
Three-point functions of conserved supercurrents in 3D N = 1 SCFT:
General formalism for arbitrary superspins

Evgeny I. Buchbinder* and Benjamin J. Stone†

Department of Physics M013, The University of Western Australia,
35 Stirling Highway, Crawley, Western Australia 6009, Australia

(Received 14 February 2023; accepted 10 April 2023; published 1 May 2023)

We analyze the general structure of the three-point functions of conserved higher-spin supercurrents in
3D,N ¼ 1 superconformal field theory. It is shown that supersymmetry imposes additional restrictions on
correlation functions of conserved higher-spin currents. We develop a manifestly supersymmetric
formalism to compute the three-point function hJs1J0s2J00s3i, where Js1 , J0s2 , and J00s3 are conserved
higher-spin supercurrents with superspins s1, s2, and s3, respectively (integer or half-integer). Using a
computational approach limited only by computer power, we analytically impose the constraints arising
from the superfield conservation equations and symmetries under permutations of superspace points.
Explicit solutions for three-point functions are presented, and we provide a complete classification of the
results for si ≤ 20; the pattern is very clear, and we propose that our classification holds for arbitrary
superspins. We demonstrate that Grassmann-even three-point functions are fixed up to one parity-even
structure and one parity-odd structure, while Grassmann-odd three-point functions are fixed up to a single
parity-even structure. The existence of the parity-odd structure in the Grassmann-even correlation functions
is subject to a set of triangle inequalities in the superspins. For completeness, we also analyze the structure
of three-point functions involving conserved higher-spin supercurrents and scalar superfields.
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I. INTRODUCTION

Awell-known implication of conformal symmetry [1–11]
is that the general form of two- and three-point correlation
functions of primary operators is fixed up to finitely many
parameters. However, constructing explicit solutions for
three-point functions of conserved current operators such as
the energy-momentum tensor, vector currents, and more
generally, higher-spin currents, remains an open problem.
An interesting feature of three-dimensional (3D) conformal
field theories is the existence of parity-odd structures in the
three-point functions of conserved currents. These structures
were overlooked in the seminal work by Osborn and Petkou
[11] (see also [12]), which introduced the group-theoretic
formalism to study the three-point functions of the energy-
momentum tensor and vector currents. The parity-odd
structures were discovered later using a polarization spinor
approach in [13], where results for three-point functions of
conserved (bosonic) higher-spin currents were obtained.

Soon after, it was proven by Maldacena and Zhiboedov in
[14] that correlation functions involving the energy-
momentum tensor and higher-spin currents are equal to
those of free field theories.1 This can be viewed as an
extension of the Coleman-Mandula theorem [15] to
conformal field theories; it was originally proven in three
dimensions and was generalized to four- and higher-
dimensional cases in [16–19] (see also [20,21]). In three-
dimensional theories the general structure of the three-point
function hJs1J0s2J00s3i, where Js denotes a conserved current
of arbitrary spin-s, is fixed up to the following form [13,14]2:

hJs1J0s2J00s3i ¼ a1hJs1J0s2J00s3iE1
þ a2hJs1J0s2J00s3iE2

þ bhJs1J0s2J00s3iO; ð1:1Þ
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1An assumption of the Maldacena-Zhiboedov theorem is that
the conformal theory under consideration possesses a unique
spin-2 conserved current—the energy-momentum tensor. This
assumption, however, does not hold in the presence of fermionic
higher-spin currents. Hence, it also does not hold in super-
conformal theories possessing conserved higher-spin supercur-
rents.

2Recall: in a d-dimensional conformal field theory (CFT), a
conserved current of spin-s is a totally symmetric and traceless
tensor Jm1���ms

of scale dimension ΔJ ¼ sþ d − 2, satisfying the
conservation equation ∂

m1Jm1���ms
¼ 0.
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where hJs1J0s2J00s3iE1
and hJs1J0s2J00s3iE2

are parity-even sol-
utions corresponding to free field theories, and hJs1J0s2J00s3iO
is a parity-violating, or parity-odd, solution which is not
generated by a free CFT. The existence of the parity-odd
solution is subject to the following triangle inequalities on
the spins:

s1 ≤ s2 þ s3; s2 ≤ s1 þ s3; s3 ≤ s1 þ s2: ð1:2Þ

If any of the above inequalities are not satisfied, then the odd
solution is incompatible with current conservation. Parity-
odd solutions are unique to three dimensions and have been
shown to arise in Chern-Simons theories interacting
with parity-violating matter [22–32]. Existence and unique-
ness of the odd solution has been proven in [28], while
methods to obtain explicit solutions for arbitrary spin are
contained in [16,17,33,34].
A natural follow-up question arises: in conformal field

theories, what are the implications of supersymmetry on the
general structure of three-point correlation functions? The
study of correlation functions in superconformal theories
has been carried out in diverse dimensions using the group-
theoretic approach developed in the following publications
[34–50]. It has been shown that superconformal symmetry
imposes additional restrictions on the three-point functions
of conserved currents compared to nonsupersymmetric
theories. For example, it was pointed out in [44] that there
is an apparent tension between supersymmetry and the
existence of parity-violating structures. In contrast with the
nonsupersymmetric case, parity-odd structures are not
found in the three-point functions of the energy-momentum
tensor and conserved vector currents [41–44]. For three-
point functions of higher-spin currents the results are more
unclear; however, it was shown in [47] that parity-odd
structures can appear in the three-point functions of
currents belonging to a superspin-2 current multiplet.
Such a multiplet contains independent conserved currents
of spin-2 and spin-5

2
(the spin-2 current is not equal to but

possesses the same properties as the energy-momentum
tensor). In general, for three-point functions involving
conserved higher-spin currents, the conditions under which
parity-violating structures can arise in supersymmetric
theories are not well understood.
The intent of this paper is to address these concerns and

provide a complete classification of conserved three-point
functions in 3D N ¼ 1 superconformal field theory. To do
this we develop a general formalism to study the three-point
function

hJs1ðz1ÞJ0s2ðz2ÞJ00s3ðz3Þi; ð1:3Þ

where z1, z2, z3 are points in 3D N ¼ 1 Minkowski super-
space and the superfield JsðzÞ is a conserved higher-
spin supercurrent of superspin-s (integer or half-integer).
These currents are primary superfields transforming in an

irreducible representation of the 3DN ¼ 1 superconformal
algebra, soð3; 2j1Þ ≅ ospð1j2;RÞ. They are described by
totally symmetric spin tensors of rank 2s, Jα1���α2sðzÞ ¼
Jðα1���α2sÞðzÞ, and satisfy the following superfield conserva-
tion equation:

Dα1Jα1α2���α2sðzÞ ¼ 0; ð1:4Þ
where Dα is the conventional covariant spinor derivative in
N ¼ 1 superspace. As a result of the superfield conserva-
tion equation (1.4), conserved supercurrents have scale
dimension ΔJ ¼ sþ 1 (saturating the unitary bound), and
at the component level contain independent conserved
currents of spin-s and sþ 1

2
, respectively. The most

important examples of conserved supercurrents in super-
conformal field theory are the supercurrent and flavor
current multiplets, corresponding to the cases s ¼ 3

2
and

s ¼ 1
2
, respectively (for a review of the properties of

supercurrent and flavor current multiplets in 3D theories,
see [41,51] and the references therein). The supercurrent
multiplet contains the energy-momentum tensor and the
supersymmetry current.3 Likewise, the flavor current multi-
plet contains a conserved vector current. Three-point
correlation functions of these currents contain important
physical information about a given superconformal field
theory and are highly constrained by superconformal
symmetry.
The general structure of three-point functions of con-

served (higher-spin) currents in 3D N ¼ 1 superconformal
field theory was proposed in [40] to be fixed up to the
following form:

hJs1J0s2J00s3i ¼ ahJs1J0s2J00s3iE þ bhJs1J0s2J00s3iO; ð1:5Þ

where hJs1J0s2J00s3iE is a parity-even solution and
hJs1J0s2J00s3iO is a parity-odd solution. However, as was
pointed out above there is a tension between supersym-
metry and the existence of parity-odd structures, which
means that the coefficient b in (1.5) vanishes in many
correlators. In this paper we provide a complete classi-
fication for when the parity-odd structures are allowed and
when they are not. In particular, we show that the odd
solution does not appear in correlation functions that are
overall Grassmann-odd (or fermionic). In the Grassmann-
even (bosonic) three-point functions the existence of the
parity-odd solution is subject to the following superspin
triangle inequalities:

s1 ≤ s2 þ s3; s2 ≤ s1 þ s3; s3 ≤ s1 þ s2: ð1:6Þ
When the triangle inequalities are simultaneously satisfied
there is one even solution and one odd solution; however, if

3In N -extended superconformal theories, the supercurrent
multiplet also contains the R-symmetry currents.
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any of the above inequalities are not satisfied, then the odd
solution is incompatible with the superfield conservation
equations. Our classification is in perfect agreement with
our previous results in [41,44] for the three-point functions
of the energy-momentum tensor and conserved vector
currents. They belong to the supermultiplets of superspins
s ¼ 3

2
and s ¼ 1

2
, respectively, and, hence, their three-point

functions in superspace are Grassmann-odd. Based on our
classification, it is implied that they do not possess parity-
odd contributions, which is in agreement with the earlier
results. Our classification is also in agreement with our
previous result in [47] for the three-point function of the
conserved supercurrent of superspin-2. This three-point
function is Grassmann-even in superspace, and since the
triangle inequalities (1.6) are satisfied, a parity-odd con-
tribution is allowed.
Our method assumes only the constraints imposed by

superconformal symmetry and superfield conservation
equations; within the framework of our formalism we
reproduce all known results concerning the structure of
three-point functions of conserved supercurrents in 3D
N ¼ 1 superconformal field theory (SCFT). We present
new results for three-point functions involving higher-spin
supercurrents, obtaining explicit and completely analytic
results. We also analyze three-point functions involving
scalar superfields, thus covering essentially all possible
three-point functions in 3D N ¼ 1 superconformal field
theory. Our method is based on a computational approach
(by means of analytic/symbolic computer algebra in
Mathematica) which constructs all possible structures for
the correlation function for a given set of superspins s1, s2,
and s3, consistent with its superconformal properties. Next,
we extract the linearly independent structures by systematic
application of linear dependence relations and then impose
the superfield conservation equations and symmetries
under permutations of superspace points. As a result we
obtain the three-point function in a very explicit form which
can be presented for relatively high superspins. The method
can be applied for arbitrary superspins and is limited only
by computer power. Due to these limitations we were able
to carry out computations up to si ¼ 20 (a “soft” limit, after
which the calculations take many hours); however, with a
sufficiently powerful computer one could extend this bound
even further. The computational approach we have devel-
oped (based on the same method as in [34]) is completely
algorithmic; one simply chooses the superspins of the fields
and the solution for the three-point function consistent with
conservation and point-switch symmetries is generated.
The analysis is computationally intensive for higher

spins; to streamline the calculations we develop a hybrid,
index-free formalism which combines the group-theoretic
superspace formalism introduced by Osborn [35] and Park
[37,38] and a method based on contraction of tensor indices
with auxiliary spinors. This method is widely used through-
out the literature to construct correlation functions of

higher-spin currents (see, e.g., [13,16,17,40,52,53]); how-
ever, this particular approach describes the correlation
function completely in terms of a polynomial, HðX;Θ; u;
v; wÞ, which is a function of two superconformally covar-
iant three-point building blocks, X and Θ, and the auxiliary
spinor variables u, v, and w. As a result one does not have
to work with the superspace points explicitly when impos-
ing the superfield conservation equations.
The results of this paper are organized as follows. In

Sec. II we review the essentials of the group theoretic
formalism used to construct correlation functions of primary
superfields in 3D N ¼ 1 SCFT. In Sec. III we outline a
method to impose all constraints arising from superfield
conservation equations and point-switch symmetries on
three-point functions of conserved higher-spin supercur-
rents. In particular, we introduce an index-free, auxiliary
spinor formalism which allows us to construct a generating
function for the three-point functions, and we outline the
important aspects of our computational approach.
Section IV is then devoted to the analysis of three-point
functions involving conserved supercurrents. As a test of our
approach, we present an explicit analysis for three-point
correlation functions involving combinations of supercur-
rent and flavor current multiplets, reproducing the known
results [41,44]. The results are then expanded to include
conserved higher-spin supercurrents, for which we provide
many examples and confirm the results of [47]. Herewe also
resolve a contradiction in the literature concerning the
structure of the three-point function hJ1=2J01=2J002i; it was
found in [40] that this three-point function contains a parity-
odd solution; however, it was shown later in [47] that parity-
odd structures are inconsistent with conservation equations.
In this paper we reexamine this three-point function and
provide a straightforward explanation, based on the triangle
inequalities (1.6), for why this structure cannot appear. In
Sec. V, for completeness, we perform the analysis of corre-
lation functions involving combinations of scalar super-
fields and conserved higher-spin supercurrents. Finally, in
Sec. VI we comment on the general results in the context of
superconformal field theories. The appendixes are devoted
to mathematical conventions and various useful identities.

II. SUPERCONFORMAL SYMMETRY IN THREE
DIMENSIONS

In this section we will review the pertinent aspects of the
group-theoretic formalism used to compute three-point
correlation functions of primary superfields in 3D N ¼ 1
superconformal field theories. For a more detailed review
of the formalism the reader may consult [38,41].

A. Superconformal transformations and primary
superfields

Let us begin by reviewing infinitesimal superconformal
transformations and the transformation laws of primary
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superfields. This section closely follows the notation of
[54–56]. Now consider 3D, N ¼ 1 Minkowski superspace
M3j2, parametrized by coordinates zA ¼ ðxa; θαÞ, where
a ¼ 0, 1, 2 and α ¼ 1, 2 are Lorentz and spinor indices,
respectively. We consider infinitesimal superconformal
transformations

δzA ¼ ξzA ⇔ δxa ¼ ξaðzÞþ iðγaÞαβξαðzÞθβ; δθα ¼ ξαðzÞ;
ð2:1Þ

which are associated with the real first-order differential
operator

ξ ¼ ξAðzÞ∂A ¼ ξaðzÞ∂a þ ξαðzÞDα: ð2:2Þ

This operator satisfies the master equation ½ξ; Dα� ∝ Dβ,
from which we obtain

ξα ¼ i
6
Dβξ

αβ: ð2:3Þ

As a consequence, the conformalKilling equation is satisfied,

∂aξb þ ∂bξa ¼
2

3
ηab∂cξ

c: ð2:4Þ

The solutions to the master equation are called the super-
conformal Killing vector fields of Minkowski superspace
[55,57]. They span a Lie algebra isomorphic to the super-
conformal algebra ospð1j2;RÞ. The components of the
operator ξ were calculated explicitly in [38,41], and are
found to be

ξαβ ¼ aαβ − λαγxγβ − xαγλγβ þ σxαβ þ 4iϵðαθβÞ

þ xαγxβδbγδ þ ibðαδ x
βÞδθ2 − 4iηγxγðαθβÞ; ð2:5aÞ

ξα ¼ ϵα − λαβθ
β þ 1

2
σθα þ bβγxβαθγ þ ηβð2iθβθα − xβαÞ;

ð2:5bÞ

aαβ ¼ aβα; λαβ ¼ λβα; λαα ¼ 0; bαβ ¼ bβα:

ð2:5cÞ

The bosonic parameters aαβ, λαβ, σ, bαβ correspond to
infinitesimal translations, Lorentz transformations, scale
transformations, and special conformal transformations,
respectively, while the fermionic parameters ϵα and ηα

correspond toQ-supersymmetry andS-supersymmetry trans-
formations. Furthermore, the identity D½αξβ� ∝ εαβ implies
that

½ξ; Dα� ¼ −ðDαξ
βÞDβ ¼ λα

βðzÞDβ −
1

2
σðzÞDα; ð2:6Þ

λαβðzÞ ¼ −DðαξβÞ; σðzÞ ¼ Dαξ
α: ð2:7Þ

The local parameters λαβðzÞ and σðzÞ are interpreted as being
associated with combined special-conformal/Lorentz and
scale transformations, respectively, and appear in the
transformation laws for primary tensor superfields. For later
use let us also introduce the z-dependent S-supersymmetry
parameter

ηαðzÞ ¼ −
i
2
DασðzÞ: ð2:8Þ

Explicit calculations of the local parameters give [38,41]

λαβðzÞ ¼ λαβ − xγðαbβÞγ þ 2iηðαθβÞ −
i
2
bαβθ2; ð2:9aÞ

σðzÞ ¼ σ þ bαβxαβ þ 2iθαηα; ð2:9bÞ

ηαðzÞ ¼ ηα − bαβθβ: ð2:9cÞ

Now consider a tensor superfield ΦAðzÞ transforming in an
irreducible representation of the Lorentz groupwith respect to
the index A. Such a superfield is called primary with
dimension Δ if it possesses the following superconformal
transformation properties:

δΦA ¼ −ξΦA − ΔσðzÞΦA þ λαβðzÞðMαβÞABΦB; ð2:10Þ

where ξ is the superconformal Killing vector, σðzÞ and λαβðzÞ
are z-dependent parameters associated with ξ, and the matrix
Mαβ is a Lorentz generator.

