de Sitter (AdS3) spacetime, Brown and Henneaux
showed that for a specific choice of boundary conditions
where the lapse and the shift functions are held constant at
the asymptotic boundary, the asymptotic symmetry group is
generated by two copies of Virasoro algebras [1]. Such
boundary conditions are known as Brown-Henneaux boun-
dary conditions and are considered to be the standard
boundary conditions. In the language of Chern-Simons
(CS) theory, Brown-Henneaux boundary conditions corre-
spond to fixing the temporal component of the gauge field
(known as chemical potential) to a constant value at the
asymptotic boundary.1 However, gravity in AdS3 admits a
new family of nonstandard boundary conditions leveled by a
non-negative integer k [4].2 In such cases the chemical

potentials are no longer kept fixed at the asymptotic
boundary, rather they are allowed to explicitly depend on
the fields (asymptotic values of the angular components of
the gauge fields). The classical dynamics for these boundary
conditions are governed by the kth element of the KdV
hierarchy. The standard Brown-Henneaux boundary con-
ditions correspond to the special case k ¼ 0. For k ¼ 1,
Einstein’s equations are similar to two independent copies of
Korteweg-de Vries (KdV) equations and the asymptotic
symmetry algebra is infinite dimensional, without any
central charge. The field theoretic realization of these
infinite-dimensional symmetry algebras has been discussed
in [16]. Another class of boundary conditions, known as
soft-hairy boundary conditions were considered in [7,9]
for fixed chemical potentials at the boundary. The soft-hairy
boundary conditions were further generalized in [11,14] by
choosing the chemical potentials as appropriate local func-
tions of the fields. It was shown that for this class of
boundary conditions the classical dynamics of gravity is
governed by the Gardner hierarchy of nonlinear partial
differential equations, known as mixed KdV (mKdV)
hierarchy. The story of pure gravity, discussed so far,
can also be generalized to higher-spin gravity in AdS3
[2,3,10,17–23]. In [24] a new set boundary conditions were
introduced for gravity coupled with spin-3 field where the
boundary dynamics is governed by the members of the
modified Boussinesq integrable hierarchy. See also
[22,23,25]. It is known that the KdV equation (also mKdV
and Boussinesq equations) describes an integrable dynami-
cal system due to the presence of an infinite number of
conserved quantities (constants of motion). The above
results thus show a connection between classical higher-
spin gravity in AdS3 and certain special classes of integrable
systems (KdV/mKdV/Boussinesq) in 1þ 1 dimensions.
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1The condition on constant chemical potential was relaxed
in [2,3].

2Other consistent boundary conditions are also interesting and
discussed in the literature. For example [5–14]. The most general
asymptotically AdS3 boundary conditions for Einstein’s gravity
were discussed in [15].
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Another example of simple and interesting integrable
system is the one-dimensional matrix model of N × N
unitary matrices with arbitrary potential. In the large N
limit, the one dimensional matrix model can be described in
terms of a classical cubic collective field theory in arbitrary
background potential [26,27]. The large N degrees of
freedom of the matrix model are captured by a real
collective bosonic field, called the eigenvalue density. A
generalization of collective field theory including the
interaction between the original collective fields and an
infinite set of supplementary fields was proposed in [28].
One interesting feature of the collective field theory is that
it admits a free Fermi phase-space description in terms
of two-dimensional droplets due to bosonization [29–36].
A similar phase space description also exists for interacting
collective field theory. It was shown in [37,38] that the
dynamics of interacting collective field theory can be
described in terms of folds on Fermi surfaces. It turns
out that one can construct an infinite sequence of classical
conserved charges (i.e., the Poisson brackets of these
charges vanish) in cubic collective field theory and
hence the theory admits an integrable structure [39,40].3

Therefore, it is natural to ask whether the free as well as the
interacting collective field theories have any dual-gravity
descriptions.
In this paper we introduce new sets of boundary

conditions (similar to generalized soft-hairy boundary
conditions) for higher-spin gravity in AdS3 where the
boundary dynamics of spin-two and other higher-spin
fields is governed by the interacting collective field theory
Hamiltonian [28]. We show that the time evolution of spin-
2 and higher-spin fields can be captured by the classical
dynamics of folded Fermi surfaces in the similar spirit of
Lin, Lunin, and Maldacena (LLM) [42]. This allows us to
provide a free fermionic description of higher-spin gravity
in AdS3. For spin-three excitations we also construct
infinite sequences of conserved charges showing the
integrable structure of higher-spin gravity under the boun-
dary conditions we consider. In particular, denoting the
single free fermion Hamiltonian density by hðp; θÞ, we find
that the infinite sequences of conserved charges are given
by different integral powers of hðp; θÞ integrated over the
phase space in presence of folds. Further, we observe that
there are two possible sequences depending on whether the
underlying fermions are nonrelativistic or relativistic. We
also show that the entropy of higher-spin black holes
connected to Bañados-Teitelboim-Zanelli (BTZ) black
holes is proportional to the total area of the droplets with
folds.
The organization of our paper is as follows. In Sec. II we

review matrix quantum mechanics and the corresponding
bosonic collective field theory. We also provide a phase

space description of the theory and discuss the notion of
folds. In Sec. III we discuss about AdS3 gravity coupled to
higher-spin fields and their corresponding Chern-Simons
description. Asymptotic symmetries and the construction
of conserved charges have also been summarized in this
section. Droplet description of AdS3 gravity coupled to
higher-spin is discussed in Sec. IV. We construct two
different sets of asymptotic conserved charges in higher-
spin gravity depending on whether the underlying fermions
are nonrelativistic or relativistic. We finally end with some
discussions and future directions in Sec. V.

