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There exist 4DN ¼ 2 superconformal field theories (SCFTs) in class S that have different constructions
as punctured Riemann surfaces, but which nevertheless appear to describe the same physics. Some of these
class S theories have an alternative construction as torus-compactifications of 6D (1, 0) SCFTs. We
demonstrate that the 6D SCFTs are isomorphic. Each 6D SCFT in question can be obtained from a parent
6D SCFT by Higgs branch renormalization group flow, and the parent theory possesses a discrete
symmetry under which the relevant Higgs branch flows are exchanged. The existence of this discrete
symmetry, which may be embedded in an enhanced continuous symmetry, proves that the original pair of
class S theories are, in fact, isomorphic.
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I. INTRODUCTION

A quantum field theory is characterized by its spectrum
of local operators and their n-point correlation functions.
If these differ for two quantum field theories (QFTs),
we can conclude that they are distinct theories. More
subtly, even when the spectrum of local operators
coincide, the theories may differ in their spectrum of line
operators [1] or other nonlocal observables. These more
subtle differences may be detectable in the n-point
correlation functions and/or by putting the theory on a
curved d-dimensional manifold. For conformal field
theories (CFTs), the infinite set of local data is determined
by a much smaller (but, for d > 2, necessarily still infinite)
set of data: the scaling dimensions and the three-point
operator product expansion (OPE) coefficients of the
conformal primary operators, namely,

fΔi; λijkg: ð1:1Þ

Since this set is still an infinite amount of data, it
is not particularly computable and it is strongly
believed to be highly redundant. Indeed, the goal of the
conformal bootstrap program (see [2] and references
therein) is to constrain these data via crossing symmetry
and unitarity. Ideally, we would like to find a finite
set of data from which the rest can be recovered. Then
we could determine if two CFTs (or QFTs) are isomor-
phic, in finite time, by comparing the two finite sets
of data.
Ideally, these finite sets of data should be computable

from the presentation of the CFT, say, as a string
theory construction. One approach is to take the subset
of the CFT data that is readily computable and ask
if that subset is sufficient to distinguish between distinct
CFTs.
For four-dimensional (4D) CFTs, the two central charges

(Weyl-anomaly coefficients) a and c, the flavor symmetry
algebra f (generated by conserved currents Jaμ), and the
current algebra levels (the coefficient, in a certain normali-
zation, of the identity operator in the OPE of two conserved
currents) are readily computed. For 4D N ¼ 2 super-
conformal field theories (SCFTs) of class S [3,4], the
global form of the flavor symmetry group F is also readily
computable [5,6]. Moreover, every interacting 4D N ¼ 2

SCFT has a Coulomb branch with a C�-action on it. The
dimension of the Coulomb branch and the weights under
this C�-action, i.e., the Uð1Þr charges of the generators of
the Coulomb branch, are also readily computable; we call
these the graded Coulomb branch dimensions. Finally, the
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dimension of the Higgs branch (if the 4D N ¼ 2 SCFT
has one) is easily computable. Collectively,1 we refer
to hese data as the “conventional invariants” of a 4D
N ¼ 2 SCFT.
In low-rank cases, these data (or even subsets thereof)

suffice to characterize the 4D SCFT uniquely. For instance,
if we encounter a rank one 4D N ¼ 2 SCFT whose
Coulomb branch generator has

Δ ¼ 6 and ða; cÞ ¼
�
95

24
;
31

6

�
; ð1:2Þ

then it must be the ðE8Þ12 Minahan-Nemeschansky
theory [7]. Indeed, there are a multitude of distinct realiza-
tions of this SCFT in class S, and they are all necessarily
isomorphic.
For higher rank cases, however, these “conventional

invariants” are known not to suffice to characterize the 4D
SCFT. There are distinct 4D SCFTs whose conventional
invariants coincide [6,8]. Nevertheless, we do have exam-
ples where distinct class S constructions seem to lead to
isomorphic SCFTs. One of the purposes of this paper is to
show that, when that happens, the resulting isomorphism
frequently has a 6D (1, 0) SCFT origin [9].
The situation in six dimensions is much better. The 6D

(1, 0) SCFTs can be engineered in F-theory via Calabi-Yau
threefolds that are elliptic fibrations over a noncompact
complex surface B [10,11].2 The configuration of
exceptional divisors—which are P1s with negative self-
intersection numbers onB—and the elliptic fibers over them,
which we will refer to as the “curve configuration,” are
believed to uniquely characterize the interacting part of the
6D (1, 0) SCFT.3

The cancellation of gauge anomalies tightly constrains
the allowed curve configurations. Indeed, the flavor
symmetry algebra and the anomaly eight-form ðf; I8Þ
determine the curve configuration almost but not com-
pletely. The anomaly polynomial I8 of a given 6D (1, 0)
SCFT is given by adding geometric contributions, each
via characteristic classes of the inherent symmetry of the
theory:

I8 ¼
α

24
c2ðRÞ2 þ

β

24
c2ðRÞp1ðTÞ þ

γ

24
p1ðTÞ2 þ

δ

24
p2ðTÞ

þ
X
a

TrF2
a

�
κap1ðTÞ þ νac2ðRÞ þ

X
b

ρabTrF2
b

�

þ
X
a

μaTrF4
a: ð1:3Þ

Upon toroidal compactification, the 6D (1, 0) SCFTs
flow to 4D N ¼ 2 SCFTs, whose conventional invariants
(as we shall review below) are determined from a subset
of the data in ðf; I8Þ, via the coefficients of the ano-
maly polynomial term: ðf; ðβ; γ; δ; fκagÞÞ. The anomaly
polynomial of the interacting SCFT associated with a
curve configuration can be completely determined from
the curve configuration itself [9,31,32]. Subtracting the
anomaly polynomial of the interacting sector defined
via a curve configuration from the anomaly poly-
nomial of a given mixed SCFT yields the anomaly
polynomial of a collection of free hypermultiplets.
Thus, we can determine the SCFT content by finding
the interacting part of the SCFT and the number of
free hypermultiplets, while the curve configuration pro-
vides a complete invariant of the interacting part of the
6D (1, 0) SCFT.
Our strategy, then, is very simple: to prove that

two 4D N ¼ 2 SCFTs are isomorphic, we show that they
arise as the toroidal compactification of two 6D (1, 0)
SCFTs that are isomorphic because they share the
same curve configuration. Hence, we mostly consider
4D N ¼ 2 SCFTs of class S that admits 6D (1, 0) SCFTs
origins.4

The rest of the paper is organized as follows. In Sec. II,
we show how to find candidates of isomorphic SCFTs
through constructing pairs of class S theories whose 4D
conventional invariants coincide. We show that these
theories also admit 6D (1, 0) SCFT origins via toroidal
compactifications by a process of ungauging, followed by
gauging. Using the 6D (1, 0) SCFT parents, we show in
Sec. III that each pair is isomorphic and find the
renormalization group (RG) flows between the pairs.

1Sometimes, for reasons either historical or expository, we
omit the global form of the flavor symmetry group from the list of
conventional invariants. Hopefully, this will be clear from the
context.

2For the elliptically fibered Calabi-Yau threefold compactifi-
cations via the geometric-engineering process, see [9,12–29].

3The 6D effective field theory consists of the usual
vector, tensor, and hypermultiplets, as well as a collection of
tensionful Bogomol'nyi–Prasad–Sommerfield (BPS) strings.
The curve configuration defines the effective field theory that
exists at the generic point of the tensor branch of the interacting
SCFT that lives at the origin. We reach the conformal fixed point
by shrinking the two cycles of B, where the two cycles
contribute tensionless strings and the two -cycles of the fiber
contribute massless multiplets; i.e., going to the origin of the
tensor branch is equivalent to taking the tension of all BPS
strings to zero simultaneously. Since the spectrum of BPS
strings is fixed by the curve configuration, the SCFTobtained by
taking the tensionless limit is identical if two curve configu-
rations are identical. It is shown in [30] that some specific curve
configurations can have two different tensionful string spectra,
which can be captured by including additional small data to the
curve configuration. Such examples do not appear in this paper,
and thus the tensionless string limit of identical curve configu-
rations leads to the same SCFT at the origin.

4This does not exhaust the set of apparently isomorphic
4D SCFTs, and we give some examples without a 6D (1, 0) origin
in Sec. VI.

DISTLER, ELLIOT, KANG, and LAWRIE PHYS. REV. D 107, 106005 (2023)

106005-2



We take type e7 SCFTs as the target example theories and
study them explicitly. We revisit the 4D class S theories
that are from the 6D (1, 0) parents in Sec. IVA
and enumerate the isomorphic fixtures (i.e., three-
punctured spheres) in the class S theories of type e7. In
Sec. IV B, we relax some of the constraints in the
algorithm of Sec. II to construct more pairs of isomorphic
theories. We even further relax the constraints in
Sec. IV C and construct pairs of theories that differ in
the number of free hypermultiplets, but whose interacting
sectors are isomorphic SCFTs. While our analysis was on
type e7 theories, we consider some examples drawn
from other ADE types in Sec. V to demonstrate that
these are not specific to type e7 theories. Finally, in
Sec. VI, we discuss some examples that appear to be
isomorphic, but which are not related to compactifica-
tions from 6D. For each example pair, we check that
their Schur indices agree (up to the order to which we
are able to compute them). In Sec. VII, we discuss
the source of the origins of these isomorphisms as Z2

outer-automorphisms of 6D (1, 0) SCFTs and how they
differ for the ADE types.

II. ISOMORPHISMS OF CLASS S THEORIES
AND THE SETUP

We consider 4D N ¼ 2 SCFTs of class S, the theories
constructed as a compactification of 6D (2, 0) SCFTs of
type g on a genus g n-punctured Riemann surface, with
codimension-2 defect operators filling all of the 4D
spacetime and situated at the n marked points on the
Riemann surface [3,4]. The defect operators located
at the (“regular”) punctures are labeled by nilpotent orbits
in g. In this way, a class S theory is encoded in the
following data5:

fg; g; O1;…; Ong; ð2:1Þ

where theOi are nilpotent orbits in g. It is natural to ask the
following:

When do two different tuples of data given by Eq:ð2.1Þ lead to the same 4DN ¼ 2SCFTs?

In this section, we will explore methods to generate such tuples that appear to correspond to isomorphic theories.
We focus on pairs of theories where the genus of the Riemann surface is the same, the 6D (2, 0) origin is the same, and all

but two of the n punctures are the same. That is, we wish to compare theories associated with the following data:

fg; g; O1; O2; O3;…; ONþ2g and fg; g; O0
1; O

0
2; O3;…; ONþ2g: ð2:2Þ

Then the question boils down to find under what circumstances are these two theories the same:

ð2:3Þ

The two theories are evidently not isomorphic if they possess different conventional invariants. Thus, we would only like to
consider pairs of the form in Eq. (2.2) such that the following quantities of the associated SCFTs are identical:

5“Twisted” class S theories can be constructed by incorporating outer-automorphism twists of g around nontrivial cycles on the
Riemann surface. In this paper, we consider only untwisted class S theories.
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(i) the Weyl anomaly coefficients, a and c;
(ii) the flavor symmetry algebras and levels;
(iii) the graded Coulomb branch dimensions; and
(iv) the Higgs branch dimension.

For any class S theory, the complex structure moduli of the punctured Riemann surface parametrize exactly marginal
deformations of the SCFT. Taking a degeneration limit, we can simplify the question in Eq. (2.3) to the following:

ð2:4Þ

The (N þ 1)-punctured genus g Riemann surfaces on the
left are identical in this degeneration limit, and if the
cylinder connecting them to the three-punctured spheres on
the right is unambiguous,6 then the two theories in Eq. (2.3)
are isomorphic when the two three-punctured spheres
describe isomorphic SCFTs:

ð2:5Þ

In Eq. (2.4), we have depicted the cylinder connecting
the genus g surface and the three-punctured sphere as
joining together two full punctures, labeled by 0. However,
this connecting puncture may be different in nongeneric
cases. If O1 and O2 are sufficiently low on the
Hasse diagram, then the connecting puncture on the right
may instead be forced to be an irregular puncture (in the
sense of [33]); these are labeled [34] by pairs ðO;HÞ,
consisting of a nilpotent orbit O and a subgroup H
of its flavor symmetry group. The puncture on the

(N þ 1)-punctured surface on the left is the puncture O.
In a sequence of works [33,35–38], the three-punctured
spheres with irregular punctures were cataloged, and we
can simply look up the results for the pairs ðO1; O2Þ that
yield a three-punctured sphere with an irregular puncture.

