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We explore the upper bound of the Lyapunov exponent for test particles that maintain equilibrium in the
radial direction near the charged black brane with the hyperscaling violating factor. The influences of black
brane parameters (hyperscaling violation exponent θ and dynamical exponent z) are investigated. We show
that the equilibrium in the radial direction of test particles can violate the chaos bound. The chaos bound is
more easily violated for the near-extremal charged black branes. When the null energy condition
(Tμνξ

μξν ≥ 0) is broken, the bound is also more likely to be violated. These results indicate that the chaos
bound of particle motion is related to the temperature of the black hole and the null energy condition
(NEC). By considering the zero-temperature and Tμνξ

μξν ¼ 0 cases, we obtain the critical parameters θc
and zc for the violation of chaos bound. The chaos bound is always satisfied in the range θ > θc or z > zc.

DOI: 10.1103/PhysRevD.107.106002

I. INTRODUCTION

Chaos is an important nonlinear phenomenon that
describes the sensitive response of the evolution of a system
to the initial conditions. To illustrate the strength of chaotic
phenomena, the Lyapunov exponent can be introduced.
When a chaotic system is perturbated, the perturbation grows
exponentially with time, and its corresponding exponent is
the Lyapunov exponent. The larger the Lyapunov exponent,
the more chaotic the test particle. As black hole theory is a
kind of nonlinear theory, it is normal to see chaos in studying
black holes. Chaos often exists in various objects, for
example, the chaotic trajectories near black holes [1–9]
and the chaos in black hole thermodynamics [10–14]. The
nature of black hole chaos needs to be further explored.
Maldacena, Shenker, and Stanford derived a universal

temperature-dependent upper bound of the Lyapunov
exponent λ in quantum chaotic systems by the quantum
field theory [15]

λ ≤
2πT
ℏ

; ð1Þ

where T is the temperature of the system. Such temper-
ature-dependent characteristics can also be obtained

through the thought experiment of the shock wave near
the horizon of a black hole [16,17], and some calculations
of the shock wave have studied the Lyapunov exponent
near the horizon [18–20]. In black hole calculations, the
equivalent form of the chaos bound can be obtained by
the natural unit ℏ ¼ 1 and the relationship between the
Hawking temperature TH at the black hole’s event horizon
and the surface gravity κ

λ ≤ κ: ð2Þ

In the background of black holes, this upper bound can be
tested in single-particle systems. Hashimoto and Tanahashi
obtained a consistent upper bound of the Lyapunov
exponent by considering the test particles maintain the
static equilibrium due to external forces outside the black
hole [21]. This result inspires the study of the Lyapunov
exponent’s upper bound outside black holes by considering
particle motion.
In [22], Zhao et al. studied the static equilibrium of

charged particles near a large class of charged black holes
and discussed the near-horizon expansion. They found that
in the static equilibrium of the test particle, the bound
Eq. (2) is satisfied by Reissner-Nordström (RN) and
Reissner-Nordström anti–de Sitter (RN-AdS) black holes
and can be violated by some black holes [22]. The violation
of the upper bound for the Lyapunov exponent was also
found in the black hole with quasitopological electromag-
netism [23]. Taking into account the effects of angular
momentum, the circular motion of the test particle can
violate the chaos bound for the RN black hole [24], the
Kerr-Newman black hole [25] and the Kerr-Newman AdS
black hole [26]. Different black holes were discussed to
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investigate the violation of chaos bound [27–32]. In [33],
the Lyapunov exponent of particle motion near the black
hole and cosmological horizons was investigated, and the
author pointed out that the null energy conditions do not
guarantee the satisfaction of chaos bounds. One of the
interesting questions is what properties of black holes are
associated with the Lyapunov exponent, which inspires us
to study the Lyapunov exponent of particle motion.
In this paper, we investigate the relationship between

the Lyapunov exponent and the chaos bound when the
test particle maintains a stationary equilibrium in the
radial direction near the charged black brane. We focus on
the equilibrium in the radial direction of test particles. The
charged black brane has the hyperscaling violating factor
[34]. The hyperscaling violating factor can bring interest-
ing properties to space-time geometry. Other several
hyperscaling violating black brane solutions were pro-
posed [35–38]. The influence of the lateral momentum is
considered to explore the bound violation. Charged
particles can maintain an equilibrium in the radial direc-
tion near the horizon by the repulsive force from the
electric charge and the lateral momentum. We do not
consider the backaction of particle motion on the back-
ground spacetime. The influence of the two characteristic
parameters of the charged black brane, the dynamical
exponent z and the hyperscaling violating exponent θ, on
the Lyapunov exponent is discussed. We found that the
chaos bound can be violated in the parameter range where
θ and z are small. In our previous work [24], it was pointed
out that the chaos bound can be violated in the case of
near-extremal charged black holes, so here we discuss
the effect of the temperature of the charged black brane on
the Lyapunov exponent of particle motion. We also
consider the effect of the null energy condition (NEC)
on the study of the chaos, and the expression of NEC is
Tμνξ

μξν ≥ 0. Our numerical results show that the bound
can be violated when the NEC is violated. In the extremal
cases of zero-temperature and satisfying NEC, we derive
the critical parameters θc and zc, and find the chaos bound
λ ≤ κ is satisfied when θ > θc or z > zc.
The rest of this paper is organized as follows. In Sec. II,

we review the background of the charged black branes
with the hyperscaling violating factor and its parameter
relationship of the temperature and NEC. In Sec. III, we
derive the Lyapunov exponent λ for test particles that
maintain equilibrium in the radial direction using the
Jacobian matrix. In Sec. IV, the numerical results of
κ2 − λ2 are shown. We discuss the influences of temper-
ature TH, parameters (θ and z) and the null energy
condition to the Lyapunov exponent. The violation of
the chaos bound is found. In Sec. V, the critical parameters
θc and zc are obtained from the extremal cases of black
brane temperature and satisfying NEC. We summarize the
main conclusions in Sec. VI. In the Appendix, we discuss
the case of the black brane with the violation of NEC.