II. THE COLLECTIVE FIELD THEORY AND
FREE-FERMI DROPLETS

In this section, we briefly review the basic ideas of
matrix quantum mechanics and their connections with
collective field theories. We also provide a phase-space
description of the theory and discuss the notion of folds.
We start with the partition function of a unitary matrix

model in (0þ 1) dimension

Zt ¼
Z

½DU� exp
�Z

dtðTr _U2 þWðUÞÞ
�
; ð2:1Þ

where U is a N × N unitary matrix, the trace is taken over
fundamental representation, WðUÞ is a gauge invariant
function of U and D½U� is the Haar measure over UðNÞ
group manifold. The matrix model (2.1) admits two
equivalent descriptions—one in terms of free fermions
[43] and the other in terms of collective bosonic field
[26,27]. These two descriptions are related by bosonization.
In a series of papers Jevicki and Sakita [26,27] showed

that the matrix model (2.1) can be described in terms of a
real collective bosonic field (the eigenvalue density)

ρðt; θÞ ¼ 1

N

XN
i¼1

δðθ − θiÞ; ð2:2Þ

where θis are eigenvalues of U and its conjugate momen-
tum πðt; θÞ. The corresponding bosonic Hamiltonian is
given by

HB ¼
Z

dθ

�
1

2

∂πðt; θÞ
∂θ

ρðt; θÞ ∂πðt; θÞ
∂θ

þ π2ρ3ðt; θÞ
6

þWðθÞρðt; θÞ
�
; ð2:3Þ

where WðθÞ is defined asZ
dθWðθÞρðt; θÞ ¼ WðUðtÞÞ: ð2:4Þ

The dynamics of the collective field and its conjugate
momentum is governed by Hamilton’s equations,

3The classical integrability was generalized to quantum
integrability in [41].

DUTTA, MUKHERJEE, and PARIHAR PHYS. REV. D 107, 106010 (2023)

106010-2



∂tρðt; θÞ þ ∂θðρðt; θÞvðt; θÞÞ ¼ 0

∂tvðt; θÞ þ
1

2
∂θvðt; θÞ2 þ

π2

2
∂θρðt; θÞ2 ¼ −W0ðθÞ;

where vðt; θÞ ¼ ∂θπðt; θÞ: ð2:5Þ

The above set of equations are coupled, nonlinear, and
partial differential equations. It is possible to decouple
these two equations by introducing two new variable
p�ðt; θÞ, defined as

ρðt; θÞ ¼ pþðt; θÞ − p−ðt; θÞ
2π

; and

vðt; θÞ ¼ pþðt; θÞ þ p−ðt; θÞ
2

: ð2:6Þ

The equations for p�ðt; θÞ are given by

∂tp�ðt; θÞ þ p�ðt; θÞ∂θp�ðt; θÞ þW0ðθÞ ¼ 0: ð2:7Þ

The collective Hamiltonian (2.3), written in terms of these
new variables p�ðt; θÞ, is decomposed into two disjoint
sectors Hþ

p and H−
p given by

HB ¼ Hþ
B þH−

B; where

H�
B ¼ � 1

2π

Z
dθ

�
p�ðt; θÞ3

6
þWðθÞp�ðt; θÞ

�
: ð2:8Þ

The equations for p� can be derived from this Hamiltonian
for the following Poisson’s structure

fp�ðt; θÞ; p�ðt; θ0Þg ¼ ∓2πδ0ðθ − θ0Þ;
fpþðt; θÞ; p−ðt; θ0Þg ¼ 0: ð2:9Þ

A. The droplet description

Decomposition of the Hamiltonian enables us to give a
geometric description of collective field theory in terms of
two-dimensional droplets [29]. The set of decoupled
equations (2.7) governs the evolution of a free-Fermi
droplet in ðp; θÞ plane whose boundaries are given by
p�ðt; θÞ. To understand this in detail, we consider a system
of N nonrelativistic free fermions (noninteracting) moving
on S1 under a common potential WðθÞ. The single particle
Hamiltonian is given by

hðp; θÞ ¼ p2

2
þWðθÞ: ð2:10Þ

The Hamilton’s equations obtained from the single particle
Hamiltonian (2.10) are given by

dp
dt

¼ −W0ðθÞ; dθ
dt

¼ p: ð2:11Þ

The single-particle phase space of this system is given by a
droplet with boundaries p�ðt; θÞ. Using Eqs. (2.11) one can
check that the boundaries of a droplet p → p�ðt; θÞ follow
Eq. (2.7). Therefore, the equations in (2.7) determine
classical evolution of the Fermi surface with time. The
phase-space Hamiltonian for such free-Fermi system is
given by

Hpp ¼
1

2π

Z
dθdp

�
p2

2
þWðθÞ

�
ϖðp; θÞ; ð2:12Þ

where ϖðp; θÞ is the phase-space density

ϖðp; θÞ ¼ Θððpþðt; θÞ − pÞðp − p−ðt; θÞÞÞ: ð2:13Þ

Integrating over p, it is easy to check that the phase-space
Hamiltonian Hpp is exactly same as the bosonic
Hamiltonian given by Eq. (2.8).
There is a one to one correspondence between phase-

space variables and collective field theory variables.
Eigenvalue density and the corresponding momentum
can be obtained from the phase-space distribution by
integrating over p

ρðt;θÞ¼ 1

2π

Z
dpϖðp;θÞ; vðt;θÞ¼ 1

2πρ

Z
dppϖðp;θÞ:

ð2:14Þ

Thus, the relations (2.6) serve as a dictionary between
bosonic (collective field theory) and fermionic (phase-
space) variables.
Solving the field theory equations of motion (2.5) is

equivalent to solving for upper and lower fermi surfaces in
phase space picture. In either case, one needs to provide an
initial data on a constant time slice in ðt; θÞ plane. After that
the problem reduces to a Cauchy problem. Existence of a
unique solution depends on the geometry of initial data
curve.4

B. Folds

The Fermi surfaces [p�ðt; θÞ] we have discussed so far
are single valued functions of θ at any time t. A more
generic Fermi surface can be multivalued in θ (see Fig. 1).
Such a surface is called a folded Fermi surface. The folds
can appear both in the upper and the lower surfaces. The
folds can be connected to the main droplet or can also be a
separate droplet. The classical theory of folds were dis-
cussed in [37,45] in terms of p�ðt; θÞ and an infinite set of
variables w�nðt; θÞ satisfying classical w∞ algebra [28]. In
presence of folds one can parametrize different moments of
p as

4See Ref. [44] for an example.
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Z
ϖðp; θÞ ¼ pþ − p−; ð2:15Þ

