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Three-point functions of conserved supercurrents in 3D A =1 SCFT:
General formalism for arbitrary superspins
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We analyze the general structure of the three-point functions of conserved higher-spin supercurrents in
3D, N = 1 superconformal field theory. It is shown that supersymmetry imposes additional restrictions on
correlation functions of conserved higher-spin currents. We develop a manifestly supersymmetric
formalism to compute the three-point function (J, Ji,J7,), where J,, Ji,, and Ji, are conserved
higher-spin supercurrents with superspins s;, s,, and s3, respectively (integer or half-integer). Using a
computational approach limited only by computer power, we analytically impose the constraints arising
from the superfield conservation equations and symmetries under permutations of superspace points.
Explicit solutions for three-point functions are presented, and we provide a complete classification of the
results for s; < 20; the pattern is very clear, and we propose that our classification holds for arbitrary
superspins. We demonstrate that Grassmann-even three-point functions are fixed up to one parity-even
structure and one parity-odd structure, while Grassmann-odd three-point functions are fixed up to a single
parity-even structure. The existence of the parity-odd structure in the Grassmann-even correlation functions
is subject to a set of triangle inequalities in the superspins. For completeness, we also analyze the structure

of three-point functions involving conserved higher-spin supercurrents and scalar superfields.
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I. INTRODUCTION

Awell-known implication of conformal symmetry [1-11]
is that the general form of two- and three-point correlation
functions of primary operators is fixed up to finitely many
parameters. However, constructing explicit solutions for
three-point functions of conserved current operators such as
the energy-momentum tensor, vector currents, and more
generally, higher-spin currents, remains an open problem.
An interesting feature of three-dimensional (3D) conformal
field theories is the existence of parity-odd structures in the
three-point functions of conserved currents. These structures
were overlooked in the seminal work by Osborn and Petkou
[11] (see also [12]), which introduced the group-theoretic
formalism to study the three-point functions of the energy-
momentum tensor and vector currents. The parity-odd
structures were discovered later using a polarization spinor
approach in [13], where results for three-point functions of
conserved (bosonic) higher-spin currents were obtained.

“ev geny.buchbinder@uwa.edu.au
"benjamin.stone @research.uwa.edu.au

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010,/2023,/107(10)/106001(29)

106001-1

Soon after, it was proven by Maldacena and Zhiboedov in
[14] that correlation functions involving the energy-
momentum tensor and higher-spin currents are equal to
those of free field theories.' This can be viewed as an
extension of the Coleman-Mandula theorem [15] to
conformal field theories; it was originally proven in three
dimensions and was generalized to four- and higher-
dimensional cases in [16-19] (see also [20,21]). In three-
dimensional theories the general structure of the three-point
function (J J5,J5,), where J; denotes a conserved current
of arbitrary spin-s, is fixed up to the following form [13,14]*

<JAYIJ{TZJ{9/3> = al<Js1J{sz§(3>E1 + a2<Js]JA/VZJAIYI3>E2

+b(J5,J5, 75 )0 (1.1)

'An assumption of the Maldacena-Zhiboedov theorem is that
the conformal theory under consideration possesses a unique
spin-2 conserved current—the energy-momentum tensor. This
assumption, however, does not hold in the presence of fermionic
higher-spin currents. Hence, it also does not hold in super-
conformal theories possessing conserved higher-spin supercur-
rents.

“Recall: in a d-dimensional conformal field theory (CFT), a
conserved current of spin-s is a totally symmetric and traceless
tensor J,,, ..., of scale dimension A; = s + d — 2, satisfying the
conservation equation 0™ J,, .., = 0.
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where (J J5,J{ ), and (J, J5,JY,), are parity-even sol-
utions corresponding to free field theories, and (J; J§,J¥ ),
is a parity-violating, or parity-odd, solution which is not
generated by a free CFT. The existence of the parity-odd
solution is subject to the following triangle inequalities on
the spins:
S1§S2+S3, S2SS1+S3, S3SS1+S2. (12)
If any of the above inequalities are not satisfied, then the odd
solution is incompatible with current conservation. Parity-
odd solutions are unique to three dimensions and have been
shown to arise in Chern-Simons theories interacting
with parity-violating matter [22—-32]. Existence and unique-
ness of the odd solution has been proven in [28], while
methods to obtain explicit solutions for arbitrary spin are
contained in [16,17,33,34].

A natural follow-up question arises: in conformal field
theories, what are the implications of supersymmetry on the
general structure of three-point correlation functions? The
study of correlation functions in superconformal theories
has been carried out in diverse dimensions using the group-
theoretic approach developed in the following publications
[34-50]. It has been shown that superconformal symmetry
imposes additional restrictions on the three-point functions
of conserved currents compared to nonsupersymmetric
theories. For example, it was pointed out in [44] that there
is an apparent tension between supersymmetry and the
existence of parity-violating structures. In contrast with the
nonsupersymmetric case, parity-odd structures are not
found in the three-point functions of the energy-momentum
tensor and conserved vector currents [41-44]. For three-
point functions of higher-spin currents the results are more
unclear; however, it was shown in [47] that parity-odd
structures can appear in the three-point functions of
currents belonging to a superspin-2 current multiplet.
Such a multiplet contains independent conserved currents
of spin-2 and spin—% (the spin-2 current is not equal to but
possesses the same properties as the energy-momentum
tensor). In general, for three-point functions involving
conserved higher-spin currents, the conditions under which
parity-violating structures can arise in supersymmetric
theories are not well understood.

The intent of this paper is to address these concerns and
provide a complete classification of conserved three-point
functions in 3D A = 1 superconformal field theory. To do
this we develop a general formalism to study the three-point
function

Js, (20T, (22)J5,(23)), (1.3)

where z,, z,, z3 are points in 3D N = 1 Minkowski super-
space and the superfield J;(z) is a conserved higher-
spin supercurrent of superspin-s (integer or half-integer).
These currents are primary superfields transforming in an

irreducible representation of the 3D N = 1 superconformal
algebra, 80(3,2[1) = 08p(1|2;R). They are described by
totally symmetric spin tensors of rank 2s, J, .., (2) =
J (al.“%)(z), and satisfy the following superfield conserva-
tion equation:

Dy, (2) = O, (1.4)

where D is the conventional covariant spinor derivative in
N =1 superspace. As a result of the superfield conserva-
tion equation (1.4), conserved supercurrents have scale
dimension Ay = s 4 1 (saturating the unitary bound), and
at the component level contain independent conserved
currents of spin-s and s +%, respectively. The most
important examples of conserved supercurrents in super-
conformal field theory are the supercurrent and flavor
current multiplets, corresponding to the cases s :% and
%, respectively (for a review of the properties of
supercurrent and flavor current multiplets in 3D theories,
see [41,51] and the references therein). The supercurrent
multiplet contains the energy-momentum tensor and the
supersymmetry current.’ Likewise, the flavor current multi-
plet contains a conserved vector current. Three-point
correlation functions of these currents contain important
physical information about a given superconformal field
theory and are highly constrained by superconformal
symmetry.

The general structure of three-point functions of con-
served (higher-spin) currents in 3D N = 1 superconformal
field theory was proposed in [40] to be fixed up to the
following form:

S =

(5, J,05) = a5 3o, J5) g + b5, I, 05 )0, (1.5)
where (J, Ji,J,) is a parity-even solution and
(J5,J5,J5,) 0 is a parity-odd solution. However, as was
pointed out above there is a tension between supersym-
metry and the existence of parity-odd structures, which
means that the coefficient b in (1.5) vanishes in many
correlators. In this paper we provide a complete classi-
fication for when the parity-odd structures are allowed and
when they are not. In particular, we show that the odd
solution does not appear in correlation functions that are
overall Grassmann-odd (or fermionic). In the Grassmann-
even (bosonic) three-point functions the existence of the
parity-odd solution is subject to the following superspin
triangle inequalities:

S SS2+S3, (16)

S2SS1+S3, S3SS1+S2.

When the triangle inequalities are simultaneously satistied

there is one even solution and one odd solution; however, if

In N -extended superconformal theories, the supercurrent
multiplet also contains the R-symmetry currents.
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any of the above inequalities are not satisfied, then the odd
solution is incompatible with the superfield conservation
equations. Our classification is in perfect agreement with
our previous results in [41,44] for the three-point functions
of the energy-momentum tensor and conserved vector
currents. They belong to the supermultiplets of superspins
s = % and s = %, respectively, and, hence, their three-point
functions in superspace are Grassmann-odd. Based on our
classification, it is implied that they do not possess parity-
odd contributions, which is in agreement with the earlier
results. Our classification is also in agreement with our
previous result in [47] for the three-point function of the
conserved supercurrent of superspin-2. This three-point
function is Grassmann-even in superspace, and since the
triangle inequalities (1.6) are satisfied, a parity-odd con-
tribution is allowed.

Our method assumes only the constraints imposed by
superconformal symmetry and superfield conservation
equations; within the framework of our formalism we
reproduce all known results concerning the structure of
three-point functions of conserved supercurrents in 3D
N =1 superconformal field theory (SCFT). We present
new results for three-point functions involving higher-spin
supercurrents, obtaining explicit and completely analytic
results. We also analyze three-point functions involving
scalar superfields, thus covering essentially all possible
three-point functions in 3D A/ = 1 superconformal field
theory. Our method is based on a computational approach
(by means of analytic/symbolic computer algebra in
Mathematica) which constructs all possible structures for
the correlation function for a given set of superspins s, $»,
and s3, consistent with its superconformal properties. Next,
we extract the linearly independent structures by systematic
application of linear dependence relations and then impose
the superfield conservation equations and symmetries
under permutations of superspace points. As a result we
obtain the three-point function in a very explicit form which
can be presented for relatively high superspins. The method
can be applied for arbitrary superspins and is limited only
by computer power. Due to these limitations we were able
to carry out computations up to s; = 20 (a “soft” limit, after
which the calculations take many hours); however, with a
sufficiently powerful computer one could extend this bound
even further. The computational approach we have devel-
oped (based on the same method as in [34]) is completely
algorithmic; one simply chooses the superspins of the fields
and the solution for the three-point function consistent with
conservation and point-switch symmetries is generated.

The analysis is computationally intensive for higher
spins; to streamline the calculations we develop a hybrid,
index-free formalism which combines the group-theoretic
superspace formalism introduced by Osborn [35] and Park
[37,38] and a method based on contraction of tensor indices
with auxiliary spinors. This method is widely used through-
out the literature to construct correlation functions of

higher-spin currents (see, e.g., [13,16,17,40,52,53]); how-
ever, this particular approach describes the correlation
function completely in terms of a polynomial, H (X, ©; u,
v,w), which is a function of two superconformally covar-
iant three-point building blocks, X and ©, and the auxiliary
spinor variables u, v, and w. As a result one does not have
to work with the superspace points explicitly when impos-
ing the superfield conservation equations.

The results of this paper are organized as follows. In
Sec. II we review the essentials of the group theoretic
formalism used to construct correlation functions of primary
superfields in 3D A/ = 1 SCFT. In Sec. Il we outline a
method to impose all constraints arising from superfield
conservation equations and point-switch symmetries on
three-point functions of conserved higher-spin supercur-
rents. In particular, we introduce an index-free, auxiliary
spinor formalism which allows us to construct a generating
function for the three-point functions, and we outline the
important aspects of our computational approach.
Section IV is then devoted to the analysis of three-point
functions involving conserved supercurrents. As a test of our
approach, we present an explicit analysis for three-point
correlation functions involving combinations of supercur-
rent and flavor current multiplets, reproducing the known
results [41,44]. The results are then expanded to include
conserved higher-spin supercurrents, for which we provide
many examples and confirm the results of [47]. Here we also
resolve a contradiction in the literature concerning the
structure of the three-point function (J;/2J,J%); it was

found in [40] that this three-point function contains a parity-
odd solution; however, it was shown later in [47] that parity-
odd structures are inconsistent with conservation equations.
In this paper we reexamine this three-point function and
provide a straightforward explanation, based on the triangle
inequalities (1.6), for why this structure cannot appear. In
Sec. V, for completeness, we perform the analysis of corre-
lation functions involving combinations of scalar super-
fields and conserved higher-spin supercurrents. Finally, in
Sec. VI we comment on the general results in the context of
superconformal field theories. The appendixes are devoted
to mathematical conventions and various useful identities.

II. SUPERCONFORMAL SYMMETRY IN THREE
DIMENSIONS

In this section we will review the pertinent aspects of the
group-theoretic formalism used to compute three-point
correlation functions of primary superfields in 3D NV = 1
superconformal field theories. For a more detailed review
of the formalism the reader may consult [38,41].

