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We introduce a strategy to compute EPRL spin foam amplitudes with many internal faces numerically.
We work with sl2cfoam-next, the state-of-the-art framework to numerically evaluate spin foam
transition amplitudes. We find that uniform sampling Monte Carlo is exceptionally effective in
approximating the sum over internal quantum numbers of a spin foam amplitude, considerably reducing
the computational resources necessary. We apply it to compute large volume divergences of the theory and
find surprising numerical evidence that the EPRL vertex renormalization amplitude is instead finite.
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I. INTRODUCTION

Spin foam theory is the Lorentz covariant version of loop
quantumgravity (LQG) and provides a tentative background
independent path integral for gravity. It gives dynamics
to LQG kinematical states defining transition amplitudes
between spin network states [1,2]. The most promising spin
foam theory is the EPRL-FK model [3,4]. Various gener-
alizations include the extension to general triangulations [5],
the inclusion of a cosmological constant [6,7], and boundary
with different signature [8]. These theories promisingly
connect with discrete general relativity in the double limit of
finer discretization and large areas [9–14].
The field has recently undergone an explosion of

numerical methods, providing new tools to address many
open questions of the theory. We can compute expecta-
tion values and fluctuations of operators in the large
spins regime using the complex saddle point analysis
and the integration on a Lefschetz thimble using Markov
chain Monte Carlo [12,15,16]. It is possible to verify that
Regge geometries emerge in the large-scale and small
Immirzi parameter regime. A similar result can also be
obtained from effective spin foam models [17,18]. Finally,
sl2cfoam (and its latest iteration sl2cfoam-next)
is an open source framework to compute EPRL spin foam
amplitudes [19,20]. It is based on a divide-and-conquer
strategy, and a booster decomposition of the vertex
amplitude [21]. The library was already employed to
explore the large quantum numbers regime [20,22,23], the
infrared divergences of the theory [24,25], the black-to-
white hole transition [26], and correlations in the early
universe [27]. Very recently, a hybrid approach taking

advantage of all the available techniques was also pro-
posed [28].
This work overcomes one of the principal limitations of

sl2cfoam-next. The library provides an optimized and
efficient framework to compute all the constituents of a spin
foam transition amplitude. Nevertheless, numerically com-
puting spin foam amplitudes with many internal faces is
prohibitively taxing. There are way too many objects to
compute as their number scales exponentially with the
number of internal faces. We overcome this problem by
evaluating the sums over the internal quantum numbers
using statistical frameworks. We explore the possibility of
using uniform sampling Monte Carlo and find it surpris-
ingly effective. We can compute amplitudes with slightly
better than 1% precision by considering a sampling five
orders of magnitude smaller than the total amount of terms
of the sum.
We apply this novel technique to compute the melonic

self-energy and the vertex renormalization amplitude in
the SUð2Þ BF and EPRL theories. These two amplitudes
are the perfect laboratory to test the effectiveness of
Monte Carlo as they possess many internal faces. These
spin foam amplitudes are believed to be divergent, and their
renormalization is crucial to define the continuum limit of
the EPRL theory. In the case of the melonic self-energy we
find excellent agreement with the numerical results in the
literature [24,29], which do not use stochastic methods.
This work contains the first computation of the Lorentzian
EPRL vertex renormalization amplitude. We surprisingly
find numerical evidence for its convergence.
The scripts we use to compute the amplitudes and the

notebooks to analyze the data are publicly available at
the repository [30]. We perform most of our calculations
on the Narval cluster of the Digital Research Alliance of
Canada.
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II. SPIN FOAM TRANSITION AMPLITUDES

Wewrite a spin foam transition amplitude starting from a
2-complex Δ of a simplicial triangulation of the space-time
manifold decorated with LQG quantum numbers. Each face
is coloredwith a spin jf and each edgewith an intertwiner ie.
The spin foam transition amplitude AΔ is the product of

local fundamental amplitudes: a face amplitude AfðjfÞ, an
edge amplitude AeðieÞ, and a vertex amplitude Avðjf; ieÞ.
Finally, we sum over all the possible quantum numbers
associated with the bulk of the 2-complex

AΔ ¼
X∞
jf¼0

X
ie

Y
f

AfðjfÞ
Y
e

AeðieÞ
Y
v

Avðjf; ieÞ: ð1Þ

This work focuses on two spin foam theories: the
topological BF SUð2Þ model and the Lorentzian EPRL
model. We introduce them here schematically and
report their detailed definition in Appendix A. We refer
to reviews [2] or books [1] for a more complete and
pedagogical introduction. We use the same notation for
the vertex amplitudes in the two models. It is convenient
to avoid overburdening the notation and not repeat the
same equations twice. We will stress the difference between
the two models if necessary. The vertex amplitude for the
topological model is defined as

Avðjf; ieÞ ¼ f15jgðjf; ieÞ; ð2Þ

where thef15jgðjf; ieÞ is aSUð2Þ invariant dependingon the
ten spins and five intertwiners coloring the spin foam vertex.
We work with the booster functions decomposition of the
Lorentzian EPRL spin foammodel introduced in [21]. In this
form, the EPRL vertex amplitude is a superposition of f15jg
symbols weighted by booster functions Bγ

4.

Avðjf; ieÞ ¼
X∞
lf¼jf

X
ke

f15jgðjf; lfÞ

×
Y5
e¼2

ð2ke þ 1ÞBγ
4ðlf; jf; ie; keÞ: ð3Þ

The presence of thebooster functions is the striking difference
between the amplitudes (2) and (3). They encode the imposi-
tion of the simplicity constraints and the explicit dependence
of the theory from the Immirzi parameter γ. They possess a
compelling geometrical interpretation of boosted tetrahedra
[31]. The edge and face amplitudes are fixed, requiring the
correct composition of spin foam amplitudes [32].

AeðieÞ ¼ 2ie þ 1; and AfðjfÞ ¼ 2jf þ 1: ð4Þ

Depending on the details of the 2-complex could be necessary
to also multiply by some extra phase and edge-related SUð2Þ
invariants depending on the spin and intertwiners quantum

numbers. They result from our decision to work with a
specific recoupling scheme in the vertex amplitudes.We refer
to the review [23] for a step-by-step guideon computing them.
We perform all the numerical calculations using

sl2cfoam-next, the state-of-the-art code, to compute spin
foam amplitudes with a computer. The library is open source
andwritten inC. It is basedon thebooster decompositionof the
EPRL vertex amplitude, optimizing the available computa-
tional resources.We refer to the original paper [20], the review
[23], or the book chapter [33] for a detailed description.
One of the main ingredients we mention here is the

introduction of a homogeneous truncation parameter Δl to
approximate the unbounded convergent sums over the
virtual spins lf in (3).

X∞
lf¼jf

→
XjfþΔl

lf¼jf

: ð5Þ

Despite the notation, we emphasize that the truncation
parameter Δl is independent of the 2-complex Δ.

III. SUMMING BULK DEGREES OF FREEDOM
WITH MONTE CARLO

The library sl2cfoam-next [20] computes EPRL
vertex amplitudes (3) very fast and efficiently.1 Unfor-
tunately, it is not enough to compute a general spin foam
amplitude with many vertices and internal faces. The
number of vertex amplitudes we have to calculate, assem-
ble, and sum grows exponentially with the number of bulk
faces. We can convince ourselves this is a severe problem
with a back-of-the-envelope calculation. Imagine you want
to compute an amplitude with F internal faces, and all the
spins associated with the inner faces have some character-
istic value J. To calculate the amplitude, we must loop
through all ð2J þ 1ÞF possible values that the internal spins
can assume and compute all the vertex amplitudes. Let us
assume, optimistically, that we need just 1 μs of CPU time
to obtain them (the actual time is orders of magnitude
larger). Suppose we want to calculate an amplitude with 10
internal faces and average spins of order 10. To perform this
calculation, we need approximately 2110μs ≈ 6 months of
CPU time, which is a lot of time considering our modest
requirements and optimistic hypothesis.
We overcome this problem using Monte Carlo to

perform the sum over the bulk spins. We rewrite the spin
foam amplitude (1) in terms of partial amplitudes

AΔ ¼
X∞
jf¼0

aðjfÞ with

aðjfÞ ¼
X
ie

Y
f

AfðjfÞ
Y
e

AeðieÞ
Y
v

Avðjf; ieÞ: ð6Þ

1It can evaluate the topological BF SUð2Þ vertex amplitude too.
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We include the sum over the bulk intertwiners in the partial
amplitudes aðjfÞ. Those sums are always finite for fixed
bulk spins, and we perform them leveraging the tensorial
structure of sl2cfoam-next without resorting to
Monte Carlo methods. We are omitting the evident
dependence from the 2-complex Δ of the partial amplitude.
The partial amplitude vanishes if some spins jf do not

satisfy triangular inequalities.2 We restrict the sum over
the bulk spins in (6) to the set of spins satisfying trian-
gular inequalities that we indicate as IΔ. In this way, we
eliminate the majority of trivially vanishing partial ampli-
tudes. This step is convenient to obtain an efficient
Monte Carlo amplitude estimate.
Generally, IΔ is unbounded, therefore is not possible

to directly apply Monte Carlo to estimate the amplitude. We
circumvent this limitation subdividing IΔ into layers J k.