Z
pn

n
ϖðp; θÞ ¼ 1

nðnþ 1Þ ðp
nþ1
þ − pnþ1

− Þ

þ
Xn
k¼1

cnkðpn−kþ wþk − pn−k
− w−kÞ; ð2:16Þ

up to some constants cnk . These constants can be fixed from
the integrable structure of the model. We shall fix them
later. Presence of nonzero w�ns signifies nonquadratic
profile of the droplet. For example, we consider a droplet
with one fold in the upper surface as shown in Fig. 1. For a
given θ we have ffþ1; f−1g and ffþ2; f−2g. From the
above set of relations in (2.15) we have

Z
dpϖðp; θÞ ¼ fþ1 − f−1 þ fþ2 − f−2 ¼ pþ − p−:

ð2:17Þ

Since the fold is formed on the upper surface (in this
particular example) it is natural to parametrize

pþ ¼ fþ1 − f−1 þ fþ2 and p− ¼ f−2: ð2:18Þ

From the equations for higher-order moments (2.16) one
can find all the w�n. For the fold shown in Fig. 1, the first
few of them are given by

wþ1 ¼ −
1

c11
ðf−1 − fþ1Þðf−1 − fþ2Þ;

wþ2 ¼
1

2c22
wþ1ð2c21f−1 þ ðc11 − 2c21Þðfþ1 þ fþ2ÞÞ

..

. ð2:19Þ

and all w−n ¼ 0. From these relations we see that when fold
is absent i.e., fþ1 ¼ f−1 or f−1 ¼ fþ2 we have pþ ¼ fþ2,
p− ¼ f−2 and w�n ¼ 0. In general, there can be T folds on
the upper surface. Then the parametrization is given by

pþ ¼
XT
i¼1

fþi −
XT−1
i¼1

f−i; p− ¼ f−T ð2:20Þ

and the w�n can be found as functions of f�i using (2.16),

XT
i¼1

fnþ1
þi − fnþ1

−i
nðnþ 1Þ ¼ 1

nðnþ 1Þ ðp
nþ1
þ −pnþ1

− Þ

þ
Xn
k¼1

cnkðpn−kþ wþk −pn−k
− w−kÞ: ð2:21Þ

The number of folds can depend on the position θ and
time t.
In the context of 2D string theory w�n represents an

infinite set of discrete fields and p� represent tachyon
fields [28]. The discrete fields themselves close a classical
w∞ algebra. Interpretation of w�n as folds on Fermi
surfaces was given by [37]. Classical evolution of folded
fermi surfaces is therefore governed by the dynamics of p�
and w�n for a given Hamiltonian [37]. Later we shall see
how the dynamics of higher-spin fields in AdS3 is mapped
with the evolution of folded Fermi surfaces.

III. HIGHER-SPIN GRAVITY IN AdS3 AND
CHERN-SIMONS THEORY

We consider gravity in AdS3 coupled with integral
higher-spin fields with spin 3 ≤ s ≤ M. The bulk theory
can be formulated in terms of Chern-Simons theory with
the gauge group SLðM;RÞ × SLðM;RÞ [18,19]. The
matrix valued gauge fields can be separated in two chiral
sectors and denoted by A�ðxÞ. 0þ0 and 0−0 correspond to
gauge fields associated with two copies of the gauge
groups. Two gauge fields A�ðxÞ are related to generalized
vielbein e and spin-connection ω and formally expressed as
[18] (the index structure is suppressed)

A� ¼ ω� e
l
; ð3:1Þ

where l is the radius of the AdS3 space. Using the relation
between the generalized vielbein, spin connection and
gauge fields, the Einstein-Hilbert action can be shown to
be equal to the CS action

I ¼ ICSðAþÞ þ ICSðA−Þ; ð3:2Þ

where

ICSðA�Þ ¼ � kM
4π

Z
Tr

�
A� ∧ dA� þ 2

3
ðA�Þ3

�
þ B∞ðA�Þ:

ð3:3Þ

The level kM of the CS theory is related to the three-
dimensional Newton’s constantG and AdS radius l through

FIG. 1. Folds on Fermi surface.
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kM ¼ l
4GϵM

where ϵM ¼ MðM2 − 1Þ
6

: ð3:4Þ

For M ¼ 2

k2 ¼
l
4G

≡ k: ð3:5Þ

B∞ðA�Þ is a boundary term added to the bulk action to
make δICSðA�Þ ¼ 0. The gauge fields A� are matrix valued
and the trace in (3.3) acts on the generators of the algebra
slðM;RÞ in the fundamental representation.
In this paper we consider the principal embedding of

slð2; RÞ in slðM;RÞ [10]. The generators of slðM;RÞ are
given by L� and L0 and WðsÞ

m where s ¼ 3;…;M and
m ¼ −ðs − 1Þ;…; ðs − 1Þ. Important relations between
these generators, needed in this paper are given by

TrðL0L0Þ ¼
ϵM
2
; TrðL0W

ðsÞ
0 Þ ¼ 0;

TrðWðsÞ
0 WðsÞ

0 Þ ¼ ϵM
2σ2s

; ð3:6Þ

where

σs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2s − 1Þ!ð2s − 2Þ!
48ðs − 1Þ!4Qs−1

k¼2ðM2 − k2Þ

s
: ð3:7Þ

For other details see Ref. [10]. Different components of the
metric can be computed from the gauge fields

gμν ¼
l2

2
Tr½ðAþ − A−ÞμðAþ − A−Þν�: ð3:8Þ

In three dimensions gravity is locally trivial; all the
dynamics are localized near the boundary and hence
sensitive to the boundary conditions.

A. Boundary conditions

We parametrize the three-dimensional manifold by r, t,
and θ, where θ is compact. r is the radial direction and the
asymptotic region (boundary) is at r → ∞. We consider the
following form of the gauge fields

A� ¼ b−1� ðdþ a�Þb�; ð3:9Þ

where b� are gauge group elements, they depend on the
radial coordinate r only. The connections a� depend only
on the transverse coordinates t and θ. We must emphasize
here that the specific radial dependence of b� does not
affect the asymptotic charges and the boundary equations
of motion. However, in order to write an explicit form of the
bulk metric, one is required to make a specific choice
of b�. In order to satisfy the Maxwell’s equations (i.e.,
Einstein’s equation) we do not need to specify any

particular form of b�. We choose the connection in the
following form [10]:

a�ðt;θÞ¼ ðξ�ðt;θÞdt�p�ðt;θÞdθÞL0

þ
XM
s¼3

σsðζ�sðt;θÞdt�u�sðt;θÞdθÞWðsÞ
0 ; ð3:10Þ

where p� and u�s are the dynamical fields associated with
gravity and higher-spin fields respectively. ξ� and ζ�s are
corresponding chemical potentials. The Maxwell’s equa-
tions obtained from the action (3.3) are given by

dA� þ A�2 ¼ 0: ð3:11Þ

Using the form of A� and a� one can check that the
dynamical fields and the chemical potentials satisfy