Alternatively, if the collection of punctures on the genus
g surface on the left are sufficiently low down the Hasse
diagram, and g ¼ 0, then the full puncture 0, which
connects the (N þ 1)-punctured sphere on the left, is
replaced by an irregular puncture, ðO;HÞ, and the three-
punctured sphere on the right has puncturesO1,O2, andO.
This will, in fact, be the generic situation for the examples
we study. The three-punctured spheres that we find to be
isomorphic SCFTs of class S will invariably have the third
puncture in Eq. (2.5) being a less-than-full puncture.

Thus the general question about isomorphisms of class S
theories of the form in Eq. (2.3) can be simplified to a
question about isomorphisms of three-punctured spheres,

ð2:6Þ

for some choice of third puncture O.

6See Sec. VA for an example of the rare and special cases
where there are inequivalent choices for the connecting cylinders
in this degeneration limit.
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It remains to construct suitable pairs ðO1; O2Þ and
ðO0

1; O
0
2Þ, such that the resulting 4D N ¼ 2 SCFTs have

all the same conventional invariants. As in [6], a mecha-
nism for doing so can be constructed via suitable minimal
nilpotent Higgsings, i.e., the Higgs branch renormalization
group flow associated with turning on the highest-root
moment map of some simple factor in the manifest flavor
symmetry of one of the punctures. The effect is to replace
the puncture O with the puncture O0 such that O is the
minimal degeneration of O0.
Suppose that there exists a pair of nilpotent Higgsings by

the same simple Lie algebra f at the same level k such that

O1!fk O0
1;

O0
2!
fk O2: ð2:7Þ

In the class S construction, each puncture gives rise to a
flavor algebra, referred to as the manifest flavor algebra
fðOÞ, which is a subalgebra of the full flavor algebra of the
SCFT. It is shown in [6] that matching the manifest flavor
symmetries, i.e., imposing

fðO1Þ ⊕ fðO2Þ ¼ fðO0
1Þ ⊕ fðO0

2Þ ð2:8Þ

automatically leads to candidate pairs ðO1; O2Þ and
ðO0

1; O
0
2Þ such that the theories associated with the three-

punctured spheres in Eq. (2.6) have the same conventional
invariants.7 Later in this paper we will see that (2.8) is a
sufficient, but not necessary, condition for obtaining iso-
morphic pairs. But, for now, let us impose it.
Even if we relax (2.8), we still require that the flavor

symmetry algebras and levels coincide. Indeed, we should
go further and demand that the global forms of the flavor
symmetry groups coincide. When these differ, the theories
are clearly not isomorphic. But imposing this stronger
condition still does not suffice for the theories to be
isomorphic.
In [6], a family of examples was constructed to illustrate

this point. Consider the class S theory of type e7 with the
punctures8

ðO1;O2Þ¼ðA3;D6ða1ÞÞ; ðO0
1;O

0
2Þ¼ððA3þA1Þ00;D5Þ:

ð2:9Þ

Then different choices of the third puncture O lead to
various possibilities for the underlying pairs of SCFTs
whose conventional invariants agree. We have depicted the

Hasse diagram of e7 nilpotent orbits in Fig. 1, where we
have color coded the choice of the third pictureO according
to three different cases based on whether the flavor
symmetry algebra and the global form of the flavor
symmetry coincides or not as the following:

(i) (black): the flavor symmetry algebras agree, but the
global form of the flavor symmetry groups differ;

(ii) (yellow): the global form of the flavor symmetry
groups agree, but the theories are not isomorphic;

(iii) (green): the global form of the flavor symmetry
groups agree and the theories appear to be isomor-
phic; and

(iv) (red): “bad” three-punctured spheres that are not
associated with nontrivial 4D SCFTs.

In this family of examples, there are four choices for O
that appear to lead to isomorphic pairs of theories:

ðA5Þ00; A5 þ A1; D6ða2Þ; E7ða5Þ: ð2:10Þ

The Schur indices up to Oðτ12Þ were computed in [6] and
shown to coincide. While persuasive, this is far from
sufficient to prove that the pairs of theories are isomorphic.
On the other hand, once we have shown that the pair of

theories with third puncture O ¼ ðA5Þ00 are isomorphic,
then the isomorphism follows for the other three choices of
the third puncture. In particular, it was shown in [6] that any
(not necessarily minimal) nilpotent Higgsing of the third
puncture of a pair of isomorphic theories leads to a new pair
of isomorphic theories. Consider the following sequence of
local Higgsings:

ð2:11Þ

Black arrows correspond to minimal nilpotent Higgsings
associated with giving a vacuum expectation value (VEV)
to the highest-root moment map operator of the non-
Abelian flavor symmetry that decorates the arrow. The
olive arrow is a nonminimal nilpotent Higgsing corre-
sponding to giving a VEV to a ðg2Þ12 moment map in the
next-to-minimal nilpotent orbit. The Higgsing from A5 þ
A1 → D6ða2Þ is not a nilpotent Higgsing, as it does not
involve solely giving a VEV to a moment map operator, but
nevertheless such a Higgs branch renormalization group
flow exists, as shown in [43]. Non-nilpotent Higgsings are
in general noteworthy and will be explored in more detail in
a future work [44]. But we do not need to discuss them
here; all of the punctures corresponding to additional
isomorphic pairs are obtainable from ðA5Þ00 by a sequence
of nilpotent Higgsings.
What remains then is to prove the isomorphism for

O ¼ ðA5Þ00. The proof involves a detour via a similar

7It is necessary to choose the third punctureO to be sufficiently
high up on the Hasse diagram of nilpotent orbits of g to guarantee
that the theories are not bad, in the sense of Gaiotto-Witten [39].

8We denote the nilpotent orbits of exceptional Lie algebras
using Bala-Carter notation [40,41]. See the standard refer-
ence [42] or the paper [34] for a review.
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question about isomorphisms between 6D (1, 0) SCFTs
known as Higgsed rank N ðg; gÞ conformal matter.
Each of these 6D SCFTs corresponds to a pair of nilpotent
orbits, O1 and O2, as we explain in detail in Sec. III. The
compactification of such SCFTs on a torus are dual to class
S of type g on a sphere with N þ 2 punctures, N of which
are simple punctures, and the remaining two are associated

with the nilpotent orbits O1 and O2.
9 This is precisely the

kind of class S theories discussed around Eq. (2.3).
Specializing to the case of g ¼ e7, where the simple

puncture is denoted by E7ða1Þ, and picking the two
punctures ðOa;ObÞ ¼ ðO1; O2Þ or ðO0

1; O
0
2Þ we can further

degenerate the genus g ¼ 0 Riemann surface on the left in
Eq. (2.4) to write the (N þ 2)-punctured sphere as

ð2:12Þ

When N ≥ 5, the three-punctured sphere on the right has
the full puncture, 0, along withOa andOb. For N ¼ 4, 3, 2,
the full puncture is replaced by ð3A1Þ00, ðA5Þ00, or D6,

respectively. Thus, for low values of N, we are probing the
physics of [an F4, G2, or SUð2Þ gauging of] the three-
punctured sphere with ð3A1Þ00, ðA5Þ00, or D6 as the third
puncture. If the two 6D (1, 0) SCFTs that yield these
theories with ðOa;ObÞ are isomorphic, then the three-
punctured spheres on the right are also isomorphic. For the
pairs of punctures in Eq. (2.9), the 6D (1, 0) theories are

FIG. 1. The possible choices of the third puncture O in Eq. (2.6) for the pairs of punctures in Eq. (2.9).

9More precisely, it is a certain codimension (N − 2) sublocus of
the conformal manifold of the class S theory that is dual to the T2

compactification of the 6D (1, 0) SCFT.
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manifestly nonisomorphic for N > 3. Hence their T2

compactification to 4D does not yield isomorphic theories.
However, for N ¼ 3, we find that the theories are mani-
festly isomorphic as 6D (1, 0) SCFTs, and hence so are
their compactifications to 4D.
We note that in Eq. (2.12), we made an assumption that

Oa and Ob are high enough up on the Hasse diagram such
that the theory

ð2:13Þ

is “good,” i.e., that the compactification of the (2, 0) theory
from 6D yields a nontrivial 4D SCFT. Of the 990 pairs,
ðOa;ObÞ in the e7 theory, 49 of them are “bad.”

III. NILPOTENT HIGGSING AND IDENTICAL
6D (1, 0) SCFTs

In Sec. II, we showed how to construct pairs of class S
theories whose conventional invariants coincide. These are
candidates for being isomorphic N ¼ 2 SCFTs. With
considerable additional effort, we could narrow down the
list of candidate isomorphic SCFTs by computing their
spectra of Schur operators up to some high order. But this
was still far from sufficient to show that the theories are, in
fact, isomorphic.
In this section, we utilize a different, and rather simple,

approach to determining whether two of the 4D N ¼ 2
SCFTs of interest are truly identical. First, we ask a similar
question in the context of a class of 6D (1, 0) SCFTs that
are each associated with a pair of nilpotent orbits of an
ADE Lie algebra; on torus compactification, such SCFTs
are known to be dual to class S theories on spheres where
two of the punctures are the same as the nilpotent orbits in
the 6D theory, and the rest are simple punctures.
At first, it appears that we have merely uplifted the same
problem of determining when two SCFTs are the same
to six dimensions; however, the landscape of consistent
6D (1, 0) SCFTs is highly constrained from string theory
[10,11].10 In this way, knowledge of the conventional
invariants of the 6D (1, 0) SCFT is often enough to fully
determine the SCFT, or else leaving only a small number of
possibilities. We can determine for what pairs of nilpotent
orbits two such 6D SCFTs are the same, and this leads to
the same conclusion for the 4D N ¼ 2 class S theories
obtained via torus compactification, and related SCFTs
obtained from degenerations and partial puncture closure.

The rank N ðg; gÞ conformal matter is the 6D (1, 0)
SCFT that lives on the world volume of N M5-branes
probing a C2=Γg singularity [47]. Here g can be any ADE
Lie algebra, and Γg is the finite subgroup of SUð2Þ
associated with g via the McKay correspondence [48].
Each conformal matter theory has a non-Abelian flavor
algebra that is

f ¼ g ⊕ g; ð3:1Þ

though this can be enhanced for small values of N. From
this starting point, new 6D (1, 0) SCFTs can be obtained via
Higgs branch renormalization group flows triggered by
giving nilpotent VEVs to the moment map operators
associated with these two flavor symmetries. In particular,
we can consider the family of theories

T g;NðOL;ORÞ; ð3:2Þ

where OL and OR are nilpotent orbits in g. When
OL ¼ OR ¼ 0, i.e., the trivial nilpotent orbit, then we
recover the original conformal matter theory, which is
often referred to as simply T g;N. Such families of 6D (1, 0)
SCFTs related via a nilpotent hierarchy have been studied
in great detail; see, for example, Refs. [9,26,27,49–53].
When T g;N is compactified on a torus, the 4DN ¼ 2 SCFT
that is obtained is known to have a dual description in terms
of the class S construction [54–56]. In particular, the T2

compactification is dual to the compactification of the 6D
(2, 0) SCFT of type g on a sphere with two full punctures
andN simple punctures. Higgsing of the 6D (1, 0) SCFT by
giving a VEV valued in a nilpotent orbit of g to the moment
map operators then corresponds to the partial closure of the
full punctures in the dual class S description; this proposal
has been tested extensively in [9,30,57].
In this section, the question we will attempt to answer is

the following:

When do the interacting sectors of two 6D ð1; 0Þ
SCFTsT g;NðOL;ORÞ and T g;N0 ðO0

L;O
0
RÞmatch?