II. REVIEW OF THE CHARGED BLACK BRANES
WITH THE HYPERSCALING

VIOLATING FACTOR

The charged black brane with the hyperscaling violating
factor considered is a solution to the Einstein-Maxwell-
dilaton theory. The Einstein-Maxwell-dilaton gravity has a
dþ 2-dimensional minimal model with action [34,35,38]

S ¼ −
1

16πG

Z
ddþ2x

ffiffiffiffiffiffi
−g

p

×

�
R −

1

2
ð∂ϕÞ2 þ VðϕÞ − 1

4

X2
i¼1

eλiϕF2
i

�
; ð3Þ

where R is the Ricci scalar, ϕ is the scalar field and VðϕÞ is
the potential function of scalar field. The model has two
free parameters λ1, λ2 and two gauge fields F1, F2.
The charged black brane solution with hyperscaling

violating factor from the action Eq. (3) can be written as [34]

ds2 ¼ r−2
θ
d

�
−r2zfðrÞdt2þ dr2

r2fðrÞþ r2dx⃗2
�
;

F1rt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðz−1Þðzþd−θÞ

p
e

θð1−dÞ=dþdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd−θÞðz−1−θ=dÞ

p ϕ0
rdþz−θ−1;

F2rt ¼Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd−θÞðz−θþd−2Þ

p
e−

ffiffiffiffiffiffiffiffiffiffi
z−1−θ=d
2ðd−θÞ

p
ϕ0r−ðzþd−θ−1Þ;

eϕ ¼ eϕ0r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd−θÞðz−1−θ=dÞ

p
; ð4Þ

where ϕ0 is a constant scalar field. The parameters z and θ
are the dynamical and hyperscaling violating exponents,
respectively, with z > 1 and 0 ≤ θ < d. It should be noted
that this solution will not be valid when θ ¼ d. The
blacken factor fðrÞ is given by

fðrÞ ¼ 1 −
M

rzþd−θ þ
Q2

r2ðzþd−θ−1Þ ; ð5Þ

where M is the mass of black brane and Q is the electric
charge. F1 rt is an auxiliary gauge field and F2 rt is the
electric field. Taking infinity as the reference point of the
electric potential, the electric potential functionAt is given by

At ¼
Z

r

∞
F2 rtdr ¼ −

ffiffiffi
2

p
Qe−ϕ0

ffiffiffiffiffiffiffiffiffi
d−dzþθ
2dðd−θÞ

p
r2−d−zþθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dþ z − θ − 2
p ð6Þ

The constraint dþ z − θ − 2 ≥ 0 can ensure that the electric
potential function is real. The radius of horizon rh can be
defined by fðrhÞ ¼ 0, which can lead to

r2ðdþz−θ−1Þ
h −Mrdþz−θ−2

h þQ2 ¼ 0: ð7Þ
The Hawking temperature TH at the horizon is given by

TH ¼ ðdþ z − θÞrzh
4π

�
1 −

ðdþ z − θ − 2ÞQ2

dþ z − θ
r2ðθ−d−zþ1Þ
h

�
:

ð8Þ
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We can obtain the corresponding surface gravity κ, that is
to say

κ ¼ 2πTH ¼ ðdþ z − θÞrzh
2

×

�
1 −

ðdþ z − θ − 2ÞQ2

dþ z − θ
r2ðθ−d−zþ1Þ
h

�
: ð9Þ

To avoid naked singularity, the following inequality must be
satisfied

r2ðdþz−θ−1Þ
h ≥

ðdþ z − θ − 2Þ
dþ z − θ

Q2: ð10Þ

With the null vector ξμ ¼ ð ffiffiffiffiffiffi
grr

p
;

ffiffiffiffiffi
gtt

p
; 0Þ, the null

energy condition (NEC) of the black brane Eq. (4) is [34]

Tμνξ
μξν ∼ dðαþ 1Þðαþ z − 1Þr−2αfðrÞ ≥ 0; ð11Þ

where α ¼ − θ
d. The NEC can be recast as

ðαþ 1Þðαþ z − 1Þ ≥ 0: ð12Þ

Here we can obtain all the parameter conditions satisfied by
the charged black brane with the hyperscaling violating
factor

dþ z − θ − 2 ≥ 0;

r2ðdþz−θ−1Þ
h ≥

ðdþ z − θ − 2Þ
dþ z − θ

Q2; ðαþ 1Þðαþ z − 1Þ ≥ 0:

ð13Þ

Among the parametric constraints, the null energy condition
(NEC) is an important element, and it is one of the key parts
of our discussion. Since the violation of NEC is controver-
sial, we put the case of the spacetime with the violation of
NEC in the appendix as a referenceable supplementary
discussion. In such background, the null energy condition
Tμνξ

μξν ≥ 0 is violated.
We focus on the effect of the hyperscaling violating

exponent θ and the dynamical exponent z, so to simplify
the calculation we set the parameters

ϕ0 ¼ 0 and rh ¼ 1: ð14Þ

The inequality Eq. (10) can be recast as

1 ≥
ðdþ z − θ − 2Þ

dþ z − θ
Q2; ð15Þ

and there is no extremal black brane when Q2 < 1. In the
study of RN black holes, we pointed out the violation of
chaos bound in the near-extremal RN black hole [24].
Thus it is interesting to discuss the Lyapunov exponent of

particle motion in the extremal and near-extremal charged
black brane. To explore the cases of extremal and near-
extremal black brane and present results more clearly, we
consider the charge of the black brane Q ¼ 2 in this paper.
In this work, we focus on the 4-dimensional cases, and

we set the dimensional parameter d ¼ 2. The physical
parameter space ðθ; zÞ describing the charged black branes
and the spacetime with the violation of NEC is plotted in
Fig. 1. As shown in the plot, Region 1 in blue represents the
charged black brane with the hyperscaling violating factor.
The red region 2 indicates the background where NEC is
violated, which is discussed in the appendix. In the
parameter space ðθ; zÞ, the bottom of charged black branes
(Region 1) means Tμνξ

μξν ¼ 0, and under this boundary,
NEC is broken.