_p�ðt; θÞ ¼ �ξ0�ðt; θÞ; _u�sðt; θÞ ¼ �ζ0�sðt; θÞ: ð3:12Þ

Here · and 0 denote the partial derivatives with respect to t
and θ respectively.
In order to find the boundary term B�

∞ we demand that
δI ¼ 0 for any arbitrary variations of gauge fields. This
implies

δB�
∞ ¼∓ k

4π

Z
dtdθ

�
ξ�δp� þ

XM
s¼3

ζ�sδu�s

�
: ð3:13Þ

Therefore to get a well-defined boundary term one needs to
take the δ outside the integral. It is possible if the chemical
potential ξ� and ζ�s can be written as variation of a
quantity H� with respect to p� and u�s respectively, i.e.,

ξ� ¼ −
4π

k
δH�

δp�
and ζ�s ¼ −

4π

k
δH�

δu�s
; ð3:14Þ

where H� in general can be a functional of p�, u�s, and
their different θ derivatives

H� ¼
Z

dθH�ðp�; fu�sgÞ: ð3:15Þ

The boundary term, therefore, becomes

B�
∞ ¼ �

Z
dtdθH� ¼ �

Z
dtH�: ð3:16Þ

Thus we specify the boundary conditions through the
choice of the function H�. The dynamics of the fields
p� and u�s therefore depends on the choice of the
boundary conditions H�

_p�ðt; θÞ ¼∓ 4π

k
∂

∂θ

�
δH�

δp�

�
; _u�s ¼∓ 4π

k
∂

∂θ

�
δH�

δu�s

�
:

ð3:17Þ

HIGHER-SPIN GRAVITY IN AdS3 AND FOLDS ON FERMI … PHYS. REV. D 107, 106010 (2023)

106010-5



B. Conserved charges

The asymptotic symmetries are determined by a
set of gauge transformations that preserve the asymptotic
form of the gauge fields. The gauge transformation is
given by

δa� ¼ dλ� þ ½a�; λ��; ð3:18Þ

where λ� are the gauge transformation parameters. One can
check that the asymptotic form of the gauge fields (3.10)
are preserved under (3.18) with the following choice of
gauge transformation parameters [10]:

λ� ¼ η�ðt; θÞL0 þ
XM
s¼3

σsη�sðt; θÞWðsÞ
0 : ð3:19Þ

With this choice the asymptotic fields p�, u�s and
chemical potentials ξ� transform as

δp� ¼ �η0�; and δξ� ¼ _η�; ð3:20Þ

δu�s ¼ �η0�s; and δζ�s ¼ _η�s: ð3:21Þ

Since the chemical potentials ξ� and ζ�s now depend on
p� and u�s, their variations are not zero anymore. Hence,
we can use (3.14) to write

_η�ðt; θÞ ¼ ∓ 4π

k
δ

δp�ðt; θÞ
Z

dθ0
�
δH�

δp�
η0�ðt; θ0Þ

þ
XM
s¼3

δH�

δu�s
η0�sðt; θ0Þ

�
; ð3:22Þ

_η�sðt; θÞ ¼∓ 4π

k
δ

δu�sðt; θÞ
Z

dθ0
�
δH�

δp�
η0�ðt; θ0Þ

þ
XM
s¼3

δH�

δu�s
η0�sðt; θ0Þ

�
: ð3:23Þ

The variation of the conserved charges for the local gauge
symmetry is given by [46,47]

δQ�ðη�; η�sÞ ¼ −
kM
2π

Z
dθ0Trðλ�δða�θ ÞÞ

¼∓ k
4π

Z
dθ0

�
η�δp� þ

XM
s¼3

η�sδu�s

�
:

ð3:24Þ

First we can check that if η� ¼ − 4π
k

∂H�
∂p�

and η�s ¼ − 4π
k

∂H�
∂u�s

then Eqs. (3.22) and (3.23) are satisfied and hence

Q�ðη�; η�sÞ ¼ �
Z

dθH� ð3:25Þ

are conserved charges, which are the Hamiltonians for the
two chiral sectors. Moreover, one can also find some other
H�

n ¼ R
dθH�

n such that

η� ¼ −
4π

k
∂H�

n

∂p�
and η�s ¼ −

4π

k
∂H�

n

∂u�s
ð3:26Þ

satisfy Eqs. (3.22) and (3.23) for a given choice of
Hamiltonians H�. In that case

Q�
n ðη�; η�sÞ ¼ �

Z
dθH�

n ð3:27Þ

are also a conserved charges of the theory under the
boundary conditions specified through H�. Apparently
the right-hand side does not depend on η� and η�s;
however, it depends on the choice of these quantities.
Poisson brackets of charges satisfy [46]

δfη̃�;η̃�sgQ
�
n ðη�; η�sÞ ¼ fQ�

n ðη�; η�sÞ;Q�
n ðη̃�; η̃�sÞg:

ð3:28Þ

From these relations we can deduce the Poisson brackets
for the field p� and u�s

fp�ðt; θÞ; p�ðt; θ0Þg ¼∓ 4π

k
∂

∂θ
δðθ − θ0Þ; ð3:29Þ

fu�sðt; θÞ; u�s0 ðt; θ0Þg ¼∓ 4π

k
∂

∂θ
δðθ − θ0Þδss0 ; ð3:30Þ

fp�ðt; θÞ; u�s0 ðt; θ0Þg ¼ 0: ð3:31Þ

Once we have the Poisson brackets of the field variables the
field equations (3.12) can be written as

_p�ðt; θÞ ¼ fp�ðt; θÞ; H�g; and

_u�sðt; θÞ ¼ fu�sðt; θÞ; H�g: ð3:32Þ

In [11,24], Hns are chosen to be generalized Gelfand-
Dikii polynomials (or modified Gelfand-Dikii polynomials
for modified Boussinesq hierarchy in presence of
higher-spins) and the field equations are give by left and
right members of Gardner hierarchy (or modified
Boussinesq hierarchy for higher-spin). In the next section
we shall see that a different set of Hns is possible and such
choices will provide a gravity dual of integrable collective
field theory.