It is straightforward to see that T g;NðOL;ORÞ and
T g;N0 ðO0

L;O
0
RÞ can only have identical interacting parts

if N ¼ N0. Rank N conformal matter, for any g, possesses a
sequence of Higgs branch renormalization group flows that
eventually ends at the 6D (2, 0) SCFTof type AN−1 [55]. In
particular, after going to the superconformal point at the
origin of the tensor branch, the Type IIB geometry is an
elliptic fibration over a base C2=ZN . The defect group of a
6D SCFT depends only on the information of the base [58];
for C2=ZN, it is simply ZN. Hence, two interacting SCFTs
with different defect groups cannot be identical. A priori,
we could consider a more general version of this question
where g0 ≠ g, as there are known examples where such

10For recent reviews of the power of string theory in con-
straining (6D) SCFTs, see [45,46].
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different Higgsed conformal matter theories lead to the
same 6D (1, 0) SCFTs. However, we will not consider these
cases in this paper and will restrict to the setting where g
remains the same.11 In special cases, this question has been
answered previously; for example, all the theories
T g;1ðOL;ORÞ and T g;1ðO0

L;O
0
RÞ, where g is an exceptional

Lie algebra, with isomorphic interacting sectors have been
tabulated in [9].
The analysis in this paper makes much use of the atomic

construction of 6D (1, 0) SCFTs, which we briefly review
here. We consider Type IIB string theory compactified to
six dimensions on a complex Kähler surface B, and with a
nontrivial axio-dilaton profile turned on along B so as to
preserve eight supercharges. The consistency of the axio-
dilaton profile can be rephrased as an elliptic fibration over
B, such that the total space of the fibration is a Calabi-Yau
threefold. Compactifications on noncompact elliptically
fibered Calabi-Yau threefolds, satisfying some conditions
such as the absence of compact complex curves in B, lead
to 6D (1, 0) SCFTs. Such threefolds have nonminimal
singular fibers and may also have orbifoldlike singularities
in the base: B ¼ C2=Γ, where Γ is a finite subgroup of
Uð2Þ. Performing a sequence of Kähler deformations leads
to a new noncompact elliptically fibered Calabi-Yau
threefold for which B is smooth and all singular fibers
are minimal. Physically, this procedure involves giving
vacuum expectation values to the scalar primaries inside all
of the tensor multiplets of the SCFT; thus, the new Calabi-
Yau threefold describes the tensor branch effective field
theory associated with the SCFT.
It turns out that the Calabi-Yau geometries that can

correspond to a tensor branch configuration are highly
constrained. The only compact curves that the base can
contain are rational curves, and those must intersect in an
intersection matrixAij that is negative definite; furthermore,
the self-intersection number of each rational curve is con-
strained to be ≥ −12, and adjacent curves can only intersect
with intersection number one. The detailed conditions have
recently been reviewed in [45] and were summarized in
recent works of (subsets of) the current authors [9,30].
Enumerating tensor branch geometry then reduces to a
problem of combining rational curves and singular fibers/
algebras in such a way that the necessary conditions are
satisfied. In the end, we utilize a common shorthand
notation, which we explain via an example. Consider

3
su3

1 3
su3

: ð3:3Þ

This represents a noncompact elliptically fibered Calabi-
Yau threefold where the base contains three P1s, which
intersect in the following intersection matrix:

Aij ¼

0
B@

−3 1 0

1 −1 1

0 1 −3

1
CA

ij

: ð3:4Þ

The two (−3) curves are written with an su3 above
them, which indicates that the singular fiber over those
curves is of type IV; physically each singular fiber is
associated with an algebra, and that algebra provides a
gauge algebra of the effective field theory on the tensor
branch. The tensor branch field theory also contains hyper-
multiplets transforming in representations of the gauge
algebra; however, it is redundant to write them in the
shorthand notation, as the number and representation are
entirely fixed by gauge-anomaly cancellation, after speci-
fying the self-intersection number and the gauge algebra:

n
g
.12 We use this concise notation to refer to a tensor branch

effective field theory for a 6D (1, 0) SCFT throughout this
paper; we refer the reader to the review [45] for a compre-
hensive explanation.
Now that we have introduced a construction for

6D (1, 0) SCFTs from string theory, we would like to
know what physical properties of the resulting SCFTs can
be determined from knowledge of the tensor branch
description. When a 6D (1, 0) SCFT is compactified on
a T2, without any additional bells and whistles, then the
dimension of the Coulomb branch of the resulting 4D
N ¼ 2 SCFT is equal to the sum of the number of tensor
multiplets plus the sum of the ranks of the gauge algebras
of the 6D theory. To avoid confusion, we will call this
number rankð4Þ, even though it is an intrinsic property of
the 6D SCFT.
The hallmark of 6D (1, 0) SCFTs is the anomaly

polynomial. The anomaly polynomial of a 6D (1, 0)
SCFTis a formal eight-formwritten in terms of the character-
istic classes of the R symmetry, the Lorentz symmetry, and
the flavor symmetry. It takes the form

I8 ¼
α

24
c2ðRÞ2 þ

β

24
c2ðRÞp1ðTÞ þ

γ

24
p1ðTÞ2 þ

δ

24
p2ðTÞ

þ
X
a

TrF2
a

�
κap1ðTÞ þ νac2ðRÞ þ

X
b

ρabTrF2
b

�

þ
X
a

μaTrF4
a; ð3:5Þ

where each summation over a or b runs over the simple
non-Abelian flavor symmetries of the theory. The coef-
ficients in the anomaly polynomial are referred to as
the ’t Hooft coefficients. The anomaly polynomial can

11In fact, in this paper, we focus on the case where g ¼ e7;
however, we include some examples for other gauge algebras in
Sec. V.

12There are a small number of cases where the hypermultiplet
spectrum is ambiguous even after specifying the self-intersection
number and the algebra; however, these situations will not arise in
this paper.
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be determined from the effective tensor branch description
of the SCFT following [9,17,31,32,59].
As we have discussed, in four dimensions the N ¼ 2

conventional invariants are the central charges, the
flavor algebras, and the flavor central charges13; and these
quantities are neatly summarized in the 4D anomaly
polynomial

I6 ¼ 24ða − cÞ
�
1

3
c1ðRÞ3 −

1

12
c1ðRÞp1ðT4Þ

�

− 4ð2a − cÞc1ðRÞc2ðRÞ þ
X
a

kac1ðRÞc2ðFaÞ; ð3:6Þ

where c1ðRÞ is the first Chern class of the Uð1Þ R
symmetry, c2ðRÞ is the second Chern class of the SUð2Þ
R symmetry, p1ðT4Þ is the first Pontryagin class of the
tangent bundle to the 4D spacetime, and c2ðFaÞ are the
curvatures of the simple non-Abelian flavor symmetry
factors.14 A natural generalization of this notion of conven-
tional invariants to the 6D (1, 0) context is to again to take
the anomaly polynomial I8. This quantity, I8, satisfies the
necessary condition to form an invariant: SCFTs with
different anomaly polynomials are necessarily different
CFTs. Interestingly, if a 6D (1, 0) SCFT T g;NðOL;ORÞ is
compactified on a torus, then the resulting 4D N ¼ 2

anomaly polynomial depends only on a subset of the
anomaly coefficients appearing in Eq. (3.5). In particular,
we can consider the “N ¼ 2 subsector of the 6D conven-
tional invariants,” which includes only the coefficients

β; γ; δ; fκag: ð3:7Þ

It is noteworthy then that there can exist 6D (1, 0) SCFTs
which have different conventional invariants, but which
compactify on a T2 to 4D N ¼ 2 SCFTs with the same
conventional invariants. Generally these two 4D SCFTs
will be different, as the differences in six dimensions should
be reflected in the torus-compactification; in particular, we
would like to understand how the 6D (1, 0) anomaly
coefficient α affects the 4D physics. We leave a detailed
answer to this question for future work.
While the 6D (1, 0) anomaly polynomial is a powerful

invariant of the Higgsed conformal matter theories that we
consider in this paper, it is not complete. There exist a
small number of interacting 6D (1, 0) SCFTs with the
same anomaly polynomial, and yet which are distinct

SCFTs. Modulo the subtleties15 explored in [30], the
effective field theory on the tensor branch does provide
a complete invariant. To determine whether two theories
T g;NðOL;ORÞ and T g;NðO0

L;O
0
RÞ possess the same inter-

acting sector, it suffices to determine the curve configura-
tion/tensor branch description of each theory. If the curve
configurations are the same, then the SCFTs that live at the
origin of the tensor branch are the same.
When a Higgs branch renormalization group flow is

triggered by giving a nilpotent vacuum expectation value,
associated with a nilpotent orbitO, to the moment map of a
g flavor symmetry, the resulting SCFT typically has a
reduced flavor symmetry. The nilpotent orbit O is asso-
ciated with an embedding ρO∶ su2 → g, and the residual
flavor symmetry is defined to be the commutant in g of this
embedded su2; we call this fðOÞ. Then, the manifest non-
Abelian flavor algebra of T g;NðOL;ORÞ is

fmanifest ¼ fðOLÞ ⊕ fðORÞ: ð3:8Þ
However, the flavor symmetry of the interacting sector of
T g;NðOL;ORÞmay differ from thismanifest symmetry. That
is, the flavor symmetry and the flavor central charges are
conventional invariants of the 6D (1, 0) SCFT that cannot be
read off from the pair of nilpotent orbits directly, but one
must first go through the intermediate step of constructing
the tensor branch description, and then use the procedure
described in [9] to read off the correct non-Abelian flavor
algebras and their flavor central charges.
There is no guarantee that T g;NðOL;ORÞ is an interacting

SCFTwith no free sector and a single stress-energy tensor.
Therefore, it is important not only to know the effective
tensor branch description of the interacting sector but also
to be able to determine the number of free hypermultiplets
in the spectrum. The quaternionic dimension of the Higgs
branch of T g;NðOL;ORÞ is

dimðHÞ ¼ N þ dimðgÞ − dimðOLÞ − dimðORÞ: ð3:9Þ

Here the dimension of the nilpotent orbit is as defined in
[42]. In contrast, if we have a tensor branch configuration
corresponding to a single interacting SCFT that is
Higgsable to a 6D (2, 0) SCFT of rank N − 1, then the
dimension of the Higgs branch of this interacting SCFT can
be obtained from the anomaly polynomial [54,55]. It is

dimðHÞ ¼ −60δ − 29ðN − 1Þ; ð3:10Þ

where δ is the coefficient of the p2ðTÞ term appearing in the
anomaly polynomial in Eq. (3.5). The difference between

13Generally, we include more information in the 4D conven-
tional invariants, such as the graded Coulomb branch scaling
dimensions.

14For ease of explanation we do not write the Abelian flavor
symmetries in the anomaly polynomial in Eq. (3.6); however,
they are, of course, included in spirit.

15The usual tensor branch description, involving a collection of
exceptional curves and the elliptic fibers over them may need to be
supplemented, as in [30], by a choice of� chiral projection for each
(−1) curve. As in [30], these sign choices are well-defined modulo
outer-automorphisms of the gauge and flavor algebras. In the
examples discussed in this paper, they are completely removable.
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the dimension of the Higgs branch in Eqs. (3.9) and (3.10)
is the number of free hypermultiplets in T g;NðOL;ORÞ. A
free hypermultiplet transforming in a representation R of a
flavor algebra f contributes to the anomaly polynomial as

Ifree hyper8 ðf;R;FÞ ¼ 1

24
TrRF4 þ 1

48
p1ðTÞTrRF2

þ dimðRÞ
5760

ð7p1ðTÞ2 − 4p2ðTÞÞ; ð3:11Þ

where F is the curvature associated with f. Thus, we can see
that adding free hypermultiplets does not modify the
anomaly coefficients α and β in the combined theory. As
these coefficients are insensitive to the inclusion of free
sectors, they are conventional invariants that are well-suited
for searching for T g;NðOL;ORÞ SCFTs with the same
interacting sector.
For the remainder of the section, we specialize to

studying isomorphic pairs of the 6D (1, 0) SCFTs from

rank N ðe7; e7Þ conformal matter that leads to class S
theories via toroidal compactifications. It is a curious quirk
that the isomorphism of 6D (1, 0) SCFTs is more obvious
when considering g ¼ en than when considering g as a
classical Lie algebra. We first highlight the power of the
curve configuration in determining isomorphisms by ana-
lyzing in detail for two examples in Sec. III A, and then we
provide all the isomorphic pairs with g ¼ e7 in Sec. III B.