1. Conserved supercurrents

In this paper we are primarily interested in the structure
of three-point correlation functions involving conserved
higher-spin supercurrents. In 3D, N ¼ 1 theories, a con-
served higher-spin supercurrent of superspin-s (integer or
half-integer) is defined as a totally symmetric spin tensor of
rank 2s, Jα���α2sðzÞ ¼ Jðα1���α2sÞðzÞ ¼ Jαð2sÞðzÞ, satisfying a
conservation equation of the form

Dα1Jα1α2���α2sðzÞ ¼ 0; ð2:11Þ

where Dα is the conventional covariant spinor derivative
(A11). Conserved currents are primary superfields as they
possess the following infinitesimal superconformal trans-
formation properties [38,41,57]:

δJα1���α2sðzÞ ¼ −ξJα1���α2sðzÞ − ΔJσðzÞJα1���α2sðzÞ
þ 2sλðα1

δðzÞJα2���α2sÞδðzÞ: ð2:12Þ

The dimension ΔJ is constrained by the conservation
condition (2.11) to ΔJ ¼ sþ 1. Higher-spin supercurrents
possess the following component structure:
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Jαð2sÞðzÞ ¼ Jð0Þαð2sÞðxÞ þ Jð1Þαð2sþ1ÞðxÞθα2sþ1

þ J̃ð1Þðα1���α2s−1ðxÞθα2sÞ þ Jð2Þαð2sÞðxÞθ2: ð2:13Þ

After imposing (2.11), a short calculation gives J̃ð1Þ ¼ 0,

while Jð2Þ is a function of Jð0Þαð2sÞ. On the other hand, the

components Jð0Þ and Jð1Þ satisfy the following conservation
equations:

∂
α1α2Jð0Þα1α2αð2s−2ÞðxÞ¼0; ∂

α1α2Jð1Þα1α2αð2s−1ÞðxÞ¼0: ð2:14Þ

Hence, at the component level, a higher-spin supercurrent
of superspin-s contains conserved conformal currents of
spin-s and spin-ðsþ 1

2
Þ, respectively.

B. Two-point building blocks

Given two superspace points z1 and z2, we define the
two-point functions

xαβ12 ¼ðx1−x2Þαβþ2iθðα1 θ
βÞ
2 − iθα12θ

β
12; θα12¼θα1−θα2;

ð2:15Þ

which transformunder the superconformal group as follows:

δ̃xαβ12 ¼ −
�
λαγðz1Þ −

1

2
δαγσðz1Þ

�
xγβ12

− xαγ12

�
λγ

βðz2Þ −
1

2
δγ

βσðz2Þ
�
; ð2:16aÞ

δ̃θα12¼−
�
λαβðz1Þ−

1

2
δαβσðz1Þ

�
θβ12−xαβ12ηβðz2Þ: ð2:16bÞ

Here the total variation δ̃ is defined by its action on an
n-point function Φðz1;…; znÞ as

δ̃Φðz1;…; znÞ ¼
Xn
i¼1

ξziΦðz1;…; znÞ: ð2:17Þ

Only (2.16a) transforms covariantly under superconformal
transformations, as (2.16b) contains an inhomogeneous
piece in its transformation law. Therefore, it will not appear
as a building block in two- or three-point correlation
functions. Due to the useful property, xαβ21 ¼ −xβα12 , the
two-point function (2.15) can be split into symmetric and
antisymmetric parts as follows:

xαβ12 ¼ xαβ12 þ
i
2
εαβθ212; θ212 ¼ θα12θ12α: ð2:18Þ

The symmetric component

xαβ12 ¼ ðx1 − x2Þαβ þ 2iθðα1 θ
βÞ
2 ð2:19Þ

is recognized as the bosonic part of the standard two-point
superspace interval. The two-point functions possess the
property:

xασ12x21σβ ¼ x212δ
α
β; x212 ¼ −

1

2
xαβ12x12αβ: ð2:20Þ

Hence, we find

ðx−112 Þαβ ¼ −
xβα12
x212

: ð2:21Þ

It is now useful to introduce the normalized two-point
functions, denoted by x̂12,

x̂12αβ ¼
x12αβ

ðx212Þ1=2
; x̂ασ12 x̂21σβ ¼ δαβ: ð2:22Þ

Under superconformal transformations, x212 transforms with
local scale parameters, while (2.22) transforms with local
Lorentz parameters

δ̃x212 ¼ ðσðz1Þ þ σðz2ÞÞx212; ð2:23aÞ

δ̃x̂αβ12 ¼ −λαγðz1Þx̂γβ12 − x̂αγ12λγ
βðz2Þ: ð2:23bÞ

There are also the following differential identities for the
action of covariant spinor derivatives on the two-point
functions:

Dð1Þγx
αβ
12 ¼ −2iθβ12δαγ ; Dð1Þαx

αβ
12 ¼ −4iθβ12; ð2:24Þ

where DðiÞα acts on the superspace point zi. From here we
can now construct an operator analogous to the conformal
inversion tensor acting on the space of symmetric traceless
spin tensors of arbitrary rank. Given a two-point function x,
we define the operator

IαðkÞβðkÞðxÞ ¼ x̂ðα1ðβ1 � � � x̂αkÞβkÞ; ð2:25Þ

along with its inverse

IαðkÞβðkÞðxÞ ¼ x̂ðα1ðβ1 � � � x̂αkÞβkÞ: ð2:26Þ

The spinor indices may be raised and lowered using the
standard conventions as follows:

IαðkÞβðkÞðxÞ ¼ εβ1γ1 � � � εβkγkIαðkÞγðkÞðxÞ: ð2:27Þ

Now due to the property

IαðkÞβðkÞð−xÞ ¼ ð−1ÞkIαðkÞβðkÞðxÞ; ð2:28Þ
the following identity holds for products of inversion tensors:

IαðkÞσðkÞðx12ÞIσðkÞβðkÞðx21Þ ¼ δðβ1ðα1 � � � δ
βkÞ
αkÞ: ð2:29Þ
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The objects (2.25) and (2.26) prove to be essential in the
construction of correlation functions of primary operators
with arbitrary spin. Indeed, the vector representation of the
inversion tensor may be recovered in terms of the spinor two-
point functions as follows:

ImnðxÞ ¼ −
1

2
Trðγmx̂γnx̂Þjθ¼0: ð2:30Þ

C. Three-point building blocks

Essential to the analysis of three-point correlation
functions are three-point covariants/building blocks.
Indeed, given three superspace points, z1, z2, z3, one can
define the objects, Zk ¼ ðXij;ΘijÞ as follows:

Xijαβ ¼ −ðx−1ik Þαγxγδij ðx−1kj Þδβ;
Θijα ¼ ðx−1ik Þαβθβki − ðx−1jk Þαβθβkj; ð2:31aÞ

where the labels ði; j; kÞ are a cyclic permutation of
(1, 2, 3). These objects possess the important property
Xijαβ ¼ −Xjiβα. As a consequence, the three-point building
blocks (2.31) possess many properties similar to those of
the two-point building blocks

Xασ
ij Xjiσβ ¼ X2

ijδ
α
β; X2

ij ¼ −
1

2
Xαβ
ij Xijαβ: ð2:32Þ

Hence, we find

ðX−1
ij Þαβ ¼ −

Xβα
ij

X2
ij
: ð2:33Þ

It is also useful to note that one may decompose Xij into
symmetric and antisymmetric parts similar to (2.18) as
follows:

Xijαβ ¼ Xijαβ −
i
2
εαβΘ2

ij; Xijαβ ¼ Xijβα; ð2:34Þ

where the symmetric spin tensor, Xijαβ, can be equivalently
represented by the three-vector Xijm ¼ − 1

2
ðγmÞαβXijαβ.

Since the building blocks possess the same properties up
to cyclic permutations of the points, we will only examine
the properties of X12 and Θ12, as these objects appear most
frequently in our analysis of correlation functions. One can
compute

X2
12 ¼ −

1

2
Xαβ
12X12αβ ¼

x212
x213x

2
23

; Θ2
12 ¼ Θα

12Θ12α:

ð2:35Þ

The building block X12 also possesses the following
superconformal transformation properties:

δ̃X12αβ ¼ λα
γðz3ÞX12γβ þ X12αγλ

γ
βðz3Þ − σðz3ÞX12αβ;

ð2:36aÞ

δ̃Θ12α ¼
�
λα

βðz3Þ −
1

2
δα

βσðz3Þ
�
Θ12β; ð2:36bÞ

and, therefore,

δ̃X2
12 ¼ −2σðz3ÞX2

12; δ̃Θ2
12 ¼ −σðz3ÞΘ2

12; ð2:37Þ

i.e., (X12, Θ12) is superconformally covariant at z3. As a
consequence, one can identify the three-point supercon-
formal invariant

J ¼ Θ2
12ffiffiffiffiffiffiffi
X2
12

p ⇒ δ̃J ¼ 0; ð2:38Þ

which proves to be invariant under permutations of the
superspace points, i.e.,

J ¼ Θ2
12ffiffiffiffiffiffiffi
X2
12

p ¼ Θ2
31ffiffiffiffiffiffiffi
X2
31

p ¼ Θ2
23ffiffiffiffiffiffiffi
X2
23

p : ð2:39Þ

Analogous to the two-point functions, it is also useful to
introduce the normalized three-point building blocks,
denoted by X̂ij, Θ̂ij,

X̂ijαβ ¼
Xijαβ

ðX2
ijÞ1=2

; Θ̂α
ij ¼

Θα
ij

ðX2
ijÞ1=4

; ð2:40Þ

such that

X̂ασ
ij X̂jiσβ ¼ δαβ; J ¼ Θ̂2

ij: ð2:41Þ

Compared with the standard three-point building blocks
(2.31), the objects (2.40) transform only with local Lorentz
parameters. Now given an arbitrary three-point building
block, X, let us construct the following higher-spin inver-
sion operator:

IαðkÞβðkÞðXÞ ¼ X̂ðα1ðβ1 � � � X̂αkÞβkÞ; ð2:42Þ

along with its inverse

IαðkÞβðkÞðXÞ ¼ X̂ðα1ðβ1 � � � X̂αkÞβkÞ: ð2:43Þ

These operators possess properties similar to the two-point
higher-spin inversion operators (2.25), (2.26), and are
essential to the analysis of three-point correlation functions
involving higher-spin primary superfields. In particular,
one can prove the following useful identities involving Xij

and Θij at different superspace points:

EVGENY I. BUCHBINDER and BENJAMIN J. STONE PHYS. REV. D 107, 106001 (2023)

106001-6



Iα
σðx13ÞIβ

γðx13ÞIσγðX12Þ ¼ IαβðXI
23Þ; ð2:44aÞ

Iα
γðx13ÞΘ̂12γ ¼ Θ̂I

23α; ð2:44bÞ

where we have defined

ΘI
ijα ¼ Iαβð−XijÞΘβ

ij: ð2:45Þ

Note that XI is defined in the same way, and using (2.42)
we have XI

αβ ¼ I ðαα0Þðββ0Þð−XÞXα0β0 ¼ −Xαβ, as expected.
Using the inversion operators above, the identity (2.44a)
(and cyclic permutations) admits the following generali-
zation to higher spins:

IαðkÞσðkÞðx13ÞIβðkÞγðkÞðx13ÞIσðkÞγðkÞðX12Þ ¼ IαðkÞβðkÞðX23Þ:
ð2:46Þ

Due to the transformation properties (2.36a) and (2.36b) it
is often useful to make the identifications ðX1;Θ1Þ ≔
ðX23;Θ23Þ, ðX2;Θ2Þ ≔ ðX31;Θ31Þ, ðX3;Θ3Þ ≔ ðX12;Θ12Þ,
in which case we have, e.g., X21 ¼ −XT

3 ; we will switch
between these notations when convenient. Let us now
introduce the following analogs of the covariant spinor
derivative and supercharge operators involving the three-
point objects:

DðiÞα ¼
∂

∂Θα
i
þ iðγmÞαβΘβ

i
∂

∂Xm
i
;

QðiÞα ¼ i
∂

∂Θα
i
þ ðγmÞαβΘβ

i
∂

∂Xm
i
; ð2:47Þ

which obey the standard commutation relations

fDðiÞα;DðiÞβg ¼ fQðiÞα;QðiÞβg ¼ 2iðγmÞαβ
∂

∂Xm
i
: ð2:48Þ

Some useful identities involving (2.47) are, e.g.,

Dð3ÞγX3αβ ¼ −2iεγβΘ3α; Qð3ÞγX3αβ ¼ −2εγαΘ3β:

ð2:49Þ

We must also account for the fact that correlation functions
of primary superfields obey differential constraints as a
result of superfield conservation equations. Using (2.24) we
obtain the following identities:

Dð1ÞγX3αβ ¼ 2iðx−113 ÞαγΘ3β; Dð1ÞαΘ3β ¼ −ðx−113 Þβα;
ð2:50aÞ

Dð2ÞγX3αβ ¼ 2iðx−123 ÞβγΘ3β; Dð2ÞαΘ3β ¼ ðx−123 Þβα:
ð2:50bÞ

Now given a function fðX3;Θ3Þ, there are the following
differential identities which arise as a consequence of
(2.49), (2.50a), and (2.50b):

Dð1ÞγfðX3;Θ3Þ ¼ ðx−113 ÞαγDα
ð3ÞfðX3;Θ3Þ; ð2:51aÞ

Dð2ÞγfðX3;Θ3Þ ¼ iðx−123 ÞαγQα
ð3ÞfðX3;Θ3Þ: ð2:51bÞ

These will prove to be essential for imposing differential
constraints on three-point correlation functions of primary
superfields.

III. GENERAL FORMALISM FOR CORRELATION
FUNCTIONS OF PRIMARY SUPERFIELDS

In this section we develop a formalism to construct
correlation functions of primary superfields in 3D super-
conformal field theories. We utilize a hybrid method which
combines auxiliary spinors with the approach of [38,41].

A. Two-point functions

LetΦA be a primary superfield with dimensionΔ, where
A denotes a collection of Lorentz spinor indices. The two-
point correlation function ofΦA is fixed by superconformal
symmetry to the form

hΦAðz1ÞΦBðz2Þi ¼ c
IA

Bðx12Þ
ðx212ÞΔ

; ð3:1Þ

where I is an appropriate representation of the inversion
tensor and c is a constant real parameter. The denominator
of the two-point function is determined by the conformal
dimension of ΦA, which guarantees that the correlation
function transforms with the appropriate weight under scale
transformations.

B. Three-point functions

In this subsection we will review the various properties
of three-point correlation functions in 3D N ¼ 1 super-
conformal field theory. First we present the superfield
ansatz introduced by Park in [38]. We then develop a new
index-free formalism utilizing auxiliary spinors to simplify
the overall form of the three-point function, with the
ultimate aim of constructing a generating function for
arbitrary spins.