J k ¼ fjf ∈ IΔjmax jf ¼ kg: ð7Þ

By definition, each layer is finite. Different layers do not
overlap J k ∩ J k0 ¼ ∅, and the union of all of them forms
the original set IΔ ¼ ∪∞

k¼0 J k. We reorganize the spin
foam amplitude as a sum over layers of layer amplitudes

AΔ ¼
X∞
k¼0

Sk with Sk ¼
X
jf∈J k

aðjfÞ: ð8Þ

Each layer amplitude Sk is defined as a sum with a finite
number of terms (that, however, grows rapidly with k). We
can approximate them with Monte Carlo Smc

k using the
procedure described in Appendix B with a fixed amount of
samples Nmc. In general, the number of layers is infinite.3

We cutoff the sum over the layer to a maximum layer K.
This prescription is equivalent to introducing a homo-
geneous cutoff K to all the bulk spins. The Monte Carlo
approximation of a spin foam amplitude with a cutoff K is
given by

Amc
Δ ðKÞ ¼

XK
k¼0

Smc
k : ð9Þ

The calculation of Smc
k requires a discrete random uni-

form probability distribution over the layer J k. In principle,

we could map the layer in an interval of integers, define a
uniform distribution there and map it back to J k. This
prescription is very unpractical. We prefer to define the
uniform distribution in an alternative way.
We extract one real number from a continuous uniform

distribution in ½0; kþ 0.5� for each bulk face. We floor them
to half-integers and we check if they belong to the layer J k.
If they do, we accept them as a random sample of the layer.
If they do not, we discard them and repeat the procedure.
We summarize this procedure in the flowchart 1.

In the application we present in Sec. V, we perform an
explicit test to show that the samples extracted with this
algorithm are uniformly distributed in J k.
We acknowledge that Algorithm 1 is not optimal. To scale

it up to more complicated amplitudes, we must improve it
considerably. We leave this task to future work. Since they
share the edge structure, the sampling Algorithm 1 is the
same for both spin foam models we study.
We conclude this section by showing a pseudocode

representation (Algorithm 2) of the Julia scripts that imple-
ment the Monte Carlo estimate of the spin foam amplitude
(9). The full Julia scripts are available in the repository [30].

Algorithm 1. Random sampling of spins in J k.

1: procedure RANDOMSAMPLEðk;J kÞ
2: while true do ▹ repeat until we find a good candidate
3: jf ← extract a real number from a uniform distribution

in ½0; kþ 0.5� for each face
4: jf ← floor them to half-integers and interpret them as

spins
5: if all spins jf are smaller than k then
6: continue
7: if any spin jf do not satisfy triangular inequalities of J k

then
8: continue
9: return jf ▹ the spins belong to the layer J k

Algorithm 2. Scheme of Monte Carlo estimate of the spin
foam amplitude.

1: for k ¼ 0.5; 1…K do ▹ for each layer
2: extract Nmc samples of the

layer using RANDOMSAMPLEðk;J kÞ
3: store them in memory
4:
5: for k ¼ 0.5; 1…K do ▹ for each layer
6: load the bulk spins samples from memory
7: for n ¼ 1…Nmc do ▹ for each sample
8: compute the partial amplitude aðjfÞ
9: sum the partial amplitudes and save

the layer amplitude Sk
10: compute the amplitude Amc

Δ ðkÞ
summing the layer k to the previous ones

11: store the amplitude

2For example, if j1, j2, j3, and j4 are the four spins associated
with the faces contained in an edge of Δ and

Maxðjj1 − j2j; jj3 − j4jÞ > Minðj1 þ j2; j3 þ j4Þ ⇒ aΔðjfÞ ¼ 0

then the set of intertwiners associated with that edge is empty, and
the partial amplitude trivially vanishes.

3In some exceptional cases, the layers are all empty from a
particular value of k forward because of the triangular inequalities
involving both bulk and boundary spins. It is the case of the Δ3,
and the Δ4 triangulations studied numerically in [11,23].
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In calculating an EPRL spin foam amplitude, the partial
amplitude also depends on the truncation parameter Δl. We
fix the truncation parameter once and for all and store the
amplitude for every Δl.

IV. APPLICATIONS TO THE MELONIC
SELF-ENERGY AND VERTEX

RENORMALIZATION DIAGRAMS

We test the effectiveness of the Monte Carlo framework
described in Sec. III by computing four spin foam ampli-
tudes. We focus on the melonic self-energy amplitude
and the vertex renormalization (or 5–1 Pachner move)
amplitude with the topological BF SUð2Þ and the
EPRL model. These diagrams are essential for studying

the infrared divergences of spin foam theories and their
continuum limit.
The melonic self-energy diagram comprises two verti-

ces, two boundary edges (one for each vertex), and
four bulk ones connecting the two vertices, four boundary
faces, and six bulk faces. We report in Fig. 1 a schematic
representation of the 2-complex, and we refer to
Appendix D for the detailed routing diagram.
To simplify the numerical calculation, we consider very

symmetric boundary data where the boundary spins jb are
all the same and all the boundary intertwiners ib are also
all the same. The spin foam transition amplitude with a
homogeneous cutoff on all the spins associated with bulk
faces is

Aseðjb; ib;KÞ ¼
XK
jf¼0

�Y6
f¼1

ð2jf þ 1Þ
�X

ie

�Y4
e¼1

ð2ie þ 1Þ
�
Avðjb; jb; jb; jb; j1; j2; j3; j4; j5; j6; ib; i1; i2; i3; i4Þ

Avðjb; jb; jb; jb; j1; j2; j3; j4; j5; j6; ib; i4; i3; i2; i1Þ: ð10Þ

The amplitude (10) is the same for both spin foam models
that differ by the vertex amplitudes Av: (2) for BF SU(2)
and (3) for EPRL. The melonic self-energy diagram with
the BF SUð2Þ topological model can be evaluated analyti-
cally and numerically [24,29,34]. We know it is divergent.
The divergence is due to redundant SUð2Þ delta functions
that indicate some residual gauge freedom in the path
integral [35] and can be dealt with by gauge fixing
appropriately. The same amplitude with the EPRL model
has been studied analytically [36], with a hybrid calculation
[34], and, recently, numerically [24,29]. The amplitude is
divergent, and there are strong indications that it diverges
linearly in the cutoff. We are revisiting this amplitude as a
control for the Monte Carlo technique we introduce. In fact,
the self-energy has a relatively small number of internal

faces, so the computation is still possible even without
using Monte Carlo. Reproducing known results allows us
to evaluate the choices of the framework.
The vertex renormalization diagram contains five verti-

ces, five boundary edges (one for each vertex), and ten bulk
ones connecting all couples of vertices, ten boundary
faces, and ten bulk faces. We report in Fig. 1 a schematic
representation of the 2-complex, and we refer to
Appendix D for the detailed routing diagram.
Also in this diagram, we simplify the numerical calcu-

lation by taking symmetric boundary data with all equal
boundary spins jb and boundary intertwiners ib. If we put a
homogeneous cutoff K on the sums over the bulk spins, the
amplitude reads