A. Superconformal transformations and primary
superfields

Let us begin by reviewing infinitesimal superconformal
transformations and the transformation laws of primary
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superfields. This section closely follows the notation of
[54-56]. Now consider 3D, A" = 1 Minkowski superspace
MPP2, parametrized by coordinates 74 = (x¢,6%), where
a=0,1,2and a =1, 2 are Lorentz and spinor indices,
respectively. We consider infinitesimal superconformal
transformations

672" = &2t @ 6x = E4(2) +i(r) pE ()0, 80" =E%(2),

(2.1)

which are associated with the real first-order differential
operator

&= fA(Z)aA = éa(z)aa + §(I(Z)Da' (22)

This operator satisfies the master equation [£,D,] « Dy,
from which we obtain

£ = iDﬂgaﬂ. (2.3)

6

As a consequence, the conformal Killing equation is satisfied,

0,8y + 0, = %nabacéc- (24)
The solutions to the master equation are called the super-
conformal Killing vector fields of Minkowski superspace
[55,57]. They span a Lie algebra isomorphic to the super-
conformal algebra 03p(1]2;R). The components of the
operator ¢ were calculated explicitly in [38,41], and are
found to be

5(1/7’ _ aa/} _ /1(17,)(7/} _ xay/{y/;’ 4 Uxa/i 4 4i€(a9/3)

+ XX, 5 4 DA — dig x1(@0P), (2.5a)

1
g = e = 100 + 00" + by X0 + np(2i000° ~ x),
(2.5b)

Aaa - O, baﬂ - bﬂa'

(2.5¢)

Aop = Apas  Aap = Apa>

The bosonic parameters a,g, dqp, 0, b, correspond to
infinitesimal translations, Lorentz transformations, scale
transformations, and special conformal transformations,
respectively, while the fermionic parameters e* and #*
correspond to Q-supersymmetry and S-supersymmetry trans-
formations. Furthermore, the identity D,y o &, implies
that

6.0 = ~(Do&)Dy = 4/ (2)D; = 5 0(D.

/101[}'(2> = _D(aé’/)’)v G(Z) - Daga'

The local parameters 2% (z) and ¢(z) are interpreted as being
associated with combined special-conformal/Lorentz and
scale transformations, respectively, and appear in the
transformation laws for primary tensor superfields. For later
use let us also introduce the z-dependent S-supersymmetry
parameter

1al(2) = — LD, (2). (2.8)

2

Explicit calculations of the local parameters give [38,41]
29(2) = 49 — xr(aph) 4 2iplagh) — % bPe?,  (2.9)

U(Z) =0 + b(l/}xaﬁ + 2i0a’7(1’ (2.9b)

”a(z) =Na — baﬂ9ﬁ~ (29C)
Now consider a tensor superfield ® 4(z) transforming in an
irreducible representation of the Lorentz group with respect to
the index A. Such a superfield is called primary with
dimension A if it possesses the following superconformal
transformation properties:

30y = —£@ 4 — Ac(2)® 4 + A7 (2)(Myp) L @5, (2.10)
where ¢ is the superconformal Killing vector, ¢(z) and 1% (z)
are z-dependent parameters associated with &, and the matrix
M is a Lorentz generator.

1. Conserved supercurrents

In this paper we are primarily interested in the structure
of three-point correlation functions involving conserved
higher-spin supercurrents. In 3D, A/ = 1 theories, a con-
served higher-spin supercurrent of superspin-s (integer or
half-integer) is defined as a totally symmetric spin tensor of
rank 2s, J(1~--az.‘ (Z) = J(alu-azl‘)(z) = Ja(2s)(z)7 satisfying a
conservation equation of the form

D J gy, (2) = 0, (2.11)
where D® is the conventional covariant spinor derivative
(A11). Conserved currents are primary superfields as they
possess the following infinitesimal superconformal trans-
formation properties [38,41,57]:

6Ja]---a2x(z) = _gJa]---azs (Z) - AJG(Z)JGV"&%(Z)

+ 2540, °(2)d g 10,5 (2) - (2.12)
The dimension Aj is constrained by the conservation
condition (2.11) to Ay = s 4 1. Higher-spin supercurrents
possess the following component structure:
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0 1 (04
Ja(ZS) (Z) = J((z()Z\‘) (x> + ‘]((l()Z_\'+l)(x)9 25t

3(1) (2)
+ J(al Oy ( )eah) + Ja(Zs) (x)gz- (213)
After imposing (2.11), a short calculation gives J JW =0,

while J@ is a function of J( () 2" On the other hand, the

components J(©) and J(1) satisfy the following conservation
equations:

bl azj(o)

ajopa(2s-2)

uas (1)

(x)=0, oy ara(25— 1)(x) =0. (2.14)

Hence, at the component level, a higher-spin supercurrent
of superspin-s contains conserved conformal currents of
spin-s and spin-(s + 1), respectively.

B. Two-point building blocks

Given two superspace points z; and z,, we define the
two-point functions

U/ Q sn(@nf) _spa o o o
xlg_(xl_XZ) ﬁ+219(1 ‘9/2)_19129[1;2’ 07, =07 - 05,
(2.15)

which transform under the superconformal group as follows:
S.af e 1 o P
0x|; = — y(Zl)_Eé ,0(21) )x15

—x1 <AL Mzs) - %5 P (12)> (2.16a)

505, =— (’Wﬂ(zl) _%50’/30'(210 91132 _ngnﬂ(Zz). (2.16b)

Here the total variation & is defined by its action on an
n-point function ®(z, ...,z,) as

Zfz

Only (2.16a) transforms covariantly under superconformal
transformations, as (2.16b) contains an inhomogeneous
piece in its transformation law. Therefore, it will not appear
as a building block in two- or three-point correlation

(2.17)

5 Z1’- ,Zn Z1,~-,Zn)-

functions. Due to the useful property, x5 = —x/9, the
two-point function (2.15) can be split into symmetric and
antisymmetric parts as follows:

xP = x4 2e“ff922, 03, = 0%015,.  (2.18)
The symmetric component
X = (xy = xy)% +2i06) (2.19)

is recognized as the bosonic part of the standard two-point
superspace interval. The two-point functions possess the

property:

1
X(3%2165 = X185, xi = _Engxnaﬂ- (2.20)
Hence, we find
x[)’a
DY =-22 2.21
X )
) = =18 221)

It is now useful to introduce the normalized two-point
functions, denoted by X,

X 1208
(x1p)"

Xi2gp = %10 = 5. (2.22)

Under superconformal transformations, x?, transforms with
local scale parameters, while (2.22) transforms with local
Lorentz parameters

gx%z = (o(z1) + O-(ZZ))xIQ’ (2.23a)

Ry = -2 (Zl)xlz 2154,/ (22). (2.23b)
There are also the following differential identities for the
action of covariant spinor derivatives on the two-point
functions:
p . B 5 .

Dty = 210085 Daxiy = —4ifh,,  (2.24)
where D;, acts on the superspace point z;. From here we
can now construct an operator analogous to the conformal
inversion tensor acting on the space of symmetric traceless
spin tensors of arbitrary rank. Given a two-point function x,
we define the operator

Latopn)®) = (a5, X)) (2.25)
along with its inverse
Talk)Bk) (x) — @B ... ga)B) (2.26)

The spinor indices may be raised and lowered using the
standard conventions as follows:

Za(k)ﬂ(k) (x) — ... €ﬂkyk:za(k)y(k) (x). (2'27)
Now due to the property
Lawpy (%) = (=D uppu (x),  (2.28)

the following identity holds for products of inversion tensors:

T a(i)o(k) (xlz)IG(k)ﬂ(k) (x21) = 52?,11 o 5@;; (2.29)
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The objects (2.25) and (2.26) prove to be essential in the
construction of correlation functions of primary operators
with arbitrary spin. Indeed, the vector representation of the
inversion tensor may be recovered in terms of the spinor two-
point functions as follows:

1 o s
Imn(x) = _ETr(ymxyan(J:O' <230)

C. Three-point building blocks

Essential to the analysis of three-point correlation
functions are three-point covariants/building blocks.
Indeed, given three superspace points, z;, 5, 73, One can
define the objects, Z; = (X;;,®;;) as follows:

_ -1 76 .—1
Xijop = — (% )ayxij (xkj )(w»

Bijo = (xﬁcl>a/3‘9€i - (x;kl)a/}ezj’ (2.31a)
where the labels (i,j, k) are a cyclic permutation of
(1, 2, 3). These objects possess the important property
Xijap = —Xjipa- As a consequence, the three-point building
blocks (2.31) possess many properties similar to those of
the two-point building blocks

1o
XX i = X308, X} = —EX}/(’X,-jaﬁ. (2.32)
Hence, we find
xPe
(X;) = -1 (2.33)
J Xzzj

It is also useful to note that one may decompose X;; into
symmetric and antisymmetric parts similar to (2.18) as
follows:

i

1 2
ijop — 2 i

X X 811/)’81]" Xij(l[)’ = Xij/}a’ (234)

ijaf =
where the symmetric spin tensor, X;;44, can be equivalently
represented by the three-vector X, = =5 (7,)* X, jup-
Since the building blocks possess the same properties up
to cyclic permutations of the points, we will only examine
the properties of X, and ©,,, as these objects appear most

frequently in our analysis of correlation functions. One can
compute

1 x2
2 _ _ —yap _ 12 2 _ Qo
X = 2X12X12aﬂ 2 20 01, = 01,012
X13X53

(2.35)

The building block X, also possesses the following
superconformal transformation properties:

SXIZaﬁ = )'ay(zfi)XlZyﬁ + XlZay”/f(@) - 0(23)X12a/}1

(2.36a)
5012y = (ﬂaﬂ(Zﬁ - %5aﬁd(zs)>®1zﬁ7 (2.36b)

and, therefore,
0XT, = —20(z3)X1,, 807, = ~0(z3)0%,,  (2.37)

i.e., (X3, ©5) is superconformally covariant at z3. As a
consequence, one can identify the three-point supercon-
formal invariant

2

® 3
J=—"==4]=0,
12

(2.38)

which proves to be invariant under permutations of the
superspace points, i.e.,

0?7 03 03
J=—12 _ F5 o T
VXL VX VA

Analogous to the two-point functions, it is also useful to
introduce the normalized three-point building blocks,

denoted by X ijs e)

(2.39)

ij>

X o,

Ry = i e DU (o 40
p ’ ) .
ijo (Xlgj)l/2 5 (Xizj)l/4
such that
X;;gifjioﬂ = 0f, J= (:),2] (2.41)

Compared with the standard three-point building blocks
(2.31), the objects (2.40) transform only with local Lorentz
parameters. Now given an arbitrary three-point building
block, X, let us construct the following higher-spin inver-
sion operator:

L) (X) = Xiay g, - Kap)» (242)
along with its inverse
Fak)p(k) (X) = X .. gob) (2.43)

These operators possess properties similar to the two-point
higher-spin inversion operators (2.25), (2.26), and are
essential to the analysis of three-point correlation functions
involving higher-spin primary superfields. In particular,
one can prove the following useful identities involving X;;
and ©;; at different superspace points:
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Ia5<x13)1ﬂy(x13>1—6y(X12) = Iaﬂ(Xé3), (2448_)
T, (¥13)012, = Ol (2.44b)

where we have defined
0o = Iaﬂ(_Xij)Gg- (2.45)

Note that X’ is defined in the same way, and using (2.42)
we have Xéﬂ = I(aar)(ﬁﬂ/)(—X>Xa’/)” = —X,p, as expected.
Using the inversion operators above, the identity (2.44a)
(and cyclic permutations) admits the following generali-
zation to higher spins:

Loy "™ (x13) gy (13) L a0 (X 12) = Laqropia) (Xa3).-
(2.46)

Due to the transformation properties (2.36a) and (2.36b) it
is often useful to make the identifications (X;,®,):=
(X23,023), (X2,0,) = (X31,03), (X3,03) = (X12,01),
in which case we have, e.g., X5, = —X;; we will switch
between these notations when convenient. Let us now
introduce the following analogs of the covariant spinor
derivative and supercharge operators involving the three-
point objects:

0 0

Din ——— Lilym) &
(D a@,lx + 1(7 )aﬂ i aXf” ’
0 0
e =1—= " S 2.47
which obey the standard commutation relations
{D(ia- Diiyp} = {Quiya Lippt = 2i(r™) (2.48)

@ oxm
14
Some useful identities involving (2.47) are, e.g.,

Dy Xaap = —2i€,503,, Q) Xzap = —26,403.