1. Superfield ansatz

Concerning three-point correlation functions, letΦ,Ψ,Π
be primary superfields with scale dimensions Δ1, Δ2, and
Δ3, respectively. The three-point function may be con-
structed using the general ansatz
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hΦA1
ðz1ÞΨA2

ðz2ÞΠA3
ðz3Þi ¼

I ð1Þ
A1

A0
1ðx13ÞI ð2Þ

A2

A0
2ðx23Þ

ðx213ÞΔ1ðx223ÞΔ2

×HA0
1
A0

2
A3
ðX12;Θ12Þ; ð3:2Þ

where the tensorHA1A2A3
encodes all information about the

correlation function and is related to the leading singular
operator product expansion coefficient [11]. It is highly
constrained by superconformal symmetry as follows:

(i) Under scale transformations of M3j2, z ¼ ðx; θÞ ↦
z0 ¼ ðλ−2x; λ−1θÞ; hence, the three-point covariants
transform as ðX;ΘÞ ↦ ðX0;Θ0Þ ¼ ðλ2X; λΘÞ. As a
consequence, the correlation function transforms as

hΦA1
ðz01ÞΨA2

ðz02ÞΠA3
ðz03Þi

¼ðλ2ÞΔ1þΔ2þΔ3hΦA1
ðz1ÞΨA2

ðz2ÞΠA3
ðz3Þi; ð3:3Þ

which implies that H obeys the scaling property

HA1A2A3
ðλ2X; λΘÞ ¼ ðλ2ÞΔ3−Δ2−Δ1HA1A2A3

ðX;ΘÞ;
∀ λ ∈ Rnf0g: ð3:4Þ

This guarantees that the correlation function trans-
forms correctly under scale transformations.

(ii) If any of the fields Φ, Ψ, Π obey differential
equations, such as conservation laws in the case
of conserved currents, then the tensor H is also
constrained by differential equations which may be
derived with the aid of identities (2.51a) and (2.51b).

(iii) If any (or all) of the operators Φ, Ψ, Π coincide, the
correlation function possesses symmetries under
permutations of spacetime points, e.g.,

hΦA1
ðz1ÞΦA2

ðz2ÞΠA3
ðz3Þi

¼ ð−1ÞϵðΦÞhΦA2
ðz2ÞΦA1

ðz1ÞΠA3
ðz3Þi; ð3:5Þ

where ϵðΦÞ is the Grassmann parity of Φ. As a
consequence, the tensor H obeys constraints which
will be referred to as “point-switch identities.”

The constraints above fix the functional form of H (and
therefore the correlation function) up to finitely many
independent parameters. Hence, using the general for-
mula (3.6), the problem of computing three-point correla-
tion functions is reduced to deriving the general structure of
the tensor H subject to the above constraints.

2. A note on conserved three-point functions

An important aspect of this construction is that
depending on the way in which one constructs the general
ansatz (3.6), it can be difficult to impose conservation
equations on one of the three fields due to a lack of
useful identities such as (2.50a) and (2.50b). For this reason
it is useful to switch between the various representations
of the three-point function. To illustrate this process

more clearly, consider the following example; suppose
we have obtained a solution for the correlation function
hΦA1

ðz1ÞΨA2
ðz2ÞΠA3

ðz3Þi, with the ansatz

hΦA1
ðz1ÞΨA2

ðz2ÞΠA3
ðz3Þi ¼

I ð1Þ
A1

A0
1ðx13ÞI ð2Þ

A2

A0
2ðx23Þ

ðx213ÞΔ1ðx223ÞΔ2

×HA0
1
A0

2
A3
ðX12;Θ12Þ: ð3:6Þ

All information about this correlation function is encoded
in the tensorH, and one can impose conservation on z1 and
z2 using the identities (2.50a), (2.50b), (2.51a), (2.51b).
However, this particular formulation of the three-point
function prevents us from imposing conservation on z3
in a straightforward way. Let us now reformulate the ansatz
with Π at the front as follows:

hΠA3
ðz3ÞΨA2

ðz2ÞΦA1
ðz1Þi ¼

I ð3Þ
A3

A0
3ðx31ÞI ð2Þ

A2

A0
2ðx21Þ

ðx231ÞΔ3ðx221ÞΔ2

× H̃A1A0
2
A0

3
ðX23;Θ23Þ: ð3:7Þ

In this case, all information about this correlation function
is now encoded in the tensor H̃, which has a completely
different structure compared to H. Conservation on Π can
now be imposed by treating z3 as the first point with the aid
of identities analogous to (2.51a) and (2.51b). We now
require an equation relating the tensors H and H̃, which
correspond to different representations of the same corre-
lation function. Equating the two ansatz above, we obtain
the following:

H̃A1A2A3
ðX23;Θ23Þ ¼ ðx213ÞΔ3−Δ1

�
x221
x223

�
Δ2

I ð1Þ
A1

A0
1ðx13Þ

× I ð2Þ
A2

B2ðx12ÞI ð2Þ
B2

A0
2ðx23Þ

× I ð3Þ
A3

A0
3ðx13ÞHA0

1
A0

2
A0

3
ðX12;Θ12Þ;

ð3:8Þ

where we have ignored any signs due to Grassmann parity.
Before we can simplify the above equation, we must
understand how the inversion tensor acts on HðX;ΘÞ.
Now let

HA1A2A3
ðX;ΘÞ ¼ XΔ3−Δ3−Δ1ĤA1A2A3

ðX;ΘÞ; ð3:9Þ

where ĤA1A2A3
ðX;ΘÞ is homogeneous degree 0 in ðX;ΘÞ,

i.e.,

ĤA1A2A3
ðλ2X; λΘÞ ¼ ĤA1A2A3

ðX;ΘÞ: ð3:10Þ

The tensor ĤA1A2A3
ðX;ΘÞ can be constructed from totally

symmetric, homogeneous degree 0 combinations of ε, X,
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and Θ, compatible with the set of indices A1, A2, A3;
hence, we consider the following objects:

εαβ; X̂αβ; Θ̂α; ðX̂ ·Θ̂Þα¼ X̂αβΘ̂β; J¼ Θ̂2: ð3:11Þ

Now to simplify (3.8), consider

I ð1Þ
A1

A0
1ðx13ÞI ð2Þ

A2

A0
2ðx13ÞI ð3Þ

A3

A0
3ðx13Þ

×ĤA0
1
A0

2
A0

3
ðX12;Θ12Þ: ð3:12Þ

Only combinations of the following fundamental products
may appear in the result:

Iα
α0 ðx13ÞIβ

β0 ðx13Þεα0β0 ¼ −εαβ; ð3:13aÞ

Iα
α0 ðx13ÞIβ

β0 ðx13ÞX̂12α0β0 ¼ X̂23αβ; ð3:13bÞ

Iα
α0 ðx13ÞΘ̂12α0 ¼ Θ̂I

23α; ð3:13cÞ

Iα
α0 ðx13ÞðX̂12 · Θ̂12Þα0 ¼ −ðX̂23 · Θ̂I

23Þα; ð3:13dÞ

where Θ̂I
ij was defined in (2.45). For correlation functions

involving the superconformal invariant, J, we must note
that JI ¼ ðΘ̂IÞ2 ¼ −J. These identities are consequences of
(2.44a) and (2.44b). If we now denote the above trans-
formations by I13, it acts on ĤðX12;Θ12Þ as follows:

X̂12 !I13 X̂23; Θ̂12 !I13 Θ̂I
23; ð3:14aÞ

ε !I13 − ε; X̂12 · Θ̂12 !I13 − X̂23 · Θ̂I
23; J !I13 − JI:

ð3:14bÞ

Hence, due to their transformation properties under I, the
objects (3.14a) are classified as “parity-even” as they are
invariant under I, while the objects (3.14b) are classified as
“parity-odd,” as they are pseudo-invariant under I. At this
point it is convenient to partition our solution into “even”
and “odd” sectors as follows:

HA1A2A3
ðX;ΘÞ ¼ HðþÞ

A1A2A3
ðX;ΘÞ þHð−Þ

A1A2A3
ðX;ΘÞ;

ð3:15Þ

whereHðþÞ contains all structures that are invariant under I
and Hð−Þ contains all structures that are pseudo-invariant
under I. With this choice of convention, as a consequence
of (2.44a) and (2.44b), the following relation holds:

ĤIð�Þ
A1A2A3

ðX23;Θ23Þ ¼ �I ð1Þ
A1

A0
1ðx13ÞI ð2Þ

A2

A0
2ðx13Þ

× I ð3Þ
A3

A0
3ðx13ÞĤð�Þ

A0
1
A0

2
A0

3
ðX12;Θ12Þ;

ð3:16Þ

where ĤIð�Þ
A1A2A3

ðX;ΘÞ ¼ Ĥð�Þ
A1A2A3

ðX;ΘIÞ. A result analo-
gous to (3.14a) and (3.14b) that follows from the properties
of the inversion tensor acting on ðX;ΘÞ is

X̂!IX −X̂; Θ̂!IX Θ̂I; ð3:17aÞ

ε!IX − ε; X̂ · Θ̂!IX X̂ · Θ̂I; J!IX − JI: ð3:17bÞ

Hence, to obtain the desired transformation properties as in
(3.14a) and (3.14b), we consider Hð−X;ΘÞ and obtain the
formula

HIð�Þ
A1A2A3

ðX;ΘÞ ¼ �I ð1Þ
A1

A0
1ðXÞI ð2Þ

A2

A0
2ðXÞI ð3Þ

A3

A0
3ðXÞ

×Hð�Þ
A0

1
A0

2
A0

3
ð−X;ΘÞ; ð3:18Þ

which is generally more simple to compute. After sub-
stituting (3.16) into (3.8), we obtain the following relation
between H and H̃:

H̃ð�Þ
A1A2A3

ðX;ΘÞ ¼ �ðX2ÞΔ1−Δ3I ð2Þ
A2

A0
2ðXÞHIð�Þ

A1A0
2
A3
ðX;ΘÞ:
ð3:19Þ

It is now apparent that I acts as an intertwining operator
between the various representations of the correlation
function. Once H̃ is obtained we can then impose con-
servation onΠ as if it were located at the “first point,” using
identities analogous to (2.51a) and (2.51b).
If we now consider the correlation function of three

conserved primary superfields JαðIÞ, J0βðJÞ, J00γðKÞ, where
I ¼ 2s1, J ¼ 2s2, K ¼ 2s3, then the general ansatz is

hJαðIÞðz1ÞJ0βðJÞðz2ÞJ00γðKÞðz3Þi ¼
IαðIÞα0ðIÞ ðx13ÞIβðJÞβ

0ðJÞðx23Þ
ðx213ÞΔ1ðx223ÞΔ2

×Hα0ðIÞβ0ðJÞγðKÞðX12;Θ12Þ;
ð3:20Þ

where Δi ¼ si þ 1. The constraints on H are then as
follows:

(i) Homogeneity:

HαðIÞβðJÞγðKÞðλ2X; λΘÞ
¼ ðλ2ÞΔ3−Δ2−Δ1HαðIÞβðJÞγðKÞðX;ΘÞ: ð3:21Þ

It is often convenient to introduce ĤαðIÞβðJÞγðKÞ
ðX;ΘÞ, such that

HαðIÞβðJÞγðKÞðX;ΘÞ ¼ XΔ3−Δ3−Δ1ĤαðIÞβðJÞγðKÞðX;ΘÞ;
ð3:22Þ
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where ĤαðIÞβðJÞγðKÞðX;ΘÞ is homogeneous degree 0
in ðX;ΘÞ, i.e.,

ĤαðIÞβðJÞγðKÞðλ2X; λΘÞ ¼ ĤαðIÞβðJÞγðKÞðX;ΘÞ: ð3:23Þ

(ii) Differential constraints: After application of the
identities (2.51a) and (2.51b) we obtain the follow-
ing constraints:

Conservation at z1∶ DαHααðI−1ÞβðJÞγðKÞðX;ΘÞ ¼ 0;

ð3:24aÞ

Conservation at z2∶ QβHαðIÞββðJ−1ÞγðKÞðX;ΘÞ ¼ 0;

ð3:24bÞ

Conservation at z3∶ QγH̃αðIÞβðJÞγγðK−1ÞðX;ΘÞ ¼ 0;

ð3:24cÞ

where

H̃ð�Þ
αðIÞβðJÞγðKÞðX;ΘÞ
¼ ðX2ÞΔ1−Δ3IβðJÞβ

0ðJÞðXÞHIð�Þ
αðIÞβ0ðJÞγðKÞðX;ΘÞ:

ð3:25Þ

(iii) Point-switch symmetries: If the fields J and J0
coincide, then we obtain the following point-switch
identity:

HαðIÞβðIÞγðKÞðX;ΘÞ¼ð−1ÞϵðJÞHβðIÞαðIÞγðKÞð−XT;−ΘÞ;
ð3:26Þ

where ϵðJÞ is the Grassmann parity of J. Likewise, if
the fields J and J00 coincide, then we obtain the
constraint

H̃αðIÞβðJÞγðIÞðX;ΘÞ ¼ ð−1ÞϵðJÞHγðIÞβðJÞαðIÞð−XT;−ΘÞ:
ð3:27Þ

In practice, imposing these constraints on correlation
functions involving higher-spin supercurrents quickly
becomes unwieldy using the tensor formalism, particularly
due to the sheer number of possible tensor structures for a
given set of superspins. Hence, in the next subsections we
will develop an index-free formalism to handle the com-
putations efficiently, using the same approach as [34].

3. Auxiliary spinor formalism

Supposewemust analyze the constraints on a general spin
tensor HA1A2A3

ðX;ΘÞ, where A1 ¼ fα1;…;αIg;A2 ¼
fβ1;…; βJg;A3 ¼ fγ1;…; γKg represent sets of totally
symmetric spinor indices associated with the fields at points

z1, z2, and z3, respectively. We introduce sets of commuting
auxiliary spinors for each point; u at z1, v at z2, and w at z3,
where the spinors satisfy

u2¼ εαβuαuβ¼0; v2¼ εαβvαvβ¼0; w2¼ εαβwαwβ¼0:

ð3:28Þ

Now if we define the objects

uA1 ≡ uαðIÞ ¼ uα1 � � � uαI ; ð3:29aÞ

vA2 ≡ vβðJÞ ¼ vβ1 � � � vβJ ; ð3:29bÞ

wA3 ≡ wγðKÞ ¼ wγ1 � � �wγK ; ð3:29cÞ

then the generating polynomial for H is constructed as
follows:

HðX;Θ; u; v; wÞ ¼ HA1A2A3
ðX;ΘÞuA1vA2wA3 : ð3:30Þ

There is a one-to-one mapping between the space of
symmetric traceless spin tensors and the polynomials con-
structed using the above method. Indeed, the tensor H is
extracted from the polynomial by acting on it with the
following partial derivative operators:

∂

∂uA1
≡ ∂

∂uαðIÞ
¼ 1

I!
∂

∂uα1
� � � ∂

∂uαI
; ð3:31aÞ

∂

∂vA2
≡ ∂

∂vβðJÞ
¼ 1

J!
∂

∂vβ1
� � � ∂

∂vβJ
; ð3:31bÞ

∂

∂wA3
≡ ∂

∂wγðKÞ ¼
1

K!

∂

∂wγ1
� � � ∂

∂wγK
: ð3:31cÞ

The tensor H is then extracted from the polynomial as
follows:

HA1A2A3
ðX;ΘÞ¼ ∂

∂uA1

∂

∂vA2

∂

∂wA3
HðX;Θ;u;v;wÞ: ð3:32Þ

Auxiliary spinors are widely used in the construction of
correlation functions throughout the literature (see, e.g.,
[13,16,17,40,52,53]); however, usually the entire correlator
is contracted with auxiliary variables and as a result
one produces a polynomial depending on all three super-
space points and the auxiliary spinors. In contrast, this
approach contracts the auxiliary spinors with the tensor
HA1A2A3

ðX;ΘÞ, which depends only on X, Θ. As a result, it
is straightforward to impose constraints on the correlation
function as H does not depend on any of the superspace
points explicitly.
The full three-point function may be translated into the

auxiliary spinor formalism; recalling that I ¼ 2s1, J ¼ 2s2,
K ¼ 2s3, first we define
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Js1ðz1; uÞ ¼ JαðIÞðz1ÞuαðIÞ; J0s2ðz2; vÞ ¼ JβðJÞðz2ÞvαðJÞ;
ð3:33aÞ

J00s3ðz3;wÞ ¼ JγðKÞðz3ÞwγðKÞ: ð3:33bÞ

The general ansatz for the three-point function is as
follows:

hJs1ðz1; uÞJ0s2ðz2; vÞJ00s3ðz3;wÞi

¼ I ðIÞðx13; u; ũÞI ðJÞðx23; v; ṽÞ
ðx213ÞΔ1ðx223ÞΔ2

HðX12;Θ12; ũ; ṽ; wÞ;

ð3:34Þ

where

I ðsÞðx;u;ũÞ≡I ðsÞ
x ðu;ũÞ¼uαðsÞIαðsÞα

0ðsÞðxÞ ∂

∂ũα
0ðsÞ ð3:35Þ

is the inversion operator acting on polynomials degree s in
ũ, and Δi ¼ si þ 1. After converting the constraints sum-
marized in the previous subsection into the auxiliary spinor
formalism, we obtain the following:

(i) Homogeneity:

Hðλ2X; λΘ; uðIÞ; vðJÞ; wðKÞÞ
¼ ðλ2ÞΔ3−Δ2−Δ1HðX;Θ;uðIÞ; vðJÞ; wðKÞÞ;

ð3:36Þ

where we have used the notation uðIÞ, vðJÞ, and
wðKÞ to keep track of the homogeneity of the
auxiliary spinors u, v, and w.