III. THE LYAPUNOV EXPONENT OF CHARGED
PARTICLES WITH EQUILIBRIUM IN

THE RADIAL DIRECTION

We focus on the equilibrium in the radial direction of test
particles near the horizon, which means its radial position is
a constant. Near a black hole, the equilibrium in the radial
direction can be represented as the circular motion of test
particles on the equatorial plane of the black hole. Static
equilibrium is a special case of the equilibrium in the radial
direction that indicates that test particles remain stationary
in space. Near the horizon, when a particle in equilibrium is
perturbed, its perturbation grows exponentially with time,
and its corresponding exponent is the Lyapunov exponent
[21]. From the effective potential analysis, this instability
of the test particles’ equilibrium in the radial direction
corresponds to a local maximum of the effective potential
of test particles. More discussion of the effective potential
about particle motion near horizon can be found in [25–27].
The Lyapunov exponent of test particle also can be

calculated by using the Jacobian matrix [39–41]. Here we
calculate the Lyapunov exponent of test particles that
maintain an equilibrium in the radial direction near the

Region 1

Region 2

0.0 0.5 1.0 1.5 2.0
1.0

1.5

2.0

2.5

z

FIG. 1. The available physical space ðθ; zÞ, when d ¼ 2,
ϕ0 ¼ 0, Q ¼ 2 and rh ¼ 1. Region 1 describes the charged
black brane with hyperscaling violating factor. Region 2 corre-
sponds to the case where the null energy condition is violated.
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charged black brane. For simplicity, we rewrite the black
brane’s metric Eq. (4) as

ds2 ¼ −FðrÞdt2 þ dr2

HðrÞ þGðrÞdx⃗2; ð16Þ

where FðrÞ ¼ r2ðz−
θ
dÞfðrÞ,HðrÞ ¼ r2ð1þ

θ
dÞfðrÞ, and GðrÞ ¼

r2ð1−θ
dÞ. When we focus on the 4-dimensional case, which

can result in d ¼ 2 and dx⃗2 ¼ dx2 þ dy2. Consider a
charged particle moving in the y ¼ 0 plane, its
Lagrangian can be written

L ¼ 1

2

�
−FðrÞ_t2 þ _r2

HðrÞ þ GðrÞ_x2
�
− qAtðrÞ_t; ð17Þ

where the dot denotes a derivative with respect to the
proper time τ. The generalized momenta πμ ¼ ∂L

∂_xμ are

πt ¼ −ðFðrÞ_tþ qAtðrÞÞ ¼ −E ¼ Constant;

πr ¼
_r

HðrÞ ;

πx ¼ GðrÞ_x ¼ Constant; ð18Þ

where E is the energy of the test particle, πr is the radial
momentum and πx is the lateral momentum. The different
values of constants ðq; πt; πxÞ of test particles result in
different states of particle motion, such as falling into the
horizon, moving away from the horizon, periodic motion,
and stationary equilibrium, etc.
With the formula H ¼ πμ _xμ − L, the Hamiltonian of the

test particle is

H ¼ 1

2

�
−
ðπt þ qAtðrÞÞ2

FðrÞ þHðrÞπ2r þ
π2x

GðrÞ
�
; ð19Þ

which leads to the canonical equations of motion for the
test particle

_xμ ¼ ∂H
∂πμ

; _πμ ¼ −
∂H
∂xμ

: ð20Þ

The radial evolution equations of the test particle with
respect to the coordinate time t are

dr
dt

¼ _r
_t
¼−

πrFðrÞHðrÞ
πtþqAtðrÞ

;

dπr
dt

¼ _πr
_t
¼ 1

2

�ðπtþqAtðrÞÞFðrÞ0
FðrÞ

þFðrÞðHðrÞ0GðrÞ2π2r −GðrÞ0π2xÞ
ðπtþqAtðrÞÞGðrÞ2

−2qAtðrÞ0
�
; ð21Þ

where the prime “0” denotes derivative with respect to r.
We can consider the four-velocity normalization condition

gμν _xμ _xν ¼ η; ð22Þ

where η is the normalization constant with η ¼ −1 the
timelike orbits, η ¼ 0 the null orbits, and η ¼ 1 the
spacelike orbits. Here, we consider the charged test particle
moving along the timelike orbits and the null orbits.
We can obtain the Jacobian matrix of test particle motion

by taking (r, πr) as the phase space variables. For the
convenience of writing, we will mark the equations (21)
as dr

dt ¼ M1 and
dπr
dt ¼ M2. The Jacobian matrix Kij can be

defined by

Kij ¼
� ∂M1

∂r
∂M1

∂πr

∂M2

∂r
∂M2

∂πr

�
: ð23Þ

For the equilibrium in the radial direction of test particles, it
should satisfy the equilibrium condition dr

dt ¼ dπr
dt ¼ 0. The

Jacobian matrix Kij of test particles can be reduced at the
equilibrium position r ¼ r0. The components are

K11 ¼ 0;

K12 ¼ −
FðrÞHðrÞ
πt þ qAtðrÞ

����
r¼r0

;

K21 ¼ −
1

2

�
2qAtðrÞ00 −

�ðπt þ qAtðrÞÞFðrÞ0
FðrÞ

�0

þ
�

π2xFðrÞGðrÞ0
ðπt þ qAtðrÞÞGðrÞ2

�0�����
r¼r0

;

