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In this paper, we discuss Galilean relativistic Maxwell theory in detail. We first provide a set of mapping
relations, derived systematically, that connect the covariant and contravariant vectors in the Lorentz
relativistic and Galilean relativistic formulations. Exploiting this map, we construct the two limits of
Galilean relativistic Maxwell theory from the usual Maxwell’s theory in the potential formalism for both
contravariant and covariant vectors which are now distinct entities. Field equations are derived and their
internal consistency is shown. The entire analysis is then performed in terms of electric and magnetic fields
for both covariant and contravariant components. Duality transformations and their connection with boost
symmetry are discussed which reveal a rich structure. The notion of twisted duality is introduced. Next we
consider gauge symmetry, construct Noether currents, and show their on-shell conservation. We also
discuss shift symmetry under which the Lagrangian is invariant, where the corresponding currents are now
on-shell conserved. At the end we analyze the theory by including sources for both contravariant and
covariant sectors. We show that sources are now off-shell conserved.
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I. INTRODUCTION

The formulation of the nonrelativistic limit of classical
field theories received considerable attention recently. It
has found applications in holography [1], in studying
nonrelativistic diffeomorphisms [2–6], condensed matter
systems [7–9], fluid dynamics [10,11], gravitation [12,13].
This formulation is tricky and markedly different from the
relativistic case. Covariance in nonrelativistic physics is
subtle due to the absolute nature of time. The lack of a
single nondegenerate metric in the nonrelativistic limit
poses some additional difficulties. Here we are interested
in the nonrelativistic limit of Maxwellean electrodynamics
which is invariant under Galilean transformations. The
basic construction of Galilean electrodynamics was first
given by Le Bellac and Levy-Leblond [14] in the 1970s.
This was done in the field formulation. A similar field-
based analysis was done in [15] using embedding tech-
niques. Further directions in this type of analysis were
provided in [16]. Other references on different aspects of
Galilean electrodynamics and gauge theories are [17–23].

In this paper we provide a detailed analysis of Galilean
relativistic Maxwell theory with and without sources.
While earlier findings are reproduced we also find several
new results with new interpretations. We know there are
two distinct nonrelativistic limits possible for electrody-
namics known as the electric and magnetic limits [14,16].
We derive these two limits from the Lorentz transformation
of an arbitrary four vector. Our derivation of the non-
relativistic scaling relations are consistent with [14,16].
All previous works so far treated only the contravariant
components of any vector quantity but the novelty of our
treatment is that we have considered both contravariant
and covariant components separately (which are distinct
quantities in the nonrelativistic case) and hence help us to
explore the rich symmetries involved in the theory. We
then derive the Lagrangians for both electric and magnetic
limits from which the equations of motion are obtained.
We also show that Maxwell’s equations under nonrelativ-
istic limit (electric and magnetic) yield the same equations
as those we get from the nonrelativistic Lagrangians. This
implies the internal consistency of the limiting process. We
observe that at the equations of motion level if we replace
the covariant vector components by the corresponding
contravariant ones then the electric limit and magnetic
limits get interchanged. We then define the Galilean
electric and magnetic fields for contravariant and covariant
cases. Along the way, we discuss the dualities and point
out some of the subtleties involved in the process. In this
regard we observe one unique aspect of the duality
symmetries called twisted duality which is valid only in

*rabin@bose.res.in
†soumya557@bose.res.in

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 107, 105022 (2023)