(2.49)

We must also account for the fact that correlation functions
of primary superfields obey differential constraints as a
result of superfield conservation equations. Using (2.24) we
obtain the following identities:

D) Xsap = 21(¥13) @35, D1)a®3p = (%73 ) ps

(2.50a)

D(2)a®3ﬁ = (x531 )ﬁa‘
(2.50b)

D (2), X305 = 2i(x23 ) 3, Osp.

Now given a function f(X3,®;), there are the following
differential identities which arise as a consequence of
(2.49), (2.50a), and (2.50b):

D1y, f(X3,03) = (x3),, D, [ (X3, ©3), (2.51a)
Dy, f(X3,03) = i(x3}),, Q% f(X3,05).  (2.51b)

These will prove to be essential for imposing differential
constraints on three-point correlation functions of primary
superfields.

ITII. GENERAL FORMALISM FOR CORRELATION
FUNCTIONS OF PRIMARY SUPERFIELDS

In this section we develop a formalism to construct
correlation functions of primary superfields in 3D super-
conformal field theories. We utilize a hybrid method which
combines auxiliary spinors with the approach of [38,41].

A. Two-point functions

Let @ 4 be a primary superfield with dimension A, where
A denotes a collection of Lorentz spinor indices. The two-
point correlation function of @ 4 is fixed by superconformal
symmetry to the form

IAB(xlz)
2 )A ’

(49 (z2)) = e

(3.1)

where 7 is an appropriate representation of the inversion
tensor and c is a constant real parameter. The denominator
of the two-point function is determined by the conformal
dimension of ® 4, which guarantees that the correlation
function transforms with the appropriate weight under scale
transformations.

B. Three-point functions

In this subsection we will review the various properties
of three-point correlation functions in 3D N = 1 super-
conformal field theory. First we present the superfield
ansatz introduced by Park in [38]. We then develop a new
index-free formalism utilizing auxiliary spinors to simplify
the overall form of the three-point function, with the
ultimate aim of constructing a generating function for
arbitrary spins.

1. Superfield ansatz

Concerning three-point correlation functions, let ®, ¥, I1
be primary superfields with scale dimensions A;, A,, and
A5, respectively. The three-point function may be con-
structed using the general ansatz
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I(I)A, A (x13)7~'<2)A2A/2 (x23)
(x13) % (x33)%

XHA’IA;A3(X127®12>7 (3.2)

<®A, (21)TA2(22)HA3 (z3)) =

where the tensor H 4, 4, 4, encodes all information about the
correlation function and is related to the leading singular
operator product expansion coefficient [11]. It is highly
constrained by superconformal symmetry as follows:
(i) Under scale transformations of M2, z = (x,6)
7' = (A72x,47'0); hence, the three-point covariants
transform as (X,0) — (X', 0') = (1°X,10). As a
consequence, the correlation function transforms as

(@4, (21) ¥, (214, (23))

= ()Mt (D (21)Pa, (22)TLa (23)). (3.3)

which implies that H obeys the scaling property

Hp,,4,(A2X.20) = (22)87%7 8 4 44, (X, ),
VieR\{0}. (3.4)

This guarantees that the correlation function trans-
forms correctly under scale transformations.

(ii) If any of the fields @, V¥, Il obey differential
equations, such as conservation laws in the case
of conserved currents, then the tensor H is also
constrained by differential equations which may be
derived with the aid of identities (2.51a) and (2.51b).

(iii) If any (or all) of the operators @, W, I1 coincide, the
correlation function possesses symmetries under
permutations of spacetime points, e.g.,

<q)A1 (Zl)q)Az (Zz)HA3 (z3))
= (1) ®UD 4, (22)D 4, (21)T 4, (23))

where ¢(®) is the Grassmann parity of ®. As a

consequence, the tensor H obeys constraints which

will be referred to as “point-switch identities.”
The constraints above fix the functional form of H (and
therefore the correlation function) up to finitely many
independent parameters. Hence, using the general for-
mula (3.6), the problem of computing three-point correla-
tion functions is reduced to deriving the general structure of
the tensor H subject to the above constraints.

(3.5)

2. A note on conserved three-point functions

An important aspect of this construction is that
depending on the way in which one constructs the general
ansatz (3.6), it can be difficult to impose conservation
equations on one of the three fields due to a lack of
useful identities such as (2.50a) and (2.50b). For this reason
it is useful to switch between the various representations
of the three-point function. To illustrate this process

more clearly, consider the following example; suppose
we have obtained a solution for the correlation function
(@4, (21)W 4,(22)T14,(23)), With the ansatz

I(I)Al A (x13)I(2)A2A/2 (x23)
(x3)% (x35)%

X Hax,4,(X12,012). (3.6)

(@4, (21)W 4, (22)T 4, (23)) =

All information about this correlation function is encoded
in the tensor H, and one can impose conservation on z; and
2, using the identities (2.50a), (2.50b), (2.51a), (2.51b).
However, this particular formulation of the three-point
function prevents us from imposing conservation on z3
in a straightforward way. Let us now reformulate the ansatz
with IT at the front as follows:

1(3),43“4‘/‘ (x31)7~'(2)A2A/2 (x21)
(x3,)% (x3,)%

X Hoaa,,(X23,023). (3.7)

(Mg, (23)W 4, (22) @ 4, (21)) =

In this case, all information about this correlation function
is now encoded in the tensor 7, which has a completely
different structure compared to . Conservation on IT can
now be imposed by treating z3 as the first point with the aid
of identities analogous to (2.51a) and (2.51b). We now
require an equation relating the tensors 7 and 7, which
correspond to different representations of the same corre-
lation function. Equating the two ansatz above, we obtain
the following:

- X3\ A2 ,
Hoay ayn, (X3, 0p3) = (x3) 24 <§1> I“)AIA] (x13)
23

B (x12)I<2)BzA/2 (x23)
A (13 H g a1, (X 12, 1),

(3.8)

X I(Z)A2
X 1(3)./43

where we have ignored any signs due to Grassmann parity.
Before we can simplify the above equation, we must
understand how the inversion tensor acts on H(X,®).
Now let
Ho s (X, ©) = X888 Ty 40 (X.©), (3.9)
where 7:{A]A2A3 (X, ®) is homogeneous degree 0 in (X, ©),
1.e.,
Hoa a0, (12X 20) = Hy4,4,(X.0).  (3.10)

The tensor A, A4, (X, ©) can be constructed from totally
symmetric, homogeneous degree 0 combinations of &, X,
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and ©, compatible with the set of indices A;, A,, Aj;
hence, we consider the following objects:

Saﬂ, Xaﬂ’ C:)a, (X‘é)a:Xaﬂé)ﬂ, J:®2 (311)
Now to simplify (3.8), consider
I(I)AlA/‘ (3513)1(2%42’4/2(3‘13)1(3),4;4g (x13)
XﬂA;A;Ag (X12.0p,). (3.12)

Only combinations of the following fundamental products
may appear in the result:

Iaaj(xB)I/}ﬁ/(xB)ga’ﬁ’ = —&up» (3.13a)
T, (x13)Z5 (x13) X 120y = Xosap: (3.13b)
7, (x13)®12a’ = O, (3.13¢)

I (x13) (X2 - O12)y = —(Xn3 - ©%3),., (3.13d)

where G)I was defined in (2.45). For correlation functions
mvolvmg the superconformal invariant, J, we must note

that J1 = ()2 = —J. These identities are consequences of
(2.44a) and (2.44b). If we now denote the above trans-

formations by 73, it acts on H(X},,©,,) as follows:

& Iy A Tz A

X12 —>X23, @12 —)@23, (3143)
51_13) — &, X12'©121—13> —2223'@53, JI—]i -J.
(3.14b)

Hence, due to their transformation properties under Z, the
objects (3.14a) are classified as “parity-even” as they are
invariant under Z, while the objects (3.14b) are classified as
“parity-odd,” as they are pseudo-invariant under Z. At this
point it is convenient to partition our solution into “even”
and “odd” sectors as follows:

Hoayan,(X.0) =H\  (X.0) + 1Y), 4 (X.0),

(3.15)

where H(*) contains all structures that are invariant under 7

and H(~) contains all structures that are pseudo-invariant
under Z. With this choice of convention, as a consequence
of (2.44a) and (2.44b), the following relation holds:

ﬂﬁa2,43(xz37®2%) +70 ) (xH)I(Z)AzA’Z(xIS)

3(x13)H(jl)A’zAé (X12.04),
(3.16)

X 1(3)./43

where 7:{532 4, (X, 0) = 7:[5;%42 4,(X,©"). A result analo-
gous to (3.14a) and (3.14b) that follows from the properties
of the inversion tensor acting on (X, ®) is

x5 _%x  oBe, (3.17a)
eX _e X-OBK.O, JB . (3.17b)

Hence, to obtain the desired transformation properties as in
(3.14a) and (3.14b), we consider H(—X, ®) and obtain the
formula

i, (X.©) = 270, A ()T %(0T 4 (X)
+
x HLy 4 (X, 0), (3.18)

which is generally more simple to compute. After sub-
stituting (3.16) into (3.8), we obtain the following relation

between H and H:

£ (X2)A8570) (x.0).

(3.19)

Ao 4, (X.0) = A (X)yHE " A,

It is now apparent that 7 acts as an intertwining operator
between the various representations of the correlation
function. Once 7 is obtained we can then impose con-
servation on IT as if it were located at the “first point,” using
identities analogous to (2.51a) and (2.51b).

If we now consider the correlation function of three
conserved primary superfields J, J’ , J V(x)» Where
I =2sy,J =2s,, K= 2s3, then the general ansatz is

T ool 13)Iﬂ(1)ﬂ V) (x53)
Join )X 1 (22)d) 0 (23)) = o)
< (1)( 1) /}(])( 2) 7(1()( 3)> (x%S)Al(x%S)AZ
X Ho(np (k) X12: ©12),

(3.20)

where A; = s;+ 1. The constraints on H are then as
follows:

(1) Homogeneity:

Hampy(x)(4°X.10)

= ()52 M H o o) (X, ©). (3.21)
It is often convenient to introduce 7:[11(1)/1( Nr(K)
(X, ®), such that
Ha(rypx)(X, ©)

= X8 H 005 (X, ©),

(3.22)
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where H
in (X, 9)

(x)(X,©) is homogeneous degree 0

ﬂa(l)ﬁ(f)y(lf) (X, 40) = ﬂa(l)ﬂ(])y(]{) (X,0). (3.23)

(ii) Differential constraints: After application of the
identities (2.51a) and (2.51b) we obtain the follow-

ing constraints:

Conservation at 2y D*Hya(1-1)p(s)y(x) (X, ©) = 0,

(3.24a)
Conservation at z,: Q"H,()pp0-1),(x)(X. ©) = 0,
(3.24b)
Conservation at z3: Q7 H(, Nrrk-1)(X,0) =0,
(3.24c)
where
i(£)
Hawpomi X- ®)
= (X2)M8Ty, (X)H Ny X ©).
(3.25)

(iii) Point-switch symmetries: If the fields J and J
coincide, then we obtain the following point-switch
identity:

Hampnyx) (X, 0) = (=) D Hya0,x) (-XT,—8),
(3.26)

where ¢(J) is the Grassmann parity of J. Likewise, if
the fields J and J” coincide, then we obtain the
constraint

Hanypryn (X, ©)
(3.27)

In practice, imposing these constraints on correlation
functions involving higher-spin supercurrents quickly
becomes unwieldy using the tensor formalism, particularly
due to the sheer number of possible tensor structures for a
given set of superspins. Hence, in the next subsections we
will develop an index-free formalism to handle the com-
putations efficiently, using the same approach as [34].

3. Auxiliary spinor formalism
Suppose we must analyze the constraints on a general spin
tensor H 4 4,4,(X.0), where A ={a,....o}, A, =

{Br..... By} As = {r1,....vx} represent sets of totally
symmetric spinor indices associated with the fields at points

= (=DM, 1010 (X", —O).

21, 22, and z3, respectively. We introduce sets of commuting
auxiliary spinors for each point; u at z;, v at z,, and w at z3,
where the spinors satisfy

v? = e,50%0F =0,

u? = e5uul =0, w? =g mw Wl =0.