K22 ¼ 0: ð24Þ

The eigenvalues of the Jacobian matrix Kij can lead to the
Lyapunov exponent λ at the equilibrium position r ¼ r0

λ2 ¼ FðrÞHðrÞ
2ðπt þ qAtðrÞÞ

�
2qAtðrÞ00 −

�ðπt þ qAtðrÞÞFðrÞ0
FðrÞ

�0

þ
�

π2xFðrÞGðrÞ0
ðπt þ qAtðrÞÞGðrÞ2

�0�����
r¼r0

: ð25Þ

We discuss the effect of the lateral momentum πx on the
particle motion, and the relationship between the constants
q, πt and πx in the above equation is contracted by the
equilibrium condition dr

dt ¼ dπr
dt ¼ 0. We can see that the test

particle at the equilibrium position r ¼ r0 satisfies
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πt ¼
GðrÞðηGðrÞ − π2xÞð2FðrÞAtðrÞ0 − AtðrÞFðrÞ0Þ − π2xAtðrÞFðrÞGðrÞ0

2GðrÞAtðrÞ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðrÞGðrÞðπ2x − ηGðrÞÞ

p
����
r¼r0

;

q ¼ GðrÞFðrÞ0ðηGðrÞ − π2xÞ þ π2xFðrÞGðrÞ0
2GðrÞAtðrÞ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðrÞGðrÞðπ2x − ηGðrÞÞ

p
����
r¼r0

: ð26Þ

Taking the values of πt and q obtained from the above
equations into Eq. (25), we can analyze the effect of πx in
the Lyapunov exponent. The normalization constant η ¼
−1; 0 corresponds to the timelike orbits and the null orbits,
respectively. We label the Lyapunov exponent as λs when
the particle maintains a static equilibrium (the lateral
momentum πx ¼ 0), the Lyapunov exponent for timelike
orbits as λt, and the Lyapunov exponent for null orbits as
λn. From Eqs. (25) and (26), we can obtain limπx→∞λt ¼ λn,
which means the Lyapunov exponent of timelike orbits is
equal to that of the null orbit when πx → ∞. So when we
want to discuss the Lyapunov exponent of massive particles
in the limit that πx → ∞, we can consider λn of null orbit.

IV. THE ANALYSIS OF THE LYAPUNOV
EXPONENT NEAR CHARGED BLACK BRANES

In this section, we discuss the relationship between the
chaos bound and the Lyapunov exponent for charged
particles which maintain equilibrium in the radial direction
near charged black branes with the hyperscaling violating
factor. We explore the effect of the hyperscaling violating
exponent θ and the dynamical parameter z. The influence

of the black brane temperature and NEC is also discussed.
As shown in the previous section, we set d ¼ 2, ϕ0 ¼ 0,
Q ¼ 2, rh ¼ 1. The corresponding valid parameter space
ðθ; zÞ with the temperature TH is shown in Fig. 2.
As shown in Fig. 2, when θ is a constant, the black brane

temperature TH decreases as z increases; when z is a
constant, the black brane temperature TH increases as θ
increases. The red line in the figure shows the cases of
Tμνξ

μξν ¼ 0, and the NEC is violated below the red line.
The points where z is smaller or θ is larger are closer to
the region where the null energy condition is violated. To
express our results more clearly, we discuss whether the
chaos bound is violated by evaluating κ2 − λ2 numerically.
When κ2 − λ2 < 0, the chaos bound λ ≤ κ is violated. The
Lyapunov exponent λ is calculated by Eq. (25).

A. Fixed temperature TH, varying θ, z

With fixed temperature TH, but varying θ, z for the
charged black branes, we first numerically analyze the
relationship between the chaos bound and the Lyapunov
exponent corresponding to the equilibrium in the radial
direction. We consider the temperature of the black brane

0.8 1.0 1.2 1.4 1.6 1.8 2.0

1.4

1.6

1.8

2.0

2.2

2.4

2.6

z

TH

0.015
0.030
0.045
0.060
0.075
0.090
0.105
0.120
0.135

FIG. 2. The temperature TH of the charged black brane as a function of the parameters θ and z. The black dots (θ, z) in the figure are
the parameter values for the black branes that we discuss next subsection.
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TH ¼ 0.015, 0.030, 0.045. The parameter values in the
parameter space ðθ; zÞ are shown in Fig. 2 with the black
dots.
For a massive particle, we consider its static equilibrium

(the lateral momentum πx ¼ 0) and the finite lateral
momentum (πx ¼ 3; 5; 7). The Lyapunov exponent of null
orbits is also considered, which equals to the value of
timelike orbits with πx → ∞. The numerical results are
presented in Figs. 3–5. In these figures, we use dashed lines
to show the static equilibrium of a massive particle,
dot-dashed lines to show the null orbits, and solid lines
to show the results of the massive particle with finite
lateral momentum (πx ¼ 3; 5; 7), respectively. κ2 − λ2 < 0
in these figures indicates that the chaos bound is violated by
the test particle with equilibrium in the radial direction.
In Fig. 3, we plot the numerical results of κ2 − λ2 for the

black brane temperature TH ¼ 0.015. We can see from
Fig. 3(a) that there is κ2 − λ2 < 0 for λn and λt, which

indicates that the chaos bound is violated; while in Fig. 3(b)
the chaos bound is not violated. This result indicates that
the parameters θ and z affect the equilibrium stability of the
test particles at the same temperature. The numerical results
of κ2 − λ2 for the black brane temperature TH ¼ 0.030,
0.045 are plotted in Figs. 4 and 5, respectively. Similar to
the case for TH ¼ 0.015, the chaos bound can be violated at
the same temperature when θ and z are small. Meanwhile,
comparing Figs. 3(a), 4(a) and 5(a), we can see that the
higher temperature TH is, the smaller the range r=rh of the
chaos bound violation is.
In Figs. 3–5, at the same equilibrium position, κ2 − λ2

decreases with the increase of the lateral momentum πx of
the test particle, then it indicates that the Lyapunov
exponent of the timelike orbits becomes stronger with
the increase of πx. The Lyapunov exponent of the null
orbits is the largest, which is consistent with our previous
results of RN black holes [24]. In the charged black brane

FIG. 3. κ2 − λ2 as a function of r=rh near the charged black brane with (a) θ ¼ 0.946, z ¼ 1.550 and (b) θ ¼ 1.046, z ¼ 1.650 at
TH ¼ 0.015. The chaos bound is violated in Fig. 3(a) since κ2 − λ2 < 0.