(ii) Differential constraints: First, define the following
three differential operators:

D1 ¼Dα ∂

∂uα
; D2 ¼Qα ∂

∂vα
; D3 ¼Qα ∂

∂wα :

ð3:37Þ

Conservation on all three points may be imposed
using the following constraints:

Conservationat z1∶D1HðX;Θ;uðIÞ;vðJÞ;wðKÞÞ¼0;

ð3:38aÞ

Conservationat z2∶D2HðX;Θ;uðIÞ;vðJÞ;wðKÞÞ¼0;

ð3:38bÞ

Conservationat z3∶D3H̃ðX;Θ;uðIÞ;vðJÞ;wðKÞÞ¼0;

ð3:38cÞ

where, in the auxiliary spinor formalism, H̃ ¼
H̃ðþÞ þ H̃ð−Þ is computed as follows:

H̃ð�ÞðX;Θ; uðIÞ; vðJÞ; wðKÞÞ
¼ �ðX2ÞΔ1−Δ3I ðJÞ

X ðv; ṽÞ
×HIð�ÞðX;Θ; uðIÞ; ṽðJÞ; wðKÞÞ; ð3:39Þ

where I ðsÞ
X ðv; ṽÞ≡ I ðsÞðX; v; ṽÞ.

(iii) Point-switch symmetries: If the fields J and J0
coincide (hence I ¼ J), then we obtain the following
point-switch constraint

HðX;Θ;uðIÞ;vðIÞ;wðKÞÞ
¼ð−1ÞϵðJÞHð−XT;−Θ;vðIÞ;uðIÞ;wðKÞÞ; ð3:40Þ

where, again, ϵðJÞ is the Grassmann parity of J.
Similarly, if the fields J and J00 coincide (hence
I ¼ K), then we obtain the constraint

H̃ðX;Θ;uðIÞ; vðJÞ;wðIÞÞ
¼ ð−1ÞϵðJÞHð−XT;−Θ;wðIÞ; vðJÞ; uðIÞÞ: ð3:41Þ

To find an explicit solution for the polynomial (3.30), one
must now consider all possible scalar combinations of X,
Θ, ε, u, v, and w with the appropriate homogeneity. Hence,
let us introduce the following structures:

Bosonic:

P1¼ εαβvαwβ; P2¼ εαβwαuβ; P3¼ εαβuαvβ;

ð3:42aÞ

Q1¼ X̂αβvαwβ; Q2¼ X̂αβwαuβ; Q3¼ X̂αβuαvβ;

ð3:42bÞ

Z1¼ X̂αβuαuβ; Z2¼ X̂αβvαvβ; Z3¼ X̂αβwαwβ:

ð3:42cÞ

Fermionic:

R1 ¼ εαβuαΘ̂β; R2 ¼ εαβvαΘ̂β; R3 ¼ εαβwαΘ̂β;

ð3:43aÞ

S1¼ X̂αβuαΘ̂β; S2¼ X̂αβvαΘ̂β; S3¼ X̂αβwαΘ̂β:

ð3:43bÞ

A general solution forHðX;ΘÞ is composed of all possible
combinations of Pi, Qi, Zi, Ri, Si, and J which possess the
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correct homogeneity in u, v, and w. Comparing with
(3.14a) and (3.14b), we can identify the objects Pi, Si,
and J as being parity-odd due to their transformation
properties under inversions.
For the subsequent analysis of conserved three-point

functions, due to the property (2.34), and the fact that in
N ¼ 1 theories Θ3 ¼ 0 ⇒ X2 ¼ X2, it is generally more
convenient to construct the polynomial in terms of the
symmetric spin tensor, Xαβ, rather than Xαβ, resulting in
the polynomial HðX;ΘÞ. Hence, we expand Qi, Zi, Si as
follows:

Qi ¼ Qi −
i
2
PiJ; Zi ¼ Zi; Si ¼ Si; ð3:44Þ

where we have defined

Q1 ¼ X̂αβvαwβ; Q2 ¼ X̂αβwαuβ; Q3 ¼ X̂αβuαvβ;

ð3:45aÞ

Z1 ¼ X̂αβuαuβ; Z2 ¼ X̂αβvαvβ; Z3 ¼ X̂αβwαwβ;

ð3:45bÞ

S1 ¼ X̂αβuαΘ̂β; S2 ¼ X̂αβvαΘ̂β; S3 ¼ X̂αβwαΘ̂β:

ð3:45cÞ

The polynomial HðX;ΘÞ is now constructed from all
possible combinations of Pi, Qi, Zi, Ri, Si, and J. Once
a general solution forHðX;ΘÞ is obtained, one can convert
back to “covariant form,” HðX;ΘÞ, by making the replace-
ments

Qi → Qi þ
i
2
PiJ; Zi → Zi; Si → Si: ð3:46Þ

4. Generating function method

In general, it is a nontrivial technical problem to come
up with an exhaustive list of possible solutions for
HðX;Θ; u; v; wÞ for a given set of superspins; however,
this process can be simplified by introducing generating
functions for the polynomial HðX;Θ; u; v; wÞ. First we
introduce the function F ðXÞ, defined as follows:

F ðXÞ ¼ XδPk1
1 P

k2
2 P

k3
3 Q

l1
1 Q

l2
2 Q

l3
3 Z

m1

1 Zm2

2 Zm3

3 ; ð3:47Þ

where, typically, δ ¼ Δ3 − Δ2 − Δ1. The generating func-
tions for Grassmann-even and Grassmann-odd correlators
in N ¼ 1 theories are then defined as follows:

GðX;ΘjΓÞ ¼
�
F ðXÞJσ; Bosonic;

F ðXÞRp1

1 Rp2

2 Rp3

3 Sq11 Sq22 Sq33 ; Fermionic:

ð3:48Þ

Here the non-negative integers, Γ ¼ fki; li; mi; pi; qi; σg,
i ¼ 1, 2, 3, are constrained; for overall bosonic correlation
functions they are solutions to the following linear system:

k2 þ k3 þ l2 þ l3 þ 2m1 ¼ I; ð3:49aÞ

k1 þ k3 þ l1 þ l3 þ 2m2 ¼ J; ð3:49bÞ

k1 þ k2 þ l1 þ l2 þ 2m3 ¼ K; ð3:49cÞ

with σ ¼ 0, 1. Likewise, for overall fermionic correlation
functions, the integers Γ are solutions to the following
system:

k2 þ k3 þ l2 þ l3 þ 2m1 þ p1 þ q1 ¼ I; ð3:50aÞ

k1 þ k3 þ l1 þ l3 þ 2m2 þ p2 þ q2 ¼ J; ð3:50bÞ

k1 þ k2 þ l1 þ l2 þ 2m3 þ p3 þ q3 ¼ K; ð3:50cÞ

p1 þ p2 þ p3 þ q1 þ q2 þ q3 ¼ 1; ð3:50dÞ

where I ¼ 2s1, J ¼ 2s2, K ¼ 2s3 specify the spin structure
of the correlation function. These equations are obtained by
comparing the homogeneity of the auxiliary spinors u, v, w
in the generating functions (3.48), against the index
structure of the tensor H. The solutions correspond to a
linearly dependent basis of structures in which the poly-
nomial H can be decomposed. Using Mathematica it is
straightforward to generate all possible solutions to (3.49)
and (3.50) for fixed values of the superspins.
Now let us assume there exists a finite number of

solutions Γi, i ¼ 1;…; N to (3.49) and (3.50) for a given
choice of I, J, K. The set of solutions Γ ¼ fΓig may be
partitioned into even and odd sets Γþ and Γ−, respectively,
by counting the number of pseudo-invariant basis structures
present in a particular solution. Therefore we define

Γþ ¼ Γjk1þk2þk3þq1þq2þq3þσ ðmod 2Þ¼0;

Γ− ¼ Γjk1þk2þk3þq1þq2þq3þσ ðmod 2Þ¼1: ð3:51Þ

Hence, the even solutions are those such that k1 þ k2 þ
k3 þ q1 þ q2 þ q3 þ σ ¼ even (i.e., contains an even
number of parity-odd building blocks), while the odd
solutions are those such that k1 þ k2 þ k3 þ q1 þ q2 þ
q3 þ σ ¼ odd (contains an odd number of parity-odd
building blocks). Let jΓþj ¼ Nþ and jΓ−j ¼ N−, with
N ¼ Nþ þ N−, and then the most general ansatz for the
polynomial H in (3.30) is as follows:

HðX;Θ;u;v;wÞ¼HðþÞðX;Θ;u;v;wÞþHð−ÞðX;Θ;u;v;wÞ;
ð3:52Þ

where
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HðþÞðX;Θ; u; v; wÞ ¼
XNþ

i¼1

AiGðX;ΘjΓþ
i Þ; ð3:53aÞ

Hð−ÞðX;Θ; u; v; wÞ ¼
XN−

i¼1

BiGðX;ΘjΓ−
i Þ; ð3:53bÞ

and Ai and Bi are real constants. Using this method one can
generate all the possible structures for a given set of
superspins ðs1; s2; s3Þ; however, at this stage we must
recall that the solutions generated using this approach
are linearly dependent. To form a linearly independent
set of solutions we must systematically take into account
the following nonlinear relations between the primitive
structures:

Z2Z3 þ P2
1 −Q2

1 ¼ 0; ð3:54aÞ

Z1Z3 þ P2
2 −Q2

2 ¼ 0; ð3:54bÞ

Z1Z2 þ P2
3 −Q2

3 ¼ 0; ð3:54cÞ

P1Z1þP2Q3þP3Q2¼0; Q1Z1−Q2Q3−P2P3¼0;

ð3:55aÞ

P2Z2þP1Q3þP3Q1¼0; Q2Z2−Q1Q3−P1P3¼0;

ð3:55bÞ

P3Z3þP1Q2þP2Q1¼0; Q3Z3−Q1Q2−P1P2¼0:

ð3:55cÞ

These allow elimination of the combinations ZiZj, ZiPi,
ZiQi. There is also another relation involving triple
products:

P1P2P3 þ P1Q2Q3 þ P2Q1Q3 þ P3Q1Q2 ¼ 0; ð3:56Þ

which allows elimination of P1P2P3. The relations above
are identical to those appearing in the 3D CFT case [34];
however, they must be supplemented by relations involving
the fermionic structures:

P1R1 −Q2S2 þQ3S3 ¼ 0; P1S1 −Q2R2 þQ3R3 ¼ 0;

ð3:57aÞ

P2R2 −Q3S3 þQ1S1 ¼ 0; P2S2 −Q3R3 þQ1R1 ¼ 0;

ð3:57bÞ

P3R3 −Q1S1 þQ2S2 ¼ 0; P3S3 −Q1R1 þQ2R2 ¼ 0;

ð3:57cÞ

Z1R2 −Q3R1 þ P3S1 ¼ 0; Z2R1 −Q3R2 − P3S2 ¼ 0;

ð3:58aÞ

Z2R3 −Q1R2 þ P1S2 ¼ 0; Z3R2 −Q1R3 − P1S3 ¼ 0;

ð3:58bÞ

Z3R1 −Q2R3 þ P2S3 ¼ 0; Z1R3 −Q2R1 − P2S1 ¼ 0;

ð3:58cÞ

Z1S2 −Q3S1 þ P3R1 ¼ 0; Z2S1 −Q3S2 − P3R2 ¼ 0;

ð3:59aÞ

Z2S3 −Q1S2 þ P1R2 ¼ 0; Z3S2 −Q1S3 − P1R3 ¼ 0;

ð3:59bÞ

Z3S1 −Q2S3 þ P2R3 ¼ 0; Z1S3 −Q2S1 − P2R1 ¼ 0:

ð3:59cÞ

These allow for elimination of the products PiRi, PiSi,
ZiRj, ZiSj. As a consequence of (3.57a), the following also
hold:

P1R1 þ P2R2 þ P3R3 ¼ 0; ð3:60aÞ

P1S1 þ P2S2 þ P3S3 ¼ 0: ð3:60bÞ

Applying the above relations to a set of linearly dependent
polynomial structures significantly reduces the number of
structures to consider for a given three-point function, since
we are now restricted to linearly independent contributions.
This process is relatively straightforward to implement
using Mathematica’s pattern matching functions.
Now that we have taken care of linear dependence, it

now remains to impose conservation on all three points in
addition to the various point-switch symmetries; introduc-
ing the objects Pi, Qi, Zi, Ri, Si proves to streamline this
analysis significantly. First let us consider conservation; to
impose conservation on z1 (for either sector), we compute

D1HðX;Θ; u; v; wÞ ¼ D1

�XN
i¼1

ciGðX;ΘjΓiÞ
�

¼
XN
i¼1

ciD1GðX;ΘjΓiÞ: ð3:61Þ

We then solve for the coefficient ci such that the result
vanishes. To impose the superfield conservation equations,
the identities (B1) are essential. The same approach applies
for conservation on z2.
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Next, to impose conservation on z3 we must first obtain
an explicit expression for H̃ðX;ΘÞ in terms of HðX;ΘÞ;
that is, we must compute (e.g., for the even sector)

H̃ðX;Θ; uðIÞ; vðJÞ; wðKÞÞ
¼ ðX2ÞΔ1−Δ3I ðJÞ

X ðv; ṽÞHIðX;Θ; uðIÞ; ṽðJÞ; wðKÞÞ:
ð3:62Þ

Recall that any solution forHðX;ΘÞ can be written in terms
of the structures (3.42) and (3.43); given the transformation
properties (3.16) and (3.19), the computation of HIðX;ΘÞ
from HðX;ΘÞ is equivalent to the following replacements:

P1 → −P1; P2 → −P2; P3 → −P3; ð3:63aÞ

R1 → −S1; R2 → −S2; R3 → −S3; ð3:63bÞ

S1 → R1; S2 → R2; S3 → R3: ð3:63cÞ

Now to compute H̃ðX;ΘÞ from HIðX;ΘÞ, we make use of
the fact that P1, P3, Q1, Q3, Z2, R2, and S2 are the only
objects with ṽ dependence and apply the identities

IXðv; ṽÞP1 ¼ −Q1; IXðv; ṽÞP3 ¼ Q3 þ iP3J;

ð3:64aÞ

IXðv; ṽÞQ1 ¼ −P1 þ iQ1J; IXðv; ṽÞQ3 ¼ P3;

ð3:64bÞ

IXðv; ṽÞR2 ¼ −S2; IXðv; ṽÞS2 ¼ −R2; ð3:64cÞ

I ð2Þ
X ðv; ṽÞZ2 ¼ −Z2: ð3:64dÞ

Hence, given a solution for the polynomial HðX;ΘÞ, the
computation of H̃ðX;ΘÞ is now equivalent to the following
replacements of the basis structures (3.42) and (3.43):

P1→Q1; P2→−P2; P3→−Q3− iP3J; ð3:65aÞ

Q1→−P1þ iQ1J; Q2→Q2; Q3→P3; ð3:65bÞ

Z1 → Z1; Z2 → −Z2; Z3 → Z3; ð3:65cÞ

R1 → −S1; R2 → R2; R3 → −S3; ð3:65dÞ

S1 → R1; S2 → −S2; S3 → R3: ð3:65eÞ

These rules are obtained by combining (3.63) and (3.64).
Conservation on z3 can now be imposed using the
operator D3.
It now remains to find out how point-switch symmetries

act on the basis structures; this analysis is simpler when

working with HðX;ΘÞ, instead of HðX;ΘÞ. For permuta-
tion of superspace points z1 and z2, we have X → −X,
Θ → −Θ, u ↔ v. This results in the following replacement
rules for the basis objects (3.42) and (3.43):

P1 → −P2; P2 → −P1; P3 → −P3; ð3:66aÞ

Q1 → −Q2; Q2 → −Q1; Q3 → −Q3; ð3:66bÞ

Z1 → −Z2; Z2 → −Z1; Z3 → −Z3; ð3:66cÞ

R1 → −R2; R2 → −R1; R3 → −R3; ð3:66dÞ

S1 → S2; S2 → S1; S3 → S3: ð3:66eÞ

Likewise, for permutation of superspace points z1 and z3
we have X → −X, Θ → −Θ, u ↔ w, resulting in the
following replacements:

P1 → −P3; P2 → −P2; P3 → −P1; ð3:67aÞ

Q1 → −Q3; Q2 → −Q2; Q3 → −Q1; ð3:67bÞ

Z1 → −Z3; Z2 → −Z2; Z3 → −Z1; ð3:67cÞ

R1 → −R3; R2 → −R2; R3 → −R1; ð3:67dÞ

S1 → S3; S2 → S2; S3 → S1: ð3:67eÞ

We have now developed all the formalism necessary to
analyze the structure of three-point correlation functions in
3D N ¼ 1 SCFT. To summarize, in the remaining sections
of this paper we will analyze the three-point functions of
conserved higher-spin supercurrents (for both integer and
half-integer superspin) using the following method:
(1) For a given set of superspins, we construct all

possible (linearly dependent) structures for the
polynomial HðX;Θ; u; v; wÞ, which is governed
by the solutions to (3.49) and (3.50). The solutions
are sorted into even and odd sectors.