Avrðjb; ib;KÞ ¼
XK
jf¼0

�Y10
f¼1

ð2jf þ 1Þ
�X

ie

�Y15
e¼1

ð2ie þ 1Þ
�
Avðjb; jb; jb; jb; j1; j2; j3; j4; j5; j6; ib; i4; i11; i12; i2Þ

Avðjb; jb; jb; jb; j7; j8; j1; j9; j2; j3; ib; i6; i13; i14; i4Þ
Avðjb; jb; jb; jb; j10; j4; j7; j5; j8; j1; ib; i8; i15; i11; i6Þ
Avðjb; jb; jb; jb; j6; j9; j10; j2; j4; j7; ib; i10; i12; i14; i15Þ
Avðjb; jb; jb; jb; j3; j5; j6; j8; j9; j10; ib; i2; i13; i15; i10Þ
f6jgðjb; j3; i1; j5; j6; i2Þf6jgðjb; j1; i3; j2; j3; i4Þ
f6jgðjb; j7; i5; j8; j1; i6Þf6jgðjb; j10; i7; j4; j7; i8Þ
f6jgðjb; j6; i8; j9; j10; i10Þð−1Þχ ; ð11Þ
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where f6jg are SUð2Þ invariants that we define in
Appendix A. The phase in (11) reduces to:

χ ¼
X10
k¼1

jk þ
X15
k¼11

ik: ð12Þ

The form of the amplitude is convoluted because we
want to use the same intertwiner recoupling scheme in
all the vertices. This is necessary to perform the numerical
calculations efficiently, as sl2cfoam-next implements
only a specific vertex amplitude (A4). Again, the amplitude
(11) is the same for both spin foam models that differ by
the vertex amplitudes. The vertex renormalization diagram
can be evaluated analytically with the BF SUð2Þ topologi-
cal model integrating explicitly the group functions in
the holonomy representation of the amplitude [34]. This
amplitude was already studied with the Euclidean EPRL
model in [37], finding a logarithmic divergence. A numeri-
cal calculation of the amplitude for values of the cutoff
greater than 4 is extremely challenging if we do not use
Monte Carlo. The degree of divergence of the same diagram
with the EPRL spin foam model is entirely unknown. Any
calculation with known techniques is too complicated. In
Sec. VIII we study it using Monte Carlo. Computing this
amplitude is a stress test for the Monte Carlo framework

and a novel result for studying EPRL spin foam infrared
divergences.
In Fig. 2, we show the number of bulk spin configura-

tions jf as a function of the cutoff K for the vertex
renormalization diagram. We only consider spin configu-
rations that satisfy triangular inequalities. It is evident that
the number of configurations to be summed increases as a
power law with the cutoff K. Hence the convenience of
using Monte Carlo. A simple numerical fit for K ∈ ½5; 10�
shows that the number of configurations qualitatively scales
as ∼39.3 · K8.5 for the vertex renormalization. For the self-
energy diagram, in [29], the same fit forK ∈ ½5; 20� showed
that the number of configurations scales as ∼17.1 · K5.6.
In all the amplitudes, to perform the numerical calcu-

lations with a modest amount of resources, we restrict the
numerical calculation to the simplest nontrivial case of
jb ¼ 1

2
for both instances of boundary intertwiners ib ¼ 0

and ib ¼ 1. In the following sections, we will explicitly
discuss the calculation’s result only in the case of boundary
intertwiner ib ¼ 0. However, we performed the same
analyses also with boundary intertwiners ib ¼ 1. We find
qualitatively identical results. Interested readers can find
them in the detailed notebook in our public repository [30].
In the case of the EPRL model, we need to specify two

more parameters to perform a numerical calculation. We fix
the Immirzi parameter to γ ¼ 0.1. We choose this value to
partially compare our results with the literature on the
numerical evaluation of EPRL spin foam amplitudes [24].
For similar reasons, we also choose the truncation param-
eter Δl ¼ 10. This choice is also motivated by keeping the
numerical task practical. The cost of resources increases
rapidly with Δl, and literature [20,23,24] suggests that for
maximal spins of order 10, the truncationΔl ¼ 10 is a good
compromise between costs and precision.
In the following sections, we use the same name for

the amplitudes Ase and Avr with both the BF SUð2Þ and
the EPRL model to keep the notation as clean as possi-
ble. The reader can uniquely identify which model the

FIG. 1. Schematic representation of the 2-complexes of the self-
energy spin foam diagram (left) and the vertex renormalization
spin foam diagram (right).

FIG. 2. Number of bulk spins configurations jf as a function of the cutoff K of the vertex renormalization diagram.
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amplitude is computed with from the section. Finally, we
use the term “exact amplitude” referring to (8) with a finite
cutoff K computed without resorting to Monte Carlo
methods.

V. THE MELONIC AMPLITUDE IN THE
TOPOLOGICAL THEORY

In this section, we use the Monte Carlo framework
described in Sec. III on the melonic self-energy transition
amplitude in the topological SUð2Þ BF model. This
calculation aims to fine-tune and validate our choices of
Monte Carlo parameters.
First, we test if the algorithm we use to sample the layers

is equivalent to a uniform discrete probability distribution
over the amplitude layers. We list all the sets of bulk spins
in the layer, and we map them in an interval of integers.

Each element of the list is associated with its positions (we
choose the order of the list arbitrarily but only once). We
produce many samples using the Algorithm 1. We compute
the samples’ mean, variance, and skewness and check if
they are compatible with the corresponding quantities of a
discrete uniform probability distribution. We tested every
layer of this amplitude and found excellent agreement. For
brevity, we report the analysis with a sample of 100 000
configurations of the amplitude layer with k ¼ 10 that
contain VJ k

¼ 549406 possible configurations. We report
them in Table I and Fig. 3. The probability distribution
generated with Algorithm 1 is equivalent to a uniform
discrete probability distribution.
We estimate the value and error of each amplitude layer

with Monte Carlo repeating it T ¼ 20 times and computing
the mean and standard deviation. We choose the number of
trials after a simple test. We fix the size of the Monte Carlo
sampling to Nmc ¼ 1 000 to efficiently iterate and improve
the analysis. We compute the average over T ¼ 10, 20, and
50 trials. We repeat it 100 times to study the distribution
of the average. The law of large numbers states that
the distribution of the averages is normal with standard
deviation given by the average standard deviation. We
can visualize it using a box plot we report in Fig. 4. This
qualitative analysis shows that the tails of the distribution
with 10 trials are very long. The standard deviation with
just 10 trials is not a reasonable estimate of the error of the

FIG. 3. Histogram of the sample with 100 000 configurations from the layer k ¼ 10 with 50 bins. Each bin contains approximately
2000 elements.

TABLE I. We compare the first three momenta of the sample
with the corresponding exact quantities of a discrete uniform
probability distribution. We find excellent agreement.

Quantity Expected Sample Difference (%)

Mean 274 703.5 274 864.7 0.05%
Standard deviation 1 587 371.04 1 585 998.51 0.09%
Skewness 0 −0.00545 � � �

FIG. 4. Box plot of the average of the Monte Carlo evaluation of different amplitude layers. We consider the layers from k ¼ 5 to 10.
We repeat the estimate 100 times. We look at 10 trials (in blue), 20 trials (in orange), and 50 trials (in green). To ease the comparison, we
plot the estimated value of the layer relative to the exact one.
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Monte Carlo estimate of the amplitude’s layer. This
observation is independent of the layer. With 20 trials,
the first and third quartiles are reduced to half, making it a
better option. A similar observation is valid for 50 trials,
albeit more resource intensive. We use 20 trials as a
good compromise between precision and simplicity.
Nevertheless, the error between the Monte Carlo estimate
relative to the exact quantity is always a few percent with
Nmc ¼ 1 000 and using 20 trials instead of 10 improve its
estimate from 1% to 2%. The gain in the error estimate
using 50 trials is marginal and does not justify the require-
ment of extra resources.
We study the Monte Carlo estimate of the amplitude

as a function of the cutoff K for three different sample
size choices of Nmc ¼ 1 000, Nmc ¼ 10 000, and
Nmc ¼ 100 000. We average the calculation of T ¼ 20
trials for each layer and sum them to get the amplitude. We
compute the error on the amplitude from the standard
deviation of each layer. We compare the relative error on
the amplitude as a function of the cutoff for different sizes
of Monte Carlo samples (see Fig. 5). For all three sample
sizes, the relative error on the amplitude is smaller than 1%.
As expected, the error decreases for larger values of Nmc.
The relative error for Nmc ¼ 100 000 is smaller than 0.1%.
We decide to use Nmc ¼ 100 000 for all the other calcu-
lations we present in this section. We also plot the estimated

value of the amplitude with Nmc ¼ 100 000 relative to the
exact value with the estimated errors. We plot in Fig. 6
the Monte Carlo estimate of the amplitude in relation to the
exact value, with error bars corresponding to the standard
deviation. The exact value of the amplitude is compatible
with the Monte Carlo estimate within the errors. At first
sight, one could be confused by the trend of the errors
decreasing with the cutoff. The observation that the relative
error of the various layers is almost constant (as we can
infer from Fig. 4) can easily explain this. However, the
contribution to the amplitude of the outer layers (with larger
k) is bigger than the others. A quick back-of-the-envelope
calculation shows that if we add two quantities a few orders
of magnitudes apart but with the same relative error, the
relative error on the sum is smaller than both.
We conclude our exploration by estimating the degree

of divergence of this amplitude. The analytic calculation
shows that the amplitude diverges with the cutoff as
∝ K9 at the leading order. Can we determine it numeri-
cally?We answer with a proof of concept analysis we use to
validate the technique before applying it to more complex
amplitudes where the analytic answer is unknown. We are
not satisfied with a qualitative result. We could easily
eyeball a line on the logarithmic plot of the amplitude as a
function of the cutoff. However, this approach is only
helpful if we know the degree of divergence. We need to

FIG. 5. Relative error of the SUð2Þ BF melonic amplitude as a function of the cutoff computed with 20 trials. We compare different
Monte Carlo sampling sizes Nmc ¼ 1000 (green), Nmc ¼ 10 000 (orange), and Nmc ¼ 100 000 (blue) samples.