FIG. 4. κ2 − λ2 as a function of r=rh near the charged black brane with (a) θ ¼ 1.009, z ¼ 1.550 and (b) θ ¼ 1.109, z ¼ 1.650 at
TH ¼ 0.030. The chaos bound is violated for the green line in Fig. 4(a) since κ2 − λ2 < 0.
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background, the parameters of the black brane, in addition
to the temperature, also affect whether the chaos bound is
violated.
Next, wewill further discuss the relationship between the

black brane parameters and the Lyapunov exponent of the
test particle with equilibrium in the radial direction. We
discuss the null orbit because it has the largest Lyapunov
exponent and is most likely to exceed the bound λ ≤ κ.

B. Fixed parameter θ or z

To explore the relationship between the black brane
parameters and the Lyapunov exponent of particle motion,
here we investigate the null orbits of the test particle at the
same black brane parameter θ and z, respectively. The
numerical results for κ2 − λ2n are shown in Figs. 6 and 7,
with the colored region where κ2 − λ2n > 0. The region
where κ2 − λ2n < 0 is marked in yellow in these plots, which
indicates that the chaos bound is violated.
In Fig. 6, the numerical results of κ2 − λ2n for null orbits

are shown, which has three plots for different θ ¼ 0.80,
1.10, 1.50. For each plot, the horizontal axis represents
r=rh, and the vertical axis represents the parameter z.

For the plot with θ ¼ 0.80 in Fig. 6(a), all available values
of z have yellow regions, which means that the chaos
bound is always violated. As z increases, there is a
decrease in the range of r=rh where the chaos bound
can be violated. In Fig. 6(b), we show that for θ ¼ 1.10,
the chaos bound can be violated near the minimal value of z,
and the region where the chaos bound is violated decreases
as z increases. The minimal value of z corresponds to the
zero-temperature of the charged black brane. There is no
violation of the chaos bound as shown in Fig. 6(c).
For z ¼ 1.40, 1.59, 2.10, the results of κ2 − λ2 are shown

in Fig. 7. The horizontal axis represents r=rh, and the
vertical axis represents the parameter θ. We color the region
in yellow where the chaos bound is violated. As shown in
Fig. 7(a) with z ¼ 1.40, the chaos bound is violated for all
values of θ. In Fig. 7(b), there is θ ¼ 1.59. The chaos bound
can be violated in two regions close to the maximal and
minimal values of θ. The maximal and minimal values of θ
correspond to the cases of Tμνξ

μξν ¼ 0 and the zero-
temperature, respectively. The range r=rh of the violation
of chaos bound is larger near the maximal and minimal
values of θ. The chaos bound is not violated for the plot
with θ ¼ 2.10 in Fig. 7(c).

FIG. 6. The contour plot of κ2 − λ2n as a function of z and r=rh for fixed θ: (a) θ ¼ 0.80, (b) θ ¼ 1.10 and (c) θ ¼ 1.50. The yellow
region corresponds to the chaos bound violated region.

FIG. 5. κ2 − λ2 as a function of r=rh near the charged black brane with (a) θ ¼ 1.072, z ¼ 1.550 and (b) θ ¼ 1.172, z ¼ 1.650 at
TH ¼ 0.045. The chaos bound is violated for the green line in Fig. 5(a) since κ2 − λ2 < 0.
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From Figs. 6 and 7, we can conclude these results.
There is always κ2 − λ2n < 0 when θ and z are small, as in
Figs. 6(a) and 7(a). We can see that in Figs. 6(b)1 and 7(b),
as θ and z increase, the violation of chaos bound only
exists in the parameter range near the zero-temperature
and the critical values of NEC. The range of r=rh with
κ2 − λ2n < 0 is the biggest at the extremal cases of temper-
ature and NEC. As θ and z deviate from the extremal
cases, the range r=rh of κ2 − λ2n < 0 decreases. In Figs. 6(b)
and 7(b), around the equilibrium position r=rh ¼ 1.1, there
is a maximal range of parameters that can violate λ ≤ κ. In
Figs. 6(c) and 7(c), κ2 − λ2n is always positive. There seems
to be no more κ2 − λ2n < 0 once θ and z are large enough.
From these results, we can see that the violation of the

chaos bound is influenced by the parameters θ and z near
the charged black brane, and the chaos bound is easily
violated when θ and z are small. Also, we can see that
the chaos bound is also easily violated near the zero-
temperature and the critical values of the null energy

condition, which reveals the relationship between the
particle motion instability and the black brane’s parameters,
temperature and the null energy condition.