(2) We systematically apply the linear dependence
relations (3.54a), (3.55a), (3.56), (3.57a), (3.58a),
(3.59a) to the set of all polynomial structures. This is
sufficient to form the most general linearly inde-
pendent ansatz for the correlation function.

(3) Using the method outlined in Sec. III B 3, we impose
the superfield conservation equations on the corre-
lation function, resulting in the differential contraints
(3.38) on H. The result of each computation is a
large polynomial in the basis structures (3.42) and
(3.43). The linear dependence relations are system-
atically applied to this polynomial again to ensure
that it is composed of only linearly independent
terms. The coefficients are read off the structures,
resulting in algebraic constraint relations on the
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coefficients Ai and Bi. This process significantly
reduces the number of structures in the three-point
function.

(4) Once the general form of the polynomial
HðX;Θ; u; v; wÞ (associated with the conserved
three-point function hJs1J0s2J00s3i) is obtained for a
given set of superspins ðs1; s2; s3Þ, we then impose
any symmetries under permutation of superspace
points, that is, (3.40) and (3.41) (if applicable). In
certain cases, imposing these constraints can elimi-
nate the remaining structures. The solution is then
converted into covariant form HðX;Θ; u; v; wÞ.

The computations are done completely analytically with
the use of Mathematica and the Grassmann package. By
using pattern matching functions, the calculations are
carried out purely among the basis structures (3.42) and
(3.43); as a result we do not have to fix superspace points to
certain values. The only chosen parameters are the spins.
Due to computational limitations we could carry out the
analysis up to si ¼ 20 (some steps of the calculations
involve millions of terms); however, with more optimiza-
tion and sufficient computational resources this approach
should hold for arbitrary superspins. Since there is an
enormous number of possible three-point functions with
si ≤ 20, we present the final results (in the form of
Mathematica outputs) for HðX;Θ; u; v; wÞ for some par-
ticularly interesting examples, as the solutions and coef-
ficient constraints become cumbersome to present beyond
cases involving low superspins. We are primarily interested
in counting the number of independent polynomial struc-
tures after imposing all the constraints.

IV. THREE-POINT FUNCTIONS OF CONSERVED
SUPERCURRENTS

In the next subsections we analyze the structure of three-
point correlation functions involving conserved higher-spin
supercurrents. As a test of our approach we begin with an
analysis of three-point functions involving currents with
low superspins, such as the supercurrent and flavor current
multiplets.

A. Supercurrent and flavor current correlators

The most important examples of conserved supercur-
rents in 3D N ¼ 1 superconformal field theories are the
supercurrent and flavor current multiplets. The supercurrent
multiplet is described by the spin tensor superfield,
Jαð3ÞðzÞ, with scale dimension ΔJ ¼ 5=2. It satisfies
Dα1Jα1α2α3ðzÞ ¼ 0 and contains the energy-momentum
tensor, Tαð4ÞðxÞ ¼ Dðα1Jα2α3α4ÞðzÞjθ¼0, and the supersym-
metry current, Qαð3ÞðxÞ ¼ Jαð3ÞðzÞjθ¼0, as its independent
component fields. Likewise, the flavor current multiplet is
described by a spinor superfield, LαðzÞ, with scale dimen-
sion ΔL ¼ 3=2. It satisfies the superfield conservation
equation DαLαðzÞ ¼ 0, and contains a conserved vector

current Vαð2ÞðxÞ ¼ Dðα1Lα2ÞðzÞjθ¼0. Three-point functions
of these supercurrents were originally studied in [41,44]
(for analysis of three-point functions of the component
currents in 3D/4D CFT see [34,49]), and here we present
the solutions for them using our formalism. The possible
three-point functions involving the supercurrent and flavor
current multiplets are

hLαðz1ÞLβðz2ÞLγðz3Þi; hLαðz1ÞLβðz2ÞJγð3Þðz3Þi; ð4:1Þ

hJαð3Þðz1ÞJβð3Þðz2ÞLαðz3Þi; hJαð3Þðz1ÞJβð3Þðz2ÞJγð3Þðz3Þi:
ð4:2Þ

We note that in all cases the correlation functions are
overall Grassmann-odd; hence, it is expected that each of
them is fixed up to a single parity-even solution after
imposing conservation on all three points. The analysis of
these three-point functions is relatively straightforward
using our computational approach.

Correlation function hLLLi:
Let us first consider hLLLi; within the framework of our

formalism we study the three-point function hJ1=2J01=2J001=2i.
The general ansatz for this correlation function, according
to (3.20), is

hJαðz1ÞJ0βðz2ÞJ00γ ðz3Þi¼
Iα

α0 ðx13ÞIβ
β0 ðx23Þ

ðx213Þ3=2ðx223Þ3=2
Hα0β0γðX12;Θ12Þ:

ð4:3Þ

Using the formalism outlined in Sec. III B, all information
about this correlation function is encoded in the following
polynomial:

HðX;Θ; uð1Þ; vð1Þ; wð1ÞÞ ¼ HαβγðX;ΘÞuαvβwγ: ð4:4Þ

Using Mathematica we solve (3.50) for the chosen
spins and substitute each solution into the generating
function (3.48). This provides us with the following list
of linearly dependent polynomial structures for the poly-
nomial HðX;Θ; u; v; wÞ in the even and odd sectors,
respectively:

Even∶ fQ3R3; Q2R2; Q1R1; P3S3; P2S2; P1S1g; ð4:5aÞ

Odd∶ fQ3S3; Q2S2; Q1S1; P3R3; P2R2; P1R1g: ð4:5bÞ

After systematic application of the linear dependence
relations (3.54a)–(3.59a) we obtain the following linearly
independent sets:

Even∶ fQ3R3; Q2R2; Q1R1g; ð4:6aÞ

Odd∶ fQ3S3; Q2S2; Q1S1g: ð4:6bÞ
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Next, we impose conservation on all three points, where we
obtain the following constraints on the coefficientsAi andBi:

Even∶
�
A1 → A1; A2 → −

A1

3
; A3 → −

A1

3

�
; ð4:7aÞ

Odd∶ fB1 → 0; B2 → 0; B3 → 0g; ð4:7bÞ

and the explicit solution for HðX;Θ; u; v; wÞ is

Even∶
A1

X3=2

�
−
1

3
Q1R1 −

Q2R2

3
þQ3R3

�
; ð4:8aÞ

Odd∶ 0: ð4:8bÞ

Hence, the three-point function is fixed up to a single parity-
even polynomial structure. After imposing symmetries under
permutation of spacetime points, e.g., J ¼ J0 ¼ J00, the
remaining structure vanishes. This vanishing result is not
surprising because it corresponds to the contribution propor-
tional to the symmetric invariant tensor of the flavor sym-
metry group. In four dimensions this contribution is related to
the chiral anomaly which does not exist in three dimensions.
The correlator hJ1=2J1=2J1=2i has, however, a nonvanishing
contribution proportional to the totally antisymmetric struc-
ture constants. In our analysis in this paper any possible
“antisymmetric” contributions are ignored when we impose
the point-switch identities. The most general form of the
three-point function of flavor current multiplets was found
explicitly in [41,44], and we will not discuss it here.

Correlation function hLLJi:
The next example to consider is the mixed correlator

hLLJi; to study this case we may examine the correlation
function hJ1=2J01=2J003=2i. Using the general formula, the
ansatz for this three-point function is

hJαðz1ÞJ0βðz2ÞJ00γð3Þðz3Þi ¼
Iα

α0 ðx13ÞIβ
β0 ðx23Þ

ðx213Þ3=2ðx223Þ3=2
×Hα0β0γð3ÞðX12;Θ12Þ: ð4:9Þ

Using the formalism outlined in III B, all information about
this correlation function is encoded in the following
polynomial:

HðX;Θ; uð1Þ; vð1Þ; wð3ÞÞ ¼ Hαβγð3ÞðX;ΘÞuαvβwγð3Þ:

ð4:10Þ

After solving (3.50), we obtain the following list of
polynomial structures for HðX;Θ; u; v; wÞ in the even
and odd sectors, respectively:

Even∶ fQ3R3Z3; Q2R2Z3; Q1R1Z3; Q1Q2R3; P3S3Z3;

P2S2Z3; P2Q1S3; P1S1Z3; P1Q2S3; P1P2R3g;
ð4:11aÞ

Odd∶ fQ3S3Z3; Q2S2Z3; Q1S1Z3; Q1Q2S3; P3R3Z3;

P2R2Z3; P2Q1R3; P1R1Z3; P1Q2R3; P1P2S3g:
ð4:11bÞ

After systematic application of the linear dependence
relations (3.54a)–(3.59a) we obtain the following linearly
independent sets:

Even∶ fP1P2R3; Q1Q2R3; P1Q2S3; P2Q1S3g; ð4:12aÞ

Odd∶ fP1P2S3; Q1Q2S3; P1Q2R3; P2Q1R3g: ð4:12bÞ

Next, we impose conservation on all three points; we obtain
the following constraints on the coefficients Ai and Bi:

Even∶
�
A1 → A1; A2 →

A1

5
; A3 → −

A1

5
; A4 →

A1

5

�
;

ð4:13aÞ

Odd∶ fB1 → 0; B2 → 0; B3 → 0; B4 → 0g; ð4:13bÞ

and the explicit solution for HðX;Θ; u; v; wÞ

Even∶
A1ffiffiffiffi
X

p
�
1

5
P2Q1S3−

1

5
P1Q2S3þP1P2R3þ

1

5
Q1Q2R3

�
;

ð4:14aÞ
Odd∶ 0: ð4:14bÞ

Hence, after conservation, the three-point function is fixed
up to a single even structure. This structure is also compat-
iblewith the symmetry J ¼ J0; therefore hLLJi is fixed up to
a single structure.

Correlation function hJJLi:
The next example to consider is the mixed correlator

hJJLi; to study this case we may examine the correlation
function hJ3=2J03=2J001=2i. Using the general formula, the
ansatz for this three-point function is

hJαð3Þðz1ÞJ0βð3Þðz2ÞJ00γ ðz3Þi ¼
Iαð3Þα

0ð3Þðx13ÞIβð3Þβ
0ð3Þðx23Þ

ðx213Þ5=2ðx223Þ5=2
×Hα0ð3Þβ0ð3ÞγðX12;Θ12Þ:

ð4:15Þ
Using the formalism outlined in Sec. III B, all information
about this correlation function is encoded in the following
polynomial:
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HðX;Θ; uð3Þ; vð3Þ; wð1ÞÞ ¼ Hαð3Þβð3ÞγðX;ΘÞuαð3Þvβð3Þwγ: ð4:16Þ

After solving (3.50), we obtain the following list of (linearly dependent) polynomial structures in the even and odd sectors,
respectively:

Even∶ fQ3R3Z1Z2; Q3
3R3; Q2R2Z1Z2; Q2Q3R1Z2; Q2Q2

3R2; Q1R1Z1Z2;

Q1Q3R2Z1; Q1Q2
3R1; P3S3Z1Z2; P3Q2

3S3; P3Q2S1Z2; P3Q2Q3S2;

P3Q1S2Z1; P3Q1Q3S1; P2
3Q3R3; P2

3Q2R2; P2
3Q1R1; P3

3S3; P2S2Z1Z2;

P2Q3S1Z2; P2Q2
3S2; P2P3R1Z2; P2P3Q3R2; P2P2

3S2; P1S1Z1Z2;

P1Q3S2Z1; P1Q2
3S1; P1P3R2Z1; P1P3Q3R1; P1P2

3S1g; ð4:17aÞ

Odd∶ fQ3S3Z1Z2; Q3
3S3; Q2S2Z1Z2; Q2Q3S1Z2; Q2Q2

3S2; Q1S1Z1Z2;

Q1Q3S2Z1; Q1Q2
3S1; P3R3Z1Z2; P3Q2

3R3; P3Q2R1Z2; P3Q2Q3R2;

P3Q1R2Z1; P3Q1Q3R1; P2
3Q3S3; P2

3Q2S2; P2
3Q1S1; P3

3R3; P2R2Z1Z2;

P2Q3R1Z2; P2Q2
3R2; P2P3S1Z2; P2P3Q3S2; P2P2

3R2; P1R1Z1Z2;

P1Q3R2Z1; P1Q2
3R1; P1P3S2Z1; P1P3Q3S1; P1P2

3R1g: ð4:17bÞ

After systematic application of the linear dependence relations (3.54a)–(3.59a) we obtain the following linearly
independent sets:

Even∶ fQ2Q2
3R2; P3Q2Q3S2; P3Q1Q3S1; Q1Q2

3R1; Q3
3R3; P2

3Q2R2; P2
3Q1R1g; ð4:18aÞ

Odd∶ fQ1Q2
3S1; Q

3
3S3; P3Q1Q3R1; Q2Q2

3S2; P3Q2Q3R2; P2
3Q2S2; P2

3Q1S1g: ð4:18bÞ

Next, we impose conservation on all three points; we obtain
the following constraints on the coefficients Ai and Bi:

Even∶
�
A1 → A1; A2 → −A1; A3 → A1; A4 → A1;

A5 → −
7A1

3
; A6 → −

A1

5
; A7 → −

A1

5

�
; ð4:19aÞ

Odd∶ fB1 → 0; B2 → 0; B3 → 0; B4 → 0;

B5 → 0; B6 → 0; B7 → 0g; ð4:19bÞ
and the explicit solution for HðX;Θ; u; v; wÞ

Even∶
A1

X7=2

�
P3Q1Q3S1 − P3Q2Q3S2 −

1

5
P2
3Q1R1

−
1

5
P2
3Q2R2 −

7

3
Q3

3R3 þQ1Q2
3R1 þQ2Q2

3R2

�
;

ð4:20aÞ

Odd∶ 0: ð4:20bÞ

Hence, after imposing conservation on all three points, the
three-point function is fixed up to a single even structure.
This structure is not compatible with the symmetry property
J ¼ J0; hence, hJJLi ¼ 0.