(3.28)
Now if we define the objects
uh =yl =y oy (3.29a)
yA = yPU) = b b (3.29b)
whs = wrK) =y ooyt (3.29¢)

then the generating polynomial for A is constructed as
follows:

H(X, 05 u,v,w) = Hy a4, (X, ©)utivows . (3.30)
There is a one-to-one mapping between the space of
symmetric traceless spin tensors and the polynomials con-
structed using the above method. Indeed, the tensor H is
extracted from the polynomial by acting on it with the
following partial derivative operators:

d d I o d
out oD Toun ou’ (3.312)
0 0 1 o d
pe v il T e A Gl
0 d 1 0 3}
owhs awr( )T Klown owre (3.31¢)

The tensor H is then extracted from the polynomial as
follows:

d o0 0

6uA10vA26wA*H(X® U, v,w).

Hoa,4,4,(X,0) = (3.32)

Auxiliary spinors are widely used in the construction of
correlation functions throughout the literature (see, e.g.,
[13,16,17,40,52,53]); however, usually the entire correlator
is contracted with auxiliary variables and as a result
one produces a polynomial depending on all three super-
space points and the auxiliary spinors. In contrast, this
approach contracts the auxiliary spinors with the tensor
H 4,4,4, (X, ©), which depends only on X, ©. As a result, it
is straightforward to impose constraints on the correlation
function as ‘H does not depend on any of the superspace
points explicitly.

The full three-point function may be translated into the
auxiliary spinor formalism; recalling that I = 2s,, J = 2s,,
K = 253, first we define
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Jo, (zisu) = Jop (20w, Ji (225 0) = Ty (2™,

(3.33a)

J/s/3 (z33w) = Jy(K)(ZB)wy(K)' (3.33b)

The general ansatz for the three-point function is as
follows:

(Js, (23 u) 5, (203 0)JE, (233 w))

I (w35, 1) TV (535 0, D)
= - ——H(X15,O1p; 01, D, w),
EARIENE i Ozt T

(3.34)

(3.35)

is the inversion operator acting on polynomials degree s in
it, and A; = s; + 1. After converting the constraints sum-
marized in the previous subsection into the auxiliary spinor
formalism, we obtain the following:

(1) Homogeneity:

H(A2X,20; u(l), v(J), w(K))
= ()8 H(X. O u(l). v(J). w(K)),
(3.36)

where we have used the notation u(I), v(J), and
w(K) to keep track of the homogeneity of the
auxiliary spinors u, v, and w.

(ii) Differential constraints: First, define the following
three differential operators:

0 9 9

D =D—, Dy,=Q"—, D3=0Q"—.
=D D=Qin Dy=Qi—
(3.37)

Conservation on all three points may be imposed
using the following constraints:

Conservationatz; : Dy H(X,0;u(l),v(J),w(K))=0,
(3.38a)

Conservationatz, : Dy H(X,0;u(I),v(J),w(K)) =0,
(3.38b)

Conservationat z3 : DyH(X,0;u(l),v(J),w(K)) =0,
(3.38¢)

where, in the auxiliary spinor formalism, H =
A +H) is computed as follows:
HE (X, 0; u(l), v(J), w(K))
— :E(Xz)Al_A»‘I;(J)
x HI®)(X,0;u

v, D)

(

(I),9(J),w(K)), (3.39)
where I§;>(v, ?) =IO (X;0,).

(iii) Point-switch symmetries: If the fields J and J
coincide (hence I = J), then we obtain the following

point-switch constraint

H(X,0;u(l),v(I),w(K))

=(=1)DH(=XT,-0;v(I),u(l).w(K)). (3.40)
where, again, €(J) is the Grassmann parity of J.
Similarly, if the fields J and J” coincide (hence
I = K), then we obtain the constraint

H(X,0;u(l),v(J),w())

= (- DH(-XT,-0;w(l),v(J).u(I)). (3.41)
To find an explicit solution for the polynomial (3.30), one
must now consider all possible scalar combinations of X,
0, ¢, u, v, and w with the appropriate homogeneity. Hence,
let us introduce the following structures:

Bosonic:

Pl :guf)’vawﬁy P2 :8(1/)’Wau/}v P3 :guﬁuayﬂ,

(3.42a)

Q =X oW, Q=X g, Q=X u"’,
(3.42b)

Zl zyaﬂu“uﬁ, Zz :)A(aﬂv“vﬂ, Z3 :Xaﬂw"wﬁ.

(3.42¢)
Fermionic:
R, = saﬁua@ﬁ, R, = saﬁva(:)ﬁ, R; = eaﬂw"(:)ﬂ,
(3.43a)
S, :)A(aju“(:)/}, S, :X’aﬁv“@ﬁ, S, :X’aﬁw“@/}.

(3.43b)

A general solution for H (X, ®) is composed of all possible
combinations of P;, Q;, Z;, R;, S;, and J which possess the
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correct homogeneity in u, v, and w. Comparing with
(3.14a) and (3.14b), we can identify the objects P;, S;,
and J as being parity-odd due to their transformation
properties under inversions.

For the subsequent analysis of conserved three-point
functions, due to the property (2.34), and the fact that in
N =1 theories @ = 0 = X? = X?, it is generally more
convenient to construct the polynomial in terms of the
symmetric spin tensor, X, rather than X, resulting in
the polynomial H (X, ®). Hence, we expand Q;, Z;, S; as
follows:

Qi - Q,‘ _%PiJv Zi — Zi? Si — Si? (344)

where we have defined

0, = XaﬂUaWﬂ7 0, = Xaﬂwa”ﬂa 03 = Xaﬁuavﬂ,

(3.45a)

A A

Zy = Xppuul, Zy = Xgpv0”, Zy = )A(,,/;w“w/”,

(3.45b)

S] = )A(a/ju”(:)ﬂ, S2 = Xaﬁ’l]aé)ﬁ, S3 = )A(aﬁw“@ﬂ.

(3.45¢)

The polynomial H(X,®) is now constructed from all
possible combinations of P;, Q;, Z;, R;, S;, and J. Once
a general solution for (X, ®) is obtained, one can convert
back to “covariant form,” H(X, ®), by making the replace-
ments

Q-0 +%Pi-]’ VAR A S; —S;. (3.46)

4. Generating function method

In general, it is a nontrivial technical problem to come
up with an exhaustive list of possible solutions for
H(X,0;u,v,w) for a given set of superspins; however,
this process can be simplified by introducing generating
functions for the polynomial H(X,®;u,v,w). First we
introduce the function F(X), defined as follows:

8 pki pka pks ALl b A3 7y Zmy ms
F(X) = X°P' Py Py Q[ 07 0371 2, 25", (3.47)
where, typically, § = A; — A, — A,. The generating func-
tions for Grassmann-even and Grassmann-odd correlators
in A/ = 1 theories are then defined as follows:

F(Xx)J°, Bosonic,
g(X’®|F): P1 pP2 pP3 ¢d1 92 043 1oni
F(X)RY'R5*RY*ST'S5 S5,  Fermionic.
(3.48)

Here the non-negative integers, I = {k;, [;, m;, p;, q;, 6},
i =1, 2, 3, are constrained; for overall bosonic correlation
functions they are solutions to the following linear system:

k2+k3+lz+l3+2ml :I, (3493)
kl +k3+ll +l3+2m2:.l, (349b)
kl +k2+ll +12—|—2m3 :K, (349C)

with ¢ = 0, 1. Likewise, for overall fermionic correlation
functions, the integers I' are solutions to the following
system:

kyt+hks+L+1+2m +p,+q =1, (3.50a)
ki +ks+ 1 +5L4+2my+pr+q,=J, (3.50Db)
ki +ky+1+1L+2ms+ p3+ g3 =K, (3.50c¢)

pitptpsta+a+gs=1, (3.50d)

where I = 25y, J = 2s,, K = 255 specify the spin structure
of the correlation function. These equations are obtained by
comparing the homogeneity of the auxiliary spinors u, v, w
in the generating functions (3.48), against the index
structure of the tensor H. The solutions correspond to a
linearly dependent basis of structures in which the poly-
nomial H can be decomposed. Using Mathematica it is
straightforward to generate all possible solutions to (3.49)
and (3.50) for fixed values of the superspins.

Now let us assume there exists a finite number of
solutions I';, i =1, ..., N to (3.49) and (3.50) for a given
choice of 1, J, K. The set of solutions I' = {I";} may be
partitioned into even and odd sets I'" and '™, respectively,
by counting the number of pseudo-invariant basis structures
present in a particular solution. Therefore we define

+
"= F|k1+kz+k3+ql+th+q3+5 (mod 2)=0>

™= F|k|+k2+k3+q1+q2+q3+0 (mod 2)=1" (3.51)
Hence, the even solutions are those such that k| + k, +
ks +q1 +g>+q3 +0=even (i.e., contains an even
number of parity-odd building blocks), while the odd
solutions are those such that k; +k, + k3 + g1 + g, +
g3 + 0 =odd (contains an odd number of parity-odd
building blocks). Let [I'f|=N* and || = N~, with
N = Nt + N7, and then the most general ansatz for the
polynomial H in (3.30) is as follows:

H(X,0;u,v,w) :H<+>(X,®;u,v,w) +H<_)(X,®;u,v,w),
(3.52)

where
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N+
HO(X, 01, 0,w) = > AGX.OF),  (3.53)
i=1

v
HO(X.0:u.v.w) = > BG(X.0OI7),  (3.53b)
i=1

and A; and B, are real constants. Using this method one can
generate all the possible structures for a given set of
superspins (si, 55, 53); however, at this stage we must
recall that the solutions generated using this approach
are linearly dependent. To form a linearly independent
set of solutions we must systematically take into account
the following nonlinear relations between the primitive
structures:

7,73+ P1 - Q3 =0, (3.54a)
7,73+ P3- Qi =0, (3.54b)
Z\Z,+ P} -Q}=0, (3.54¢)

P\Z,+ P05+ P30,=0, 0,Z,—0,0;—P,P;=0,

(3.55a)

PyZ,+P Q3+ P30,=0, 0,7Z,—0,03—PP3=0,

(3.55b)

P3Z3+P Q> +P,0,=0, 03Z;—-0,0,—PP,=0.

(3.55¢)

These allow elimination of the combinations Z;Z;, Z;P;,
Z;Q;. There is also another relation involving triple
products:

P1P,P3+ P10,05 + P,0,05 + P30,0, =0,  (3.56)

which allows elimination of P;P,P5. The relations above
are identical to those appearing in the 3D CFT case [34];
however, they must be supplemented by relations involving
the fermionic structures:

PR, — 0585 +035:=0, PS—0R, +03R; =0,

(3.57a)

PRy — 03853+ 0185, =0, P8, -03R;+ QR =0,

(3.57b)

P3R3— 015, + 0,85, =0,  P353-0 R+ O»R, =0,

(3.57¢)

Z\Ry — Q3R + P35S, =0, Z>R; — O3R, — P35S, =0,

(3.58a)

ZrRy — O\R, + P1S, =0, Z3R, — OQ\R3 — P1S; =0,

(3.58b)

Z3R; — QoR3 + P83 =0, Z\R3 — QR — P,S, =0,

(3.58¢)

218, = Q381 + 3Ry =0, 2,85, = 035, — P3R, =0,

(3.59)

2,83 — 018, + PiR, =0, 258, — 0183 — PR3 =0,

(3.59b)

2381 — 0,83+ P,R3; = 0, Z1S3 — 0,8 — P,R; = 0.

(3.59¢)

These allow for elimination of the products P;R;, P;S;,
ZiR;, Z;S;. As a consequence of (3.57a), the following also
hold:

PIRI —+ P2R2 + P3R3 = O, (3603.)

P1S1+P2S2+P3S3:0. (360b)
Applying the above relations to a set of linearly dependent
polynomial structures significantly reduces the number of
structures to consider for a given three-point function, since
we are now restricted to linearly independent contributions.
This process is relatively straightforward to implement
using Mathematica’s pattern matching functions.