C. Fixed equilibrium position r=rh
To show more clearly the effect of the temperature and

the null energy condition on the chaos bound, we analyze
κ2 − λ2n for the fixed radial position r=rh where the test
particle maintains equilibrium in the radial direction.
In Fig. 8, the numerical result of κ2 − λ2n as a function of

θ and z for fixed r=rh is plotted. The case of r=rh ¼ 1.005
is considered because it is near the horizon. In the previous
subsection, we can see that the violation of the chaos bound
is often located at r=rh ¼ 1.1, so we also consider the case
of r=rh ¼ 1.1. The region where κ2 − λ2n < 0 is colored in
green, which means the bound λ ≤ κ is violated.
The numerical results at the equilibrium position r=rh ¼

1.005 are shown in Fig. 8(a). There is always κ2 − λ2n < 0
in the region where the parameters θ and z are small.
However, as the parameters increase, κ2 − λ2n < 0 can be
seen only in the parameter space near the zero-temperature
and the cases of Tμνξ

μξν ¼ 0. The maximal value of θ ¼
1.217 for the violation of chaos bound at r=rh ¼ 1.005 is
given by Tμνξ

μξν ¼ 0, and another parameter maximal

FIG. 7. The contour plot of κ2 − λ2n as a function of θ and r=rh for fixed z: (a) z ¼ 1.40, (b) z ¼ 1.59 and (c) z ¼ 2.10. The yellow
region corresponds to the chaos bound violated region.

FIG. 8. The contour plot of κ2 − λ2n as a function of θ and z for fixed r=rh: (a) r=rh ¼ 1.005, (b) r=rh ¼ 1.1. The green region
corresponds to the parameter space ðθ; zÞ where the chaos bound is violated.

1In this plot, there is no κ2 − λ2n < 0 near the zero-temperature.
This is probably because z is already greater than some critical
value. In the next discussion, there will be more intuitive results to
show that λn is more likely to exceed λ ≤ κ near extremal black
branes.
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value z ¼ 1.665 is given by the zero-temperature limit.
In Fig. 8(b), the result at the position r=rh ¼ 1.1 shows that
κ2 − λ2n < 0 exists in the small parameter region ðθ; zÞ.
Something is different in that there is still κ − λ2n < 0 even
in the middle parameter region. In this case, the maximal
values of the parameters satisfying κ2 − λ2n < 0 are θ ¼
1.179 and z ¼ 1.634, which are smaller than Fig. 8(a).
In Fig. 8 we can see that the value of κ − λ2n is always

smaller near the upper and lower boundary of the parameter
space. The maximal parameter values that allow κ − λ2n < 0
also always appear on the upper and lower boundary of
the parameter space. The upper and lower boundary
corresponds to the cases of the zero-temperature TH ¼ 0
and Tμνξ

μξν ¼ 0, respectively. This suggests a connection
between the Lyapunov exponent in the particle motion and
the black brane temperature as well as the NEC. We can
obtain the critical parameters θc and zc for κ − λ2n < 0 in the
cases of zero-temperature and critical values of NEC. These
parameters θc and zc provide the possibility of the violation
of chaos bound, i.e., the bound λ ≤ κ cannot be violated by
test particles with equilibrium in the radial direction when
θ > θc and z > zc.

V. THE CRITICAL PARAMETERS θc AND zc
FOR THE VIOLATION OF λ ≤ κ

In the previous section, we discussed the bound of test
particles’ equilibrium in the radial direction and found the
violation. The effect of the black brane temperature TH and
the null energy condition (NEC) is investigated. The results
showed that the bound λ ≤ κ is more likely to be violated
near the cases of zero-temperature black branes and the
critical value of NEC (Tμνξ

μξν ¼ 0).2 Through the inves-
tigation of zero-temperature cases and the cases of
Tμνξ

μξν ¼ 0, we can understand more about the violation
of chaos bound in the charged black brane with the
hyperscaling violating factor and find the critical param-
eters (θc and zc) for the violation of chaos bound. When
θ > θc or z > zc, the bound λ ≤ κ is always satisfied.
As before, we set the parameters d ¼ 2, ϕ0 ¼ 0, Q ¼ 2

and rh ¼ 1 inEq. (4).We investigatewhether the equilibrium
in the radial direction of test particles violates the upper
bound of the Lyapunov exponent λ based on the value of
κ2 − λ2, and the bound is violated when κ2 − λ2 < 0.

A. TH = 0 case

We consider the extremal black brane with TH ¼ 0 and
explore the violation of bound in test particles’ equilibrium
in the radial direction. From Eq. (10), we can obtain the
zero-temperature condition

z − θ ¼ 2

3
: ð27Þ

Near the extremal charged black brane, the Lyapunov
exponent λn of null orbits can be reduced to the form
related to θ or z, respectively. We can obtain the formula of
κ2 − λ2n in terms of θ as

κ2 − λ2n ¼
1

9
r2θ−

16
3 ð48ð8− 10θþ 3θ2Þþ 75r

4
3ð5− 8θþ 3θ2Þ

þ 24r
10
3 ð8− 5θþ 3θ2Þ− 30r4ð5− 4θþ 3θ2Þþ r

20
3

× ð9θ2− 1Þ− 40r
2
3ð20− 27θþ 9θ2ÞÞ; ð28Þ

and the formula in terms of z as

κ2−λ2n¼
1

9
r2z−

20
3 ð48ð16−14zþ3z2Þ−120r

2
3ð14−13zþ3z2Þ

−30r4ð9−8zþ3z2Þþ3r
20
3 ð1−4zþ3z2Þþ25r

4
3

×ð35−26zþ92Þþ8r
10
3 ð38−27zþ9z2ÞÞ: ð29Þ

In Fig. 9, we show the numerical results of κ2 − λ2n in the
extremal charged black brane. The region where the chaos
bound is violated is colored in yellow. As shown in the two
plots, the range of r=rh for the violation of the bound
decreases with the increase of θ (or z) until the chaos bound
is no longer violated near the horizon. There are obviously
the critical parameter values θc and zc, and when θ > θc
(or z > zc), there is no κ2 − λ2n < 0.
To find the critical values of parameters (θ and z),

we expand Eqs. (28) and (29) near the horizon (rh ¼ 1).
There are

κ2 − λ2n ∼ ðθ − 1Þðr − 1Þ3 þOððr − 1Þ4Þ; ð30Þ

and

κ2 − λ2n ∼ ð3z − 5Þðr − 1Þ3 þOððr − 1Þ4Þ: ð31Þ

From the above equations, we can obtain the critical values
for the violation of chaos bound in the extremal charged
black brane, which we denote here as θc1 and zc1,
respectively: θc1 ¼ 1 and zc1 ¼ 5=3.