IV. COLLECTIVE FIELD THEORY
AND AdS3 GRAVITY

In this section we discuss the gravity dual of interacting
collective field theory. Our construction allows us to
provide a geometric description of the bulk solution in
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terms of the shapes of Fermi surfaces. We first do the
exercise for pure gravity and show how the boundary
dynamics is captured by the time evolution of free-Fermi
droplets. After that we discuss the higher-spin case.
To match the classical dynamics of gravity and that of

collective field theory given by Eqs. (3.12) and (2.7)
respectively we take the HamiltonianH� to be proportional
to the cubic collective field theory Hamiltonian (2.8)

H� ¼ k
2
H�

B ¼ � k
4π

Z
dθdphðp; θÞϖðθ; pÞ: ð4:1Þ

The equations of motion satisfied by p� are given by (2.7).
These are dispersionless KdV equations with the source
term.5 Further, we can check that for this choice of
Hamiltonian, η� ∼ ∂H�=∂p� satisfy Eq. (3.22) and hence
the Hamiltonian is a conserved quantity.
Thus we introduce the new boundary conditions for

AdS3 gravity by choosing the boundary HamiltonianH� in
(3.14) to be proportional to the collective field theory
Hamiltonian and hence the dynamics of boundary gravitons
is captured by that of noninteracting nonrelativistic
fermions.
These boundary conditions also admit infinite sequences

of conserved charges in the theory. Following [33,39,40]
we can construct an infinite sequence of phase-space
integrals of different integer powers of the single-particle
Hamiltonian hðp; θÞ [given by (2.10)]

H2n−1 ¼
k
4π

Z
dθdpϖðp; θÞhnðp; θÞ≡

Z
dθH2n−1ðθÞ:

ð4:2Þ

Separating these conserved charges into two chiral sectors
for each n we have

H2n−1 ¼ Hþ
2n−1 þH−

2n−1; where

H�
2n−1 ¼ � k

4π

Z
dθ

Z
p�

0

dp

�
p2

2
þWðθÞ

�
n

ð4:3Þ

where H�
1 ≡H� is the Hamiltonian. Expanding the power

on the right-hand side and integrating over p, one can write

H�
2n−1 ¼ � k

4π

Z
dθ

Xn
k¼0

� nCk

2kð2kþ 1Þp
2kþ1
� WðθÞn−k

�
:

ð4:4Þ

It turns out that for these H�
2n−1, the gauge transformation

parameters η� given by (3.26), satisfy Eq. (3.22) for the
Hamiltonian given by Eq. (4.1) for all n. Thus the phase-

space integrals (3.27) provide two infinite sequences (for
two chiral sectors) of conserved charges of the AdS3
gravity. Using (3.29) we see that the Poisson brackets of
charges H2n−1 for all n > 2 with the Hamiltonian vanish
and hence they are constants of motion. One can also
construct the conserved current associated with these
charges. We define a current density JμðnÞ� ¼ fH�

n ; JθðnÞ�g
such that

∂μJ
μ
ðnÞ� ¼ 0 on shell: ð4:5Þ

It turns out that to satisfy the on shell conservation equation
the spatial component of the current is given by

JθðnÞ�ðθÞ ¼ � k
4πðnþ 1Þ

�
p2
�
2

þWðθÞ
�

nþ1

: ð4:6Þ

Given the Poisson structure (3.29), one can show that
the Poisson brackets of any two conserved charges
vanishes

fQ�
n ;Q�

mg ¼ 0 ∀ m; n ≥ 1 ð4:7Þ

implying the integrable structure of the AdS3 gravity for the
chosen boundary conditions.
One can also take the boundary Hamiltonian to beH�

2n−1
for any fixed n > 1 to specify the boundary conditions. In
that case the equations of motion become

_p� þ nhðp�; θÞn−1ðp�p0
� þW0Þ ¼ 0: ð4:8Þ

These are the set of hierarchical equations with respect to
(2.7). For this choice the other H�

2n−1s turn out to be the
conserved charges of the motion. This shows the hierar-
chical nature of the AdS3 gravity under the boundary
conditions we considered.

A. BTZ black holes and droplets

In case of pure gravity the dynamical equations (2.7)
admit time-independent solutions. For _p� ¼ 0 we have
ξ�0 ¼ 0. This implies ξ� are functions of time only.
Since we are interested in time-independent solutions
we consider ξ� ¼ c�ðconstantÞ and hence we get p�ðθÞ ¼
� ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c� −WðθÞp
. The metric is given by

ds2 ¼ dr2 þ l2

4
cosh2

�
r
l

�
ððcþ − c−Þdt

þ dθðp−ðθÞ þpþðθÞÞÞ2

−
l2

4
sinh2

�
r
l

�
ððc− þ cþÞdtþ dθðpþðθÞ−p−ðθÞÞÞ2:

ð4:9Þ
5Our boundary conditions are related to the standard boundary

conditions [4] by a gauge transformation on shell [7].
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The explicit form of the above metric is written using the
maps (3.8), (3.9), and (3.10) where the gauge group
element b� is given by

b� ¼ exp

�
� r
2l
ðLþ1 − L−1Þ

�
: ð4:10Þ

Such solutions are called black flower solutions [9,13,14].
Since the eigenvalue density is given by ρðθÞ ¼
ðpþðθÞ − p−ðθÞÞ=2π, such solutions correspond to gapped
or no-gap solution in the matrix model side depending
whether p�ðθÞ is defined over the whole range of θ
or not. A further special case is constant solution; p�ðθÞ ¼
� ffiffiffi