A. Examples of two pairs of isomorphic
SCFTs with g= e7

Let us now present a couple of detailed examples to
illustrate pairs of theories with isomorphic interacting
sectors. We first consider the theory

T e7;NðA3; A3 þ 2A1Þ; ð3:12Þ

which has

rankð4Þ ¼ 18N − 22; α ¼ 2304N3 − 13438N þ 12586 −
48

N
; β ¼ 269 − 191N;

dim H ¼ N þ 44; fmanifest ¼ ðsu2Þ12 ⊕ ðsu2Þ24 ⊕ ðsu2Þ13 ⊕ ðso7Þ16: ð3:13Þ

We compare this theory with a different Higgsed ðe7; e7Þ conformal matter,

T e7;NððA3 þ A1Þ00; ðA3 þ A1Þ0Þ: ð3:14Þ

The physical properties of this latter theory are

rankð4Þ ¼ 18N − 22; α ¼ 2304N3 − 13438N þ 12562; β ¼ 269 − 191N;

dim H ¼ N þ 44; fmanifest ¼ ðsu2Þ12 ⊕ ðsu2Þ24 ⊕ ðsu2Þ13 ⊕ ðso7Þ16: ð3:15Þ

It is clear that, for generic values of N, the theories in Eqs. (3.12) and (3.14) are different; in particular, they have different
values of the ’t Hooft anomaly coefficient α. This is also clear to see from the tensor branch descriptions of each theory. We
have two theories

T e7;NðA3; A3 þ 2A1Þ∶ 2
su2

18
e7

1
1 2
su2

3
so7

2
su2

18
e7 � � � 1 2

su2

3
so7

2
su2

1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{N−2

7
e7
12; ð3:16aÞ

T e7;NððA3 þ A1Þ00; ðA3 þ A1Þ0Þ∶ 2
su2

17
e7
1 2
su2

3
so7

2
su2

18
e7 � � � 1 2

su2

3
so7

2
su2

1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{N−2

8
e7

1
12: ð3:16bÞ

Both of these theories can be obtained from a nilpotent Higgsing of a parent theory, in this case T e7;NðA3; ðA3 þ A1Þ0Þ, as we
can see from the Hasse diagram in Fig. 2. The parent theory has two ðsu2Þ12 flavor symmetries, and giving a nilpotent
vacuum expectation value to the associated moment map operators triggers a Higgs branch renormalization flow from

A3 → ðA3 þ A1Þ00 and ðA3 þ A1Þ0 → A3 þ 2A1; ð3:17Þ

respectively. On the tensor branch, these Higgsings can be thought of as shrinking either of the dangling (−1) curves and
deforming the geometry to remove the resulting singularity.
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When N ¼ 2, we can see that the two theories in
Eqs. (3.12) and (3.14) have the same value of α, in addition
to the other properties that agree for all N.16 These are
necessary conditions for the two SCFTs to be the same;
now, we determine the tensor branch descriptions of the
SCFTs when N ¼ 2, and we find that the Hasse diagram in
Fig. 2 becomes the Hasse diagram in Fig. 3. It is clear that
the tensor branch description of the parent theory possesses
a Z2 automorphism that exchanges the two dangling (−1)

curves attached to the central (−8) curve. Thus Higgsing by
giving a nilpotent VEV to either of the two ðsu2Þ12 moment
maps yields the same tensor branch description and thus the
same SCFTs, that is,

T e7;2ðA3; A3 þ 2A1Þ ¼ T e7;2ððA3 þ A1Þ00; ðA3 þ A1Þ0Þ:
ð3:18Þ

In the previous example, we have considered a solution
to the question posed in this section where the Higgsed
conformal matter theories are interacting SCFTs, with no
free sector, and where the non-Abelian flavor algebra of the
identical theories is simply the manifest flavor algebra

FIG. 3. The Hasse diagram in Fig. 2 when N ¼ 2. The parent theory, T e7;2ðA3; ðA3 þ A1Þ0Þ, has a Z2 automorphism that interchanges
the two ðsu2Þ12 flavor symmetry factors, and thus nilpotent Higgsing by either factor leads to the same infrared 6D (1, 0) SCFT.

FIG. 2. The Hasse diagram for the two nilpotent Higgsings of T e7;NðA3; ðA3 þ A1Þ0Þ that lead to T e7;NðA3; A3 þ 2A1Þ and
T e7;NððA3 þ A1Þ00; ðA3 þ A1Þ0Þ. In both cases the Higgsing involves giving a vacuum expectation value to the highest-root moment map
of an ðsu2Þ12 flavor symmetry factor.

16It is important to note that α, β, and rankð4Þ are the same. In
this example, they also have the same Higgs branch dimension
and manifest flavor symmetries. However, this is not necessary
for the Higgsed conformal matter theories to have the same
interacting sectors.
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associated with the nilpotent orbits. We now consider an
example where each Higgsed conformal matter theory
contains different numbers of free hypermultiplets and
where there is flavor symmetry enhancement for both
theories. Consider the theories, which we list together with
their relevant physical properties, in Table I. We can see that
when N ¼ 2, we have two SCFTs with the same values of
α, β, and rankð4Þ; these are then good candidates for theory
with isomorphic interacting sectors. We determine that the
tensor branch description for the interacting sector of both
theories is

4
so9

1 2
su3

: ð3:19Þ

The interacting SCFTassociated with this tensor branch has

dim H ¼ 41; f ¼ ðsu2Þ9 ⊕ ðsu6Þ18: ð3:20Þ

From the differences in the dimensions of the Higgs
branches, we can see that T e7;2ðA2; D6ða2ÞÞ contains six
free hypermultiplets, which rotate under an ðsu6Þ2 flavor
algebra; similarly, T e7;2ðA2 þ A1; A0

5Þ contains two free
hypermultiplets, which rotate under the fundamental of an
ðsu2Þ2 flavor algebra. This is consistent with the non-
Abelian flavor symmetry of the interacting sector in
Eq. (3.20). Thus, we learn that

T e7;2ðA2; D6ða2ÞÞ ¼ 4
so9
1 2
su3 þ 6 free hypers;

T e7;2ðA2 þ A1; A0
5Þ ¼ 4

so9
1 2
su3 þ 2 free hypers: ð3:21Þ

Similar to the isomorphic interacting SCFTs that appear
in Fig. 3, we argue that there exists a parent theory, and that
the isomorphism of the interacting sectors of the two
SCFTs listed in Table I can similarly be understood as
due to an enhanced symmetry in the parent theory that
makes the equivalency of the two nilpotent Higgsings
manifest. In this case, the parent theory is T e7;NðA2; A0

5Þ,
which has the tensor branch description

4
so9
1 3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

1 � � � 8
e7
1 2
su2

3
so7

2
su2

1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{N−3

8
e7
1 2
su2

2
su4

:

ð3:22Þ

The non-Abelian flavor algebra of this SCFT is

ðsu2Þ9 ⊕ ðsu2Þ20 ⊕ ðsu6Þ20: ð3:23Þ

The Higgs branch renormalization group flows that lead to
the two SCFTs in Table I are

A2 → A2 þ A1 and A0
5 → D6ða2Þ; ð3:24Þ

which correspond to giving the highest-root nilpotent
vacuum expectation values to the moment maps of the
ðsu6Þ20 and ðsu2Þ20 flavor algebras, respectively. When
N ¼ 2 the tensor branch becomes

4
so9

1 2
su4

; ð3:25Þ

and the two flavor symmetry factors with level 20 recom-
bine to the enhanced flavor algebra

ðsu2Þ20 ⊕ ðsu6Þ20 → ðsu8Þ20: ð3:26Þ

In the previous example, we observed that when N ¼ 2,
there emerged a discrete Z2 symmetry of the tensor branch
configuration, and this provided the physical justification
for the isomorphism of the two theories in the Hasse
diagram in Fig. 3; in this case, instead of an emergent
discrete symmetry we see that there is an enhanced
continuous symmetry. When we see an enhanced flavor
symmetry, we can Higgs by giving a vacuum expectation
value to the highest-root moment map of that enhanced
flavor symmetry; this triggers a renormalization group flow
to a new interacting SCFT. However, giving a VEV to the
highest-root moment map of a subalgebra will lead to the
same interacting SCFT, but with differing numbers of free
hypermultiplets transforming under the unbroken part of
the flavor symmetry. As such, it is clear that when there

TABLE I. Some of the physical properties of the 6D (1, 0) SCFTs T e7;NðA2; D6ða2ÞÞ and T e7;NðA2 þ A1; A0
5Þ.

Theory T e7;NðA2; D6ða2ÞÞ T e7;NðA2 þ A1; A0
5Þ

Tensor branch

4
so9

13
g2

2
su2

18
e7
1 2
su2

3
so7

2
su2

1 � � � 8
e7
1 2
su2

3
so7

2
su2

1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{N−3

8
e7
1 2
su2

2
su4

4
so9

1 3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

1 � � � 8
e7
1 2
su2

3
so7

2
su2

1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{N−3

8
e7
1 2
su2

2
su3

α 2304N3 − 24958N þ 39447 − 13872=N 2304N3 − 23806N þ 35607 − 10800=N
β 663 − 382N 663 − 382N
rankð4Þ 18N − 27 28N − 27

dim H N þ 45 N þ 41
fmanifest ðsu2Þ9 ⊕ ðsu6Þ20 ðsu2Þ9 ⊕ ðsu2Þ20 ⊕ ðsu4Þ18
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exists such a flavor symmetry enhancement, the two Higgs
branch deformations corresponding to, in this case,

A2 → A2 þ A1 and A0
5 → D6ða2Þ; ð3:27Þ

lead to theories with the same interacting sector. The
unbroken part of the flavor symmetry is, respectively,
su2 and su6, which produces precisely the correct number
of free hypermultiplets that we observed in Eq. (3.21).

B. Isomorphic theories for g= e7
We now possess a straightforward and algorithmic

method to determine all answers to the question posted
in this section for a given g. For each theory T g;NðOL;ORÞ,
it is well-known how to determine the tensor branch
description for N sufficiently large such that the nilpotent
Higgsing on the left and right do not cross-correlate across
the tensor branch. From this effective tensor branch
description, we can compute rankð4Þ of the SCFT and
the anomaly polynomial. For any pair of theories
T g;NðOL;ORÞ and T g;NðO0

L;O
0
RÞ we then ask if there

exists a value of N such that α, β, and the rankð4Þ are the
same. From the resulting list of putatively isomorphic
theories, we determine the tensor branch descriptions of
the interacting part of each pair. If they are identical, then
the two SCFTs associated with each pair are identical. The
results are conveniently summarized in a collection of
Hasse diagrams describing Higgs branch renormalization
group flows; for g ¼ e7 there exists pairs with isomorphic
interacting sectors for N ¼ 1;…; 5, and we depict these in
Figs. 4–7, respectively.
In the Hasse diagrams that we have drawn, we have

generally shown 6D (1, 0) SCFTs which have two
realizations by two different pairs of nilpotent orbits
connected by arrows if there exists a (minimal) nilpotent
Higgsing (that is, a Higgsing triggered by giving a vacuum
expectation value to the highest-root moment map of a
simple non-Abelian flavor symmetry factor) between two
interacting SCFTs. We have depicted these nilpotent
Higgsings by solid arrows labeled by the flavor algebra
that is given a VEV. However, in the sets of theories that we
consider, there also exist elementary slices in the
Hasse diagram of nilpotent orbit closures, which are
not associated with a nilpotent Higgsing. These are
labeled by dashed arrows; they occur when we have a
6D tensor branch description which is one of the following
forms:

� � � 15
e7
1 � � � ; � � � 14

e7
1 � � � : ð3:28Þ

Anomaly cancellation requires that the e7 gauge algebra has
n56 ¼ 3 or n56 ¼ 4 half-hypermultiplets, respectively, in
the fundamental representation; thus there is an son56
flavor symmetry under which the half-hypermultiplets

transform in the vector representation.17 There is a
Higgsing of these theories to SCFTs with tensor branch
configurations

� � � 15
e6
1 � � � ; � � � 14

e6
1 � � � ; ð3:29Þ

respectively. This is not a nilpotent Higgsing of the son56
flavor factor. Understanding the Higgs branch renormali-
zation group flows between conformal matter theories (in
particular, those that, such as the ones discussed here, are
not nilpotent Higgsings) is the subject of [44]; we leave a
fuller explanation to that work.
For g ¼ e7, it is noteworthy that almost all pairs of

theories

T g;NðOL;ORÞ and T g;NðO0
L;O

0
RÞ ð3:30Þ

with the same rankð4Þ and the same ’t Hooft anomaly
coefficients α and β have isomorphic interacting parts.18 In
fact, there is precisely one counterexample. The theories

T e7;3ðD4ða1Þ; A00
5Þ and T e7;3ððA3 þ A1Þ00; E6ða3ÞÞ

ð3:31Þ

have the same α, β, and rankð4Þ; however, they correspond
to SCFTs with tensor branch descriptions

15
f4
13
g2

2
su2

18
e7
1

1
1 and 4

so8
1 3
so7

2
su2

17
e7
1 2
su2

; ð3:32Þ

respectively. This is merely a consequence of the
fact that the (mixed) R symmetry and gravitational anoma-
lies do not provide sufficient data to distinguish any pair of
6D (1, 0) SCFTs, and it is thus necessary to determine the
full tensor branch description: the tensor branch effective
field theory is (modulo the aforementioned subtlety
of [30]) a complete invariant of the SCFT, unlike the
anomalies.