Correlation function hJJJi:
The last example to consider is the three-point function

of the supercurrent, hJJJi. To study it we may examine the
correlation function hJ3=2J03=2J003=2i. Using the general
formula, the ansatz for this three-point function is

hJαð3Þðz1ÞJ0βð3Þðz2ÞJ00γð3Þðz3Þi ¼
Iαð3Þα

0ð3Þðx13ÞIβð3Þβ
0ð3Þðx23Þ

ðx213Þ5=2ðx223Þ5=2
×Hα0ð3Þβ0ð3Þγð3ÞðX12;Θ12Þ:

ð4:21Þ

Using the formalism outlined in Sec. III B, all information
about this correlation function is encoded in the following
polynomial:

HðX;Θ; uð3Þ; vð3Þ; wð3ÞÞ
¼ Hαð3Þβð3Þγð3ÞðX;ΘÞuαð3Þvβð3Þwγð3Þ: ð4:22Þ

In this case there are a vast number of linearly dependent
structures to consider, and the list is too large to present;
however, after application of the linear dependence
relations (3.54a)–(3.59a) we obtain the following linearly
independent structures:

THREE-POINT FUNCTIONS OF CONSERVED SUPERCURRENTS … PHYS. REV. D 107, 106001 (2023)

106001-17



Even∶ fQ1Q2Q2
3R3; P1Q2Q2

3S3; Q1Q2
2Q3R2; P1Q2

2Q3S2; Q2
1Q2Q3R1; P2Q2

1Q3S1;

P2Q1Q2
3S3; P1P2Q2

3R3; P3Q1Q2
2S2; P3Q2

1Q2S1; P1P3Q2
2R2; P2P3Q2

1R1g; ð4:23aÞ

Odd∶ fP2Q1Q2
3R3; P1P2Q2

3S3; Q
2
1Q2Q3S1; Q1Q2Q2

3S3; Q1Q2
2Q3S2; P1Q2Q2

3R3;

P2Q2
1Q3R1; P1Q2

2Q3R2; P1P3Q2
2S2; P3Q1Q2

2R2; P3Q2
1Q2R1; P2P3Q2

1S1g: ð4:23bÞ

Next, we impose conservation on all three points and obtain the following constraints on the coefficients Ai and Bi:

Even∶
�
A1 → A1; A2 →

A1

3
; A3 → −

11A1

21
; A4 →

A1

3
;

A5 → −
11A1

21
; A6 → −

A1

3
; A7 → −

A1

3
; A8 → −A1;

A9 →
A1

7
; A10 → −

A1

7
; A11 →

A1

21
; A12 →

A1

21

�
; ð4:24aÞ

Odd∶ fB1 → 0; B2 → 0; B3 → 0; B4 → 0; B5 → 0; B6 → 0;

B7 → 0; B8 → 0; B9 → 0; B10 → 0; B11 → 0; B12 → 0g; ð4:24bÞ

and the explicit solution for HðX;Θ; u; v; wÞ

Even∶
A1

X5=2

�
−
1

7
P3Q2Q2

1S1 −
1

3
P2Q3Q2

1S1 þ
1

7
P3Q2

2Q1S2 −
1

3
P2Q2

3Q1S3

þ 1

3
P1Q2

2Q3S2 þ
1

3
P1Q2Q2

3S3 þ
1

21
P2P3Q2

1R1 þ
1

21
P1P3Q2

2R2

− P1P2Q2
3R3 −

11

21
Q2Q3Q2

1R1 þQ2Q2
3Q1R3 −

11

21
Q2

2Q3Q1R2

�
; ð4:25aÞ

Odd∶ 0: ð4:25bÞ

Hence the three-point function hJ3=2J03=2J003=2i is fixed up to
a single parity-even structure. The remaining polynomial
structures are also compatible with the symmetry property
J ¼ J0 ¼ J00; hence, the supercurrent three-point function
hJJJi is fixed up to a single parity-even structure. In terms
of the number of independent structures, these results are
consistent with [41].

B. General structure of hJs1J0s2J00s3i
We performed a comprehensive analysis of the general

structure of the three-point correlation function hJs1J0s2J00s3i
using our computational approach. Due to computational
limitations we were able to carry out this analysis for
si ≤ 20; however, the pattern in the solutions is very clear,
and we propose that the results stated in this section hold
for arbitrary superspins. We also want to emphasize that for
given ðs1; s2; s3Þ our method produces a result which can be
presented in an explicit form even for relatively high

superspins (see examples below). With a sufficiently
powerful computer one can extend our results to larger
values of si.
Based on our analysis we found that the general structure

of the three-point correlation function hJs1J0s2J00s3i is con-
strained to the following form:

hJs1J0s2J00s3i ¼ ahJs1J0s2J00s3iE þ bhJs1J0s2J00s3iO: ð4:26Þ

One of our main conclusions is that the odd
structure, hJs1J0s2J00s3iO does not appear in correlators that
are overall Grassmann-odd (or fermionic). The existence
of the odd solution in the Grassmann-even (bosonic)
correlators depend on the following superspin triangle
inequalities:

s1 ≤ s2 þ s3; s2 ≤ s1 þ s3; s3 ≤ s1 þ s2: ð4:27Þ
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When the triangle inequalities are simultaneously satisfied,
there is one even solution and one odd solution; however, if
any of the above inequalities are not satisfied, then the odd
solution is incompatible with current conservation.
Further, if any of the J, J0, J00 coincide, then the resulting
point-switch symmetries can kill off the remaining
structures.
Before we discuss in more detail Grassmann-even and

Grassmann-odd correlators and present explicit examples
we would like to make some general comments. In
particular, we observe that if the triangle inequalities are
simultaneously satisfied, each polynomial structure in the
three-point functions can be written as a product of at
most 5 of the Pi, Qi, with the Zi completely eliminated.
Another useful observation is that the triangle inequalities
can be encoded in a discriminant, σ, which we define as
follows:

σðs1; s2; s3Þ ¼ q1q2q3; qi ¼ si − sj − sk − 1; ð4:28Þ

where ði; j; kÞ is a cyclic permutation of (1, 2, 3). For
σðs1; s2; s3Þ < 0, there is one even solution and one odd
solution, while for σðs1; s2; s3Þ ≥ 0 there is a single even
solution. Also recall that the correlation function can be
encoded in a tensor H, which is a function of two three-
point covariants, X and Θ. There are three different
(equivalent) representations of a given three-point function,
call them HðiÞ, where the superscript i denotes which point
we set to act as the “third point” in the ansatz (3.6). As
shown in Sec. III B 1, the representations are related by the

intertwining operator, I . Since the dimensions of the
conserved supercurrents Δi are related to the superspins
as Δi ¼ si þ 1, it follows that eachHðiÞ is homogeneous of
degree qi. Then it follows that the odd structure survives
if and only if ∀ i, qi < 0. In other words, each HðiÞ
must be a rational function of X and Θ with homogeneity
qi < 0. The discriminant (4.28) simply encodes informa-
tion about whether the HðiÞ are simultaneously of negative
homogeneity.

1. Grassmann-even correlators

The complete classification of results for Grassmann-
even conserved three-point functions, including cases
where there is a point-switch symmetry, is as follows:

(i) In all the cases we have examined (si ≤ 20) there is
one even solution and one odd solution; however,
the odd solution vanishes if the superspin triangle
inequalities are not satisfied.

(ii) hJs1Js1J0s2i: Note that in this case s2 must be an
integer. For s2 even, the solutions survive the point-
switch symmetry for arbitrary s1 (integer or half-
integer). For s2 odd the point-switch symmetry is not
satisfied and the three-point function vanishes.

(iii) hJsJsJsi: In this case s is restricted to integer values.
For s even the solutions are compatible with the
point-switch symmetries.

The number of linearly independent structures grows
rapidly with the superspins; therefore we only present
results for some low superspin cases after imposing
conservation on all three points.

Correlation function hJ1J01J001i:

Even∶
A1

X2

�
11

6
iJP3Q1Q2 −

1

6
iJP2Q1Q3 −

1

6
iJP1Q2Q3 þ P1P3Q2 þ

5

6
iJP1P2P3 þ P2P3Q1 −

1

3
P1P2Q3 þQ1Q2Q3

�
;

ð4:29aÞ

Odd∶
B1

X2
ðJQ1Q3Q2 þ iP3Q1Q2Þ: ð4:29bÞ

Correlation function hJ1=2J01=2J002i:

Even∶ A1

�
1

2
iJP2Q1Z3 þ

1

2
iJP1Q2Z3 þ P1P2Z3 −

1

3
Q1Q2Z3

�
; ð4:30aÞ

Odd∶ 0: ð4:30bÞ

This three-point function was initially studied in [40], where it was shown that a parity-odd solution could arise. However, it
was proven later in [47] that such a structure cannot be consistent with the superfield conservation equations. The approach
we have developed also confirms that a parity-odd solution cannot exist; this is further supported by the fact that the
superspin triangle inequalities are not satisfied for this three-point function.
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Correlation function hJ1=2J01=2J003i:

Even∶ XA1

�
1

2
iJP2Q1Z2

3 þ
1

2
iJP1Q2Z2

3 þ P1P2Z2
3 −

1

5
Q1Q2Z2

3

�
; ð4:31aÞ

Odd∶ 0: ð4:31bÞ

This is another case where the superspin triangle inequalities are not satisfied; hence, the odd structure vanishes as expected.

Correlation function hJ1=2J03=2J002i:

Even∶
A1

X

�
5

6
iJP3

1Q2 −
7

2
iJP2P2

1Q1 −
9

2
iJP1Q2

1Q2 −
3

2
iJP2Q3

1 − 5P2
1Q1Q2 − 3P2P1Q2

1 þ
5

3
P2P3

1 þQ3
1Q2

�
; ð4:32aÞ

Odd∶
B1

X

�
−
3

2
JP2

1Q1Q2 −
3

2
JP2P3

1 þ JQ3
1Q2 þ

3

2
iP3

1Q2 þ
3

2
iP2P2

1Q1 −
3

2
iP1Q2

1Q2 −
1

2
iP2Q3

1

�
: ð4:32bÞ

Correlation function hJ3=2J03=2J002i:

Even∶
A1

X2

�
1

2
iJP3P2

1Q
2
2 þ

11

5
iJP2P2

1Q2Q3 þ
44

5
iJP2P3P1Q1Q2 þ

11

5
iJP1Q1Q2

2Q3 þ
11

5
iJP2

2P1Q1Q3 þ
1

2
iJP2

2P3Q2
1

þ 77

10
iJP3Q2

1Q
2
2 þ

11

5
iJP2Q2

1Q2Q3 þ
1

10
iJP2

2P3P2
1 þ

1

5
P2
2P

2
1Q3 þ P2

1Q
2
2Q3 þ 4P3P1Q1Q2

2

þ 8

5
P2P1Q1Q2Q3 þ 4P2P3Q2

1Q2 þ P2
2Q

2
1Q3 þQ2

1Q
2
2Q3

�
; ð4:33aÞ

Odd∶
B1

X2

�
1

2
JP2P3P2

1Q2 −
1

2
JP2

1Q
2
2Q3 −

1

2
JP3P1Q1Q2

2 þ
1

2
JP2

2P3P1Q1 − 2JP2P1Q1Q2Q3 −
1

2
JP2P3Q2

1Q2

−
1

2
JP2

2Q
2
1Q3 þ JQ2

1Q
2
2Q3 −

1

2
iP3P2

1Q
2
2 þ iP1Q1Q2

2Q3 −
1

2
iP2

2P3Q2
1 þ 2iP3Q2

1Q
2
2 þ iP2Q2

1Q2Q3

�
: ð4:33bÞ

Correlation function hJ2J02J002i:

Even∶
A1

X3

�
23

35
iJP1P2

2Q1Q2
3 þ iJP1P2

3P
2
2Q1 −

5

7
iJP3P2

2Q
2
1Q3 þ

3

35
iJP2

1P3P2
2Q3 þ

23

35
iJP2

1P2Q2Q2
3 þ

27

35
iJP2Q2

1Q2Q2
3

þ iJP2
1P

2
3P2Q2 þ

3

7
iJP2

3P2Q2
1Q2 þ

6

7
iJP1P3P2Q1Q2Q3 þ

3

7
iJP1P2

3Q1Q2
2 þ

27

35
iJP1Q1Q2

2Q
2
3

þ 307

35
iJP3Q2

1Q
2
2Q3 −

5

7
iJP2

1P3Q2
2Q3 þP2

3P
2
2Q

2
1 þ

3

35
P2
1P

2
2Q

2
3 þ

2

7
P2
2Q

2
1Q

2
3 þ

2

7
P1P2Q1Q2Q2

3 þ
2

7
P3P2Q2

1Q2Q3

þP2
1P

2
3Q

2
2 −

30

7
P2
3Q

2
1Q

2
2 þ

2

7
P2
1Q

2
2Q

2
3 þ

2

7
P1P3Q1Q2

2Q3 þQ2
1Q

2
2Q

2
3

�
; ð4:34aÞ

Odd∶
B1

X3

�
−
5

2
JP2

3Q
2
1Q

2
2 − 2JP1P2P2

3Q1Q2 þ JQ2
1Q

2
2Q

2
3 þ iP1P2

3Q1Q2
2 þ iP2P2

3Q
2
1Q2 þ iP3Q2

1Q
2
2Q3

�
: ð4:34bÞ

This three-point function has been studied explicitly using a tensor formalism in [47], where it was shown that a parity-odd
solution could arise in the three-point function. The approach we have developed can compute this correlator in seconds.
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Correlation function hJ1J02J004i:

Even∶ A5

�
−
3

8
iJP2P4

1Q2Z3 −
45

28
iJP3

1Q1Q2
2Z3 −

25

28
iJP2

2P
3
1Q1Z3 −

51

28
iJP2P2

1Q
2
1Q2Z3 −

17

28
iJP2

2P1Q3
1Z3

þ 5

4
iJP1Q3

1Q
2
2Z3 þ

5

8
iJP2Q4

1Q2Z3 −
33

56
P4
1Q

2
2Z3 −

15

7
P2P3

1Q1Q2Z3 −
5

4
P2
2P

2
1Q

2
1Z3

þ 27

28
P2
1Q

2
1Q

2
2Z3 þ P2P1Q3

1Q2Z3 þ
9

56
P2
2Q

4
1Z3 þ

45

56
P2
2P

4
1Z3 −

5

56
Q4

1Q
2
2Z3

�
; ð4:35aÞ

Odd∶ 0: ð4:35bÞ

In this case we note that the superspin triangle inequalities are not satisfied, and therefore the odd solution vanishes after
current conservation.
Correlation function hJ2J02J004i:

Even∶
A1

X

�
18

5
iJP2P4

1Q
3
2 −

94

7
iJP3

2P
4
1Q2 þ

90

7
iJP3

1Q1Q4
2 þ

180

7
iJP2

2P
3
1Q1Q2

2 −
94

7
iJP4

2P
3
1Q1 þ

204

7
iJP2P2

1Q
2
1Q

3
2

þ 180

7
iJP3

2P
2
1Q

2
1Q2 − 14iJP1Q3

1Q
4
2 þ

18

5
iJP4

2P1Q3
1 þ

204

7
iJP2

2P1Q3
1Q

2
2 − 14iJP2Q4

1Q
3
2 þ

90

7
iJP3

2Q
4
1Q2

þ 99

35
P4
1Q

4
2 −

54

7
P2
2P

4
1Q

2
2 þ

144

7
P2P3

1Q1Q3
2 − 16P3

2P
3
1Q1Q2 −

54

7
P2
1Q

2
1Q

4
2 −

54

7
P4
2P

2
1Q

2
1

þ 36P2
2P

2
1Q

2
1Q

2
2 − 16P2P1Q3

1Q
3
2 þ

144

7
P3
2P1Q3

1Q2 þ
99

35
P4
2Q

4
1 −

54

7
P2
2Q

4
1Q

2
2 þ P4

2P
4
1 þQ4

1Q
4
2

�
; ð4:36aÞ

Odd∶
B1

X

�
5

6
JP4

1Q
4
2þ

7

2
JP2

2P
4
1Q

2
2þ

4

3
JP2P3

1Q1Q3
2þ 8JP3

2P
3
1Q1Q2−

9

2
JP2

1Q
2
1Q

4
2þ

7

2
JP4

2P
2
1Q

2
1− 8JP2P1Q3

1Q
3
2

þ 4

3
JP3

2P1Q3
1Q2þ

5

6
JP4

2Q
4
1−

9

2
JP2

2Q
4
1Q

2
2− JP4

2P
4
1þ JQ4

1Q
4
2−

5

3
iP2P4

1Q
3
2þ iP3

2P
4
1Q2þ

5

3
iP3

1Q1Q4
2 − 6iP2

2P
3
1Q1Q2

2

þ iP4
2P

3
1Q1þ 6iP2P2

1Q
2
1Q

3
2− 6iP3

2P
2
1Q

2
1Q2 − iP1Q3

1Q
4
2−

5

3
iP4

2P1Q3
1þ 6iP2

2P1Q3
1Q

2
2− iP2Q4

1Q
3
2þ

5

3
iP3

2Q
4
1Q2

�
:

ð4:36bÞ

Correlation function hJ4J04J004i:

Even∶
A1

X5

�
P4
3Q

4
2P

4
1þ

7P4
2Q

4
3P

4
1

1287
þ 6

65
Q4

2Q
4
3P

4
1þ

284

715
iJP2Q3

2Q
4
3P

4
1þ

4

143
P2
2Q

2
2Q

4
3P

4
1þ

86iJP3
2Q2Q4

3P
4
1

1287

þ2iJP2P4
3Q

3
2P

4
1−

68

195
iJP3Q4

2Q
3
3P

4
1þ

8

143
iJP2

2P3Q2
2Q

3
3P

4
1þ

14iJP4
2P3Q3

3P
4
1

1287
þ 4

15
P2
3Q

4
2Q

2
3P

4
1

þ 8

15
iJP2P2

3Q
3
2Q

2
3P

4
1−

26

15
iJP3

3Q
4
2Q3P4

1þ
2

5
iJP4

3Q1Q4
2P

3
1þ

44

39
iJQ1Q4

2Q
4
3P

3
1þ

112

715
P2Q1Q3

2Q
4
3P

3
1

þ4214iJP2
2Q1Q2

2Q
4
3P

3
1

6435
þ86iJP4

2Q1Q4
3P

3
1

1287
þ 4

143
P3
2Q1Q2Q4

3P
3
1−

16

195
P3Q1Q4

2Q
3
3P

3
1þ

64

429
iJP2P3Q1Q3

2Q
3
3P

3
1

þ 8

143
iJP3

2P3Q1Q2Q3
3P

3
1þ

62

39
iJP2

3Q1Q4
2Q

2
3P

3
1þ

4

15
P3
3Q1Q4

2Q3P3
1þ

8

15
iJP2P3

3Q1Q3
2Q3P3

1−
84

5
P4
3Q

2
1Q

4
2P

2
1

þ1748Q2
1Q

4
2Q

4
3P

2
1

2145
þ31006iJP2Q2

1Q
3
2Q

4
3P

2
1

6435
þ 4

143
P4
2Q

2
1Q

4
3P

2
1þ

158

715
P2
2Q

2
1Q

2
2Q

4
3P

2
1þ

4214iJP3
2Q

2
1Q2Q4

3P
2
1

6435

−
168

5
iJP2P4

3Q
2
1Q

3
2P

2
1−

1322

143
iJP3Q2

1Q
4
2Q

3
3P

2
1þ

8

143
iJP4

2P3Q2
1Q

3
3P

2
1þ

316

715
iJP2

2P3Q2
1Q

2
2Q

3
3P

2
1þ

974

195
P2
3Q

2
1Q

4
2Q

2
3P

2
1

THREE-POINT FUNCTIONS OF CONSERVED SUPERCURRENTS … PHYS. REV. D 107, 106001 (2023)

106001-21



þ 1948

195
iJP2P2

3Q
2
1Q

3
2Q

2
3P

2
1 þ

1598

39
iJP3

3Q
2
1Q

4
2Q3P2

1 −
588

65
iJP4

3Q
3
1Q

4
2P1 þ

5230iJQ3
1Q

4
2Q

4
3P1

1287
þ 284

715
iJP4

2Q
3
1Q

4
3P1

þ 2924P2Q3
1Q

3
2Q

4
3P1

2145
þ 31006iJP2

2Q
3
1Q

2
2Q

4
3P1

6435
þ 112

715
P3
2Q

3
1Q2Q4

3P1 þ 2iJP4
2P

4
3Q

3
1P1 −

7828P3Q3
1Q

4
2Q

3
3P1

2145

−
8488

715
iJP2P3Q3

1Q
3
2Q

3
3P1 þ

64

429
iJP3

2P3Q3
1Q2Q3

3P1 −
168

5
iJP2

2P
4
3Q

3
1Q

2
2P1 −

62

429
iJP2

3Q
3
1Q

4
2Q

2
3P1

þ 8

15
iJP4

2P
2
3Q

3
1Q

2
3P1 þ

1948

195
iJP2

2P
2
3Q

3
1Q

2
2Q

2
3P1 þ

336

65
P3
3Q

3
1Q

4
2Q3P1 þ

1344

65
iJP2P3

3Q
3
1Q

3
2Q3P1

þ 8

15
iJP3

2P
3
3Q

3
1Q2Q3P1 þ P4

2P
4
3Q

4
1 þ

462

13
P4
3Q

4
1Q

4
2 þ

6

65
P4
2Q

4
1Q

4
3 þQ4

1Q
4
2Q

4
3 þ

5230iJP2Q4
1Q

3
2Q

4
3

1287

þ 1748P2
2Q

4
1Q

2
2Q

4
3

2145
þ 44

39
iJP3

2Q
4
1Q2Q4

3 −
588

65
iJP2P4

3Q
4
1Q

3
2 −

68

195
iJP4

2P3Q4
1Q

3
3 þ

46414iJP3Q4
1Q

4
2Q

3
3

1287

−
7828P2P3Q4

1Q
3
2Q

3
3

2145
−
1322

143
iJP2

2P3Q4
1Q

2
2Q

3
3 −

16

195
P3
2P3Q4

1Q2Q3
3 −

84

5
P2
2P

4
3Q

4
1Q

2
2 þ

4

15
P4
2P

2
3Q

4
1Q

2
3

−
15204

715
P2
3Q

4
1Q

4
2Q

2
3 −

62

429
iJP2P2

3Q
4
1Q

3
2Q

2
3 þ

974

195
P2
2P

2
3Q

4
1Q

2
2Q

2
3 þ

62

39
iJP3

2P
2
3Q

4
1Q2Q2

3 þ
2

5
iJP3

2P
4
3Q

4
1Q2

−
26

15
iJP4

2P
3
3Q

4
1Q3 −

6636

65
iJP3

3Q
4
1Q

4
2Q3 þ

336

65
P2P3

3Q
4
1Q

3
2Q3 þ

1598

39
iJP2

2P
3
3Q

4
1Q

2
2Q3 þ

4

15
P3
2P

3
3Q

4
1Q2Q3

�
; ð4:37aÞ

Odd∶
B1

X5

�
35

2
JP4

3Q
4
1Q

4
2−

1

2
JP2

1P
4
3Q

2
1Q

4
2þ20JP1P2P4

3Q
3
1Q

3
2−2JP3

1P2P4
3Q1Q3

2−
1

2
JP2

2P
4
3Q

4
1Q

2
2−2JP1P3

2P
4
3Q

3
1Q2

−
16

3
JP1P3

3Q
3
1Q

4
2Q3þ2JP3

1P
3
3Q1Q4

2Q3−
16

3
JP2P3

3Q
4
1Q

3
2Q3þ2JP3

2P
3
3Q

4
1Q2Q3−

27

2
JP2

3Q
4
1Q

4
2Q

2
3

−2JP2
1P

2
3Q

2
1Q

4
2Q

2
3−

40

3
JP1P2P2

3Q
3
1Q

3
2Q

2
3−2JP2

2P
2
3Q

4
1Q

2
2Q

2
3þJQ4

1Q
4
2Q

4
3−5iP1P4

3Q
3
1Q

4
2þ iP3

1P
4
3Q1Q4

2

−5iP2P4
3Q

4
1Q

3
2þ iP3

2P
4
3Q

4
1Q2−

5

3
iP3

3Q
4
1Q

4
2Q3þ

10

3
iP1P2

3Q
3
1Q

4
2Q

2
3þ

10

3
iP2P2

3Q
4
1Q

3
2Q

2
3þ iP3Q4

1Q
4
2Q

3
3

�
: ð4:37bÞ

2. Grassmann-odd correlators

The classification of results for Grassmann-odd three-point functions, including cases where there is a point-switch
symmetry, is as follows:

(i) In all the cases we have examined (si ≤ 20), the three-point functions are fixed up to a single parity-even solution
after conservation on all three points. In general, any parity-odd structures are incompatible with conservation.

(ii) hJs1Js1J0s2i: Note that in this case s2 must be half-integer. For s1 ≠ s2, the classification is as follows:
Let s2 ¼ 2kþ 1

2
, k ∈ Z≥0; for arbitrary s1 (integer or half-integer) the point-switch symmetry is not satisfied, and

therefore the three-point function vanishes in general.
Let s2 ¼ 2kþ 3

2
, k ∈ Z≥0; for arbitrary s1 (integer or half-integer) the point-switch symmetry is satisfied, and

therefore the three-point function is fixed up to a single parity-even structure.
(iii) hJsJsJsi: For s ¼ 2kþ 3

2
, k ∈ Z≥0 the solution is compatible with the point-switch symmetry. For s ¼ 2kþ 1

2
,

k ∈ Z≥0 the three-point function vanishes.
We now present results after imposing conservation on all three points.

Correlation function hJ1=2J03=2J005=2i:

Even∶
A1ffiffiffiffi
X

p
�
1

3
P3
1Q2S3 − P2P2

1Q1S3 −
3

7
P1Q2

1Q2S3 þ
1

7
P2Q3

1S3 − P2
1Q1Q2R3 þ P2P1Q2

1R3 − 3P2P3
1R3 þ

1

7
Q3

1Q2R3

�
;

ð4:38aÞ

Odd∶ 0: ð4:38bÞ
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Correlation function hJ2J02J001=2i:

Even∶
A1

X9=2

�
−
2

3
P3Q1Q2

3S1 þ
2

3
P3Q2Q2

3S2 þ
1

21
P3
3Q1S1 −

1

21
P3
3Q2S2

þ 4

21
P2
3Q1Q3R1 þ

4

21
P2
3Q2Q3R2 þQ4

3R3 −
4

9
Q1Q3

3R1 −
4

9
Q2Q3

3R2

�
; ð4:39aÞ

Odd∶ 0: ð4:39bÞ

In this instance we note that the superspin triangle inequalities are not satisfied, and therefore the odd solution vanishes after
current conservation.
Correlation function hJ2J02J003=2i:

Even∶
A1

X7=2

�
−

4

17
P2Q1Q3

3S3 þ
4

17
P1Q2Q3

3S3 −
6

17
P2Q2

1Q
2
3S1 þ

6

17
P1Q2

2Q
2
3S2 −

14

51
P3Q2

1Q2Q3S1 þ
14

51
P3Q1Q2

2Q3S2

þ 1

51
P2P2

3Q
2
1S1 −

1

51
P1P2

3Q
2
2S2 −

11

17
P1P2Q3

3R3 þ
4

51
P2P3Q2

1Q3R1 þ
4

51
P1P3Q2

2Q3R2 þ
5

119
P2
3Q1Q2

2R2

þ 5

119
P2
3Q

2
1Q2R1 þQ1Q2Q3

3R3 −
26

51
Q1Q2

2Q
2
3R2 −

26

51
Q2

1Q2Q2
3R1

�
; ð4:40aÞ

Odd∶ 0: ð4:40bÞ

Correlation function hJ3=2J03=2J005=2i:

Even∶
A1

X3=2

�
−
1

3
P2Q2Q3

1S1 þ
1

3
P1Q3

2Q1S2 þ
3

5
P1P2

2Q3Q1S3 −
3

5
P2
1P2Q2Q3S3 þ

1

15
P2
2Q

3
1R1 −

3

5
P2
2Q3Q2

1R3

−
2

5
P1P2Q2Q3Q1R3 þ

1

15
P2
1Q

3
2R2 −

3

5
P2
1Q

2
2Q3R3þ

11

5
P2
1P

2
2Q3R3 −

10

21
Q2

2Q
3
1R1 −

10

21
Q3

2Q
2
1R2 þQ2

2Q3Q2
1R3

�
;

ð4:41aÞ

Odd∶ 0: ð4:41bÞ

Correlation function hJ3=2J03=2J007=2i:

Even∶
A2ffiffiffiffi
X

p
�
1

9
P3
1Q

3
2S3 −

11

9
P2
2P

3
1Q2S3 −P2P2

1Q1Q2
2S3 þ

11

9
P3
2P

2
1Q1S3 −

5

27
P1Q2

1Q
3
2S3 þP2

2P1Q2
1Q2S3

−
1

9
P3
2Q

3
1S3 þ

5

27
P2Q3

1Q
2
2S3 −

11

9
P2P3

1Q
2
2R3 −

1

3
P2
1Q1Q3

2R3 þ
11

3
P2
2P

2
1Q1Q2R3 −

11

9
P3
2P1Q2

1R3 þP2P1Q2
1Q

2
2R3

−
1

3
P2
2Q

3
1Q2R3 þ

143

27
P3
2P

3
1R3 þ

5

81
Q3

1Q
3
2R3

�
; ð4:42aÞ

Odd∶ 0: ð4:42bÞ

Correlation function hJ2J02J007=2i:

Even∶
A1

X3=2

�
33

805
P3
2Q

4
1S1−

9

23
P2Q2

2Q
4
1S1þ

132

805
P3
2Q3Q3

1S3−
4

23
P2Q2

2Q3Q3
1S3þ

9

23
P1Q4

2Q
2
1S2þ

4

23
P1Q3

2Q3Q2
1S3

−
44

161
P1P2

2Q2Q3Q2
1S3−

572

805
P2
1P

3
2Q3Q1S3þ

44

161
P2
1P2Q2

2Q3Q1S3−
33

805
P3
1Q

4
2S2−

132

805
P3
1Q

3
2Q3S3
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þ 572

805
P3
1P

2
2Q2Q3S3 þ

3

23
P2
2Q2Q4

1R1 −
66

161
P2
2Q2Q3Q3

1R3 −
209

161
P1P2Q2

2Q3Q2
1R3 þ

858

805
P1P3

2Q3Q2
1R3

þ 3

23
P2
1Q

4
2Q1R2 −

66

161
P2
1Q

3
2Q3Q1R3 −

143

805
P2
1P

2
2Q2Q3Q1R3 þ

858

805
P3
1P2Q2

2Q3R3 −
429

161
P3
1P

3
2Q3R3 −

35

69
Q3

2Q
4
1R1

−
35

69
Q4

2Q
3
1R2 þQ3

2Q3Q3
1R3

�
; ð4:43aÞ

Odd∶ 0: ð4:43bÞ

Correlation function hJ5=2J05=2J005=2i:

Even∶
A1

X7=2

�
−
13

33
P2Q2Q2

3Q
3
1S1 þ

5

363
P2P2

3Q2Q3
1S1 −

65

363
P3Q2

2Q3Q3
1S1 þ

1

33
P2
2P3Q3Q3

1S1 þ
65

363
P3Q3

2Q3Q2
1S2

−
1

11
P2Q2Q3

3Q
2
1S3 −

5

363
P1P2

3Q
3
2Q1S2 þ

13

33
P1Q3

2Q
2
3Q1S2 þ

13

99
P1P2

2Q
3
3Q1S3 þ

1

11
P1Q2

2Q
3
3Q1S3

−
1

33
P2
1P3Q3

2Q3S2 −
13

99
P2
1P2Q2Q3

3S3 þ
70P2

3Q
2
2Q

3
1R1

3267
þ 2

33
P2
2Q

2
3Q

3
1R1 −

1

363
P2
2P

2
3Q

3
1R1 þ

28

363
P2P3Q2Q3Q3

1R1

þ 70P2
3Q

3
2Q

2
1R2

3267
−
26

99
P2
2Q

3
3Q

2
1R3 −

52

99
P1P2Q2Q3

3Q1R3 þ
28

363
P1P3Q3

2Q3Q1R2 −
1

363
P2
1P

2
3Q

3
2R2

−
26

99
P2
1Q

2
2Q

3
3R3 þ

13

33
P2
1P

2
2Q

3
3R3þ

2

33
P2
1Q

3
2Q

2
3R2 −

181

363
Q2

2Q
2
3Q

3
1R1 þQ2

2Q
3
3Q

2
1R3 −

181

363
Q3

2Q
2
3Q

2
1R2

�
; ð4:44aÞ

Odd∶ 0: ð4:44bÞ

Correlation function hJ7=2J07=2J007=2i:

Even∶
A1

X9=2

�
−
3499R1Q3

2Q
3
3Q

4
1

6997
þ705P2

2R1Q2Q3
3Q

4
1

6997
−
189P2P3

3R1Q2
2Q

4
1

90961
þ647P2P3R1Q2

2Q
2
3Q

4
1

6997
−
45P3

2P3R1Q2
3Q

4
1

6997

þP3
2P

3
3R1Q4

1

6997
þ2961P2

3R1Q3
2Q3Q4

1

90961
−
53P2

2P
2
3R1Q2Q3Q4

1

6997
þ315P3

3Q
3
2S1Q4

1

90961
þ255P3

2Q
3
3S1Q4

1

6997

−
2985P2Q2

2Q
3
3S1Q4

1

6997
−
1393P3Q3

2Q
2
3S1Q4

1

6997
þ375P2

2P3Q2Q2
3S1Q4

1

6997
−
7P2

2P
3
3Q2S1Q4

1

6997
−
15P3

2P
2
3Q3S1Q4

1

6997

þ175P2P2
3Q

2
2Q3S1Q4

1

6997
þR3Q3

2Q
4
3Q

3
1−

2091P2
2R3Q2Q4

3Q
3
1

6997
−
3499R2Q4

2Q
3
3Q

3
1

6997
þ2961P2

3R2Q4
2Q3Q3

1

90961
−
315P3

3Q
4
2S2Q3

1

90961

þ1393P3Q4
2Q

2
3S2Q3

1

6997
þ255P3

2Q
4
3S3Q3

1

6997
−
521P2Q2

2Q
4
3S3Q3

1

6997
−
189P1P3

3R2Q4
2Q

2
1

90961
−
3859P1P2R3Q2

2Q
4
3Q

2
1

6997

þ969P1P3
2R3Q4

3Q
2
1

6997
þ647P1P3R2Q4

2Q
2
3Q

2
1

6997
þ2985P1Q4

2Q
3
3S2Q2

1

6997
−
175P1P2

3Q
4
2Q3S2Q2

1

6997
þ521P1Q3

2Q
4
3S3Q2

1

6997

þ221P1P2
2Q2Q4

3S3Q2
1

6997
−
2091P2

1R3Q3
2Q

4
3Q1

6997
þ1615P2

1P
2
2R3Q2Q4

3Q1

6997
þ705P2

1R2Q4
2Q

3
3Q1

6997
−
53P2

1P
2
3R2Q4

2Q3Q1

6997

þ7P2
1P

3
3Q

4
2S2Q1

6997
−
375P2

1P3Q4
2Q

2
3S2Q1

6997
−
323P2

1P
3
2Q

4
3S3Q1

6997
−
221P2

1P2Q2
2Q

4
3S3Q1

6997
þP3

1P
3
3R2Q4

2

6997

þ969P3
1P2R3Q2

2Q
4
3

6997
−
969P3

1P
3
2R3Q4

3

6997
−
45P3

1P3R2Q4
2Q

2
3

6997
−
255P3

1Q
4
2Q

3
3S2

6997
þ15P3

1P
2
3Q

4
2Q3S2

6997

−
255P3

1Q
3
2Q

4
3S3

6997
þ323P3

1P
2
2Q2Q4

3S3

6997

�
; ð4:45aÞ

Odd∶ 0: ð4:45bÞ
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V. THREE-POINT FUNCTIONS OF SCALAR
SUPERFIELDS

For completeness, in this section we analyze three-point
correlation functions involving scalar superfields and
conserved supercurrents. Some of the three-point functions
contain parity-odd solutions, with their existence depend-
ing on both triangle inequalities and the weights of the
scalars. We found that the following general results hold:

hOO0Jsi ¼ ahOO0JsiE; ð5:1aÞ

hJs1J0s2Oi ¼ ahJs1J0s2OiE þ bhJs1J0s2OiO: ð5:1bÞ

The correlation functions are analyzed using the same
methods as in the previous sections; the full classification
of results (for cases where there is a point-switch sym-
metry), is summarised below:

(i) hOO0Jsi: In general there are solutions only for
ΔO ¼ ΔO0 . For the Grassmann-even case the sol-
ution satisfies the point-switch symmetry O ¼ O0
only for even s. For the Grassmann-odd case the
solution satisfies the point-switch symmetry only for
s ¼ 2kþ 3

2
, k ∈ Z≥0.

(ii) hJs1J0s2Oi: For s1 ≠ s2, there is a single even solution
for ΔO ¼ 1; otherwise the three-point function
vanishes. For s1 ¼ s2 there is one even and one
odd solution and the point-switch symmetries are
satisfied.

We now present explicit solutions for the above cases.

Correlation function hOO0J1=2i:
For δ1 ¼ δ2 ¼ δ, there is a single even solution com-

patible with conservation:

Even∶ X
3
2
−2δA1R3; ð5:2aÞ

Odd∶ 0: ð5:2bÞ
Correlation function hOO0J1i:
For δ1 ¼ δ2 ¼ δ, there is a single even solution com-

patible with conservation:

Even∶ X2−2δA1Z3; ð5:3aÞ
Odd∶ 0: ð5:3bÞ

Correlation function hOO0J3=2i:
For δ1 ¼ δ2 ¼ δ, there is a single even solution com-

patible with conservation:

Even∶ X
5
2
−2δA1R3Z3; ð5:4aÞ

Odd∶ 0: ð5:4bÞ

Correlation function hOO0J2i:

For δ1 ¼ δ2 ¼ δ, there is a single even solution com-
patible with conservation:

Even∶ X3−2δA1Z2
3; ð5:5aÞ

Odd∶ 0: ð5:5bÞ

Correlation function hJ1=2J01=2Oi:
In this case, the superspin triangle inequalities are

satisfied, and there is one even and one odd solution for
arbitrary δ:

Even∶ X−3þδA1

�
Q3 þ

1

2
iδJP3

�
; ð5:6aÞ

Odd∶ X−3þδB2

�
1

2
iδJQ3 −

3

2
iJQ3 þ P3

�
: ð5:6bÞ

Correlation function hJ1=2J03=2Oi:
In this case there is a solution only for δ ¼ 1:

Even∶
A1

X3

�
Q3 þ

1

2
iJP3

�
Z2; ð5:7aÞ

Odd∶ 0: ð5:7bÞ

Correlation function hJ3=2J03=2Oi:
In this case, the superspin triangle inequalities are

satisfied and there is one even and one odd solution for
arbitrary δ:

Even∶ X−5þδA1

�
iδðδþ 2ÞJP3

3

2ðδ − 6Þ þ 3

2
iδJP3Q2

3

þ 3δP2
3Q3

δ − 6
þQ3

3

�
; ð5:8aÞ

Odd∶
1

6
X−5þδB2

�
3iðδþ 1ÞJP2

3Q3 þ iðδ − 7ÞJQ3
3

þ 2ðδþ 1ÞP3
3

δ − 5
þ 6P3Q2

3

�
: ð5:8bÞ

Correlation function hJ1J02Oi:
In this case there is a solution only for δ ¼ 1:

Even∶
A1

X4
ð−5iJP3Q3 þ P2

3 − 5Q2
3ÞZ2; ð5:9aÞ

Odd∶ 0: ð5:9bÞ

Correlation function hJ2J02Oi:
In this case, the superspin triangle inequalities are satisfied,

and there is one even and one odd solution for arbitrary δ:
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Even∶ X−6þδA1

�
2iδðδþ 2ÞJP3

3Q3

δ − 8
þ 2iδJP3Q3

3 þ
δðδþ 2ÞP4

3

ðδ − 8Þðδ − 6Þ þ
6δP2

3Q
2
3

δ − 8
þQ4

3

�
; ð5:10aÞ

Odd∶ X−6þδB2

�
iðδþ 1Þðδþ 3ÞJP4

3

8ðδ − 7Þ þ 3

4
iðδþ 1ÞJP2

3Q
2
3 þ

1

8
iðδ − 9ÞJQ4

3 þ
ðδþ 1ÞP3

3Q3

δ − 7
þ P3Q3

3

�
: ð5:10bÞ

VI. CONCLUSION

The purpose of this paper was to develop a formalism to
determine the general structure of three-point correlation
functions of conserved supercurrents for arbitrary super-
spins in three-dimensional superconformal field theory. Our
method produces explicit results up to si ¼ 20 and is limited
only by computer power. We found that the main difference
in the general structure of the three-point function
hJs1J0s2J00s3i is whether it is Grassmann-odd or Grassmann-
even in superspace. If hJs1J0s2J00s3i is Grassmann-odd (that is,
the sum of the superspins is half-integer), then the correlator
is fixed up to a single parity-even contribution. If hJs1J0s2J00s3i
is Grassmann-even (that is, the sum of the superspins is an
integer), then it is fixed up to one even solution and one odd
solution; the existence of the latter, however, depends on
whether the triangle inequalities are satisfied. The pattern of
the number of independent structures is clear, and we have
sufficient evidence to propose that our classification of
results holds in general.
There are various possible directions to extend our

results. An open question is whether it is possible to find
generating functions for arbitrary superspins that encapsu-
late the results in this paper, similar to the ones found in
nonsupersymmetric theories [16,17,58,59]. It would also
be interesting to apply our methods to superconformal
theories in higher dimensions (see [45,46,50] for recent
progress) and to N -extended superconformal theories.
Correlation functions of higher-spin currents in conformal
theories with extended supersymmetry have practically
not been studied; however, recent progress has been
reported in [48]. An important difference compared to
theN ¼ 1 case is that conserved currents can carry indices
of the R-symmetry group. Concerning the study of three-
point functions in four dimensions, in [50] a method was
introduced to study three-point functions of conserved
supercurrents JαðrÞ _αðrÞ for arbitrary superspins in 4D
N ¼ 1 superconformal field theories. Explicit solutions
were constructed for three-point functions involving
higher-spin supercurrents and flavor current multiplets.
The method of [50] was an extension of the one used in
[46] where the classification problem was solved for
generic three-point functions of conserved fermionic cur-
rents SαðkÞ of arbitrary rank in 4DN ¼ 1 SCFT. We believe
that the formalism developed in the present paper will
generalize directly to 4D N ¼ 1 theories and will allow us

to extend the results of [50]. We leave these considerations
for a future study.
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APPENDIX A: 3D CONVENTIONS AND
NOTATION

For the Minkowski metric we use the “mostly plus”
convention: ηmn ¼ diagð−1; 1; 1Þ. Spinor indices are then
raised and lowered with the SLð2;RÞ invariant antisym-
metric ε-tensor

εαβ ¼
�
0 −1
1 0

�
; εαβ ¼

�
0 1

−1 0

�
; εαγε

γβ ¼ δα
β;

ðA1aÞ

ϕα ¼ εαβϕ
β; ϕα ¼ εαβϕβ: ðA1bÞ

The γ-matrices are chosen to be real and are expressed in
terms of the Pauli matrices, σ, as follows:

ðγ0Þαβ ¼ −iσ2 ¼
�
0 −1
1 0

�
; ðγ1Þαβ ¼ σ3 ¼

�
1 0

0 −1

�
;

ðA2aÞ

ðγ2Þαβ ¼ −σ1 ¼
�

0 −1
−1 0

�
; ðA2bÞ

ðγmÞαβ ¼ εβδðγmÞαδ; ðγmÞαβ ¼ εαδðγmÞδβ: ðA2cÞ

The γ-matrices are traceless and symmetric,

ðγmÞαα ¼ 0; ðγmÞαβ ¼ ðγmÞβα; ðA3Þ
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and also satisfy the Clifford algebra

γmγn þ γnγm ¼ 2ηmn: ðA4Þ

For products of γ-matrices we make use of the
identities

ðγmÞαρðγnÞρβ ¼ ηmnδα
β þ ϵmnpðγpÞαβ; ðA5aÞ

ðγmÞαρðγnÞρσðγpÞσβ ¼ ηmnðγpÞαβ − ηmpðγnÞαβ
þ ηnpðγmÞαβ þ ϵmnpδα

β; ðA5bÞ

where we have introduced the 3D Levi-Civita tensor ϵ with
ϵ012 ¼ −ϵ012 ¼ 1. We also have the orthogonality and
completeness relations for the γ-matrices

ðγmÞαβðγmÞρσ ¼−δαρδβσ−δα
σδβ

ρ; ðγmÞαβðγnÞαβ¼−2ηmn:

ðA6Þ

The γ-matrices are used to swap from vector indices to
spinor indices. For example, given some three-vector xm, it
may equivalently be expressed in terms of a symmetric
second-rank spinor xαβ as follows:

xαβ ¼ ðγmÞαβxm; xm ¼ −
1

2
ðγmÞαβxαβ; ðA7aÞ

detðxαβÞ ¼
1

2
xαβxαβ ¼ −xmxm ¼ −x2: ðA7bÞ

The same conventions are also adopted for the spacetime
partial derivatives ∂m,

∂αβ ¼ ðγmÞαβ∂m; ∂m ¼ −
1

2
ðγmÞαβ∂αβ; ðA8aÞ

∂mxn ¼ δnm; ∂αβxρσ ¼ −δαρδβσ − δα
σδβ

ρ; ðA8bÞ

ξm∂m ¼ −
1

2
ξαβ∂αβ: ðA9Þ

We also define the supersymmetry generators Qα,

Qα ¼ i
∂

∂θα
þ ðγmÞαβθβ

∂

∂xm
; ðA10Þ

and the covariant spinor derivatives

Dα ¼
∂

∂θα
þ iðγmÞαβθβ

∂

∂xm
; ðA11Þ

which anticommute with the supersymmetry generators,
fQα; Dβg ¼ 0, and obey the standard anticommutation
relations

fDα; Dβg ¼ 2iðγmÞαβ∂m: ðA12Þ

APPENDIX B: CONSERVATION IDENTITIES

For imposing superfield conservation equations on three-
point correlation functions, the following identities are
essential:

DαQ1 ¼
i

X1=2

�
vαR3 þ wαR2 −Q1ðX̂ · Θ̂Þα

�
; ðB1aÞ

DαQ2 ¼
i

X1=2

�
uαR3 þ wαR1 −Q2ðX̂ · Θ̂Þα

�
; ðB1bÞ

DαQ3 ¼
i

X1=2

�
uαR2 þ vαR1 −Q3ðX̂ · Θ̂Þα

�
; ðB1cÞ

DαZ1 ¼
i

X1=2

�
2uαR1 − Z1ðX̂ · Θ̂Þα

�
; ðB1dÞ

DαZ2 ¼
i

X1=2

�
2vαR2 − Z2ðX̂ · Θ̂Þα

�
; ðB1eÞ

DαZ3 ¼
i

X1=2

�
2wαR3 − Z3ðX̂ · Θ̂Þα

�
; ðB1fÞ

DαR1 ¼
1

X1=2

�
−uα −

i
4
ðX̂ · uÞαJ

�
; ðB1gÞ

DαR2 ¼
1

X1=2

�
−vα −

i
4
ðX̂ · vÞαJ

�
; ðB1hÞ

DαR3 ¼
1

X1=2

�
−wα −

i
4
ðX̂ · wÞαJ

�
; ðB1iÞ

DαS1 ¼
1

X1=2

�
ðX̂ · uÞα − 3i

4
uαJ

�
; ðB1jÞ

DαS2 ¼
1

X1=2

�
ðX̂ · vÞα − 3i

4
vαJ

�
; ðB1kÞ

DαS3 ¼
1

X1=2

�
ðX̂ · wÞα − 3i

4
wαJ

�
: ðB1lÞ

Similar relations hold for the action of Qα on the basis
structures.
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