B. Tμνξμξν = 0 case

Next, we discuss the chaos bound at Tμνξ
μξν ¼ 0. In the

previous discussion, our results show that κ2 − λ2 < 0 is
more likely to happen at the parameter range satisfying of
Tμνξ

μξν ¼ 0. Here we focus on the charged black brane
with the constraint Tμνξ

μξν ¼ 0. With the null energy
condition Eq. (12), the black brake parameters are con-
strained by

2z − θ ¼ 2: ð32Þ
2The null energy condition (NEC) means Tμνξ

μξν ≥ 0, so we
call the case of Tμνξ

μξν ¼ 0 as the critical value for the violation
of NEC.
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In the critical cases of NEC Tμνξ
μξν ¼ 0, we can simplify

the expression of κ2 − λ2n in terms of θ as

κ2 − λ2n ¼
1

16
ð2− 3θÞ2þ 75

16
r2θ−4ðθ− 2Þ2− 15r

5θ
2
−5þ 8r3θ−6

× ðθ− 2Þ2þ 1

4
rθ−2ð2θr4− 5r1þθ

2ð12þ θðθ− 4ÞÞ
þ 4rθð24þ θð3θ− 14ÞÞÞ; ð33Þ

and the formula of κ2 − λ2n in terms of θ as

κ2 − λ2n ¼
1

4
ð4− 3zÞ2− 60r5ðz−2Þðz− 2Þ2þ 32r6ðz−2Þðz− 2Þ2

þ 75

4
r4z−8ðz− 2Þ2þ r2zðr2z−6ð64þ 4zð3z− 13ÞÞ

− 5rz−4ð6þ zðz− 4ÞÞþ z−1Þ: ð34Þ

We show the results of Eqs. (33) and (34) in Fig. 10, and
there is κ2 − λ2n < 0 in the yellow region. For the charged
black brane with the critical values of NEC, we can see in

Fig. 10 that the region of κ2 − λ2n < 0 in r=rh shrinks as θ
(or z) increases until there is no κ2 − λ2n near the horizon.
Near the horizon rh ¼ 1, we can expand Eqs. (33)

and (34) as

κ2 − λ2n ¼
�
33

2
− 50θ þ 50θ2 −

81

4
θ3 þ 99

32
θ4
�
ðr − 1Þ2

þOðr − 1Þ3; ð35Þ

and

κ2 − λ2n ¼
1

2
ð3z − 4Þðzð394þ zð33z − 196ÞÞ − 264Þ

× ðr − 1Þ2 þOðr − 1Þ3: ð36Þ

The critical values θc2 and zc2 for the violation of chaos
bound in the cases of Tμνξ

μξν ¼ 0 are θc2 ¼ 1.219 and
zc2 ¼ 1.610. These values are related to the null energy
condition (NEC).

FIG. 10. The contour plot of κ2 − λ2n in the charged black brane with Tμνξ
μξν ¼ 0: (a) κ2 − λ2n as the function of r=rh and θ, (b) κ2 − λ2n

as the function of r=rh and z. In the yellow region, κ2 − λ2n < 0, corresponds to the chaos bound λ ≤ κ violated area.

FIG. 9. The contour plot of κ2 − λ2n in the extremal charged black brane: (a) κ2 − λ2n as the function of r=rh and θ, (b) κ2 − λ2n as the
function of r=rh and z. In the yellow region, κ2 − λ2n < 0, which means the bound λ ≤ κ is violated.

YU-QI LEI and XIAN-HUI GE PHYS. REV. D 107, 106002 (2023)

106002-10



The larger values of θc1 and θc2 (zc1 and zc2) are the
critical parameter values: θc ¼ Maxðθc1; θc2Þ and zc ¼
Maxðzc1; zc2Þ. For our setting of parameters (d ¼ 2,
ϕ0 ¼ 0, Q ¼ 2 and rh ¼ 1), the critical parameters are
θc ¼ 1.219 and zc ¼ 5=3. In the parameter space ðθ; zÞ
where θ > θc or z > zc, κ2 − λ2n is always positive, which
means the chaos bound is satisfied.3

VI. CONCLUSION

In summary, we investigate the Lyapunov exponent of a
test particle near the charged black branes with the hyper-
scaling violating factor. The Lyapunov exponent of particle
motion near the horizon has an upper bound, which equals
the surface gravity κ and is called the chaos bound [21,22].
The relationship between the equilibrium in the radial
direction of test particles and the chaos bound is discussed
here. Considering different parameters of the black brane,
we find the violation of the chaos bound.Whether the chaos
bound can be violated is related to the black brane
parameters (θ and z), the black brane temperature TH,
and the null energy condition (NEC).
We study the effects of different parameters θ and z on

the particle motion near the black brane, while in our
previous work, we pointed out the relationship between the
black hole temperature and the chaos bound in the particle
motion. The Lyapunov exponent of test particles’ equilib-
rium in the radial direction can be obtained from the
Jacobian matrix. The results show that even at the same
temperature TH, the test particle still has different behavior
of the Lyapunov exponent. Obviously, this is the effect of
black brane parameters θ and z. For the equilibrium of test
particles, its Lyapunov exponent increases with the lateral
momentum. Considering timelike orbits, in the limit where
the lateral momentum converges to infinity, the Lyapunov
exponent converges to the value of null orbits. Therefore we
discuss the Lyapunov exponent λn of the null orbits and the
surface gravity κ to study the bound λ ≤ κ, since it is most
likely to be beyond the bound. We analyze the numerical
results of κ2 − λ2n for the same parameters θ and z. The
results show that when the hyperscaling violating exponent
θ and the dynamical exponent z are small, there is always
κ2 − λ2n < 0. As θ and z increase, the parameter space
θ − z which has κ2 − λ2n < 0 becomes smaller, and κ −
λ2n < 0 only exists in the region near the zero-temperature
cases and the cases of Tμνξ