IV. ISOMORPHIC 4D N = 2 SCFTs OF CLASS S
WITH g = e7

We can now return to the three-punctured spheres that
were discussed in Sec. II. Following Sec. III, we know how
to determine when 6D (1, 0) SCFTs associated with the
data

ðg; N;OL;ORÞ ð4:1Þ

17We note that this is different from the manifest flavor
symmetry, but rather, an enhanced flavor symmetry for the case
of n56 ¼ 4. This can be observed easily in entry 13 of Table III.

18For obvious reasons, this statement requires that
T g;NðOL;ORÞ and T g;NðO0

L; O
0
RÞ have a nontrivial interacting

sector.
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are isomorphic. The 4D N ¼ 2 SCFTs resulting from the
toroidal compactification of these isomorphic 6D SCFTs
are thus evidently themselves isomorphic. Each of the 4D
SCFTs has a dual description in terms of class S, and we
can take the degeneration limit depicted in Eq. (2.12).19

Finally, moving to the codimension one boundary of the
conformal manifold we can see that the three-punctured
spheres on the right in Eq. (2.12) decouple, and we have
established the isomorphism. It is important to note that the
third puncture, appearing in both three-punctured spheres,

must belong to the quiver tail in the degeneration limit; for
g ¼ e7, the possible choices of the regular third puncture
are O ¼ E7ða1Þ; D6; ðA5Þ00; ð3A1Þ00. Further isomorphisms
of three-punctured spheres can be obtained via nilpotent
Higgsings of the non-Abelian flavor symmetry associated
with the third puncture.

A. Pairs with the same manifest symmetries

We begin by considering three-punctured spheres where
the flavor symmetry is simply the manifest flavor symmetry
induced by the choice of the three punctures. The discov-
ering of such examples was a part of the analysis in [6]; in
particular, the putatively isomorphic pair satisfies Eq. (2.7)

FIG. 4. The Hasse diagrams of 6D (1, 0) SCFTs arising from Higgsed rank one ðe7; e7Þ conformal matter which occur via Higgsing by
two distinct pairs of nilpotent orbits. We write the tensor branch description of the interacting sector. We have not depicted any
nonminimal Higgs branch RG flows. Tensor branch configurations that are colored red are parent theories. The olive-colored “x-y”
refers to Table x, entry y, where the pair of nilpotent orbits and its flavor symmetry are listed. This Hasse diagram is a subdiagram of the
Hasse diagram of nilpotent Higgsings of minimal ðe7; e7Þ conformal matter that appears in [9]. Note that this case contains some triples
of pairs corresponding to isomorphic theories.

19In Eq. (2.12), we drew the degeneration limit for g ¼ e7;
however, the generalization to arbitrary g is obvious.
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together with Eq. (2.8). The isomorphic pairs of three-
punctured spheres satisfying this condition, and for which
the isomorphism can be proven directly from six dimen-
sions, are listed in Table II.

The last two entries in Table II are a little special, as the
collision of the two chosen punctures leads to an irregular
fixture on the right. The quiver tails for theory A in row 15
appear as

FIG. 5. The Hasse diagrams of 6D (1, 0) SCFTs arising from Higgsed rank two ðe7; e7Þ conformal matter which occur via Higgsing by
two distinct pairs of nilpotent orbits. See the caption of Fig. 4 for an explanation of the notation.
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ð4:2Þ

FIG. 6. The Hasse diagrams of 6D (1, 0) SCFTs arising from Higgsed rank three ðe7; e7Þ conformal matter which occur via Higgsings
by two distinct pairs of nilpotent orbits. See the caption of Fig. 4 for an explanation of the notation.

DISTLER, ELLIOT, KANG, and LAWRIE PHYS. REV. D 107, 106005 (2023)

106005-16



whereas the quiver tail for theory B in row 16 is

ð4:3Þ

FIG. 7. The Hasse diagrams of 6D (1, 0) SCFTs arising from Higgsed rank four and rank five ðe7; e7Þ conformal matter which occur
via Higgsing by two distinct pairs of nilpotent orbits. See the caption of Fig. 4 for an explanation of the notation.
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The degeneration for the other element of each pair involves modifying only the two rightmost punctures.
For entries 1–11 in Table II, we can do a chain of nilpotent Higgsings of the third puncture to establish other isomorphic

pairs of theories. For entries 1–4 in Table II, we can start with ð3A1Þ00 and Higgs it according to the following:

ð4:4Þ

The Higgsing to 2A2 is special. For these theories, the manifest ðsu2Þ16 ⊕ ðsu2Þ28 ⊕ ðsu2Þ84 symmetry of the A2 þ 2A1

puncture is enhanced to ðsu2Þ16 ⊕ ðsu2Þ28 ⊕ ðsu2Þ28 ⊕ ðsu2Þ56.Of the two ðsu2Þ28 factorspresent in theSCFT,whichone is
the“manifest”one (whoseHiggsing leads to the2A2 puncture) differsbetweenTheoryAandTheoryB.Hence, at that one step in
the chain, the nilpotentHiggsing of themanifest ðsu2Þ28, which leads to 2A2, yields nonisomorphic SCFTs inTheoriesA andB.

TABLE II. Isomorphic pairs of interacting three-punctured spheres for class S of type e7, where the flavor symmetry is the manifest
flavor symmetry from the individual punctures.

# Theory A Theory B Nmin 6D SCFT Flavor symmetry

1 A3

E7ða2Þ ð3A1Þ00 ðA3þA1Þ00
E6

ð3A1Þ00 4
2
su2

3
so7

2
su2

17
e7

1
1 2
su2 ðsu2Þ12 ⊕ ðso7Þ16

2 E6

A3þ2A1
ð3A1Þ00 E7ða2Þ

ðA3þA1Þ0 ð3A1Þ00 4
2
su2

3
so7

2
su2

17
e7

1
12

ðsu2Þ12 ⊕ ðsu2Þ24 ⊕ ðsu2Þ13
3 D4ða1Þ

E7ða2Þ ð3A1Þ00 D4ða1ÞþA1

E6
ð3A1Þ00 4

2
su2

3
so7

2
su2

17
1

1
e7

1
ðsu2Þ⊕3

12

4 D5

E7ða4Þ ð3A1Þ00 D6ða1Þ
D5þA1

ð3A1Þ00 4
3
so7

2
su2

17
e7

1
1 2
su2

3
g2 ðsu2Þ12 ⊕ ðsu2Þ8

5 A3

D6ða1Þ ðA5Þ00 ðA3þA1Þ00
D5

ðA5Þ00 3
3
so7

2
su2

17
e7

1
1 2
su2 ðsu2Þ12 ⊕ ðsu2Þ8 ⊕ ðso7Þ16

6 A3

E7ða4Þ ðA5Þ00 ðA3þA1Þ00
D5þA1

ðA5Þ00 3
2
su2

17
e7

1
1 2
su2

3
g2 ðsu2Þ12 ⊕ ðso7Þ16

7 ðA3þA1Þ0
D6ða1Þ ðA5Þ00 A3þ2A1

D5
ðA5Þ00 3

3
so7

2
su2

17
e7

1
12

ðsu2Þ12 ⊕ ðsu2Þ24 ⊕ ðsu2Þ8 ⊕ ðsu2Þ13
8 ðA3þA1Þ0

E7ða4Þ ðA5Þ00 A3þ2A1

D5þA1
ðA5Þ00 3

3
g2

2
su2

17
e7

1
12

ðsu2Þ12 ⊕ ðsu2Þ24 ⊕ ðsu2Þ13
9 D4ða1Þ

D6ða1Þ ðA5Þ00 D4ða1ÞþA1

D5
ðA5Þ00 3

3
so7

2
su2

17
1

1
e7

1
ðsu2Þ⊕3

12 ⊕ ðsu2Þ8

10 D4ða1Þ
E7ða4Þ ðA5Þ00 D4ða1ÞþA1

D5þA1
ðA5Þ00 3

3
g2

2
su2

17
1

1
e7

1
ðsu2Þ⊕3

12

11 ðA5Þ0
E7ða5Þ ðA5Þ00 E6ða3Þ

D6ða2Þ ðA5Þ00 3
4
so8

13
g2
1 4
so9 ðsu2Þ19 ⊕ ðsu2Þ9

12 A3

A3þ2A1
D6

ðA3þA1Þ00
ðA3þA1Þ0 D6

2
217

e7

1
1 2
su2 ðsu2Þ12 ⊕ ðsu2Þ24 ⊕ ðsu2Þ13 ⊕ ðso7Þ16

13 A3

D4ða1ÞþA1
D6

ðA3þA1Þ00
D4ða1Þ D6

2
17
1

1
e7

1 2
su2

ðsu2Þ⊕3
12 ⊕ ðso7Þ16

14 ðA3þA1Þ0
D4ða1ÞþA1

D6
A3þ2A1

D4ða1Þ D6 2
17
1

1
e7

12
ðsu2Þ⊕3

12 ⊕ ðsu2Þ24 ⊕ ðsu2Þ13

15 D5

E7ða2Þ ðA1;Spinð12ÞÞ D6ða1Þ
E6

ðA1;Spinð12ÞÞ 5
3
so7

2
su2

17
e7

1
1 2
su2

3
so7

2
su2 ðsu2Þ12 ⊕ ðsu2Þ8

16 D5þA1

E7ða2Þ ðA1; Spinð12ÞÞ E7ða4Þ
E6

ðA1; Spinð12ÞÞ 5
3
g2

2
su2

17
1

1
e7

1 2
su2

3
so7

2
su2

ðsu2Þ12
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The Higgsings for entries 5–11 in Table II are simpler,
yielding three additional pairs of isomorphic theories per
entry. These Higgsings were discussed around Eq. (2.11),
and they are

ð4:5Þ

Nilpotent Higgsing of the ðsu2Þ7 flavor factor associated
with the D6 punctures in entries 12–14 yields bad theories,
as would further Higgsings of 2A2 þ A1 in Eq. (4.4).

B. Interacting pairs with different manifest symmetries

In Sec. II, we constructed candidate pairs of isomorphic
theories by starting with a parent theory with punctures
O1; O0

2, with an fk ⊕ fk flavor symmetry. Then, by
Higgsing one or the other of the fk factors, as in
Eq. (2.7), we obtained a pair of theories whose conven-
tional invariants coincided. As in [6], we imposed the
restriction in Eq. (2.8) that the manifest symmetries of the

two theories coincide. We can relax this assumption: two
three-punctured spheres can be isomorphic as long as the
enhanced flavor symmetries match, even if the manifest
flavor symmetries are different.
In the e7 case, this leads to a slew of new pairs that we

can show are isomorphic SCFTs using the 6D (1, 0) uplift.
We list the interacting three-punctured spheres, which are
isomorphic and do not have identical manifest flavor
symmetries in Table III. As before, the third puncture in
each of these pairs can be Higgsed as in Eqs. (4.4) and (4.5)
to yield additional isomorphic pairs of SCFTs.

C. Fixtures with isomorphic interacting sectors

Thus far, we have demanded that each pair of fixtures be
isomorphic on-the-nose as 4D SCFTs; that is, each fixture is
associated with an interacting SCFTs plus some number of
free hypermultiplets which is the same across the pair. More
generally, we could allow fixtures that include differing
numbers of free hypermultiplets, but whose interacting
sectors are isomorphic. To construct examples of this
behavior, we rely on the fact that if we have an embedding
hk ⊂ gk, then a nilpotent Higgsing of hk will result in the
same theory as a nilpotent Higgsing of gk, with the addition
of some number of free hypermultiplets. This results in two

TABLE III. Isomorphic pairs of three-punctured spheres for class S of type e7, where the flavor symmetry is not the manifest flavor
symmetry from the individual punctures.