2
p ffiffiffiffiffiffi

κ�
p

. After a suitable coordinate transformation

r ¼ l
2
log

"
ðκ− þ κþÞl2 − 2r̃2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r̃4 − 4ðκ− þ κþÞl2r̃2 þ ðκþ − κ−Þ2l4

p
2

ffiffiffiffiffiffiffiffiffiffi
κ−κþ

p
l2

#
;

t ¼ 2
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffi
κþκ−

p
v

lðc− ffiffiffiffiffiffi
κþ

p − cþ
ffiffiffiffiffi
κ−

p Þ ; θ ¼ ϕþ cþ
ffiffiffiffiffi
κ−

p þ c−
ffiffiffiffiffiffi
κþ

p
lðcþ ffiffiffiffiffi

κ−
p − c−

ffiffiffiffiffiffi
κþ

p Þ v; ð4:11Þ

the metric can be written in the standard Schwarzschild
coordinate,

ds2 ¼ −fðr̃Þdv2 þ dr̃2

fðr̃Þ þ r̃2
�
dϕ −

J
2r̃2

dv

�
2

: ð4:12Þ

The function fðr̃Þ is given by

fðr̃Þ ¼ r̃2

l2
−M þ J2

4r̃2
;

where M ¼ ðκþ þ κ−Þ
and J ¼ lðκþ − κ−Þ: ð4:13Þ

The solution has horizons at

r� ¼ lffiffiffi
2

p ð ffiffiffiffiffiffi
κþ

p � ffiffiffiffiffi
κ−

p Þ: ð4:14Þ

The entropy is given by

SBH ¼ 2πrþ
4G

¼
ffiffiffi
2

p
πkð ffiffiffiffiffiffi

κþ
p þ ffiffiffiffiffi

κ−
p Þ: ð4:15Þ

The constant configuration p�ðθÞ ¼ � ffiffiffiffiffiffiffiffi
2κ�

p
corresponds

to droplet as shown in Fig. 2. The area of the droplet is
given by

A ¼ 2πðpþðθÞ − p−ðθÞÞ ¼ 2
ffiffiffi
2

p
πð ffiffiffiffiffiffi

κþ
p þ ffiffiffiffiffi

κ−
p Þ ¼ 2

k
SBH:

ð4:16Þ

The black hole mass M and angular momentum J are
specified in terms of droplet data κ�. A symmetric
distribution about θ axis (i.e., κþ ¼ κ−) corresponds to
J ¼ 0; the zero angular momentum. The extremal black
hole corresponds to κ− ¼ 0. Therefore, any droplet with

p�ðθÞ ¼ constant with jpþj ≥ jp−j corresponds to a BTZ
black hole.

B. Higher-spin droplets and conserved charges

Since the classical algebra (Poisson brackets) satisfied by
p� and u�s is a disjoint unions of M − 1 Poisson brackets,
a trivial generalization of the above exercise is to construct
a Hamiltonian which is a direct sum of M − 1 copies of
mutually noninteracting Hamiltonians (4.1). As a result one
can construct M − 1 copies of asymptotic conserved
charges (4.4). The boundary dynamics, similarly, can be
described by M − 1 copies of free-Fermi droplets. Such a
generalization is not interesting. One can, in fact, find a
much more interesting boundary dynamics where higher-
spin excitations are coupled with spin-2 fields in a non-
trivial way and hence conserved charges.
To specify nontrivial boundary conditions we first

turn on all the integer higher-spin fields and define
a set of infinite number of collective variables w�n
from u�s

w�nðt; θÞ ¼
XM¼∞

s¼3

unþ1
�s ðt; θÞ
nþ 1

: ð4:17Þ

FIG. 2. Droplet for BTZ black hole.
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Using (3.31) we see that w�m satisfy the classical w∞
algebra

fw�mðt; θÞ; w�nðt; θ0Þg ¼ ∓ 4π

k
ðmw�mþn−1ðt; θÞ

þ nw�mþn−1ðt; θ0ÞÞ
∂

∂θ
δðθ − θ0Þ:

ð4:18Þ

In order to specify the boundary conditions in presence
of higher-spin excitations we again integrate the single-
particle Hamiltonian hðθ; pÞ over phase space with folds.
The boundary Hamiltonian, therefore, is given by

H ¼ k
4π

Z
dθdpϖðθ; pÞhðθ; pÞ

¼ k
4π

Z
dθ

��
p3þ
6

−
p3
−

6

�
þ ðpþwþ1 − p−w−1Þ

þ ðwþ2 − w−2Þ þWðθÞðpþ − p−Þ
�
: ð4:19Þ

Here we have chosen

c21 ¼ 1 and c22 ¼ 1: ð4:20Þ

The equations of motion satisfied by p� and different
higher-spin fields are given by

_p� þ p�p0
� þ

X∞
s¼3

u�su0�s þW0 ¼ 0;

_u�s þ p0
�u�s þ p�u0�s þ 2u�su0�s ¼ 0: ð4:21Þ

In terms of collective excitations w�n these equations can
be written as

_p� þ p�p0
� þ w0

�1 þW0 ¼ 0 and

_w�n þ ðnþ 1Þp0
�w�n þ p�w0

�n þ 2w0
�ðnþ1Þ ¼ 0: ð4:22Þ

Considering p� and w�n to be independent fields, these
equations can also be obtained using the Poisson brackets
of w�n (4.18) for the Hamiltonian (4.19). One can check
that the Eqs. (3.22) and (3.23) are satisfied for the choice,

η� ∼ ∂H
∂p�

and ηs� ∼ ∂H
∂us�

. Therefore the Hamiltonian (4.19)
provides consistent boundary conditions for higher-spin
gravity. In presence of arbitrary higher-spins, the above sets
of equations (4.22), in general, neither admit any integrable
structure nor a free-Fermi description.

1. Integrable structure

It turns out that if we turn on a single higher-spin (spin
s ¼ 3) i.e.,

wn� ¼ unþ1
�s

nþ 1
ðno sumÞ; ð4:23Þ

then it is possible to construct an infinite sequence of
conserved charges for each chiral sector. The conserved
charges are obtained by integrating hn over phase space in
presence of folds.