FIG. 6. Monte Carlo estimates of the SUð2Þ BF melonic amplitude relative to the exact value with Nmc ¼ 100 000 and T ¼ 20 trials in
each layer.
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perform a fit to determine it numerically. We start with a
model function with a polynomial form

AðKÞ ¼ c1Ka þ c2Ka−1: ð13Þ

We limit ourselves to the leading and subleading order
terms. In general, the amplitude diverges as a polynomial
with all the powers of the cutoff. Using it as a model to fit
our data would undoubtedly lead to overfitting as we want
to use a maximum cutoff of K ¼ 10. We could compute
this amplitude for larger values of the cutoff. However, the
EPRL model’s amplitude is too computationally demand-
ing, and we must impose a small cutoff of K ¼ 10. We use
this limitation as an excuse to use a small cutoff with the
topological model and anticipate some problems arising
from this choice. We fit using only the last 10 data points
available.
We perform a simple least squares fit using the Julia

package LsqFit. We find the exponent a ¼ 8.81� 11.99
and coefficients c1 ¼ 4.83� 240.38, c2 ¼ 41.12� 66.95.
Examining the uncertainties of the parameters, we conclude
that the fit is clearly unreliable. Moreover, even if the fit
value for the exponent a looks compatible with the exact
value a ¼ 9, we could not affirm it without knowing it in
advance.
What is happening? The covariance between the coef-

ficients c1 and c2 is huge. The fit procedure with a cutoff of
order 10 cannot distinguish between the contributions from
the leading and subleading orders (for example, if the exact
coefficients are c1=c2 ≈ 10).
A simple solution to this impasse would be to extend the

fit to larger values of K. In this way, the contribution of the
leading order would dominate the subleading one. Since we

are limited by a maximum cutoff K ¼ 10, we have to find a
different solution. Alternatively, we can diminish the
degree of divergence of the amplitude by changing the
face amplitude introducing a tunable parameter μ

AfðjfÞ ¼ ð2jf þ 1Þ → ð2jf þ 1Þμ. ð14Þ

The case μ ¼ 1 corresponds to the standard case, but if we
set μ < 1 we lower the divergence of the amplitude. In
general, the amplitude will diverge as Ase ∝ K6μþp where p
is a number we have to determine, and 6μ is the contri-
bution coming from the six unbounded sums over the bulk
spins. We pretend we do not know that for μ ¼ 1 the
amplitude diverges as Ase ∝ K9 and therefore p ¼ 3. And
we try to determine p ¼ a − 6μ fitting the amplitude with
the same model (13) for various values of μ ¼ 1=6, μ ¼ 0
and μ ¼ −1=6. We take this opportunity to check if the
Monte Carlo estimate of the amplitude is as good as in
the case μ ¼ 1. We compare the Monte Carlo estimate of
the amplitudes relative to their exact values with different μ.
All the relative error bars, computed over T ¼ 20 realiza-
tions as we did before, are within 0.1%, confirming that the
Monte Carlo estimate is very accurate. We summarize the
results in Fig. 7. We fit the amplitude with the model (13).
The interpretation of the result, in this case, is more
straightforward. We report the fitted coefficients in Table II.
A few comments are in order. First, all the fits indicate

clearly that p ¼ a − 6μ ¼ 3. Second, notice that we are not
worried that a is not always compatible with the nearest
integer value. This is an artifact of using just the leading
order and next to the leading order of the polynomial in
(13). We determined the degree of divergence of the
amplitude as Ase ∝ K6μþ3.

VI. THE VERTEX RENORMALIZATION
AMPLITUDE IN THE TOPOLOGICAL THEORY

Exact numerical calculations of spin foam amplitudes
with many bulk faces are accessible only for simple
models, but become infeasible when the number of faces
is too large. We showcase the problem by looking at the
vertex renormalization or 5-1 Pachner move amplitude with

FIG. 7. Monte Carlo estimates of the SUð2Þ BF melonic amplitude with Nmc ¼ 100 000 and T ¼ 20 trials in each layer. We compare
different values of the parameter μ in the face amplitude (14).

TABLE II. Values of the coefficients of the model (13) obtained
fitting the amplitude with different values of μ.

a c1 c2

μ ¼ 1=6 4.15� 0.34 0.91� 1.24 6.38� 0.17
μ ¼ 0 2.97� 0.04 2.01� 0.03 3.50� 0.05
μ ¼ −1=6 1.94� 0.02 2.83� 0.02 0.39� 0.05
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the topological SUð2Þ BF spin foam theory. The issue
with this computation is not the time we need to com-
pute each term of the sums over the spins of the ten inter-
nal faces but the sheer amount of terms of these sums.
With a cutoff K ¼ 10 on the sums, we need to compute
307 88 382 715 terms in total, 11 892 969 195 of which
belongs to last layer of the amplitude. They are almost six
orders of magnitude more than in the melonic diagram case.
This is where using the Monte Carlo framework to perform
the sums is necessary.
Motivated by the analysis of the melonic diagram, we

average the Monte Carlo calculation of each layer over
T ¼ 20 trials. We sum the layers’ average to obtain the
amplitude value for a given cutoff. We compute the
amplitude variance by summing each layer’s variance.
We consider the standard deviation as the error of the
amplitude. We perform the calculation with three different
choices of sample sizes Nmc ¼ 1000, Nmc ¼ 10 000,
and Nmc ¼ 100 000.
In this case, we cannot compare with the exact value of

the amplitude to evaluate the Monte Carlo technique. The
exact value is not computable for cutoff K ¼ 10. It is
exactly the reason we resort to Monte Carlo methods.
We compare the relative error on the amplitude for the three
sample size choices. We summarize the result of this
analysis in the plot of Fig. 8. We see that Nmc ¼ 1 000
produces an estimate with a significant relative error
between 8% and 3%. For Nmc ¼ 100 000 we find very
modest relative errors between 0.8% and 0.3%. The
increase in the relative errors compared to the melonic
diagram case is expected. Each layer of this amplitude
contains a few orders of magnitude more elements than the
corresponding layer in the melonic amplitude.

We fit the amplitude computed with Nmc ¼ 100 000
samples averaged over T ¼ 20 trials as a function of the
cutoff K using the model (13). We employ only the
amplitude value as a function of the cutoff between 5
and 10 since we expect the matching of the functional form
(13) to be, at best asymptotic. The degree of divergence
of this amplitude can be estimated analytically, finding
Avr ∝ K12 at the leading order.
With a simple least squares fit, we find an unreliable

result with an exponent a ¼ 11.20� 0.69 and coefficients
c1 ¼ 1.91� 4.39, and c2 ¼ 1.70� 10.82. The situation is
analogous to the case of the melon amplitude. To determine
numerically the degree of divergence of this amplitude with
a maximum cutoff ofK ¼ 10we modify the face amplitude
as in (14) such that the amplitude diverge as Avr ∝ K10μþp

with p to determine.Wewant to keep the exponent 10μþ p
as low as possible. Therefore, we pick three values of
the weight μ ¼ 0, μ ¼ 1=10, and μ ¼ 1=5. We find all
three results are compatible with the analytic value of
p ¼ 2 resulting in the amplitude diverging as Avr ∝
K10μþ2 (see Table III).