2470-0010=2023=107(10)=105022(14) 105022-1 Published by the American Physical Society

https://orcid.org/0000-0001-7331-755X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.105022&domain=pdf&date_stamp=2023-05-25
https://doi.org/10.1103/PhysRevD.107.105022
https://doi.org/10.1103/PhysRevD.107.105022
https://doi.org/10.1103/PhysRevD.107.105022
https://doi.org/10.1103/PhysRevD.107.105022
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


the Galilean limit. Especially we show that the trans-
formations of the electric and magnetic fields under
Galilean boosts are connected with the familiar duality
transformations. Next we move to discuss gauge sym-
metry. We have shown that we can choose different gauge
parameters for contravariant and covariant four potentials
as they represent different entities in the Galilean limits.
We then compute the Galilean version of the Noether
currents and explicitly show their on-shell conservation.
We discuss shift symmetries which play an important role
in the study of low-energy effective Lagrangians in the
context of Goldstone’s theorem. Recently researchers have
explored shift symmetries from different aspects [24,25].
We compute corresponding currents and their conserva-
tions in this limit. In the end we introduce sources and
write down the Lagrangians for appropriate Galilean limits
(electric and magnetic) and the equations of motion just
like the sourceless case.
The paper is organized as follows: In Sec. II we derive

mapping relations between relativistic and nonrelativistic
vectors for electric and magnetic limits for both contra-
variant and covariant vectors. In Sec. III we derive the
nonrelativistic Lagrangian for both limits and write down
the equations of motion. We discuss Maxwell’s equations in
terms of fields and explore the duality relations in Sec. IV.
Gauge symmetry, Noether currents, and their conservations
are discussed in Sec. V. In Sec. VI we discuss shift
symmetry and its Galilean counterpart, corresponding
currents and their conservations. Section VII includes a
discussion of sources for both contravariant and covariant
sectors. Finally, conclusions are given in Sec. VIII.

II. MAPPING RELATIONS

Here we derive a certain scaling between special rela-
tivistic and Galilean relativistic quantities. As we know,
there exist two types of such limits for the vector quantities,
namely electric and magnetic limits. So first let us consider
the contravariant vectors. Let us consider a generic Lorentz
transformation with the boost velocity as ui:

x00 ¼ γx0 −
γui
c

xi; ð1Þ

x0i ¼ xi −
γui

c
x0 þ ðγ − 1Þ u

iuj
u2

xj; ð2Þ

where γ ¼ 1ffiffiffiffiffiffiffi
1−u2

c2

q . Under such Lorentz transformations a

contravariant vector changes as

V 0μ ¼ ∂x0μ

∂xν
Vν:

We can write them component-wise as (also considering
u ≪ c, so γ → 1)

V 00 ¼ V0 −
uj
c
Vj; ð3Þ

V 0i ¼ Vi −
ui

c
V0: ð4Þ

We next provide a map that relates the Lorentz vectors with
their Galilean counterparts,1

V0 ¼ cv0; Vi ¼ vi: ð5Þ

This particular map corresponds to the case V0

Vi ¼ c v0

vi in the
c → ∞ limit. This yields largely timelike vectors and is
called the “electric limit.” Now using Eq. (5) in Eqs. (3)
and (4), we get

v00 ¼ v0; ð6Þ

v0i ¼ vi − uiv0: ð7Þ

The above two equations define the Galilean transforma-
tions. We can write them in a single matrix equation as

�
v00

v0i

�
¼

�
1 0

−ui 1

��
v0

vi

�
: ð8Þ

We now consider the magnetic limit which corresponds to
largely spacelike vectors

V0 ¼ −
v0

c
; Vi ¼ vi: ð9Þ

Now using (9) in (3) and (4), we get

v00 ¼ v0 þ ujvj; ð10Þ

v0i ¼ vi; ð11Þ

which is again a Galilean transformation. We can write
Eqs. (10) and (11) as a matrix equation,

�
v00

v0i

�
¼

�
1 uj
0 1

��
v0

vj

�
: ð12Þ

We will now consider the covariant vectors. We will write
first the reverse transformations of Eqs. (1) and (2) which
read as

x0 ¼ γx00 þ γui
c

x0i; ð13Þ

1Notation: here relativistic vectors are denoted by capital
letters (V0, Vi, etc.) and Galilean vectors are denoted by
lowercase letters (v0, vi, etc.).
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xi ¼ x0i þ γui

c
x00 þ ðγ − 1Þ u

iuj
u2

x0j: ð14Þ

And we know covariant vectors transform as

V 0
μ ¼

∂xν

∂x0μ
Vν:

Componentwise we can again write them as

V 0
0 ¼ V0 þ

ui

c
Vi; ð15Þ

V 0
i ¼ Vi þ

ui
c
V0: ð16Þ

Now here we take the electric limit in the following way,
which will soon become clear:

V0 ¼
v0
c
; Vi ¼ vi: ð17Þ

Using (17) in (15) and (16) we get

v00 ¼ v0 þ uivi; ð18Þ

v0i ¼ vi; ð19Þ

which are again Galilean transformations. We can write
(18) and (19) as a matrix equation as

�
v00
v0i

�
¼

�
1 ui
0 1

��
v0
vi

�
: ð20Þ

We will now consider the magnetic limit as

V0 ¼ −cv0; Vi ¼ vi: ð21Þ

Using (21) in (15) and (16), we get

v00 ¼ v0; ð22Þ

v0i ¼ vi − uiv0: ð23Þ

We can write (22) and (23) as

�
v00
v0i

�
¼

�
1 0

−ui 1

��
v0
vi

�
: ð24Þ

We can show that the transformation matrix in (8) and the
transpose of the matrix (20) satisfy

�
1 0

−vi 1

��
1 0

vi 1

�
¼

�
1 0

0 1

�
: ð25Þ

Similarly the transformation matrix in Eq. (12) and the
transpose of the transformation matrix in (24) satisfy

�
1 vj
0 1

��
1 −vj
0 1

�
¼

�
1 0

0 1

�
: ð26Þ

To justify the limiting prescriptions even further, we
consider the norm preservation for both electric and
magnetic limits. Let us first consider the norm in the
electric limit

V0V0 þ ViVi ⟶
electric

limit
ðcv0Þ

�v0
c

�
þ ðviÞðviÞ ¼ v0v0 þ vivi

ð27Þ
which clearly indicates that under the scaling, the norm is
preserved. Likewise, the norm in the magnetic limit is also
conserved.
The mapping relations, systematically derived here for

both covariant and contravariant components, are essential
to the subsequent analysis. Any four vector in relativistic
theory will be replaced by the corresponding structure for
the Galilean theory by adopting this map. These relations
are summarized in Table I.

III. LAGRANGIAN AND FIELD EQUATIONS

Now let us start from the relativistic Maxwell theory
described by the Lagrangian

L ¼ −
1

4
FμνFμν ¼ −

1

4
ημαηνβFαβFμν ð28Þ

where Fμν ¼ ∂μAν − ∂νAμ and ημν is the flat space metric
with signature ð−;þ;þ;þÞ.

A. Electric limit

Now using the relations given in Table I we can write the
two terms in (28) as

2F0iF0i⟶
Electric limit

c→∞
−2∂ia0ð∂tai − ∂ia0Þ; ð29Þ

FijFij⟶
Electric limit

c→∞
ð∂iaj − ∂jaiÞð∂iaj − ∂

jaiÞ≡ fijfij: ð30Þ

Here Aμ is the relativistic four potential while a0 and ai

are its Galilean counterparts. So in the electric limit the full
Lagrangian takes the following form:

Le ¼
1

2
∂
ia0ð∂tai − ∂ia0Þ −

1

4
fijfij: ð31Þ

TABLE I. Mapping relations.

Limit Contravariant mapping Covariant mapping

Electric limit V0 → cv0; Vi → vi V0 →
v0
c ; Vi → vi

Magnetic limit V0 → − v0
c ; V

i → vi V0 → −cv0:Vi → vi
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Now we derive the equations of motion. Varying the
Lagrangian (31) with respect to a0; aj; a0; aj we get the
corresponding equations of motion:

∂i∂
ia0 ¼ 0; ð32Þ

∂t∂
ja0 þ ∂i∂

jai − ∂i∂
iaj ¼ 0; ð33Þ

∂
i
∂tai − ∂

i
∂ia0 ¼ 0; ð34Þ

∂
i
∂iaj − ∂

i
∂jai ¼ 0: ð35Þ

We now derive these equations directly from the equations
of motion. The relativistic equations, in component form,
are given by