# Theory A Theory B Nmin 6D SCFT Flavor symmetry

1 D4ða1ÞþA1

E7ða2Þ ð3A1Þ00 A3þA2

E6
ð3A1Þ00 4

16
e7

1
1 2
su2

3
so7

2
su2 ðsu2Þ⊕2

12

2 E6

A3þA2þA1
ð3A1Þ00 E7ða2Þ

A3þA2
ð3A1Þ00 4

15
e7
1 2
su2

3
so7

2
su2 ðsu2Þ12 ⊕ ðsu2Þ224

3 D5

A3þA2
ðA5Þ00 D6ða1Þ

D4ða1ÞþA1
ðA5Þ00 3

16
e7

1
1 2
su2

3
so7 ðsu2Þ⊕2

12 ⊕ ðsu2Þ8
4 D4ða1ÞþA1

E7ða4Þ ðA5Þ00 A3þA2

D5þA1
ðA5Þ00 3

16
e7

1
1 2
su2

3
g2 ðsu2Þ⊕2

12

5 A3þA2

D6ða1Þ ðA5Þ00 A3þA2þA1

D5
ðA5Þ00 3

15
e7
1 2
su2

3
so7 ðsu2Þ12 ⊕ ðsu2Þ224 ⊕ ðsu2Þ8

6 A3þA2

E7ða4Þ ðA5Þ00 A3þA2þA1

D5þA1
ðA5Þ00 3

15
e7
1 2
su2

3
g2 ðsu2Þ12 ⊕ ðsu2Þ224

7 A3

A3þA2
D6

ðA3þA1Þ00
D4ða1ÞþA1

D6
2

16
e7

1
1 2
su2 ðsu2Þ⊕2

12 ⊕ ðso7Þ16
8 ðA3þA1Þ0

A3þA2
D6

A3þ2A1

D4ða1ÞþA1
D6 2

16
e7

1
12 ðsu2Þ⊕2

12 ⊕ ðsu2Þ24 ⊕ ðsu2Þ13
9 D4ða1Þ

A3þA2
D6

D4ða1Þ þ A1

D4ða1Þ þ A1D6

2
16
1

1
e7

1
ðsu2Þ⊕4

12

10 A3þA2ðA3þA1Þ00 D6
A3þA2þA1

A3
D6 2

15
e7
1 2
su2 ðsu2Þ12 ⊕ ðsu2Þ224 ⊕ ðso7Þ16

11 A3þA2

A3þ2A1
D6

A3þA2þA1ðA3þA1Þ0 D6 2
15
e7
12

ðsu2Þ12 ⊕ ðsu2Þ24 ⊕ ðsu2Þ224 ⊕ ðsu2Þ13
12 A3þA2

D4ða1ÞþA1
D6

A3þA2þA1

D4ða1Þ D6 2
15
e7

1
1 ðsu2Þ⊕3

12 ⊕ ðsu2Þ224
13 A3þA2

A3þA2
D6

A3þA2þA1

D4ða1ÞþA1
D6 2

14
e7
1 ðsu2Þ⊕2

12 ⊕ ðso4Þ112
14 2A1

D6ða2Þ D6
ð3A1Þ00
ðA5Þ0 D6

2
4
so9

13
g2
1þ a free hyper

ðf4Þ24 ⊕ ðsu2Þ9 ⊕ ðsu2Þ19
15 2A1

E7ða5Þ D6
ð3A1Þ00
E6ða3Þ D6

2
4
so8

13
g2
1þ a free hyper

ðf4Þ24 ⊕ ðsu2Þ19
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mechanisms for constructing candidate pairs that corre-
spond to theories with isomorphic interacting parts.
The first occurs when two punctures both contribute

simple flavor factors at level k, say hk and gk. If we choose
a third puncture low enough down on the Hasse diagram, it
is possible that the hk ⊕ gk enhances to a gk ⊕ gk and there
is an outer automorphism symmetry that exchanges the two
g factors. Then we can do a nilpotent Higgsing of either the
gk or the hk, where the latter takes us to the same theory as
the former in addition to some free hypermultiplets. Using
6D constructions we can prove the existence of such
automorphism symmetries and thus prove the interacting
sectors are, indeed, isomorphic.
The second mechanism occurs when two punctures con-

tribute an fk and an hk that are enhanced to a gk global sym-
metry. Then the interacting part of the two fixtures obtained by
Higgsing either the fk or the hk should be the theory obtained
by Higgsing the gk, meaning they are isomorphic. In this case
we do not require a 6D explanation as the isomorphism can be
directly seen from the nilpotent Higgsing, though, of course,
the 6D uplifts if they exist will also be isomorphic.
An example of the first mechanism is given by the follow-

ing three-punctured sphere in the class S theory of type e8:

ð4:6Þ

The manifest flavor symmetry is enhanced:

fmanifest ¼ ðso7Þ24 ⊕ ðg2Þ⊕2
24 ⊕ ðsu2Þ21 → f

¼ ðso7Þ⊕3
24 ⊕ ðsu2Þ21: ð4:7Þ

Minimal nilpotent Higgsing of the one of the manifest ðg2Þ24
factors is a local Higgsing that changes the puncture
2A2 → 2A2 þ A1, whereas minimal nilpotent Higgsing of
the manifest ðso7Þ24 factor changes the puncture
A3 þ A1 → A3 þ 2A1. TheseHiggsings lead to the following
three-punctured spheres:

ð4:8Þ

These are clearly different theories—the theory on the right
has a free hypermultiplet, whereas the theory on the left does
not. The parent theory, given by the three-punctured sphere in

Eq. (4.6), has an uplift to a 6D (1, 0) curve configuration (via
the usual quiver tail procedure), which is

1 4
so9

1
1: ð4:9Þ

Evidently this curve configuration possesses an S3 outer-
automorphism group that permutes the three (−1) curves, and
thus the three ðso7Þ24 flavor symmetry factors. Performing a
minimal nilpotent Higgsing by any of the three ðso7Þ24
factors, or by the subalgebra ðg2Þ24 ⊂ ðso7Þ24, leads to 6D
SCFTswith the same interacting sector. In conclusion,we can
see that the interacting parts of the two 4D theories in Eq. (4.8)
are isomorphic. In fact, aswe can see from [9], the uplift of the
interacting sector of both three-punctured spheres has the
curve configuration

1 3
so9
1: ð4:10Þ

We now turn to an example of the second mechanism for
generating isomorphic pairs with different numbers of free
hypermultiplets. Consider class S of type e7 and the
following three-punctured sphere:

ð4:11Þ

The manifest flavor symmetry

fmanifest ¼ ðso9Þ24 ⊕ ðsu2Þ20 ⊕ ðsu6Þ20 ð4:12Þ

is enhanced to

f ¼ ðso10Þ24 ⊕ ðsu8Þ20: ð4:13Þ

The manifests ðsu2Þ20 and ðsu6Þ20 have combined into a
single simple ðsu8Þ20 factor. A minimal nilpotent Higgsing
of the ðsu2Þ20 corresponds to partially closing the 2A1

puncture, 2A1 → ð3A1Þ00; similarly, the minimal nilpotent
Higgsing of the ðsu6Þ20 corresponds to A2 → A2 þ A1.
However, we know that the minimal nilpotent Higgsing of
any subalgebra leads to the same interacting SCFT as the
minimal nilpotent Higgsing of the full flavor factor, plus
some number of free hypermultiplets fixed by the embed-
ding. Indeed, it is easy to check that the interacting sectors
of the fixtures
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ð4:14Þ

have the correct conventional invariants, and their
Schur indices (after removing six free hypers from the
fixture on the left and two free hypers from the fixture
on the right) agree to at least order τ4. Their interacting
parts are isomorphic, and this isomorphism of the inter-
acting sectors of these two three-punctured spheres
follows only from the enhanced flavor symmetry, without

the need to uplift to six dimensions. However, one can
read directly from [9] that the interacting parts of both
three-punctured spheres are obtained from the torus
compactification of the 6D (1, 0) SCFT associated with
the curve configuration

1 3
su3

: ð4:15Þ

In Table IV, we list all the isomorphic pairs with differing
numbers of free hypermultiplets obtained by the afore-
mentioned methods for the class S theory of type e7. We
can see that the pairs with isomorphic interacting sectors
in Table IV, together with those in Tables II and III,
reproduce all of the isomorphic pairs of 6D (1, 0)
SCFTs T e7;NðOL;ORÞ, as summarized in Figs. 4–7.

TABLE IV. Isomorphic SCFTs arising from class S of type e7 on three-punctured spheres with differing numbers of free
hypermultiplets. nA=B is the number for free hypermultiplets in Theory A=B.

# Theory A Theory B nA nB Nmin 6D SCFT Flavor symmetry

1 A4

E7ða2Þ ð3A1Þ00 A4þA1

E6
ð3A1Þ00 1 0 4

15
e6
1 2
su2

3
so7

2
su2 ðsu3Þ12

2 A4

D6ða1Þ ðA5Þ00 A4þA1

D5
ðA5Þ00 1 0 3

15
e6
1 2
su2

3
so7 ðsu3Þ12 ⊕ ðsu2Þ8

3 A4

E7ða4Þ ðA5Þ00 A4þA1

D5þA1
ðA5Þ00 1 0 3

15
e6
1 2
su2

3
g2 ðsu3Þ12

4 A4ðA3þA1Þ00 D6
A4þA1

A3
D6 1 0 2

15
e6
1 2
su2 ðsu3Þ12 ⊕ ðso7Þ16

5 A4

A3þ2A1
D6

A4þA1ðA3þA1Þ0 D6 1 0 2
15
e6
12

ðsu3Þ12 ⊕ ðsu3Þ24 ⊕ ðsu2Þ13
6 A4

D4ða1ÞþA1
D6

A4þA1

D4ða1Þ D6 1 0 2
15
e6

1
1

ðsu3Þ⊕3
12

7 A4

A3þA2
D6

A4þA1

D4ða1ÞþA1
D6 2 1 2

14
e6
1 ðsu3Þ⊕2

12 ⊕ ðsu2Þ54
8 A4

A3þA2þA1
D6

A4þA1

A3þA2
D6 3 2 2

13
e6 ðsu3Þ12 ⊕ ðsu3Þ54

9 0
E7ða4Þ D6

A1

A6
D6 28 12 2

1 2
su2

3
g2 ðe7Þ24

10 A2

D6ða2Þ D6
A2þA1ðA5Þ0 D6 6 2 2

4
so9

1 2
su3 ðsu2Þ9 ⊕ ðsu6Þ18

11 A2

E7ða5Þ D6
A2þA1

E6ða3Þ D6 6 2 2
4
so8

1 2
su3 ðsu6Þ18

12 ð3A1Þ0
D6ða2Þ D6

4A1ðA5Þ0 D6 3 1 2
4
so9

12
g2 ðsu2Þ9 ⊕ ðsp4Þ19

13 ð3A1Þ0
E7ða5Þ D6

4A1

E6ða3Þ D6 3 1 2
4
so8

12
g2 ðsp4Þ19

14 A2þ2A1

A0
5

D6
2A2

D5ða1ÞþA1
D6 4 3 2

4
so9

1 2
su2 ðso7Þ16 ⊕ ðsu2Þ9 ⊕ ðsu2Þ24 ⊕ ðsu2Þ48

15 A2þ3A1

A0
5

D6
2A2þA1

D5ða1ÞþA1
D6 7 4 2

4
so9

12
ðso7Þ24 ⊕ ðsu2Þ9 ⊕ ðsu2Þ13

16 0
ðA3þA1Þ00 E7ða1Þ A1

2A2
E7ða1Þ 28 12 1

1 2
su2 ðe7Þ24 ⊕ ðso7Þ16

17 A1

2A2
E7ða1Þ 2A1

A2þ2A1
E7ða1Þ 12 4 1

1 2
su2 ðe7Þ24 ⊕ ðso7Þ16

18 A1

2A2þA1
E7ða1Þ 2A1

A2þ3A1
E7ða1Þ 13 7 1 1 2 ðe8Þ24 ⊕ ðsu2Þ13

19 0
A3þ2A1

E7ða1Þ A1

2A2þA1
E7ða1Þ 28 13 1 1 2 ðe8Þ24 ⊕ ðsu2Þ13

20 2A1

4A1
E7ða1Þ ð3A1Þ00

ð3A1Þ0 E7ða1Þ 1 3 1
12
g2 ðf4Þ24 ⊕ ðsp4Þ19

21 A2ð3A1Þ00 E7ða1Þ A2þA1

2A1
E7ða1Þ 6 2 1

1 2
su3 ðe6Þ24 ⊕ ðsu6Þ18

22 A2

4A1
E7ða1Þ A2þA1ð3A1Þ0 E7ða1Þ 9 7 1

1
su3 ðsu12Þ18

23 0
A3þA2

E7ða1Þ ð3A1Þ0
A2þ3A1

E7ða1Þ 56 31 1 1 ðe8Þ12
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Interestingly, when considering theories where only the interacting sectors are required to coincide, we find that there are
isomorphic triples of three-punctured spheres. As is evident from the 6D curve configurations in Table IV, we see that the
following three-punctured spheres:

ð4:16Þ

are different realizations of the rank-2 E8 Minahan-Nemeschansky theory with 13, 7, and 28 free hypermultiplets,
respectively. Similarly,

ð4:17Þ

are different realizations of the rank-3 ðE7Þ24 × Spinð7Þ16 SCFT with 28, 12, and 4 free hypermultiplets, respectively.