VII. THE MELONIC AMPLITUDE IN THE
EPRL THEORY

In Sec. V, we computed the melonic self-energy spin
foam amplitude with the topological BF SUð2Þ model
using Monte Carlo. We obtained a remarkably accurate
amplitude approximation, employing only a fraction of the
computational resources. Is the Monte Carlo technique
applicable to spin foam amplitudes with the EPRL model,
and is it equally successful?
Before discussing the calculation details, we must

disentangle two different overlapping approximations.
One is due to the Monte Carlo sampling procedure,
while the other is a consequence of working with a finite
truncation parameter Δl. In calculating the melonic
amplitude, we have access to the public data from [24]
that employs an extensive truncation Δl ¼ 20. We
borrow that data to perform a detailed study of the
truncation approximation independently from the
Monte Carlo one.

FIG. 8. Relative error on the Monte Carlo estimate of the SUð2Þ BF vertex renormalization amplitude over 20 trials. We compare
different Monte Carlo sampling sizes Nmc ¼ 1000 (green), Nmc ¼ 10 000 (orange), and Nmc ¼ 100 000 (blue) samples.

TABLE III. Values of the coefficients of the model (13)
obtained fitting the amplitude Avr with different values of μ.

a c1 c2

μ ¼ 0 1.96� 0.02 0.18� 0.01 −0.05� 0.02
μ ¼ 1=10 2.89� 0.02 0.15� 0.01 0.07� 0.02
μ ¼ 1=5 4.00� 0.04 0.08� 0.01 0.26� 0.02
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We mitigate the dependence from a specific choice
of truncation Δl using an extrapolation technique (see
Appendix C). This idea was first introduced in [24], further
formalized in [23], and additionally utilized in [25]. Our
understanding of the extrapolation technique applied to
EPRL spin foam amplitudes with finite truncation has
improved considerably. In this section, we revisit it in a new

light. We explicitly show that its principal hypothesis is
satisfied and compare possible alternatives.
The amplitude AseðK;ΔlÞ at fixed cutoff K is a sequence

in the truncation parameter Δl. Since the EPRL vertex
amplitude is well-defined, the limit of infinite truncation is
finite, and we can approximate it using the Aitken delta
squared method.

AðexÞ
se ðK;ΔlÞ ¼ AseðK;ΔlÞAseðK;Δl − 2Þ − AseðK;Δl − 1Þ2

AseðK;ΔlÞ − 2AseðK;Δl − 1Þ þ AseðK;Δl − 2Þ . ð15Þ

The sequence AðexÞ
se ðK;ΔlÞ converges to AseðKÞ faster than

AseðK;ΔlÞ. Therefore approximating the limit with the

truncation of the sequenceAseðKÞ≈AðexÞ
se ðKÞ≡AðexÞ

se ðK;ΔlÞ
is, in general, a better approximation than using the
truncation of AseðK;ΔlÞ. The extrapolation is effective if
the rate of convergence of the amplitude is at least linear in
Δl, as discussed in Appendix C. For this purpose, we study
the ratio

λAseðKÞðΔlÞ ¼
AseðK;ΔlÞ − AseðK;Δl − 1Þ

AseðK;Δl − 1Þ − AseðK;Δl − 2Þ : ð16Þ

If the limit of the ratio (16) for infinite truncation is smaller
than 1, the convergence of AseðK;ΔlÞ is linear. Proving
numerically the existence of the limit is challenging.
Therefore, we settle with some numerical evidence for
linear convergence. Moreover, truncating the sequence of

extrapolations AðexÞ
se ðK;ΔlÞ to a finiteΔl to approximate its

limit is reliable only if the ratio approached (at least
approximately) a horizontal asymptote. Part of this analy-
sis has already been performed in [24]. Here we repropose
it in light of our improved understanding. For all half-
integers K ≤ 10, the ratio (16) approaches a horizontal
asymptote smaller than 1. This behavior is evident for any
8 ≤ Δl ≤ 20 and legitimizes the extrapolation of the
amplitude (15). The ratio approaches the asymptote from
below. Therefore, we expect the extrapolations from larger

truncation to increase.We summarize the analysis for some
cutoff values in Fig. 9.
How effective is the extrapolation (15)? We answer this

question by comparing the extrapolation obtained from
Δl ¼ 10 and Δl ¼ 20. The last is usually inaccessible due
to its exceptional computational cost, while the former is
less precise but cheaper to compute. The value of the
amplitude AseðK;ΔlÞ changes substantially when we
increase the truncation. For example, at cutoff K ¼ 10,
the amplitude with Δl ¼ 20 is 40% larger than the one
with Δl ¼ 10. This was expected since the spins entering
the calculation atK ¼ 10 are of order 20, and the amplitude
truncated at Δl ¼ 10 cannot approximate the real ampli-
tude value well. However, we find a milder difference
between the extrapolation (15) with different truncations.
With the same cutoff, the difference between the extrapo-
lation done with truncation Δl ¼ 10 and Δl ¼ 20 is just
6%. In both cases, the extrapolations approximate the
amplitude better than any truncated amplitude we have
access to. We summarize the results in Fig. 10.
It is natural to question if extrapolating the amplitude

sequence (15) is the only way to proceed. We explored
multiple alternatives (vertex-by-vertex, bulk amplitude, and
layer-by-layer), and they all turned out to perform worst.
We review in detail one of them. The amplitude is a sum
limited to a maximum K of contributions of layers (8) we
compute with a fixed truncation Δl

FIG. 9. Plot of the ratio (16) for various values of the cutoff K ¼ 10, K ¼ 7.5, K ¼ 5. A horizontal asymptote is evident even for
modest values of the truncation.
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AseðK;ΔlÞ ¼
XK
k¼0

SkðΔlÞ: ð17Þ

Each layer contribution SkðΔlÞ is a convergent sequence in
the truncation parameter. We can use Aitken extrapolation
on each layer contribution and obtain a sequence of
amplitudes summing them

Aðex;SÞ
se ðK;ΔlÞ¼

XK
k¼0

SðexÞk ðΔlÞ with

SðexÞk ðΔlÞ¼ SkðΔlÞSkðΔl−2Þ−SkðΔl−1Þ2
SkðΔlÞ−2SkðΔl−1ÞþSkðΔl−2Þ : ð18Þ

We approximate the limit of the sequence of amplitude

truncating the accelerated convergence sequenceAðex;SÞ
se ðKÞ≈

Aðex;SÞ
se ðK;ΔlÞ (18). Since the amplitude (17) is a finite sum

over layers, the sequence obtained extrapolating layer-by-
layer (18) has the same limit as the sequence (15) and both, of
course, converge to thevalue of the amplitudeAseðKÞwithout
any truncation. In practice, we do not have access to an
arbitrarily large truncation but to a relatively small one, and
we want to approximate the limit truncating the extrapolated
sequences.Whichone approximates the amplitudebetter is an

open question that we can answer by exploring different
possibilities.
First, we verify that every layer amplitude is at least

linearly convergent in the truncation parameter by studying
the ratio

λSkðΔlÞ ¼
SkðΔlÞ − SkðΔl − 1Þ

SkðΔl − 1Þ − SkðΔl − 2Þ : ð19Þ

We show some explicit examples in Fig. 11. All the layer
amplitudes are compatible with the linear convergence
hypothesis. Differently from (16) the ratio (19) approach a
horizontal asymptote from above. As a consequence, the
extrapolation of the layer amplitudes decreases in value for
increasing truncation. In particular, the last layer k ¼ 10
for Δl ¼ 10 is still far from the horizontal asymptote. For
this reason, we expect the extrapolation to change signifi-
cantly if we increase the truncation from Δl ¼ 10 to, for
example, Δl ¼ 15 or 20 and approximate. This is not the
case for lower levels k ≤ 5. We extrapolate all the layer
amplitudes and sum them. We truncate the sequence (18) to
approximate its limit. It is useful to compare the result with
the extrapolation of the whole amplitude (15) using differ-
ent truncation parameters. We summarize our findings
in Fig. 12. For large cutoff, the extrapolation (18) with

FIG. 10. Comparison between the amplitude extrapolations and the truncated values AseðK;ΔlÞ with Δl ¼ 10 and Δl ¼ 20 as a
function of the cutoff. For larger cutoff values, the effect of truncation is critical. The extrapolation successfully mitigates this
dependence.

FIG. 11. Plot of the ratio (19) for various values k ¼ 10, k ¼ 7.5, k ¼ 5. A horizontal asymptote is evident but is reached for different
truncation values.