Now that we have taken care of linear dependence, it
now remains to impose conservation on all three points in
addition to the various point-switch symmetries; introduc-
ing the objects P;, Q;, Z;, R;, S; proves to streamline this
analysis significantly. First let us consider conservation; to
impose conservation on z; (for either sector), we compute

N
D H(X,0;u,v,w) = D, {Z c;g(X, ®|F,~)}
=1

N
=> DiG(X.O[). (3.61)
i=1

We then solve for the coefficient ¢; such that the result
vanishes. To impose the superfield conservation equations,
the identities (B1) are essential. The same approach applies
for conservation on z,.
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Next, to impose conservation on zz we must first obtain
an explicit expression for H (X, ®) in terms of H(X, ®);
that is, we must compute (e.g., for the even sector)

HX,0;u(l),v(J), w(K))
= (X2)2=8Z) (0, BYH! (X, ©; u(D), B(J). w(K)).
(3.62)
Recall that any solution for H (X, ®) can be written in terms
of the structures (3.42) and (3.43); given the transformation

properties (3.16) and (3.19), the computation of ! (X, ©)
from H (X, ©) is equivalent to the following replacements:

Pl—)—Pl, Pz—)—P2, P3—)—P3, (3633)
Rl i —Sl, R2 = —82, R3 g —83, (3631))
Sl = Rlv Sz = R2, 83 = R3. (3630)

Now to compute 7 (X, ®) from H!(X, ®), we make use of
the fact that Py, P3, Qp, Q3, Z,, Ry, and S, are the only
objects with » dependence and apply the identities

Ix(v,0)P, = -Qy, Ix(v,0)P3 = Q3 +iP3J,

(3.64a)

Tx(v,0)Q; = =P, +iQyJ, Ix(v,9)Q3 = Ps,
(3.64b)
Ix(0.7)Ry = =Sy, Tx(v.9)S, = —R,, (3.64c)
1P (0.9)2, = -2Z,. (3.644)

Hence, given a solution for the polynomial H (X, ®), the
computation of (X, ®) is now equivalent to the following
replacements of the basis structures (3.42) and (3.43):

P,—»Q,, P,—>-P,, P3;—>-Q3;—-iP3J, (3.65a)
Q- -P+iQJ, Q—Q,, Q;—P;, (3.65b)
Z, 27, Z,--Z,, Zy—1Z; (3.65)
R, — -S,. R, > R,, Ry —» =S;,  (3.65d)
S| = R, S, - =S,, S; = R;. (3.65¢)

These rules are obtained by combining (3.63) and (3.64).
Conservation on z3 can now be imposed using the
operator Ds.

It now remains to find out how point-switch symmetries
act on the basis structures; this analysis is simpler when

working with H(X, ®), instead of H(X, ®). For permuta-
tion of superspace points z; and z;, we have X — —X,
® — —0, u <> v. This results in the following replacement
rules for the basis objects (3.42) and (3.43):

P, = —P,, P,——P,, P;——P5, (3.663)
01— -0, 0, = -0y, 03 —> -0, (3.66D)
Zy = ~Zy,  Zy——Zi,  Zs— —Zs (3.66¢)
R, — —Ry,  Ry——R,.  Rs— —Rs, (3.66d)
S =S S-S, S3—8.  (3.66e)

Likewise, for permutation of superspace points z; and z3
we have X - —X, ® - —0O, u <> w, resulting in the
following replacements:

P, —» —P5, P, —» —P,, Py —> —P;, (3.67a)
0, - —0;s, 0y = -0, 0; - -0y, (3.67b)
Z, - —Zs, Zy = —Z,, Zy— =7, (3.67¢)
R, = —R;, R, > —R,, R; —» —R;, (3.67d)
S =8, S, =S,  S3— S, (3.67¢)

We have now developed all the formalism necessary to
analyze the structure of three-point correlation functions in
3D N = 1 SCFT. To summarize, in the remaining sections
of this paper we will analyze the three-point functions of
conserved higher-spin supercurrents (for both integer and
half-integer superspin) using the following method:

(1) For a given set of superspins, we construct all
possible (linearly dependent) structures for the
polynomial H(X,®;u,v,w), which is governed
by the solutions to (3.49) and (3.50). The solutions
are sorted into even and odd sectors.

(2) We systematically apply the linear dependence
relations (3.54a), (3.55a), (3.56), (3.57a), (3.58a),
(3.59a) to the set of all polynomial structures. This is
sufficient to form the most general linearly inde-
pendent ansatz for the correlation function.

(3) Using the method outlined in Sec. III B 3, we impose
the superfield conservation equations on the corre-
lation function, resulting in the differential contraints
(3.38) on ‘H. The result of each computation is a
large polynomial in the basis structures (3.42) and
(3.43). The linear dependence relations are system-
atically applied to this polynomial again to ensure
that it is composed of only linearly independent
terms. The coefficients are read off the structures,
resulting in algebraic constraint relations on the
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coefficients A; and B;. This process significantly
reduces the number of structures in the three-point
function.

(4) Once the general form of the polynomial
H(X,0;u,v,w) (associated with the conserved
three-point function (J; J5,J¥,)) is obtained for a
given set of superspins (s, 5,, 53), we then impose
any symmetries under permutation of superspace
points, that is, (3.40) and (3.41) (if applicable). In
certain cases, imposing these constraints can elimi-
nate the remaining structures. The solution is then
converted into covariant form H(X, ®; u, v, w).

The computations are done completely analytically with
the use of Mathematica and the Grassmann package. By
using pattern matching functions, the calculations are
carried out purely among the basis structures (3.42) and
(3.43); as a result we do not have to fix superspace points to
certain values. The only chosen parameters are the spins.
Due to computational limitations we could carry out the
analysis up to s; =20 (some steps of the calculations
involve millions of terms); however, with more optimiza-
tion and sufficient computational resources this approach
should hold for arbitrary superspins. Since there is an
enormous number of possible three-point functions with
s; <20, we present the final results (in the form of
Mathematica outputs) for H(X, ®; u, »,w) for some par-
ticularly interesting examples, as the solutions and coef-
ficient constraints become cumbersome to present beyond
cases involving low superspins. We are primarily interested
in counting the number of independent polynomial struc-
tures after imposing all the constraints.

IV. THREE-POINT FUNCTIONS OF CONSERVED
SUPERCURRENTS

In the next subsections we analyze the structure of three-
point correlation functions involving conserved higher-spin
supercurrents. As a test of our approach we begin with an
analysis of three-point functions involving currents with
low superspins, such as the supercurrent and flavor current
multiplets.

A. Supercurrent and flavor current correlators

The most important examples of conserved supercur-
rents in 3D N = 1 superconformal field theories are the
supercurrent and flavor current multiplets. The supercurrent
multiplet is described by the spin tensor superfield,
Jo3)(2), with scale dimension A; =5/2. It satisfies
D*Jy 4,0,(z) =0 and contains the energy-momentum
tensor, To(4)(X) = D4,/ a,aa,)(2)]9—0» and the supersym-
metry current, Qg 3)(x) = J4(3)(2)]g—o, as its independent
component fields. Likewise, the flavor current multiplet is
described by a spinor superfield, L,(z), with scale dimen-
sion A; =3/2. It satisfies the superfield conservation
equation D?L,(z) =0, and contains a conserved vector

current V() (x) = D4, Lq,)(2)]g—o- Three-point functions
of these supercurrents were originally studied in [41,44]
(for analysis of three-point functions of the component
currents in 3D/4D CFT see [34,49]), and here we present
the solutions for them using our formalism. The possible
three-point functions involving the supercurrent and flavor
current multiplets are

(La(z21)Lp(z2)Ly(23))s  (Lalzi)Lp(22)d3)(23)),

(a3)(21)p3) (22)La(23)),  (a@)(21)dp3) (22)043) (23))-
(4.2)

(4.1)

We note that in all cases the correlation functions are
overall Grassmann-odd; hence, it is expected that each of
them is fixed up to a single parity-even solution after
imposing conservation on all three points. The analysis of
these three-point functions is relatively straightforward
using our computational approach.

Correlation function (LLL):
Let us first consider (LLL); within the framework of our
formalism we study the three-point function (J; /,J 2d 1 /2>.

The general ansatz for this correlation function, according
to (3.20), is

Iaa’<x13)zﬂﬁl (x23)
(x%3)3/2 (x%3)3/2

Ja(20)Tp(22)d7 (23)) =

Heopy(X12,012).
(4.3)

Using the formalism outlined in Sec. III B, all information
about this correlation function is encoded in the following
polynomial:

HX,0;u(1), v(1),w(1)) = Hyp, (X, O)uviwr. (4.4)
Using Mathematica we solve (3.50) for the chosen
spins and substitute each solution into the generating
function (3.48). This provides us with the following list
of linearly dependent polynomial structures for the poly-
nomial H(X,®;u,v,w) in the even and odd sectors,
respectively:

Even: {Q;R;, 0>R,, Q|R}. P3S3,P,S,, P18},  (4.5a)

0dd: {0355, 025,. 0151, P3R5, PyRy, P\R,}. (4.5b)
After systematic application of the linear dependence
relations (3.54a)—(3.59a) we obtain the following linearly
independent sets:

Even: {Q3R3;, O2Ry, O\R,}, (4.6a)

0dd: {0353, 0,5,,0,5;}. (4.6b)
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Next, we impose conservation on all three points, where we
obtain the following constraints on the coefficients A; and B;:

A A
Even: {A1 —>A1,A2—>—?1,A3—>—?1}, (4.7a)
Odd {Bl e d 0,32 g 0, B3 d O}, (47b)
and the explicit solution for H (X, ®; u, v, w) is
A 1 Q,R
Even: XT}z (—3@1R1 —232+@3R3>, (4.8a)
0dd: 0. (4.8b)

Hence, the three-point function is fixed up to a single parity-
even polynomial structure. After imposing symmetries under
permutation of spacetime points, e.g., J=J =1J’, the
remaining structure vanishes. This vanishing result is not
surprising because it corresponds to the contribution propor-
tional to the symmetric invariant tensor of the flavor sym-
metry group. In four dimensions this contribution is related to
the chiral anomaly which does not exist in three dimensions.
The correlator (J;,5J/2J/2) has, however, a nonvanishing
contribution proportional to the totally antisymmetric struc-
ture constants. In our analysis in this paper any possible
“antisymmetric” contributions are ignored when we impose
the point-switch identities. The most general form of the
three-point function of flavor current multiplets was found
explicitly in [41,44], and we will not discuss it here.

Correlation function (LLJ):

The next example to consider is the mixed correlator
(LLJ); to study this case we may examine the correlation
function (J; ,J} /2J’3’ /2>. Using the general formula, the
ansatz for this three-point function is

Ia"I (x 3)1//}/ (x23)
(x%3)3/2(x%3)3/2

X Hapy3)(X12,012).

Ja(z)Tp(22)7 5 (23)) =
(4.9)
Using the formalism outlined in III B, all information about

this correlation function is encoded in the following
polynomial:

H(X,0;u(1),v(1),w(3)) = Hypy3) (X, O)uviwr ).
(4.10)
After solving (3.50), we obtain the following list of

polynomial structures for H(X,®;u,v,w) in the even
and odd sectors, respectively:

Even: {Q3R;Z3, Q)RyZ5, Q1R Z3, Q1 02R;. P3S;5Z;,
Py8,7Z5, P,01S3, P1S,Z5, P1Q,S3. P1 PR3},
(4.11a)

0dd: {03573, 0,5,Z5, 015125, 010,55, P3R3Z3,
PyR,Z5, P,Q R3, PyRZ5, P1O,R5, P\ P, S5},
(4.11b)

After systematic application of the linear dependence
relations (3.54a)—(3.59a) we obtain the following linearly
independent sets:

Even: {P|P,R;, Q102R;, P 0,55, P,0,S53}, (4.12a)

0dd: {P,P,S;.0,0,S;.P,0:R;. P,0\R;}.  (4.12b)

Next, we impose conservation on all three points; we obtain
the following constraints on the coefficients A; and B;:

Even A ALA Ay A A A A
Vv N — N - —, - ——, - — 7,
1 1,42 543 5 44 5

(4.13a)

Odd: {B, - 0,B, - 0,B; - 0,B; — 0}, (4.13Db)

and the explicit solution for H(X, ®; u, v, w)

A (1 1 1
Even: \/—;_(<§P2Q1§3—§P1@2§3 +P1P2R3 +§@1Q2R3> s

(4.14a)

0dd: 0. (4.14b)

Hence, after conservation, the three-point function is fixed
up to a single even structure. This structure is also compat-
ible with the symmetry J = J'; therefore (LLJ) is fixed up to
a single structure.