H2n−1 ¼
k
4π

Z
dθdphnðθ; pÞ ¼Hþ

2n−1 þH−
2n−1; n ≥ 1:

ð4:24Þ

The integrals are determined up to the constants cnm, defined
in (2.15) and (2.16). It turns out that one we can fix this
constants [for a given choice of c21 and c22 in Eq. (4.20)] by

taking η� ∼ ∂H�
2n−1

∂p�
and η�s ∼

∂H�
2n−1

∂u�s
such that Eqs. (3.22) and

(3.23) are satisfied. We fix the coefficients c2n1 ;…; c2n2n to
find the conserved chargeH�

2n−1. Thus,H
�
2n−1 generate two

infinite sequences of conserved charges of the higher-spin
(spin-3) gravity in AdS3 with the boundary conditions
specified through the Hamiltonian given in (4.19). The first
few conserved charges (for n ¼ 2, n ¼ 3 and n ¼ 4) are
given by [for w�n given by Eq. (4.23)]

H�
3 ¼ � k

4π

Z
dθ

�
p5
�

20
þ p3

�w�1 þ 3p2
�w�2 þ 5p�w�3

þ 3w�4 þ 2WðθÞ
�
p3
�
6

þ p�w�1 þ w�2

�

þW2ðθÞp�

�
; ð4:25Þ

H�
5 ¼ � k

4π

Z
dθ

�
p7
�

56
þ 3

4
p5
�w�1 þ

15

4
p4
�w�2 þ

25

2
p3
�w�3 þ

45

2
p2
�w�4 þ

87

4
p�w�5 þ

35

4
w�6

þ 3WðθÞ
�
p5
�

20
þ p3

�w�1 þ 3p2
�w�2 þ 5p�w�3 þ 3w�4

�
þ 3W2ðθÞ

�
p3
�
6

þ p�w�1 þ w�2

�
þW3ðθÞp�

�
; ð4:26Þ
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H�
7 ¼ � k

4π

Z
dθ

�
p9
�

144
þ 1

2
p7
�w�1 þ

7

2
p6
�w�2 þ

35

2
p5
�w�3 þ

105

2
p4
�w�4 þ

203

2
p3
�w�5

þ 245

2
p2
�w�6 þ

169

2
p�w�7 þ

51

2
p2
�w�8 þ 3WðθÞ

�
p7
�

42
þ p5

�w�1 þ 5p4
�w�2

þ 50

3
p3
�w�3 þ 30p2

�w�4 þ 29p�w�5 þ
35

3
w�6

�
þ 6WðθÞ2

�
p5
�

20
þ p3

�w�1 þ 3p2
�w�2

þ 5p�w�3 þ 3w�4

�
þ 4WðθÞ3

�
p3
�
6

þ p�w�1 þ w�2

��
: ð4:27Þ

Using (3.29), (3.30), and (3.31) we find that the Poisson
brackets ofH3,H5, etc. with the Hamiltonian (4.19) vanish.
Thus we find two infinite sets of conserved charges and
hence an integrable structure for higher-spin gravity.
We can also find a different set of conserved charges if

we consider that the boundary dynamics of gravity and
higher-spin fields is governed by a system of relativistic
fermions with single-particle Hamiltonian h ¼ pþ VðθÞ.
The total Hamiltonian is therefore given by

H̃ ¼ k
4π

Z
dθdpðpþWðθÞÞϖðθ; pÞ

¼ k
4π

Z
dθ

�
p2þ
2

þ wþ1 −
p2
−

2
− w−1 þWðθÞðpþ − p−Þ

�
:

ð4:28Þ

Here again we have chosen the constant c11 ¼ 1. The
equation of motion for this Hamiltonian is given by

_p� ¼ p0
� þW0; _u�s ¼ u0�s: ð4:29Þ

For the relativistic Hamiltonian the infinite set of conserved
charges are defined by

H̃n ¼
k
4π

Z
dθdpðpþWðθÞÞn ¼ H̃þ

n þ H̃−
n : ð4:30Þ

As before we fix the set of coefficients cnþ1
1 ; � � � cnþ1

nþ1 by

demanding that Eqs. (3.22) and (3.23) are satisfied for η� ∼
∂H̃�

n
∂p�

and η�s ∼
∂H̃�

n
∂u�s

. The first few such charges are given by6

H̃�
2 ¼ � k

4π

Z
dθ

�
p3
�
3

þ 2p�w�1 þ 2w�2

þ 2W

�
p2
�
2

þ w�1

�
þW2p�

�
; ð4:31Þ

H̃�
3 ¼ � k

4π

Z
dθ

�
p4
�
4

þ 3p2
�w�1 þ 6p�w�2 þ 5w�3

þ 6W
�
p3
�
6

þ p�w�1 þ w�2

�

þ 3W2

�
p2
�
2

þ wþ1

�
þW3p�

�
; ð4:32Þ

H̃�
4 ¼� k

4π

Z
dθ

�
p5
�
5

þ 4p3
�w�1 þ 12p2

�w�2 þ 20p�w�3

þ 12w�4 þ 12W

�
p4
�

12
þp2

�w�1 þ 2p�w�2 þ
5

3
w�3

�

þ 12W2

�
p3
�
6

þp�w�1 þwþ2

�

þ 4W3

�
p2
�
2

þw�1

�
þW4p�

�
: ð4:33Þ

One interesting point to note here is that for constant (or
zero) potential both the sectors merge together and provide
a larger class of conserved charges.

2. Free-Fermi description

There are two possible cases. First we consider that only
a single higher-spin (i.e., spin-3) is turned on such that the
integrable structure is preserved. In the second case we give
up the integrable structure and turn on all possible higher-
spins. In both the cases it is possible to give a free-Fermi
description of the AdS3 solution.
In presence of single higher-spin the equations of motion

are given by (4.21). Suppose the dynamics is governed by
folded Fermi surfaces with boundaries f�i. The fold
boundaries f�i satisfy

_f�i þ f�if0�i þW0ðθÞ ¼ 0 ð4:34Þ

for nonrelativistic fermions. These equations are obtained
from the single-particle Hamiltonian (2.10).
The phase space Hamiltonian in presence of folds is

given by
6Some of the cnþ1

m that remain unfixed after satisfying (3.22)
and (3.23) have been fixed by demanding fHn;Hmg ¼ 0.
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H ¼ k
4π

Z
dθφðθ; pÞhðθ; pÞ

¼ k
4π

X
i

�
1

6
ðf3þi − f3−iÞ þW0ðθÞðfþi − f−iÞ

�
: ð4:35Þ

Equating this with the collective field theory Hamiltonian
we getX

i

ðfþi − f−iÞ ¼ pþ − p−;