SUMMING BULK QUANTUM NUMBERS WITH … PHYS. REV. D 107, 106008 (2023)

106008-11



truncation Δl ¼ 10 is much larger than its counterpart (15).
At cutoff K ¼ 10, the layer-by-layer extrapolation (18) is
16% larger than whole amplitude extrapolation (15). The
difference reduces drastically if we repeat both extrapola-
tions with a larger truncation Δl ¼ 20. At cutoff K ¼ 10
the two differ only by 1%. In particular, the value of the
extrapolation (18) decreases substantially. This agrees
with what we observed studying the ratio (19). With low
truncation, the layer-by-layer extrapolation results in a poor
amplitude approximation. In contrast, the two extrapolation
schemes almost coincide for larger truncations.
In the following, we will study the Monte Carlo approxi-

mation of the amplitude and limit ourselves to a small
truncation Δl ¼ 10 to conserve computational resources.
We will use only the whole amplitude extrapolation scheme
(15) since it is the most accurate within this setting.
Next, we evaluate how effective Monte Carlo techniques

are if applied to the bulk spin summations in the EPRL
model using the melonic amplitude as a testing ground.
Following the cost-benefit analysis of the first part of
this section, we set the truncation to Δl ¼ 10. We use
Monte Carlo to estimate the contribution to the ampli-
tude of each layer averaging over T ¼ 20 trials. The
amplitude is given by the sum of the averages of the
layers and its error by the square root of the total variance.

We perform the calculation with three different choices of
Monte Carlo sample sizesNmc ¼ 1000,Nmc ¼ 10 000, and
Nmc ¼ 100 000. As displayed in Fig. 13 the relative error
on the amplitude is more or less stable at 1% for the small
sample size and 0.1% for the large one. The error is
compatible with the analog error computed with the
topological theory. We could have expected it as the
distribution of the layers’ amplitudes value is relatively
flat. The dominant factor in the error is the ratio between
the number of configurations in the layer and the
Monte Carlo sample size, which is model-independent.
At fixed truncation Δl ¼ 10, we can also compare the
amplitude computed using Monte Carlo with the exact one.
The amplitude computed using Monte Carlo is compatible
with the exact value within the error. We summarize the
comparison in the plot in Fig. 14.
How well the extrapolation technique (15) is compatible

with the Monte Carlo sum over the bulk spins? Instead of
averaging over T ¼ 20 trials, we sum the layer amplitudes
of each realization to obtain 20 different realization of the
amplitude at fixed truncation Δl ¼ 10. This is possible
since each Monte Carlo estimate of each layer amplitude is
independent. We extrapolate the amplitude (15) for each
trial and approximate it averaging over the trials and
considering as error its standard deviation.

FIG. 12. Comparison of the melonic self-energy amplitude obtained extrapolating the amplitude layer-by-layer or the whole
amplitude.

FIG. 13. Relative error of the EPRL melonic amplitude as a function of the cutoff computed with 20 trials and truncation fixed to
Δl ¼ 10. We compare different Monte Carlo sampling sizes Nmc ¼ 1000 (green), Nmc ¼ 10 000 (orange), and Nmc ¼ 100 000 (blue)
samples.
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We compare the extrapolation of the amplitude com-
puted with Monte Carlo with the one calculated without
that approximation. We find a 0.1% average error due to
Monte Carlo for all cutoff values (see Fig. 15). This is
compatible with the finite truncation case with Δl ¼ 10.
However, this is just an error due to the Monte Carlo
approximation. We expect it to be firmly subdominant with
respect to the error due to the presence of the truncation
despite the extrapolation.
Finally, we determine the degree of divergence of the

amplitude performing a numerical fit. The same calculation
was already done in [24] with an exact amplitude compu-
tation. We showed that using Monte Carlo allows us to
estimate the amplitude with a 0.1% error compared to the
exact value (at fixed truncation). Therefore is no surprise
that we find a good fit with

AðKÞ ¼ c1Ka þ c2 ð20Þ

with a ¼ 1.091� 0.005, c1 ¼ ð6.186� 0.093Þ × 10−6,
and c2 ¼ ð−3.476� 0.253Þ × 10−6 that coincide with the
result of [24]. We changed the model of the fit from the
topological models, as (13) gives unreliable results. If we
generalize the face amplitude (14) introducing a weight μ,
we conclude that the scaling of the amplitude is compatible
with AðKÞ ∝ K6μþp with p ≈ −5.
For completeness, we could look at the melonic diver-

gence with different weight μ values as we did for the

topological SUð2Þ model. However, the result we obtain
is unreliable. A more solid calculation requires a larger
truncation and, consequently, way more computational
resources that we currently do not have access to. We will
comment on these issues in more detail in the next section.
We leave this interesting consistency check to future work.

VIII. THE VERTEX RENORMALIZATION
AMPLITUDE IN THE EPRL THEORY

Computing the degree of divergence of the EPRL vertex
renormalization amplitude (11) has never been attempted.
The theory is too complex to do it numerically or
analytically. We can use Monte Carlo to calculate this
amplitude for the first time. We build upon the experience
accumulated in the previous sections and our choices and
approximations. For this reason, we use a truncation
parameter Δl ¼ 10, and Nmc ¼ 100 000Monte Carlo sam-
ples. The calculation of this amplitude required ∼400
CPU hours, which is a minimal fraction of what would
be required without Monte Carlo. We compute the
Monte Carlo error as the standard deviation of the ampli-
tude over T ¼ 20 relative to its average. We find a very
stable error of approximately 0.9% for all values of the
cutoff as summarized in Fig. 16 The relative error of the
amplitude is curiously constant for increasing cutoff K.
While this behavior could seem odd initially, it has a
straightforward explanation. As we discuss below, the
amplitude seems convergent. The amplitude layers

FIG. 14. Monte Carlo estimate of the EPRL melonic amplitude with finite truncation Δl ¼ 10 relative to the exact value with
Nmc ¼ 100 000 and T ¼ 20 trials in each layer.

FIG. 15. Monte Carlo estimates of the EPRL melonic amplitude extrapolated from a finite truncation Δl ¼ 10 relative to the exact
value with Nmc ¼ 100 000 and T ¼ 20 trials in each layer.
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decrease very fast. The contribution to the relative error of
larger layers is irrelevant.
The amplitude’s statistical fluctuations are slightly

bigger than in the EPRL self-energy amplitude. However,
they are compatible with the errors of the topological
model. It is not surprising since the ratio between the
number of samples and the cardinality of the set we are
summing over dominates the error of a Monte Carlo
calculation.
We reduce the dependence of the amplitude from the

truncation using the extrapolation (15) as discussed in
Sec. VII. We show the value of the extrapolated amplitude
as a function of the cutoff in Fig. 17. The amplitude is
essentially constant for cutoff K > 2. A power law fit is
inadequate to capture the functional scaling of the ampli-
tude. Therefore we opt for a model capturing the constant
behavior plus a correction.

AðKÞ ¼ c1 þ c2=K: ð21Þ

Fitting the amplitude result in c1 ¼ 0.765� 2.667 × 10−5

and c2 ¼ −0.0006� 0.0002. We should take these values
with a grain of salt as they depend strongly on the model we
decide to use. We are tempted to enhance the divergence
of the amplitude by modifying the face amplitude (14)
introducing the weight μ. We observe that increasing μ we

need to increase Δl. Otherwise, the extrapolation technique
fails in estimating the amplitude well.
We tried different face amplitudes weights and studied

the amplitude ratios (16). We show it in Fig. 18. While for
standard face amplitude μ ¼ 1 and μ ¼ 1.4, the ratio
reaches a horizontal asymptote smaller than 1 very
soon, it is not the case for μ ¼ 1.8, and μ ¼ 2. We can
see how for these two cases, the ratio is still decreasing and
greater than 1 at truncation Δl ¼ 10. Therefore, to obtain a
reliable extrapolation we would need a larger truncation,
not accessible with the computational resources at our
disposal.
We conclude that for this transition amplitude, the

extrapolation scheme (15) is sensible to the weight on
the face amplitudes. The slower convergence of the
amplitude sequence is also evident from the plot of the
amplitude for different truncations as well displayed in
Fig. 19. For completeness, we report the fit of the
convergent amplitude with μ ¼ 1.4 with the model (21).
We find c1 ¼ 5.535� 0.011 and c2 ¼ −0.464� 0.074.
Due to the invalidity of the extrapolation, we cannot
perform a fit in the other two cases. Consequently, we
cannot estimate p in the divergence of the amplitude
Avr ∝ K10μþp. Nevertheless, our numerical analysis shows
strong indications that the infrared bubble of the EPRL
theory is convergent.