Correlation function (JJL):

The next example to consider is the mixed correlator
(JJL); to study this case we may examine the correlation
function (J3/,J5/,J7/,). Using the general formula, the
ansatz for this three-point function is

Zo3)” P (x13)Lp3)7 ) (x23)
(x%3)5/2(x§3)5/2
X Ha3)p3)y(X12, O12).
(4.15)

<Ja(3)(21)J;;(g)(zz)J'y/<Z3)> =

Using the formalism outlined in Sec. III B, all information
about this correlation function is encoded in the following
polynomial:
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H(X. 0:(3)., 0(3)w(1)) = Hyayp0, (X OOy

(4.16)

After solving (3.50), we obtain the following list of (linearly dependent) polynomial structures in the even and odd sectors,

respectively:

Even: {Q3R3Z,Z,, Q%Ray 2Ry 2,75, 0203R 2y, Oy %st O\R\Z,Z,,
0103R,Zy, Q1 Q3R P3S3Z,Z,, P303S3, P30,81Z5, P30, 0355,
P3018:Z1, P30103S1, P303R3, P302Ry, P301R,, P3S3, P2,8,Z,Z,,
P,0381Z5, Py03S,, PyP3R  Zy, P,P3Q3Ry, P2 P3Sy, Py S\ 21 2,

P1038,Z,, P103S\, P\PsRyZ,, P{P3Q3R,. P1P3S, },

(4.17a)

0dd: {038:Z,2Z,, 0383, 05,2125, 0,0381Z5, 0,035, 0181212,
010352y, 01031, P3R3Z1Z,, P3Q3R3, P30, R\ Z, P30, Q3 R,
P301R,Z1, P3Q1Q3Ry, P303S3, P30,5:, P301S1, PR3, PyRy 7, Z,,
P,Q3R Z,, PyO3R,, P,P3S\Zy, P,P305S5, PyP3R,, PR\ Z, Z,,

P1Q3RzzlsPngRl,P1P352Z1,P1P3Q351,P1P%R1}-

(4.17b)

After systematic application of the linear dependence relations (3.54a)—(3.59a) we obtain the following linearly

independent sets:

Even: {Q,03R,, P;0,035,. P30,035,, Q1 03R,. O3R;. P302R,. P3O \R, },

0dd: {Q,03S,, 0385, P30,03R|, 0,03S,. P30,03R,, P30,8,, P30,S, }.

Next, we impose conservation on all three points; we obtain
the following constraints on the coefficients A; and B;:

Even: {Al —>A1,A2 i —Al,A3 —)AI,A4 —>A1,

7A A A
! —51,A7—>—51}, (4.19a)

Odd: {Bl g O,B2 - 0,B3 = 0,B4 i O,
BS g O,BG g 0, B7 i 0}, (419b)

and the explicit solution for H(X, ®; u, v, w)

A 1
Even: XT}2 <P3Q1Q3§1 - P3@2@3§2 - EP%QIRI

1 7
- §P§@2R2 3 Q3R; + Q,Q%R, + @2@§R2) ,
(4.20a)
0dd: 0. (4.20b)

Hence, after imposing conservation on all three points, the
three-point function is fixed up to a single even structure.
This structure is not compatible with the symmetry property
J=1J; hence, (JJL) = 0.

(4.18a)

(4.18b)

Correlation function (JJJ):

The last example to consider is the three-point function
of the supercurrent, (JJJ). To study it we may examine the
correlation function (J3/,J5/,J5,,). Using the general
formula, the ansatz for this three-point function is

T3 (x13) L) (x23)
(x%,%)s/z (x%3)5/2
X Hy3)p3)3)(X12, O12).
(4.21)

as) ()T (2200 ) (23)) =

Using the formalism outlined in Sec. III B, all information
about this correlation function is encoded in the following
polynomial:

H(X,0;u(3),v(3),w(3))

= Ho)p3)) (X @uepfChyr®) - (4.22)
In this case there are a vast number of linearly dependent
structures to consider, and the list is too large to present;
however, after application of the linear dependence
relations (3.54a)—(3.59a) we obtain the following linearly
independent structures:

106001-17



EVGENY 1. BUCHBINDER and BENJAMIN J. STONE

PHYS. REV. D 107, 106001 (2023)

Even: {Q;0,03R;. P10,03S;, 010305R,. P1030;5,, 010,03R,, P,0705S;.

P,0,03S;, P1P,Q3R;, P30,035,. P3010,S1, P1P3Q3R,, P,P3 Q1R },

(4.23a)

0dd: {P,0,03R;, P1P,03S;. 010,035, 010,03S;. 0103035,. P10, 03R;.

P,0703R|, P{Q303R,, P\ P303S,. P30 03R,, P30T 05R|, P,P3 035, }.

(4.23b)

Next, we impose conservation on all three points and obtain the following constraints on the coefficients A; and B;:

Even: {A, = A Ay > A A, oA
: - - — - —— - —
v 1 1,42 3 3 a1 3
11A A A
A5—>—7‘,A6 —?I,A7—>—?1,A8—>—A1,
A A A A
A9—)71,A10—>—71,A11—)2—i,A12—)2—i}, (4243.)
Odd: {Bl g 0,82 = O,B3 d O,B4 g O,BS = O,B6 i 0,
B7 —)O,BS _)0»B9_)OVBIO_)O’B11 —)0,312 —)0}, (424b)
and the explicit solution for H(X, ®; u, v, w)
LA 1 2 1 2 1 2 1 2
Even: W _?P3@2@1§1 —§P2@3@1§1 +?P3@2@1§2 —§P2@3@1§3
1 2 1 2 1 2 1 2
+§P1Q2@3§2 +§P1@2@3§3 +5P2P3@1R1 +ﬁP1P3Q2R2
11 11
— P,P,Q3%R; — H@2@23@$R1 + Q,Q3Q,R; — 5@3@3@11%2), (4.25a)
Odd: 0. (4.25Db)

Hence the three-point function (J35J5 ,J5,) is fixed up to
a single parity-even structure. The remaining polynomial
structures are also compatible with the symmetry property
J=1J =1J"; hence, the supercurrent three-point function
(JJJ) is fixed up to a single parity-even structure. In terms
of the number of independent structures, these results are
consistent with [41].

B. General structure of (J J; J.)

We performed a comprehensive analysis of the general
structure of the three-point correlation function (J, J;,J5,)
using our computational approach. Due to computational
limitations we were able to carry out this analysis for
s; < 20; however, the pattern in the solutions is very clear,
and we propose that the results stated in this section hold
for arbitrary superspins. We also want to emphasize that for
given (s1, 55, 53) our method produces a result which can be
presented in an explicit form even for relatively high

superspins (see examples below). With a sufficiently
powerful computer one can extend our results to larger
values of s;.

Based on our analysis we found that the general structure
of the three-point correlation function (J, J,J5,) is con-
strained to the following form:

J5 35, J5) = ally I J5) e + 03, J, 05 )0 (4.20)

One of our main conclusions is that the odd
structure, (J,, J5,J5,)o does not appear in correlators that
are overall Grassmann-odd (or fermionic). The existence
of the odd solution in the Grassmann-even (bosonic)
correlators depend on the following superspin triangle
inequalities:

SISSZ+S3, S2SS1+S3, S3SS1+S2. (427)
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When the triangle inequalities are simultaneously satisfied,
there is one even solution and one odd solution; however, if
any of the above inequalities are not satisfied, then the odd
solution is incompatible with current conservation.
Further, if any of the J, J', J” coincide, then the resulting
point-switch symmetries can kill off the remaining
structures.

Before we discuss in more detail Grassmann-even and
Grassmann-odd correlators and present explicit examples
we would like to make some general comments. In
particular, we observe that if the triangle inequalities are
simultaneously satisfied, each polynomial structure in the
three-point functions can be written as a product of at
most 5 of the P;, Q;, with the Z; completely eliminated.
Another useful observation is that the triangle inequalities
can be encoded in a discriminant, o, which we define as
follows:

o(s1,52.53) = 419293, qgi=si—s;j—sp—1, (4.28)
where (i, j,k) is a cyclic permutation of (1, 2, 3). For
o(sy,52,53) <0, there is one even solution and one odd
solution, while for (s, s,, s3) > 0 there is a single even
solution. Also recall that the correlation function can be
encoded in a tensor H, which is a function of two three-
point covariants, X and ®. There are three different
(equivalent) representations of a given three-point function,
call them ("), where the superscript i denotes which point
we set to act as the “third point” in the ansatz (3.6). As
shown in Sec. III B 1, the representations are related by the

Correlation function (J,J\J\):

intertwining operator, Z. Since the dimensions of the
conserved supercurrents A; are related to the superspins
as A; = s; + 1, it follows that each H'") is homogeneous of
degree ¢;. Then it follows that the odd structure survives
if and only if Vi, g; <0. In other words, each H?
must be a rational function of X and ® with homogeneity
q; < 0. The discriminant (4.28) simply encodes informa-
tion about whether the () are simultaneously of negative
homogeneity.

1. Grassmann-even correlators

The complete classification of results for Grassmann-
even conserved three-point functions, including cases
where there is a point-switch symmetry, is as follows:

(1) In all the cases we have examined (s; < 20) there is
one even solution and one odd solution; however,
the odd solution vanishes if the superspin triangle
inequalities are not satisfied.

(i) (J;,J5,J5,): Note that in this case s, must be an
integer. For s, even, the solutions survive the point-
switch symmetry for arbitrary s; (integer or half-
integer). For s, odd the point-switch symmetry is not
satisfied and the three-point function vanishes.

(i) (J,J,Js): In this case s is restricted to integer values.
For s even the solutions are compatible with the
point-switch symmetries.

The number of linearly independent structures grows
rapidly with the superspins; therefore we only present
results for some low superspin cases after imposing
conservation on all three points.

A (11 1 1 5 1
Even: X—; <—l]P3@1@2 —gi]P2Q1@3 —giJP|Q2@3 +P1P3Q2 +61]P1P2P3 +P2P3Q1 —§P1P2@3 +@]@2@3>,

6
(4.29a)
B, :
Odd: F (J@]Q3@2 + lP3@]@2). (429]3)
Correlation function (J,,J /2d n:
1. I, 1
Even: A, (E iJP,0,Z5 + E iJP,QyZ5 + PPy 75 — g Q1@223) , (4308.)
0dd: 0. (4.30b)

This three-point function was initially studied in [40], where it was shown that a parity-odd solution could arise. However, it
was proven later in [47] that such a structure cannot be consistent with the superfield conservation equations. The approach
we have developed also confirms that a parity-odd solution cannot exist; this is further supported by the fact that the
superspin triangle inequalities are not satisfied for this three-point function.
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Correlation function (J,2J /2J/3’ )

1 1 1
Even: XA, <§ iJP,Q,7% + 3 iJP,Q,Z% + PP, Z3% - g@l@zzg) , (4.31a)

0dd: 0. (4.31b)

This is another case where the superspin triangle inequalities are not satisfied; hence, the odd structure vanishes as expected.

Correlation function (J;,J /2d 7y

A (5 7 9 3 5
Even: e <8 iJP3Q, — zJP2P2@1 3 ~iJP,Q}Q, - EiJchI;ﬁ - 5P?0Q,Q, - 3P,P,Q3 + gPzpf + @f@2>, (4.32a)

B 3 3 3 3 3 1
0Odd: 71< ~JP:0,Q, - JP2P3 +JQ3Q, += zP3@2 += 1P2P2@1 zP QQ, - 1P2Q > (4.32b)

Correlation function (J3/,J5,J3):

A (1 11 44 11
Even: X_; <§ iJP3P}Q3 + —iJP,PiQ,Q; + ? iJP,P3P,Q,Q, + —

11 1
s iJP,Q,Q3Q; + —iJP3P,Q,Q5 + 5 iJP3P,Q?