V. EXAMPLES WHERE g ≠ e7

Class S theories of type e7 have provided a wealth of examples of candidates for pairs of isomorphic SCFTs.
We have explored the e7 theories as they provide a representative sample of theories illustrating our six-dimensional methods
for determining isomorphisms. However, class S theories of different ADE-types evince the same behavior. Using the
procedures laid out in this paper, it is straightforward to determine candidate papers for any other g, and furthermore to verify
they correspond to isomorphic 4DN ¼ 2SCFTs from the 6D (1, 0) uplift, as discussed in Sec. III. In this section,we provide a
small number of examples of isomorphic pairs when g is a classical Lie algebra.20

A. An so12 example

One nice class of examples can be found in the g ¼ so12 theory. When the 6D (1, 0) conformal matter theory, Higgsed by
nilpotent orbitsOa andOb, is compactified on the torus, the class S dual theory has a degeneration limit where it appears as

ð5:1Þ

If we follow the prescription of Eq. (2.7), we can take ðO1; O2Þ ¼ ð½42; 14�; ½5; 3; 22�Þ and ðO0
1; O

0
2Þ ¼ ð½42; 22�; ½5; 3; 14�Þ

or ð½42; 22�; ½5; 3; 14�Þ. The puncture ½42; 14� has an ðsu2Þ12 ⊕ ðsu2Þ28 flavor symmetry, and nilpotent Higgsing of one or the
other of the ðsu2Þ8 factors leads to either ½42; 22� or ½42; 22�. The resulting theories are related by the outer-automorphism of
so12 which exchanges (globally) red and blue. This is an isomorphism of SCFTs (for any N). When N ¼ 4, the 6D curve
configuration is

20Class S theories of type g can also contain punctures that are twisted by an outer-automorphism of g. Some such theories can
alternatively be constructed from 6D (1, 0) compactified on a torus, now with the inclusion of a Stiefel-Whitney twist [60–62]; therefore
the methods of this paper demonstrating the isomorphisms of 6D (1, 0) SCFTs can also prove isomorphisms between class S theories
with twisted punctures.
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3
so8

½ðsu2Þ8⊕ðsu2Þ8�
1
sp1

4
so11

½ðsu2Þ11�
1
sp1

3
so7

½ðsu2Þ8�
: ð5:2Þ

Peeling off the quiver tail establishes the isomorphism

ð5:3Þ

which is a rank-8 interacting SCFT with flavor symmetry

f ¼ ðsu2Þ38 ⊕ ðsu2Þ11; ð5:4Þ

and one free hypermultiplet, transforming as 1
2
ð1; 1; 1; 2Þ under the four manifest su2 factors.

It should be emphasized that while the fixtures in class S are isomorphic if, upon attaching the quiver tail, the resulting
theories arise from the compactification of isomorphic theories in 6D, the statement is not an if and only if. Consider the
degeneration limit

ð5:5Þ

For ðOa;ObÞ ¼ ð½42; 22�Þ; ½9; 3�Þ, ð½42; 22�Þ; ½9; 3�Þ or
ð½42; 3; 1�Þ; ½9; 13�Þ, these eight-punctured spheres have
all the same conventional invariants. But they are not
isomorphic SCFTs. Indeed, the 6D curve configuration for
ðOa;ObÞ ¼ ð½42; 22�Þ; ½9; 3�Þ and ð½42; 22�Þ; ½9; 3�Þ is

3
so7

1
sp1

4
so11

1
sp1

3
so9

1
sp1

3
g2

1
sp1

; ð5:6Þ

whereas, for ðOa;ObÞ ¼ ð½42; 3; 1�Þ; ½9; 13�Þ, the curve
configuration is

3
g2

1
sp1

4
so11

1
sp1

3
so9

1
sp1

3
so7

1
sp1

: ð5:7Þ

Nevertheless, if we peel off the quiver tail, the fixture on the
far right is eight free hypermultiplets for all three choices.
The point is that there are three distinct embeddings of

the Spinð7Þ gauge group in the Spinð8Þ flavor symmetry
of the ½22; 18� puncture. Two of them are exchanged
under the soð12Þ outer-automorphism that exchanges
½42; 22� ↔ ½42; 22�, which is, of course, a symmetry of
the SCFT. But the third embedding [in which the vector of

Spinð8Þ decomposes as ð7þ 1Þ] is distinct,21 leading to a
distinct SCFT in Eq. (5.5) for the pair ðOa;ObÞ ¼
ð½42; 3; 1�Þ; ½9; 13�Þ.

B. A family of examples in sun

In class S theories of type sun, it is easy to see that the
condition in Eq. (2.8) is never satisfied, and thus there can
only be pairs of isomorphic SCFTs if there is enhanced
global symmetry, which may arise from the presence of a
free sector. In this section, we present one example of an
isomorphic pair for class S theories of type sun, for each
n ≥ 6, and explain how the isomorphism can be verified
from the 6D (1, 0) uplift.
We consider class S of type sunþ6, where the nilpotent

orbits describing the punctures are in one-to-one corre-
spondence with integer partitions of nþ 6. Consider then
the following pair of three-punctured spheres:

21In fact, the Spinð7Þ is embedded in the centralizer of
Spinð11Þ ⊂ Spinð20Þ. Even in that context the two embeddings
are not conjugate to each other.
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ð5:8Þ

The manifest flavor symmetry, which can be read off
directly from the integer partitions, for the theory associ-
ated with the fixture on the left in Eq. (5.8) is

fmanifest ¼ ðsunþ3Þ2nþ8 ⊕ ðsu2Þ2nþ12 ⊕ ðsunÞ2nþ4

⊕ ðsu5Þ12 ⊕ u⊕3
1 ; ð5:9Þ

whereas the fixture on the right has manifest flavor
symmetry

fmanifest ¼ ðsunþ2Þ2nþ8 ⊕ ðsu2Þ2nþ12

⊕ ðsunÞ2nþ4 ⊕ ðsu5Þ12 ⊕ u⊕4
1 : ð5:10Þ

For all values of n, these are mixed fixtures. When n ≥ 1,
there are two free hypermultiplets that transform in the (1,
2, 1, 1) representation of the manifest flavor symmetries
appearing in both Eqs. (5.9) and (5.10); thus for both
theories, in the interacting sector the ðsu2Þ2nþ12 factor is
replaced by an ðsu2Þ2nþ10 factor. For n ≥ 2, this is the only
enhancement for the theory on the left; however, in the
theory on the right the manifest ðsunþ2Þ2nþ8 combines with
one of the u1 factors to produce a ðsunþ3Þ2nþ8 factor. Thus,
we can see that the enhanced flavor symmetries agree
between the two interacting sectors:

f ¼ ðsunþ3Þ2nþ8 ⊕ ðsu2Þ2nþ10 ⊕ ðsunÞ2nþ4

⊕ ðsu5Þ12 ⊕ u⊕3
1 : ð5:11Þ

We can also see, for example, when n ¼ 3, that the Schur
indices of the interacting sectors of the fixtures match (up to
the order we could compute them)

ISchurðτÞ ¼ 1þ 73τ2 þ 34τ3 þ 2823τ4 þ 2626τ5

þ 77298τ6 þ 107048τ7 þ 1689006τ8

þ 3064288τ9 þOðτ10Þ: ð5:12Þ

For n ¼ 1, the flavor symmetry is further enhanced on both
sides to

ðsu4Þ10 ⊕ ðsu7Þ12 ⊕ u⊕2
1 : ð5:13Þ

Finally, in the extremal case where n ¼ 0, there are 12
free hypermultiplets, and the interacting sector of both
theories is the ðE7Þ8 Minahan-Nemeschansky theory. The
free hypers transform in the (2,6) of the manifest
ðsu2Þ12 ⊕ ðsu6Þ12. We emphasize once again that, for
all values of n ≥ 0, the conventional invariants and the
Schur index (insofar as we can compute it) are consistent
with the two fixtures in Eq. (5.8) being isomorphic
4D SCFTs.
The theories can be proven to be isomorphic from our 6D

considerations. If we replace the ½nþ 1; 15� punctures that
appear in both the fixtures in Eq. (5.8) with N copies of the
simple puncture, each corresponding to the partition
[nþ 5, 1], then each of the resulting N þ 2 punctured
spheres arise as torus compactifications of 6D (1, 0)
SCFTs. In particular, the uplift of the fixture on the left
in Eq. (5.8) is rank N ðsunþ6; sunþ6Þ conformal matter,
where one of the sunþ6 flavor symmetries is Higgsed by
the nilpotent orbit associated with the partition ½3; 1nþ3� and
the other is Higgsed by ½32; 1n�. It is well-known how to
map from a pair of partitions to a tensor branch description,
and in this case that description is

2
sunþ4

½ðsunþ3Þ2nþ8�
2

sunþ5

2
sunþ6

½1�
2

sunþ6 � �� 2
sunþ6

2
sunþ6

2
sunþ6

½ðsu2Þ2nþ12�
2

sunþ4

2
sunþ2

½ðsunÞ2nþ4�
;

ð5:14Þ

where we have written the non-Abelian flavor factors
directly in the quiver. Similarly, the 6D (1, 0) uplift of
the fixture on the right in Eq. (5.8) has the tensor branch
description

2
sunþ4

½ðsunþ2Þ2nþ8�
2

sunþ6

½ðsu2Þ2nþ12�
2

sunþ6

2
sunþ6 � � � 2

sunþ6

2
sunþ6

½1�
2

sunþ5

2
sunþ4

½1�
2

sunþ2

½ðsunÞ2nþ4�
:

ð5:15Þ

In both cases, the total number of (−2) curves is N − 1.
Each of these theories, which are clearly not isomorphic,
arise via Higgs branch renormalization group flow from a
“parent” theory, with tensor branch description

2
sunþ4

½ðsunþ2Þ2nþ8�
2

sunþ6

½ðsu2Þ2nþ12�
2

sunþ6

2
sunþ6 � � � 2

sunþ6

2
sunþ6

2
sunþ6

½ðsu2Þ2nþ12�
2

sunþ4

2
sunþ2

½ðsunÞ2nþ4�
: ð5:16Þ

Nilpotent Higgsing of one or the other of the ðsu2Þ2nþ12 factors leads to SCFTs with tensor branches given in Eqs. (5.14)
and (5.15). When N ¼ 5, the parent theory becomes
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2
sunþ4

½ðsunþ2Þ2nþ8�
2

½ðsu2Þ2nþ12�

½ðsu2Þ2nþ12�
sunþ6

2
sunþ4

2
sunþ2

½ðsunÞ2nþ4�
; ð5:17Þ

which has aZ2 outer-automorphism that exchanges the two
ðsu2Þ2nþ12 flavor symmetry factors. In fact, the flavor
symmetry enhances, and we find

ðsu2Þ2nþ12 ⊕ ðsu2Þ2nþ12 → ðsu4Þ2nþ12: ð5:18Þ

Performing a Higgs branch deformation by giving a
vacuum expectation value to the highest root moment
map of the su4 or either of the su2 subalgebras leads to
the same interacting SCFT, where the latter two options
contain an additional two free hypermultiplets. The two
nilpotent Higgsings, which take either ½22; 1nþ2� →
½3; 1nþ3� or ½32; 1n� → ½4; 2; 1n�, thus both lead to the same
interacting 6D (1, 0) SCFT; its tensor branch description is

2
sunþ4

½ðsunþ3Þ2nþ8�
2

sunþ5

½ðsu2Þ2nþ12�
2

sunþ4

½1�
2

sunþ2

½ðsunÞ2nþ4�
: ð5:19Þ

In this way, we have verified that the two class S
descriptions in Eq. (5.8) are isomorphic as 4D N ¼ 2

quantum field theories when the ½nþ 1; 15� punctures are
replaced with five copies of the simple puncture, [nþ 5, 1].
To prove the isomorphism for the three-punctured spheres,
we go to a different degeneration limit, where the
simple punctures form a chain of three-punctured
spheres, reproducing the standard quiver tail of [3]—
with gauge group SUð2Þ × SUð3Þ × SUð4Þ × SUð5Þ and
bifundamental hypermultiplets [i.e., the representation
ð2;1;1;1Þ⊕ ð2;3;1;1Þ⊕ ð1;3;4;1Þ⊕ ð1;1;4;5Þ]. Sending
the SUð5Þ gauge coupling to zero establishes the isomor-
phism in Eq. (5.8).
Having established the isomorphism of the two theories

where the third puncture is given by the partition
½nþ 1; 15�, we can then do a chain of nilpotent
Higgsings of that third puncture to establish further iso-
morphic pairs

½nþ 1; 15� → ½nþ 1; 2; 13� → ½nþ 1; 22; 1�
→ ½nþ 1; 3; 12� → ½nþ 1; 3; 2�: ð5:20Þ

Note that for n ¼ 2, the nilpotent Higgsings

½32; 12� → ½4; 2; 12� → ½4; 22� → ½4; 3; 1� ð5:21Þ

lead to bad theories, and so do not generate any additional
isomorphic pairs.