μξν ¼ 0. As the parameters
continue to increase, there is no violation of λ ≤ κ. These
results illustrate that the zero-temperature as well as the
violation of NEC gives more possibilities of violating
the chaos bound. By considering the limiting examples

of zero-temperature and the cases of Tμνξ
μξν ¼ 0, we

obtain the critical parameters θc and zc. The bound λ ≤
κ is always satisfied by the equilibrium in the radial
direction of test particles when θ > θc or z > zc. The
critical parameters imply a potential connection between
the violation of bound λ ≤ κ and the properties of space-
time. This connection is demonstrated in the Hawking
temperature and null energy condition. Note that the results
can recover that of RN-AdS black hole when z ¼ 1 and
θ ¼ 0. However, due to the complicated influence of
parameters θ and z on the background spacetime, we do
not see a significant difference in the geometry as the
parameters are above or below these critical parameters.
The relationship between the Lyapunov exponent’s upper
bound in particle motion and space-time geometry does
require further investigation and exploration.
We obtain the violation of the bound λ ≤ κ in the charged

black brane with the hyperscaling violating factor. This
result may not be contrary to the conjecture λ ≤ 2πT=ℏ
proposed in [15], since the conjecture was obtained from
the out-of-time-order correlator (OTOC) in quantum sys-
tems. In holographic theory, it is recognized that OTOC in
quantum field theory is dual to the shock wave at the
horizon. It is clear that the single particle motion we are
discussing is different from the shock wave. At the horizon,
λ ¼ κ is always satisfied. However, it is still interesting to
study the Lyapunov exponent in particle motion and the
violation of the bound. In the study on the Lyapunov
exponent of particle motion, some interesting conjectures
have been proposed. Such as the relationship between the
Lyapunov exponent of particle motion, the energy bound
[42] and the causality bound [43]. Guo et al. probed the
connection between the black hole phase transitions and the
Lyapunov exponents of particle motion [44]. Recently,
the relationship between the test particles’ homoclinic
orbits and chaos bound in the black hole with anisotropic
matter fields has also been discussed [45]. More about the
connection between the chaos bound and the nature of
black holes remains to be uncovered.
Our work supports the contact between the violation of

the chaos bound and the properties of the black brane (the
Hawking temperature and the null energy condition). These
results illustrate the potential physical significance of the
violation of the chaos bound in particle motion. It will be of
great interest to study more about the dynamic stability of
black holes through the chaos bound in the particle motion,
because there is an intrinsic correlation between them, and
figuring out this correlation will help us further understand
the black hole.
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3In the appendix, we consider the spacetime with the violation
of NEC. In the parameter space ðθ; zÞ larger than the critical
parameters θc and zc, the violation of chaos bound still exists.
This implies that a deeper physical meaning exists between the
chaos bound and the NEC.
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APPENDIX: THE BLACK BRANES WITH
THE VIOLATION OF NEC

With the parameters

d ¼ 2; ϕ0 ¼ 0; Q ¼ 2; rh ¼ 1;

we consider the black branes where NEC is violated.
The temperature TH at the horizon can be obtained by
the parameters θ and z, and we show it in Fig. 11. We can
see that TH at the horizon increases as θ increases and
decreases as z increases.
To explore whether the chaos bound can be violated, we

compute the value of κ2 − λ2n, and if κ2 − λ2n < 0, it means
that the chaos bound is violated.Weplot thenumerical results
of κ2 − λ2n in Fig. 12, which has three plots for different
equilibrium positions r=rh ¼ 1.0001, 1.005, 1.1. In the
colored region, κ2 − λ2n < 0, the chaos bound is violated.
And the region where κ2 − λ2n > 0 is marked in gray.

As shown in Fig. 12, in the background where NEC is
violated, there is κ2 − λ2n < 0 in most parameter space
ðθ; zÞ. For the equilibrium position r=rh ¼ 1.0001 in
Fig. 12(a), κ2 − λ2n < 0 always exists. This result means
that in spacetime with the violation of NEC, the chaos
bound can always be violated. The results at the equilib-
rium position r=rh ¼ 1.005, 1.1 are shown in Figs. 12(b)
and 12(c), respectively. κ2 − λ2n can be positive only when θ
and z are large and close to the cases of Tμνξ

μξν ¼ 0. The
closer the equilibrium position is to the horizon, the smaller
the range of κ2 − λ2n > 0. It is worth noting that in black
brane with the violation of NEC, the chaos bound is still
violated when θ > θcðor z > zcÞ. This implies an intrinsic
relationship between the Lyapunov exponent in particle
motion and the null energy condition, and it also reminds us
of the possible relevance of the chaos bound in particle
motion to some interesting questions, such as the instability
of spacetime and the causality.

FIG. 12. The contour plot of κ2 − λ2n as a function of θ and z for fixed r=rh: (a) r=rh ¼ 1.0001, (b) r=rh ¼ 1.005, (c) r=rh ¼ 1.1.
The colored region in these three plots denotes that κ2 − λ2n < 0, which means the bound λ ≤ κ is violated. The region which means
κ2 − λ2n > 0 is marked in gray.

0.5 1.0 1.5 2.0
1.0

1.2

1.4

1.6

1.8

2.0

z

TH

0.015
0.030
0.045
0.060
0.075
0.090
0.105
0.120
0.135

FIG. 11. The temperature TH of the black branes with the violation of NEC as a function of the parameters θ and z.
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