5 S5

1
lJP2P3P2+—

77
+ —iJP;Q2Q35 + 5 zJP2Q2@2Q3 +— =

0 PiP3Q; + PIQ3Q; + 4P3P,Q,Q3

10
8 2 202 202
+ §P2P1@1Q2@3 + 4P2P3Q1@2 + P2Q1Q3 + @1Q2@3 5 (4333)

B (1 2 202 2 4 2 1

Odd' X 2JP2P3P @2 JP@Q:;_—JP:;P@Q JP P3P @1—21P2P@Q2@3__JP2P3Q @2
1 1 1

- fJP2@2@3 +JQIQ3Q; — 1P3P2@2 +iP,Q,Q30; — 3 iP3P;Q% + 2iP3Q32Q3 + ipzﬁ%@2@3>. (4.33b)

Correlation function (J,J,J5):

A, (23 5 3 23 27
Even: — (5 iJP,P3Q,Q3+ iJP,P}P3Q, — 7iJP3P§@%@3 +§UP%P3P§@3 +§iJP%P2@2@§ +§iJP2Q%@2Q§

3 6 3 7
+iJP P2P2@2+71JP2P2@2Q2+51JP P;P,Q,Q,Q; +§IJP 1P30,Q% + zJP Q,Q3Q}

307 5 3 2 2 2
+§11P3@2@2@3——zJPZP;Qz@z+P2P2Q2+35P2P2@2+ P2Q2@2+ P P,Q,Q,Q% += P3P2@ Q,04
2223022222222 2 20022
+1011'33“32_71'33@1@32 +71'31@2Q3 +7P1P3@1@2@3+@1Q2@3 ) (4.34a)
B 5
0dd: ng (—ZJPg@%@g - 2JP,P,P3Q,Q, +JQQ}Q3} + iP, P}Q,Q} + iP,P3QIQ, + ip3@%@§@3). (4.34b)

This three-point function has been studied explicitly using a tensor formalism in [47], where it was shown that a parity-odd
solution could arise in the three-point function. The approach we have developed can compute this correlator in seconds.
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Correlation function (J1J5J}):

3 45 25 51 17
Even: A (— g iJP,P1Q,Z5 — 33 iJP{Q,Q3Z; — 33 iJP3P3Q,Z5 — 33 iJP,P3Q1Q,Z;5 — 3% iJP3P Q37

5 5 33 15 5
+7 iJP,Q}Q3Z; + 3 iJP,Q1Q,7; — %P‘I‘Q§Z3 - 7PZP%@]a:l)zL - ZP%P%@%&
27 2M20M2 3 9 2 M4 45 2 p4 5 4m?2
+%I)1Q1@2234'102101@1@223 +%P2Q1Z3 +%P2PIZ3—%@1@223 . (4.35a)
0Odd: 0. (4.35b)

In this case we note that the superspin triangle inequalities are not satisfied, and therefore the odd solution vanishes after
current conservation.
Correlation function (J,J5J}):

A (18 94 90 180 94 204
Even: 71 <? iJP,P{Q3 — = iJP3P1Q, + = iJP}Q,035 + S iJPiP3Q,03 - = iJPAP3Q, + S iJP,P?Q?Q3

180 18 204 90
+— iJP3P2Q3Q, — 14iJP Q305 + = iJPiP,Q} + — iJP3P,Q}Q3 — 14iJP,Q1Q3 + = iJP3QiQ,

99 54 144 54 54
+35 PI@ - = PAPIQS + —— P,PIQ, @} - 16P3P{Q, @, — — PRQQ3 - — PIPIQY
2 p2M2M)2 %31443 3 9944154'242 4 p4 44
+36P2PIQ{Q; — 16P, P\ Q@) + —= PyP1QQs + o Py0T = — P03 + Py P+ 103 ). (4.36a)

B, (5 7 4 9 7
Odd: - (EJP;‘@;‘ + EJPgP‘l‘Qﬁ + §JP2P?@1@§ +8JP3P3Q,Q, - EJP%@%@‘Z‘ + EJP;*P%@% —-8JP,P,Q}Q3

4 5 9 5 5
+§JP§P1@§@2 +61P3@‘} —EJpg@‘l‘@g —JP3P} +J0Q1Q3 —gipzp‘l‘@g +iP3P{Q, +§iP§@1@;‘ - 6iP3P0Q,Q3

5 5
+iP3P3Q, + 6iP,PIQ2Q3 - 6iP3P?Q2Q, — iP,Q;Q) - giP‘z‘PlQ? +6iP3P,Q3Q3 - iP,Q1Q3 + 3 iPi@?@z) :
(4.36b)
Correlation function (J,J,J)):

TPQ4PT 6, 284 4 86iJP3Q,Q%P?
— = — PP, QAP+ P2QRipt 4 22T
1287 +65@2Q3 1+715’ 20 1J“143 2P+ 1287

14iJP3P;Q3P! 4
_PZ 4 2P4
1287 +15 3BAP

8 26 2 44 112
+EiJP2P§@§@§P‘1‘ —EiJP§@§@3P‘f +§iJP§@] Q3P3 391/ Qiaiprs +215 P2 Q3QiPs
4214iJP3Q,Q3Q%P;  86iJP3Q,Q5P 4

16 64
6435 287 ias 2 QP s PO QP 51 Pa Py Q05
84

8 62 4 8
+miJPgP3Q1@2@§P~§ +@iJP§@1@§@§P? +EPg@1@;‘@3P? +EiJP2Pg@1@3@3P? —?PﬁQ%@‘z‘Pﬁ

1748Q3Q3Q3%P2  31006iJP,Q2Q3Q3%P 4 158 4214iJ P3Q7Q, Q%P3
T PAQ2OAP2 - 22 P22 Q24 P2 2] 301

2145 * 6435 ARV R T L 6435

168 . 1322 8 . 316 974

- ?zJPng‘@%@%P% —mu&@%@‘;@gﬁ +szP;!P3@%@§P% +mlJP§P3@%@§@§P% —I—EP%@%@%@%P%

A
Even: X—; <P‘3‘@‘2‘P‘1‘ -

68 8
+2iJP,P3Q3 P} —1751'1&@3@;1)‘{ +miJP§P3@§@§P‘} +

106001-21



EVGENY 1. BUCHBINDER and BENJAMIN J. STONE PHYS. REV. D 107, 106001 (2023)

1948 . 1598 . 588 . 5230iJQ3Q3Q1P, 284
+ o5 WP PRAIQQIP] + — = i PAQTQ3Qs P} -~ i P{QIQ3P + g7 a5 PP,
2924P,Q3Q3Q4P, 31006iJP3Q;Q3Q4P, 112 7828P;Q; Q03P

2145 6435 + 275 POI@Q1P, + 20 PIPAQRP, —

8488 64 168 62
- iJP,P3Q}Q3Q3P, + —— iJP3P3Q}Q,Q3P, — — iJP}PiQ}Q3P, — ——iJP3Q}0Q3Q5P,

429 5 429
8 1948 336 1344
+13 iJP3P3Q;Q3P; +

195 iJP3P3Q3Q30Q3%P, + o P3QQ3Q5P; + o5 iJP,P3Q3Q3Q;P,

462 6 5230iJP,Q}Q3Q3

FP‘;@;‘@Q + 6Pg@‘l‘@g‘ + QiQ301 + . 2871 ==

46414iJ P;Q} Q403
1287

2145

8
+ 15 PP Qs Py + PyPAQY +

1748P3Q1Q3Q3 44 588 68

s 3 PRI, - S P PAQYQ) - s iU PPQia) +

7828P,P;QtQ3Q3 1322 16 34 4
S s ian MPAPQIA3Q] - oL PIPQIQ,0f - - PPIRIQS + 15 PRI
s PARieia) - 5 ilPPaiQI0) + 1o PPOIQSE; + o iTPIPAQIQ,Q5 + S iUPIPaQ,

26 6636 336 1598 4
T iJP3P3Q1Q; — 5 iJP3QQ3Q; + = P,P3Q1Q3Q;5 + <9 iJP3P3010Q30Q; + s ngg@‘l‘@zm) ., (4.37a)

B,
x5
16

16 27
—?JP1P§Q§@‘2‘Q3 +2JP3P3Q,Q50Q; —?Jpng@m;c% +2JP3P3Q1Q,Q; —7JP§Q;‘@§@§

40
—2JPIP3QIQ3Q3 - P\ P, PRQIQ3Q3 — 2/ P PR Q505 + /@1 @303 - 5iP PIQ1 Q) + P P1Q, Q3

35 1 1
(—JP‘;@;*@;‘ —EJP%P‘;Q%@‘Z‘ +20J P, P,P3Q; Q3 -2JPP,P{Q, Q3 —EJpgpg‘@‘f@g -2JP,P3P{Q3Q,

Odd: 5

5 10 10
—5iP,P3QIQ; +iP3P301 Qs —3iP3Q1 Q5 Qs + P PAQ Q0 Q5 + i P, PRQ @305 + i&@‘,‘@é@%) - (437

2. Grassmann-odd correlators

The classification of results for Grassmann-odd three-point functions, including cases where there is a point-switch
symmetry, is as follows:
(1) In all the cases we have examined (s; < 20), the three-point functions are fixed up to a single parity-even solution
after conservation on all three points. In general, any parity-odd structures are incompatible with conservation.
(i) (Jy,Jy,J5,): Note that in this case s, must be half-integer. For s, # s,, the classification is as follows:
Let s, =2k + %, k € Z; for arbitrary s; (integer or half-integer) the point-switch symmetry is not satisfied, and
therefore the three-point function vanishes in general.
Let s, = 2k —l—%, k € Zs; for arbitrary s, (integer or half-integer) the point-switch symmetry is satisfied, and
therefore the three-point function is fixed up to a single parity-even structure.
(i) (JJ,Js): For s =2k + %, k € Z the solution is compatible with the point-switch symmetry. For s = 2k + %,
k € Z the three-point function vanishes.
We now present results after imposing conservation on all three points.

Correlation function (Jy2J5,,J5,):

A, (1 3 1 1
Even: \/—)l(. <§P?@2§g - PzP%@]Sg, - ?PIQ%QZSS + 7P2@?§3 — P%@]QzR:; + PzPl@%Rg, - 3P2P{’R’; + ?@%@2R3> .
(4.38a)

0dd: 0. (4.38b)
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Correlation function (J,J5J /2>:
A, 2 ) | 1
Even: W 3@ @3§1 + = P3@2@ §2 + P @ Sl P @282
4 2 4 2 4 3 3
+ ﬁP3Q1@3R1 + ﬁP3Q2@3R2 + @3R3 - §Q1@‘3R1 - §Q2@3R2 , (4393)

0dd: 0. (4.39b)

In this instance we note that the superspin triangle inequalities are not satisfied, and therefore the odd solution vanishes after
current conservation.
Correlation function (J,J3J55):

A, 4 4 6 6 14 14
Even: X7 <—ﬁpz@l@g§3 + ﬁpl@z@gsg, - ﬁngmggl + ﬁPl@§@§§2 - 5—1193@%@2@381 + 5—]P3@1@’5‘@3§2
1 212 1 202 11 3 4 2 4 2 5 2
+§P2P3Q1§1 —§P1P3@2§2 —ﬁP1P2Q3R3 +§P2P3Q1@3R1 +§P1P3Q2@3R2 + 119 Q @ R2
5 26
+ mP2@2@2R1 +Q @2Q3R3 5] @1@%@%]32 - 5—1@%@2@§R1> , (4-403-)
0dd: 0. (4.40b)

Correlation function (J5,J} 2d i /2>:

A 1 1 3 3 1 3
Even: XT}Z <—§P2@2Q?§1 +§P1@%@1§2 +§P1P%@3@1S3 —§P%P2@2@3§3 +EP%@?R1 —§P%@3@%R3

2 1 3 11 10 10
— 5 PP @ Q30 Rs + BP%@%Rz - §P%@§@3R3+ ?P%P§Q3R3 — ﬁQg@?Rl — ﬁﬁi@%Rz + @%@3@%1%3) :
(4.41a)
0dd: 0. (4.41b)

Correlation function (J3,J5,J75):

A, (1 11 11 5
Even:\/—%<§P§@§§3 9102103@283 PZP%@,@g&+3P3P%@,§3—EP1@%@3§3+P§P,@%@2§3

1 5 11 1 11 11
—§P§@?§3 +—P2@?@§§3 - 3P2P~§Q§R3 ——P%@1Q§R3 +?P§P%@1Q2R3 - ?PgPlQ%& + PP Q}Q3R;
1 143
—ng@?@2R3 +— 77 P3PiR; + @3@3R3> (4.42a)
0dd: 0. (4.42b)

Correlation function (J,J5J7,):

A (33 9 132 4 9
Even: X*}2 (805 PiQts, - P2Q2@4§1+ 805})%@3@383 P2@2Q2@3§3+ P Q4Q2§2+ P 1Q30;03S;
44 572 44 33, 132
—mP1P§@2@3@%§3 805P2P‘@3@ S;+ 61P2P2@2@3@ S;— <05 P3Q3S, - 805P Q3Q;S;
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+ 232 P3P30,0;S; +53 J P2@2Q4R1 16 66 P2Q,Q;Q3R; — 2(6)? P P,Q30;Q3R; + 232 Plpgﬁg@%&
233 PQ3QR, — 16661 PQ30Q;QR; — 3332 P3P3Q,0;Q,R; + 232 P3P,Q3Q3R; — ‘1‘2? P3IP3QsR; — @3@‘1‘R1
—@@;‘@?Rz + @3@3@{&) : (4.432)
0Odd: 0. (4.43b)
Correlation function (Js/2J5,,J55):
Even: % < 13 —P,Q,0203S, + 323 P,P3Q,Q3S, - %&@3@3@?81 + %P§P3@3@%§1 + %P_g@g@@%sz