VI. ODDBALLS

The mechanism described in Eq. (2.7) for generating
candidate pairs of isomorphic 4D SCFTs led to a 6D proof
when the third puncture in the fixture was chosen from the
“quiver tail” formed by fusing together N simple punctures
[in the type e7 theory, this was the sequence of punctures
fð3AÞ00; ðA5Þ00; D6; E7ða1Þg—see Eq. (2.12)]. We could
then find additional isomorphic SCFTs by Higgsing down
from this puncture.
This does not preclude the possibility of finding iso-

morphic pairs of SCFTs where the third puncture is not part
of the quiver tail (or a nilpotent Higgsing thereof). For
instance, consider the pair of interacting fixtures

ð6:1Þ

These fixtures appear to correspond to isomorphic SCFTs
when O is chosen from the four punctures related by the
following Hasse diagram:

ð6:2Þ

The Schur indices of all four pairs agree to at least Oðτ10Þ.
For example, for O ¼ D5, the Schur indices of both SCFTs
are

ISchur ¼ 1þ 37τ2 þ 853τ4 þ 15305τ6 þ 233552τ8

þ 3168458τ10 þOðτ11Þ: ð6:3Þ

However, since none of the punctures in Eq. (6.2) belong to
the E7 quiver tail, these SCFTs have no avatars as
6D (1, 0) SCFTs; thus, we cannot provide a proof that
these 4D N ¼ 2 SCFTs are isomorphic.
The theories in Eq. (6.1) appear to be isomorphic on-the-

nose. We can also find pairs of theories whose interacting
parts appear to be isomorphic, but differ in the number of
free hypermultiplets. For example,
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ð6:4Þ

After removing two free hypermultiplets from the fixture on the left, the Schur indices are

ISchur ¼ 1þ 23τ2 þ 10τ3 þ 344τ4 þ 308τ5 þ 4170τ6 þ 5720τ7 þOðτ8Þ: ð6:5Þ

The interacting SCFT has flavor symmetry

f ¼ ðsu2Þ72 ⊕ ðsu2Þ26 ⊕ ðsu2Þ8 ⊕ ðg2Þ12: ð6:6Þ

On the left, the suð2Þ8 is associated with the D6ða1Þ puncture; on the right it is associated with the D5 puncture. If we do a
nilpotent Higgsing of the ðsu2Þ8 on both sides, we arrive at

ð6:7Þ

After removing two free hypermultiplets from the fixture on the left, the Schur indices are

ISchur ¼ 1þ 20τ2 þ 14τ3 þ 272τ4 þ 380τ5 þ 3186τ6 þ 6338τ7 þOðτ8Þ; ð6:8Þ

which, again, indicates that they correspond to isomorphic SCFTs.
As another example, we consider the following pair of fixtures:

ð6:9Þ

After removing one free hypermultiplet from the fixture on
the right, the Schur indices of both interacting SCFTs are

ISchur ¼ 1þ 39τ2 þ 42τ3 þ 970τ4 þ 2068τ5

þ 20059τ6 þOðτ7Þ: ð6:10Þ

The flavor symmetry of the interacting theory is

f ¼ ðso7Þ16 ⊕ ðsu2Þ224 ⊕ ðsu2Þ312 ⊕ ðsu2Þ13: ð6:11Þ

Of the three ðsu2Þ12 flavor algebra factors, two are manifest
(associated with theE6 puncture and with the ðA3 þ A1Þ0 on
the left or the A3 on the right). The other arises as an
enhancement of the ðsu2Þ36 ⊂ ðsu2Þ24 ⊕ ðsu2Þ12 sym-
metry (associated with the 2A2 puncture on the left or
the 2A2 þ A1 puncture on the right).
One of the ðsu2Þ12 factors [the one associated with

ðA3 þ A1Þ0 on the right or A3 on the left] is the same on both

sides of the isomorphism. But the role of the other two (the
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manifest one associated with the E6 puncture and the
enhanced one) is swapped between the two theories. This is
exactly the same phenomenon we encountered in Eq. (4.4),
where the roles of the two ðsu2Þ28 (the manifest one and the
enhanced one) associated with the A2 þ 2A1 puncture were
swapped between the two theories. There, when we

Higgsed A2 þ 2A1 ⟶
ðsu2Þ28

2A2, we obtained different theories.

Here, too, if we Higgs the E6 ⟶
ðsu2Þ12E7ða2Þ, we obtain

nonisomorphic theories

ð6:12Þ

On the left, the ðsu2Þ224 is enhanced to ðsp2Þ24, whereas on the right, it is unenhanced.
On the other hand, if we Higgs the ðsu2Þ12 flavor symmetry of the fixtures in Eq. (6.9) associated with the ðA3 þ A1Þ0

puncture on the left and with the A3 puncture on the right, we obtain theories with isomorphic interacting sectors:

ð6:13Þ

The interacting sector has Schur index

ISchur ¼ 1þ 40τ2 þ 58τ3 þ 1048τ4 þ 2848τ5 þ 23541τ6 þOðτ7Þ: ð6:14Þ

This time, Higgsing the E6 ⟶
ðsu2Þ12E7ða2Þ yields another pair of isomorphic theories:

ð6:15Þ

We need to remove one free hypermultiplet from the fixture
on the left and two free hypermultiplets from the fixture on
the right to obtain isomorphic interacting SCFTs, which
have Schur index

ISchur ¼ 1þ 37τ2 þ 78τ3 þ 985τ4 þ 3500τ5 þOðτ6Þ:
ð6:16Þ

As we have highlighted, the “oddball” theories discussed
in this section are pairs of class S theories that appear to be
isomorphic, based on their conventional invariants and

their Schur indices (to the extent that we were able to
compute them). However, as they are unrelated to torus
compactifications of 6D (1, 0) SCFTs, we are unable to use
the techniques from 6D to prove that they are, indeed,
isomorphic. Nevertheless, the insights from 6D point
toward a possible direction for a direct 4D proof. The
key insight was that the pair of isomorphic 4D SCFTs have
a parent 4D SCFT in common. Turning on a VEV for
certain operators in the parent theory triggers a Higgs
branch renormalization group flow to one or the other of the
“child” theories. Moreover, the parent SCFT has a Z2
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symmetry that exchanges the two operators in question, and
hence the RG flows that they trigger. This symmetry is
manifest in the 6D (1, 0) uplift of the parent 4D SCFT.
However, it might be possible to show that the symmetry is
present directly in the 4D SCFT. For instance, the parent of
the pair in Eq. (6.1) is

ð6:17Þ

which has flavor symmetry

f ¼ ðg2Þ16 ⊕ ðsu2Þ236 ⊕ ðsu2Þ8 ⊕ ðsu2Þ12: ð6:18Þ

This theory has a Z2 outer automorphism which exchanges
the two ðsu2Þ36 factors. The two RG flows that lead to the
pair of SCFTs in Eq. (6.1) are triggered by turning on a

VEV for the highest root moment map of one or the other of
the ðsu2Þ36s. If we could show that this Z2 extends to a Z2

symmetry of the full SCFT in Eq. (6.17), we would
establish the isomorphism in Eq. (6.1).

VII. DISCUSSION

The pairs of isomorphic class S theories we have found
share the feature that they arise as (different) Higgsings of a
“parent” SCFT. Upon uplifting to 6D, we found that
the parent 6D (1, 0) SCFT has a Z2 automorphism that
exchanges the two Higgsings. It is striking that—for the
6D (1, 0) SCFTs of ðe; eÞ conformal matter—this auto-
morphism has a geometrical realization as an automor-
phism of the curve configuration on B. By contrast, for
ðsun; sunÞ and ðso2n; so2nÞ conformal matter, the auto-
morphism had a more subtle origin. This section is focused
on explaining this behavior.
The curve configuration that gives rise to the intersecting

part of the 6D (1, 0) SCFT is composed of non-Higgsable
clusters (NHCs), which are given by

3
su3

; 4
so8

; 5
f4
; 6

e6
; 7

e7
; 8

e7
; 12

e8
; 2

su2

3
g2
; 2 2

su2

3
g2
; 2

su2

3
so7

2
su2

;

2 � � � 2|fflffl{zfflffl}
N−1

; 2 � � � 2|fflffl{zfflffl}
N−3

2
2

2; 222
2

22; 2222
2

22; 22222
2

22; ð7:1Þ

where we have used the negative of the self-intersection
number of the curves and the algebras g associated with the
singular fibers. Curve configurations are then constructed
by connecting these non-Higgsable clusters via (−1)
curves, while requiring that the resulting curve configura-
tion has a negative-definite intersection matrix. This re-
stricts the number of (−1) curves that can be attached to a
(−n) curve to be ≤ ðn − 1Þ.
In all of our examples drawn from the ðe7; e7Þ conformal

matter theories, the curve configuration of the parent theory
had a central (−n) curve with two (or more) “dangling”
(−1) curves—exchanged by the Z2 automorphism—in
addition to the (−1) curves that attach it to the rest of
the diagram. The nilpotent Higgsings of the flavor sym-
metries associated with the dangling (−1) curves are
exchanged by the Z2 automorphism. For this to occur,
we must have n ≥ 5. But, for

g ¼ sun; so2n; e6; e7; e8 ð7:2Þ

the maximally negative self-intersection curve can have
self-intersection

ð−2Þ; ð−4Þ; ð−6Þ; ð−8Þ; ð−12Þ; ð7:3Þ

respectively. Thus these geometrical Z2 automorphisms of
the curve configuration only occur for the exceptional
algebras.
For the classical algebras the isomorphisms are gener-

ated not by the automorphisms of the curve configuration,
but rather as automorphisms of the flavor symmetry
algebras decorating the central node. That is, they are
implemented as automorphisms of the elliptic fiber over
that exceptional curve on B. For example, in Eq. (5.18), the
central node of the parent theory had an ðsu2Þ2nþ12 ⊕
ðsu2Þ2nþ12 flavor symmetry that was enhanced to
ðsu4Þ2nþ12. The Z2 automorphism [which exchanges
the two ðsu2Þ2nþ12 factors] is an automorphism, not
of the curve configuration on B, but of the elliptic fiber
over the central (−2) curve.
Similarly for the example in Eq. (5.2), the parent theory

has an

ððsu2Þ8 ⊕ ðsu2Þ8Þ ⊕ ðsu2Þ11 ⊕ ððsu2Þ8 ⊕ ðsu2Þ8Þ:
ð7:4Þ
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There is a Z2 × Z2 automorphism of the flavor symmetry
algebra. The first Z2 simultaneously swaps the two
ðsu2Þ8 s within each parentheses. This Z2 corresponds
to the choice of ambiguity of sp� for the theories with
very-even punctures of type g ¼ so2n [30]. The second Z2

exchanges the two parenthesized factors and, thereby, the
two Higgsings that lead to the distinct ðso12; so12Þ con-
formal matter theories.
This paper made extensive use of two ingredients: the

Higgs branch RG flows between SCFTs and the corre-
spondence between a subclass of 6D (1, 0) theories and a
subclass of 4D theories of class S. We have been very
circumspect in the Higgsings we considered, focusing
exclusively on nilpotent Higgsings. This rather limited
the isomorphisms we could explore, and expanding the
class of Higgsing that we have under good control [44] will
expand the reach of our methods. Moreover, we found
evidence, through the computation of Schur indices in
Sec. VI, for isomorphisms in 4D which have no avatars in
6D (1, 0) SCFTs. Still, an important lesson emerged from
the 6D (1, 0) analysis: the automorphisms of the UV CFT
exchange naively distinct Higgs branch RG flows, thus

leading to isomorphisms between the naively distinct
IR CFTs.
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