FIG. 16. Relative error of the EPRL vertex renormalization amplitude as a function of the cutoff, computed with 20 trials and
truncation fixed to Δl ¼ 10. We use Nmc ¼ 100 000 Monte Carlo samples.

FIG. 17. Monte Carlo estimate of the EPRL vertex renormalization amplitude as a function of the cutoff K. We use Δl ¼ 10,
Nmc ¼ 100 000, and T ¼ 20 trials. We plot the extrapolated amplitude and the fit using the model (21).
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IX. CONCLUSION AND DISCUSSION

The sl2cfoam-next library allows fast and reliable
calculations of EPRL spin foam transition amplitudes.
While it is optimized to compute vertex amplitudes,
calculating a spin foam amplitude with many vertices
and internal faces still presents a huge technical obstacle.
To sum over the bulk degrees of freedom, we have to
compute an enormous number of components that scale
exponentially with the number of internal faces.
We apply Monte Carlo to the spin foam bulk summations

and show that it is a very promising strategy to overcome
this obstacle. The complexity of the calculation depends
on the number of Monte Carlo samples Nmc we can freely
choose. Of course, the result’s precision depends on Nmc
and how we choose the probability distribution of the
Monte Carlo sampling. We decide to use a uniform
probability distribution. We acknowledge it is not the
optimal choice as it equally weights all the bulk spins
configurations. However, it is efficient and allows us to
parallelize the sampling algorithm for a single amplitude

across multiple threads. Moreover, we can use it demo-
cratically with any amplitude. Alternatively, we could
abandon uniform sampling in favor of Markov Chain
Monte Carlo (MCMC) methods. This would result in
faster convergence, but on the other hand, the sampling
algorithm for calculating a single amplitude would no
longer be parallelizable. We leave the study and imple-
mentation of MCMC to bulk degrees of freedom for future
works. Finally, in this paper, we used intertwiners as
boundary states. In other cases, one could attempt to take
advantage of the state’s properties to perform importance
samplingMonte Carlo. For example, in the case of extrinsic
boundary states, it would make sense to tailor the prob-
ability distribution sampling from a normal distribution.
One has to deal with the well-known sign problem with
highly oscillatory distributions. We leave the analysis of
different boundary states for future works.
We evaluate the proposed strategy and discuss its choices

for computing the melonic self-energy and the vertex
renormalization spin foam amplitudes, with the SUð2Þ

FIG. 19. Plots of vertex renormalization EPRL amplitude Amc
vr × 1017 for increasing values of the weight factor μ. In each panel, we

report all the curves obtained for increasing values of the truncation parameter Δl. The bottom curve (azure) corresponds to Δl ¼ 0
while Δl ¼ 10 is the top one (purple).

FIG. 18. Plot of the ratio (16) for increasing values of μ at cutoff K ¼ 10. For μ ¼ 1.8 and μ ¼ 2 the ratio has not reached a horizontal
asymptote smaller than 1 at Δl ¼ 10. Therefore the extrapolation (15) cannot be applied.
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BF and the EPRL theory. These are amplitudes with many
vertices and internal faces, providing a good test. In
particular, the topological theory is convenient as partial
analytical calculations are possible and help us evaluate the
performance of our method. The calculations of the
amplitudes with Monte Carlo are surprisingly effective
already with a modest number of Monte Carlo samples
Nmc ¼ 100 000. To appreciate this result remember that the
vertex renormalization amplitude contains ≈1010 possible
(nontrivially vanishing) amplitudes. Obtaining a good
approximation computing just order ≈105 of them is
remarkable. We find small uncertainties of 0.1% and
0.9% for the EPRL self-energy and the vertex renormal-
ization amplitude, respectively. Similar results hold for the
SUð2Þ BF model suggesting that the dominant factor in the
error is the ratio between the cardinality of the space of all
the possible spin configurations and the (square root of the)
Monte Carlo samples. The calculations in the EPRL theory
are carried out with a finite truncation Δl ¼ 10. We
alleviate the dependence of the result using extrapolation
techniques to accelerate the convergence of the amplitude.
We explore different extrapolation schemes. Extrapolating
the full amplitude at a finite cutoff is the most convenient
option. We also formalize the regime of validity of the
extrapolation scheme and develop a test to verify if the
amplitude falls into it.
At the same time, analyzing the divergence of these

amplitudes for the EPRL theory is an essential step toward
understanding the theory’s continuum limit. While the
self-energy amplitude is already studied in the literature
[24,34,36], for the vertex renormalization amplitude, we
know only a loose upper bound [34]. The amplitudewas too
complex to try any numerical or analytical calculation. The
estimatewe provide in this paper is a complete and important
novelty. Performing the sums over the bulk degrees of
freedom with statistical methods is enough to confirm the
linear divergence of the melonic self-energy amplitude.
The numerical evaluation of the EPRL vertex renorm-

alization spin foam amplitude provides a convincing argu-
ment to claim its convergence. It is a shocking result as it
contradicts any intuition we could get from the analytical
calculations of the topological models where the amplitude
is more divergent than the melonic self-energy one.
Our result is a numerical computation of the amplitude,

not analytical proof. One should always keep in mind its
limitations. We performed a calculation with fixed boun-
dary spins jb ¼ 1

2
, Immirzi parameter γ ¼ 0.1, an extra-

polation based on the truncation Δl ¼ 10, and a uniform
cutoff on all the faces limited to K ≤ 10. Technical
limitations and convenience dictate some choices.
Nevertheless, we explored alternatives when possible,

and the result seems general. Numerically we infer that
the convergence of the vertex renormalization amplitude is
determined by the destructive interference of the vertex
amplitudes’ oscillations of the EPRL theory. The booster
functions are responsible for the interference, which appear
in the EPRL vertex amplitude and are not present in the
topological one. They encode the imposition of the sim-
plicity constraints in the theory. This interpretation agrees
with the results in [34]. Neglecting this interference results
in a divergent upper bound estimate identical to the
topological model.
Consider the Ponzano Regge model, a simpler spin foam

theory that describes euclidean quantum gravity in three
dimensions. The vertex renormalization amplitude in that
theory (the 1–4 Pachner move) is cubically divergent in the
cutoff K3. The divergence is related to a residual gauge
invariance in the path integral that is not entirely fixed [35].
Geometrically it can be interpreted in the ∞3 ways we can
divide a tetrahedron in four with an extra point. The
convergence of the EPRL vertex renormalization amplitude
could signal that a similar symmetry is not present in the
theory. The restriction to Lorentzian geometries with
spacelike boundaries of EPRL vertex in the large spins
regime breaks the BF action’s shift symmetry. Whether or
not it indicates that simplicity constraints are imposed
correctly in the EPRL theory remains an open question. We
hope that a detailed analytical study and the contribution of
other upcoming numerical techniques tailored to the study
of the large spin limit of the theory [12,16] could help solve
this mystery.
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APPENDIX A: VERTEX AMPLITUDES

In this appendix, we report the definition of the topological BF SU(2) spin foam vertex amplitude.

ABF
v ðj1; j2; j3; j4; j5; j6; j7; j8; j9; j10; i1; i2; i3; i4; i5Þ ¼

8>><
>>:

i1 j3 i4 j6 i2
j4 j10 j8 j5 j1
j7 i5 j9 i3 j2

9>>=
>>;
: ðA1Þ

The SU(2) invariant in (A1) is a f15jg symbol of the first kind. According to the conventions of [39], we write it in terms of
Wigner’s f6jg symbols.