—%Pzaz@g@%& - %Plpg@;algz +£P1@;@§@1§2 +£P1P§@§Q1§3 +1—11P1@§@§@1§3
PP - S PP, + AR 2 popir, - L PIRIR, + 2 PRI,
% 32P2Q3@2R3 ZZPle@z@g@le +%P1P3@3@3Q1R2 3é3P2P2Q;R2
§9P2@2@3R3 + 3§ P2PIQ3R;+ 32 PIQ3Q3R, — ;@3@3@?131 + QIQ3Q3R; —%@3@3@%&), (4.44a)
0dd: 0. (4.44b)

Correlation function <J7/2J’7/2J/7’/2> :

Even: 1 _3499R,Q3Q3Q} | 705PR,Q,Q3Q7 189P,PIR,Q3Q} 647P,P3R,Q3Q5Q} 45P3P;R, Q307
X972 6997 6997 90961 6997 6997
P3PIR,Q} 2961P3R,@3Q;Q7 53PIPIR,Q,0;Qf 315PiQ3S,Q} 255P3Q3S,Qf
6997 90961 6997 90961 6997
_2985P,Q3Q3S,Q} 1393P,Q)Q3S,Q}  375P3P;0,Q35,Q) TPIPIQ,S,Q) 15P3P3Q;S,Q}
6997 6997 6997 6997 6997
175P2P§@§Q3§1Q‘1‘+ RGO _2091P3R;Q,Q3Q7 3499R,Q3Q30} +2961P§R2@§@3@? _315P3Q3S,Q)
6997 I 6997 6997 90961 90961
1393P;Q30Q3S,0} +255P§@§§3@~? _521P,Q3Q1S;Q7  189P PIR,Q3Q7 3859P, PyR; Q30307
6997 6997 6997 90961 6997
969P | P3R;Q3Q7  647P P3R,Q5Q35Q7  2985P,Q5Q3S,Q7  175P,P3Q3Q;S,Q] | 521P,Q5Q3S;Q7
6997 6997 6997 6997 6997
221P, P3Q,QiS;:Q] 2091P1R;Q;Q3Q, N 1615P1 P3R;Q,Q3Q, +7051)%1%@2‘2‘1;@3@1 _ 53PiPIR, 03050,
6997 6997 6997 6997 6997
7PIP3Q3S,Q; 375P2P;Q3Q3S,Q; 323PIP3Q3S;Q; 221P2P,Q3Q3S:Q; PIPiR,Q4
6997 6997 6997 6997 6997
969P3P,R;Q3Q% 969PIP3R,Q%F 45PIP;R,Q3Q3 255P3Q30Q3S, 15PiPIQ3Q;S,
6997 6997 6997 6997 6997
255P3Q3Q4S;  323P3P30Q,05S;
_ , 4.45
6997 6997 ) (4.45a)
0dd: 0. (4.45b)
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V. THREE-POINT FUNCTIONS OF SCALAR
SUPERFIELDS

For completeness, in this section we analyze three-point
correlation functions involving scalar superfields and
conserved supercurrents. Some of the three-point functions
contain parity-odd solutions, with their existence depend-
ing on both triangle inequalities and the weights of the
scalars. We found that the following general results hold:

<OO/JS> = a<OO/JS>E’ (51&)

(J5,J5,0) = a(J,, J5,0)p + b(J;, J5,0)p. (5.1b)
The correlation functions are analyzed using the same
methods as in the previous sections; the full classification
of results (for cases where there is a point-switch sym-
metry), is summarised below:

(i) (OOJ;): In general there are solutions only for
Ap = Ayp. For the Grassmann-even case the sol-
ution satisfies the point-switch symmetry O =
only for even s. For the Grassmann-odd case the
solution satisfies the point-switch symmetry only for
s =2k+3, k € Zy.

(i) (J,,J5,0): For sy # s,, there is a single even solution
for Ap =1; otherwise the three-point function
vanishes. For s; = s, there is one even and one
odd solution and the point-switch symmetries are
satisfied.

We now present explicit solutions for the above cases.

Correlation function (OO'J,)y):
For §; = 6, = 6, there is a single even solution com-
patible with conservation:

Even: X>2A|R;,
Odd: 0.

(5.2a)
(5.2b)

Correlation function (OO'J,):
For §; = 6, = 6, there is a single even solution com-

patible with conservation:
Even: X?72A,7Z;, (5.3a)

0dd: 0. (5.3b)

Correlation function (OO'J3,):
For 6, = 6, = 0, there is a single even solution com-
patible with conservation:
Even: X:2%A,R,Z;, (5.4a)
Odd: 0. (5.4b)

Correlation function (00']J,):

For 6, = 6, = 0, there is a single even solution com-
patible with conservation:

Even: X°~2A,73, (5.5a)

0dd: 0. (5.5b)

Correlation function (J; »J P O):

In this case, the superspin triangle inequalities are
satisfied, and there is one even and one odd solution for
arbitrary o:

1
Even: X34, (@3 + EiéJP3>,

(5.6a)
. —3+6 1 ; 3 ;
Odd. X B2 5 15.]@3 - E l.]@3 + P3 . (56b)

Correlation function (J, ;,J4 /2(9>:
In this case there is a solution only for 6 = 1:

A 1
Even: X—; (@3 + 51‘1133) Z,, (5.7a)
0dd: 0. (5.7b)

Correlation function (J3,,J, /2 0O):

In this case, the superspin triangle inequalities are
satisfied and there is one even and one odd solution for
arbitrary o:

_ i5(6+2)JP3 3.
Even: X 5+5A1 (2(57—6)3 + El(sJP3Q%
36P2Q;
+ 20, @g>, (5.8)
1
Odd: gX‘5+5B2 (31’(5 + 1)JP3Qs +i(6 - 7)JQ3
2(6+ 1)P3
+@+6P3@§ . (5.8b)
0-5
Correlation function (J;J,0):
In this case there is a solution only for 6 = 1:
AL 2 >
Even: F (—SIJP3@3 =+ P3 - 5@3)22, (593)
Odd: 0. (5.9b)

Correlation function (J,J,0):
In this case, the superspin triangle inequalities are satisfied,
and there is one even and one odd solution for arbitrary &:
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2i8(6 +2)JP3Q; . 8(6+2)P%  65P2Q7
Even: X~ 0+9A 372 1 2i5JP5Q3 3 35 1 0%, 5.10
ven 1< 5—8 TP =6 T sog B (5-102)
i(6+1)(6+3)JPy 3 1 5+ 1)P3
Odd: X—6+5Bz<’( +8()5( _J;) JP; +Zi(5+ 1)JP2Q32 +§i(5 -9)JQ} +(+5_% + P3@§>. (5.10b)

VI. CONCLUSION

The purpose of this paper was to develop a formalism to
determine the general structure of three-point correlation
functions of conserved supercurrents for arbitrary super-
spins in three-dimensional superconformal field theory. Our
method produces explicit results up to s; = 20 and is limited
only by computer power. We found that the main difference
in the general structure of the three-point function
(J5,J5,J5,) is whether it is Grassmann-odd or Grassmann-
even in superspace. If (J; J,J{,) is Grassmann-odd (that is,
the sum of the superspins is half-integer), then the correlator
is fixed up to a single parity-even contribution. If (J; J5,J5.)
is Grassmann-even (that is, the sum of the superspins is an
integer), then it is fixed up to one even solution and one odd
solution; the existence of the latter, however, depends on
whether the triangle inequalities are satisfied. The pattern of
the number of independent structures is clear, and we have
sufficient evidence to propose that our classification of
results holds in general.

There are various possible directions to extend our
results. An open question is whether it is possible to find
generating functions for arbitrary superspins that encapsu-
late the results in this paper, similar to the ones found in
nonsupersymmetric theories [16,17,58,59]. It would also
be interesting to apply our methods to superconformal
theories in higher dimensions (see [45,46,50] for recent
progress) and to N -extended superconformal theories.
Correlation functions of higher-spin currents in conformal
theories with extended supersymmetry have practically
not been studied; however, recent progress has been
reported in [48]. An important difference compared to
the N' = 1 case is that conserved currents can carry indices
of the R-symmetry group. Concerning the study of three-
point functions in four dimensions, in [50] a method was
introduced to study three-point functions of conserved
supercurrents Jy(,)4(, for arbitrary superspins in 4D
N =1 superconformal field theories. Explicit solutions
were constructed for three-point functions involving
higher-spin supercurrents and flavor current multiplets.
The method of [50] was an extension of the one used in
[46] where the classification problem was solved for
generic three-point functions of conserved fermionic cur-
rents S,y of arbitrary rank in 4D N = 1 SCFT. We believe
that the formalism developed in the present paper will
generalize directly to 4D N = 1 theories and will allow us

to extend the results of [50]. We leave these considerations
for a future study.
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APPENDIX A: 3D CONVENTIONS AND
NOTATION

For the Minkowski metric we use the “mostly plus”
convention: 7,,, = diag(—1, 1, 1). Spinor indices are then
raised and lowered with the SL(2,R) invariant antisym-
metric e-tensor

0 -1 0 1
Eap = 5 Saﬂ = 5 Saygyﬁ = 5(1/},
1 0 -1 0

(Ala)

¢a = 8aﬂ¢ﬂ7 ¢a = gaﬂ¢ﬂ' (Alb)

The y-matrices are chosen to be real and are expressed in
terms of the Pauli matrices, o, as follows:

=== (] ) d=a=(y 7))

(A2a)
0 -1
b — _g, = , A2b
(r2)a 01 (_1 0 > ( )
(7m)aﬂ = gﬁé(J/m)aé’ (},m)aﬁ = gms(ym)é/j' (Azc)
The y-matrices are traceless and symmetric,
(Ym)% =0, (7'n)a/f = (Ym)/fa’ (A3)
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and also satisfy the Clifford algebra

Ym¥n +Vn¥m = 2Mn- (Ad)

For products of y-matrices we make use of the
identities

(ym)ap (}/n)pﬂ = ’7mn5aﬂ + €mnp (yp)aﬂ’ (Asa)
)’ @), " p)s” = Mo (V) = Mnp (7)o"
+ Mnp (ym)aﬁ + emnpéaﬂ’ (ASb)

where we have introduced the 3D Levi-Civita tensor ¢ with
€"1? = —¢y;, = 1. We also have the orthogonality and
completeness relations for the y-matrices

(ym)aﬂ (ym)pa = _50:/)5/}6 - 5a05ﬂp7 <7m>aﬂ (Vn)aﬂ = _anrr

(A6)

The y-matrices are used to swap from vector indices to
spinor indices. For example, given some three-vector x,,,, it
may equivalently be expressed in terms of a symmetric
second-rank spinor x,; as follows:

1
Xop = (ym)(l/}xnw Xm = _E (Ym)a/}xa/)” (A7a)

1
det(x,5) = Ex“ﬁxa/; = —x"x,, = —x°. (A7b)

The same conventions are also adopted for the spacetime
partial derivatives d,,,,

1
aaﬂ = (ym)aﬁam7 On = _5 (Vm)aﬁaa ’ (Aga)
0, X" = 0y, OupX” = =6,85" — 6,764, (A8b)
m 1 af
&mno,, = —55 Oup- (A9)
We also define the supersymmetry generators Q,,,
0 0
=i— my O — Al10
Qa 109‘1 + (}/ )aﬂ ox™ ( )
and the covariant spinor derivatives
0 0
D,=—+i(y™) 0/ —, All
a 00” =+ 1(7/ )a/i o™ ( )

which anticommute with the supersymmetry generators,
{04 Dg} =0, and obey the standard anticommutation
relations

{Da’Dﬁ} = 2i(7m)aﬂam' (A12)

APPENDIX B: CONSERVATION IDENTITIES

For imposing superfield conservation equations on three-
point correlation functions, the following identities are
essential:

— {U0R3 +weRy — 01 (X - @)a}, (Bla)

i o A
D(IQZ = 12 {M(IR:; + W(IR] - Qz(X . @)(1}’ (Blb)

Dz, = ﬁ {2u"Rl -Z,(X @)a}, (B1d)
D°Z, —%{290122 —zz(x-é))“}, (Ble)
DZy = # {zwaR3 ~Zy(X - @)a}, (B1f)
a 1 a s a
DRl_W —u _Z( u)J ¢, (Blg)
e 1 a g a
104 1 104 i {0 a 1
1 . 3i .
DaSI _W{(X M)a—zua.]}, (Bl])
1 “ 3i
D“Sz—m{(X-v)“—Zv“J}, (B1k)
1 - 3i
D*S5 72 {(X w)* — ZW“J} (B11)

Similar relations hold for the action of Q% on the basis
structures.
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