X
i

1

6
ðf3þi − f3−iÞ ¼

1

6
ðp3þ − p3

−Þ þ
u2þs

2
pþ

−
u2−s
2

p− þ 1

3
ðu3þs − u3−sÞ: ð4:36Þ

However, in order to make the fold equations (4.34)
consistent with the field equations (4.21), fold variables
f�i satisfy some further constraints given by Eq. (2.21)
with the same cnk , obtained for the calculations of conserved
charges. This is little surprising that the cnk were determined
by choosing Hn such that the gauge transformation
parameters satisfy the corresponding equations. Such con-
ditions have a priori no connection with the consistency
between the fold equations and the higher-spin field
equations. The dynamics of higher-spin gravity is captured
by the evolution of folded Fermi surfaces. Therefore
different geometries or shapes of droplets (with folds)
correspond to different solutions of higher-spin gravity.
However, for a given higher-spin solution the droplets/folds
are highly constrained because of (2.21).
If we give up the integrable structure and turn on all the

higher-spins, then it is possible to parametrize Eqs. (2.21)
in a different way such that the fold equations (4.34) and
equations for w�n are consistent. However, this imposes an
infinite sequence of restrictions on w�n depending on the
choice of parametrization.

V. SUMMARY AND DISCUSSION

We introduce new sets of boundary conditions (follow-
ing the work on generalized soft hairy boundary conditions
[11,14]) for higher-spin gravity in AdS3 where the boun-
dary dynamics of spin-2 and other higher-spin fields are
governed by the interacting collective field theory
Hamiltonian [28]. However there is a difference between
this Hamiltonian and the Hamiltonian introduced by Avan
and Jevicki. In our case the collective field theory
Hamiltonian is defined over a cylinder (i.e., the spatial
direction is a circle) and hence can be obtained from a
unitary matrix quantum mechanics in presence of an
arbitrary potential WðθÞ. The interaction of this free
Hamiltonian with the w∞ excitations was introduced in
[28]. We consider this interacting Hamiltonian to impose
the boundary conditions on spin-2 and other higher-spin

fields. We show that the classical evolution of metric and
other higher-spin fields are governed by the dynamics
collective fields and other supplementary fields. Since the
dynamics of collective and other supplementary fields has a
geometric interpretation in terms of evolution of free-Fermi
droplets in presence of folds [37,45], our construction
therefore provides a phase-space description of higher-spin
gravity in AdS3 in the spirit of LLM [42]. We also show
that for spin-3 gravity one can construct an infinite number
of gauge transformations (for a given Hamiltonian) that
preserve the asymptotic structure of the bulk spacetime and
hence render infinite sequences of conserved charges
whose mutual Poisson brackets are zero and thus exhibit
an integrable structure.
From the relation between p�, w�n and folds f�i

Eqs. (2.20) and (2.21)] we see that if folds are developed
on the upper (for example) Fermi surface then all wþns are
nonzero in general and are given in terms of f�i and
vice versa.
For the static solutions of the field equations (3.12) we

have

ξ� ¼ constant and ζ�s ¼ constant ∀ s: ð5:1Þ

In order to maintain the regularity of the Euclidean black
hole solution it was shown in [2,3,10,24] that the chemical
potentials ξ� and ζ�s depend linearly on M − 1 arbitrary
integers when M spin fields are turned one. Black holes
which are connected to BTZ black holes the above
conditions are given by

ξ� ¼ 2π; ζ�s ¼ 0: ð5:2Þ

We consider spin-3 black holes whose dynamics is gov-
erned by the Hamiltonian (4.19). For such black holes these
conditions are given by

p2
�
2

þ wþ1 þ V ¼ 2π; ð5:3Þ

u�3ðp� þ u�3Þ ¼ 0: ð5:4Þ

From the second condition (5.4) we see that one trivial
solution is u�3 ¼ 0, i.e., no higher-spin modes are turned
on. The nontrivial solution is u�3 ¼ −p�. To find the
droplet geometry one has to solve the equations in (4.36) to
find possible values of f�i. The entropy of the black hole,
which is connected to the BTZ black hole, is proportional
to 2πðpþ − p−Þ [2,3,10,24]. Therefore, from Eq. (4.36) we
see that the entropy of such black holes is equal to the total
area covered by the droplets. However, for other black hole
solutions (not connected to BTZ) the entropy is no longer
equal to the area of the droplets. This is worth mentioning
that any arbitrary droplet geometry may not satisfy the
regularity conditions at the horizon.
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Following the Hamiltonian reduction method developed
in [14,16,24] one can show that the total action is governed
by left and right moving chiral bosons for a specific choice
of boundary term in (3.16). The CS action (3.3) receives
contributions only from the boundary degrees of freedom
and is given by

Iðϕ�;ψ�sÞ¼
Z

dt

�
k
4π

Z
dθ

�
ϕ0
� _ϕ�þ

X
s

ψ 0
�s _ψ�s

�
∓H�

�
:

ð5:5Þ

The Euclidean AdS3 partition function for specific boun-
dary conditions, given by the choice of boundary action,
can be written as

Z ¼
X

classical solutions

Z
½DΦ�e−βH: ð5:6Þ

In general this is a difficult problem to address [48].
However, we can try to compute the partition function
for a given classical solution. In absence of higher-spins,
one can consider the classical solution to be a BTZ black
hole which is given by a constant droplet as discussed in
Sec. IVA. Thus excitations about this classical solution
correspond to different deformations of the droplet and one

has to sum over all such deformations. Expanding p� in
Fourier modes we can classify all possible deformations as
quantum states in the Hilbert space. The problem was
discussed in [36]. It turns out that the partition function is
equal to 2DYang-Mills partition function on torus. It would
be interesting to find the partition function in presence of
different higher-spin fields in the bulk. In classical theory
one needs an infinite number of fields (w�n) to describe
folds on the Fermi surface. However, the situation is
different in quantum theory. It turns out that w�n are not
additional degrees of freedom in quantum theory; rather
they represent Oð1Þ quantum dispersions of the collective
fields [38].
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[11] E. Ojeda and A. Pérez, Boundary conditions for general
relativity in three-dimensional spacetimes, integrable sys-
tems and the KdV/mKdV hierarchies, J. High Energy Phys.
08 (2019) 079.

[12] M. Ammon, D. Grumiller, S. Prohazka, M. Riegler, and R.
Wutte, Higher-spin flat space cosmologies with soft hair,
J. High Energy Phys. 05 (2017) 031.
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