8>><
>>:

j1 j2 j3 j4 j5
l1 l2 l3 l4 l5
k1 k2 k3 k4 k5

9>>=
>>;

¼ ð−1Þ
P

5

i¼1
jiþliþki

X
x

ð2xþ 1Þ
�
j1 k1 x

k2 j2 l1

��
j2 k2 x

k3 j3 l2

�

×

�
j3 k3 x

k4 j4 l3

��
j4 k4 x

k5 j5 l4

��
j5 k5 x

j1 k1 l5

�
: ðA2Þ

In this work we also use the in-line notation for

f6jgðj1; j2; j3; j4; j5; j6Þ ¼
�
j1 j2 j3
j4 j5 j6

�
: ðA3Þ

In the booster function decomposition, the Lorentzian EPRL vertex amplitude is defined as:

Avðj1; j2; j3; j4; j5; j6; j7; j8; j9; j10; i1; i2; i3; i4; i5Þ

¼
X∞
lf¼jf

X
ke

8>><
>>:

i1 j3 k4 l6 k2
j4 l10 l8 l5 j1
l7 k5 l9 k3 j2

9>>=
>>;
ð2k2 þ 1Þð2k3 þ 1Þð2k4 þ 1Þð2k5 þ 1Þ

Bγ
4ðj5; j6; j7; j1; l5; l6; l7; j1; i2; k2ÞBγ

4ðj8; j9; j2; j5; l8; l9; j2; l5; i3; k3Þ
Bγ
4ðj10; j3; j6; j8; l10; j3; l6; l8; i4; k4ÞBγ

4ðj4; j7; j9; j10; j4; l7; l9; l10; i5; k5Þ: ðA4Þ

The booster functions are one-dimensional integrals over the rapidity parameter r of the reduced matrix elements, in the
γ-simple unitary representation of SLð2;CÞ.

Bγ
4ðj1; j2; j3; j4; l1; l2; l3; l4; i; kÞ

¼
X
pf

�
l1 l2 l3 l4
p1 p2 p3 p4

�ðkÞ�Z ∞

0

dr
1

4π
sinh2 r ⊗

4

f¼1
d
γjf;jf
lfjfpf

ðrÞ
��

j1 j2 j3 j4
p1 p2 p3 p4

�ðiÞ
: ðA5Þ

The expression for dγj;jjlmðrÞ has been written in [21,40]:

dðγj;jÞjlp ðrÞ ¼ ð−1Þj−l2 Γðjþ iγjþ 1Þ
jΓðjþ iγjþ 1Þj

Γðl − iγjþ 1Þ
jΓðl − iγjþ 1Þj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p

ðjþ lþ 1Þ!

×
�
ð2jÞ!ðlþ jÞ!ðl − jÞ! ðlþ pÞ!ðl − pÞ!

ðjþ pÞ!ðj − pÞ!
�
1=2

e−ðj−iγjþpþ1Þr

×
X
s

ð−1Þse−2sr
s!ðl − j − sÞ! 2F1½lþ 1 − iγj; jþ pþ 1þ s; jþ lþ 2; 1 − e−2r�; ðA6Þ
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where 2F1 is the Gauss hypergeometric function. In (A5) we used a short notation for the ð4jmÞWigner symbols. They are
the contraction of two Wigner ð3jmÞ symbols (the unique intertwiner of three SUð2Þ representation) labeled by the virtual
spin k:

�
j1 j2 j3 j4
p1 p2 p3 p4

�ðkÞ
¼

X
pk

ð−1Þk−pk

�
j1 j2 k

p1 p2 pk

��
k j3 j4

−pk p3 p4

�
: ðA7Þ

The large quantum number limit of the booster functions
(A5) has been studied in [31]. They possess an appealing
geometrical interpretation in terms of boosted tetrahedra.

APPENDIX B: MONTE CARLO SUMMATION

Suppose we want to compute the sum

S ¼
X
j∈J

aj; ðB1Þ

where J is a finite subset of ðN=2ÞF and j is a multi-index.
So far, we are just muddling the waters with a complicated
notation to give a nod to the spin foam application. If
VJ ¼ jJ j is the cardinally of the set, we can always map it
in the interval of natural numbers between 1 and VJ . The
sum (B1) is a fancy way to represent a sum over an integer
index from 1 to VJ .
If VJ is very large, the numerical computation of S can

result in a highly resource-hungry task. Therefore, we want
to use (discrete) Monte Carlo techniques to approximate
its value.
We define a uniform probability density function over

the set J as RJ . We assume that RJ is normalized to 1. The
probability associated to every element of J with RJ is
1=VJ . The hypothesis that the set J is finite ensures that
RJ exists.
The fundamental step toward the implementation of

Monte Carlo is to interpret the sum (B1) as the expectation
value of the terms of the sum aj using RJ

S ¼ VJ

X
j∈J

aj
VJ

¼ VJE½aðRJ Þ�: ðB2Þ

We use a discrete uniform probability distribution because
we assume we do not know in advance which term
of the sum aj is contributing the most. This information
would allow sampling from a more efficient probability
distribution using importance samplingMonte Carlo. Alter-
natively, it would be possible to use Markov Chain
Monte Carlo methods, such as the Metropolis-Hastings
algorithm. This approach has been applied recently in [27]
to compute observables in spin foams with many boundary
degrees of freedom.
We approximate the expectation value in (B2) using a

sample of the set J . We use the probability distribution RJ
and randomly extract Nmc elements from the set J . We

denote this set as J mc. Strictly speaking, J mc is not a
subset of J since it can contain elements more than once.
The Monte Carlo estimate of S is given by

Smc ¼ VJ

Nmc

X
j∈J mc

aj: ðB3Þ

The law of large numbers ensures that the average of a large
number of samples becomes closer and closer to the
expected value as more samples are performed. Since
Smc is a sample of the sum S we have that

Smc ⟶
Nmc→∞

S: ðB4Þ

The sum Smc (B3) is the Monte Carlo estimate of S. We
consider a “large” number of samples Nmc as we are
interested in a numerical approximation of (B2).
The amount of computational resources necessary to

compute Smc scales with the number of samples Nmc and
not the size of the original set VJ . The number of samples
Nmc is a parameter of the calculation that we can tune. To
have a good approximation and save resources, we must
find a balanced value for Nmc.

APPENDIX C: AITKEN EXTRAPOLATION

The Aitken’s delta-squared process or Aitken extra-
polation [41] is a numerical recipe used to accelerate the
rate of convergence of a sequence. Suppose you have a
convergent sequence Sn with S ¼ limn→∞ Sn. If Sn con-
verges linearly, namely

lim
n→∞

jSn − Sj
jSn−1 − Sj ¼ λ; ðC1Þ

with 0 < λ < 1. Linear convergence means the sequence is
closer to its limit by almost the same amount with every
step. In this case, we can approximate S starting from the
approximate relation

Sn − S
Sn−1 − S

≈
Sn−1 − S
Sn−2 − S

; ðC2Þ

and solve for S to find

S ≈ A½Sn�≡ SnSn−2 − S2n−1
Sn − 2Sn−1 þ Sn−2

: ðC3Þ
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The sequence A½Sn� is the Aitken extrapolation of Sn and
converge to S faster than linear (see the original paper [41]
or the book [42] for a proof) meaning that

lim
n→∞

jA½Sn� − Sj
jSn − Sj ¼ 0: ðC4Þ

The requirement of linear convergence of Sn is equivalent
to asking that for n large enough

Sn ≈ Sþ Cλn; ðC5Þ

for some constant C and for jλj < 1. This allows us to
estimate λ without knowing the limit S, as is often the case.
In practice, if we knew the value of the limit S, we would
not need to extrapolate Sn. The limit of differences

lim
n→∞

Sn − Sn−1
Sn−1 − Sn−2

¼ λ: ðC6Þ

If the rate convergence of Sn is of higher order (quadratic or
more), we do not need to extrapolate as the convergence is
already very fast. However, if the convergence is sublinear,
we should look for a different extrapolation technique. We
refer to the Appendix of [23] for an explicit and simple
example.

APPENDIX D: DIAGRAMS OF THE MELONIC
SELF-ENERGY AND VERTEX

RENORMALIZATION SPIN FOAM AMPLITUDES

In this appendix, we report the wiring diagrams of the
self-energy and vertex renormalization spin foam ampli-
tudes, highlighting the combinatorics of the internal
faces. These are shown in Figs. 20 and 21. The notation
for each intertwiner is used in Eqs. (10) and (11). In order
not to clutter the picture, we do not explicitly label
the spins.

FIG. 20. Wiring of the 2-complex of the self-energy spin foam diagram. The internal faces are highlighted with different colors.
Boundary intertwiners have a blue box and also correspond to the integrals removed to regularize the amplitude.
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[11] P. Donà, F. Gozzini, and G. Sarno, Numerical analysis of
spin foam dynamics and the flatness problem, Phys. Rev. D
102, 106003 (2020).

[12] M. Han, Z. Huang, H. Liu, and D. Qu, Complex
critical points and curved geometries in four-dimensional

FIG. 21. Wiring of the 2-complex of the vertex renormalization spin foam diagram. The internal faces are highlighted with different
colors. Boundary intertwiners have a blue box and also correspond to the integrals removed to regularize the amplitude.
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