∂iFi0 ¼ 0; ∂0F0j þ ∂iFij ¼ 0: ð36Þ
The Galilean version of these equations is found by using
Table I, followed by taking c → ∞. It reproduces (32)
and (33) respectively. To get the remaining pair of
equations we have to interpret the relativistic equations
given in (36) as

∂
iFi0 ¼ 0; ∂

0F0j þ ∂
iFij ¼ 0: ð37Þ

Once again the Galilean version is obtained from Table I,
followed by taking c → ∞. Equations (34) and (35) are
reproduced. This shows the consistency of the equation of
motion in Galilean electrodynamics.

B. Magnetic limit

Here again using the relations given in Table I we can
write the two terms in (28) as

2F0iF0i ⟶
Magnetic limit

c→∞
−2∂ia0ð∂tai − ∂

ia0Þ; ð38Þ

FijFij⟶
Magnetic limit

c→∞
ð∂iaj − ∂jaiÞð∂iaj − ∂

jaiÞ≡ fijfij: ð39Þ

So the Lagrangian will take the following form:

Lm ¼ 1

2
∂ia0ð∂tai − ∂

ia0Þ − 1

4
fijfij: ð40Þ

Varying (40) with respect to a0; aj; a0; aj we get

∂i∂tai − ∂
i
∂ia0 ¼ 0; ð41Þ

∂j∂
iaj − ∂j∂

jai ¼ 0; ð42Þ

∂
i
∂ia0 ¼ 0; ð43Þ

∂t∂ja0 þ ∂
i
∂jai − ∂

i
∂iaj ¼ 0: ð44Þ

Here also we can show that the above equations agree
with those derived directly from relativistic Maxwell
equations (36) and (37) corresponding to contravariant
and covariant sectors respectively, by taking the mag-
netic limit.
The field equations for both the limits of Galilean

electrodynamics are shown in Table II.

IV. GALILEAN ELECTRIC AND MAGNETIC
FIELDS AND DUAL TRANSFORMATIONS

Here we introduce the Galilean limit of electric and
magnetic fields and write down the Maxwell equations. For
this purpose we will discuss contravariant and covariant
sectors separately.

A. Contravariant sector

Relativistic electric and magnetic fields are defined as

Ei ¼ ∂
0Ai − ∂

iA0; ð45Þ

Bi ¼ ϵijk∂jA
k: ð46Þ

First, we consider the electric limit.

1. Electric limit

Using the mapping relations given in Table I we can
write the electric field as

Ei ¼ −
1

c
∂tai − c∂ia0; ð47Þ

and we can define the Galilean electric and magnetic
fields as

ei ¼ lim
c→∞

Ei

c
¼ −∂ia0: bi ¼ lim

c→∞
Bi ¼ ϵijk∂ja

k: ð48Þ

TABLE II. Field equations.

Variables Electric limit Magnetic limit

a0 ∂
i
∂tai − ∂

i
∂ia0 ¼ 0 ∂

i
∂ia0 ¼ 0

ai ∂
j
∂iaj − ∂

j
∂jai ¼ 0 ∂t∂ia0 þ ∂

j
∂iaj − ∂

j
∂jai ¼ 0

a0 ∂
i
∂ia0 ¼ 0 ∂i∂tai − ∂

i
∂ia0 ¼ 0

ai ∂t∂
ia0 þ ∂j∂

iaj − ∂j∂
jai ¼ 0 ∂j∂

iaj − ∂j∂
jai ¼ 0

TABLE III. Fields in Galilean limit.

Limits Electric field Magnetic field

Electric limit Ei → cei; Ei →
ei
c Bi → bi; Bi → bi

Magnetic limit Ei → ei
c ; Ei → cei Bi → bi; Bi → bi
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Now we write the field equations that we derived in the
previous section in terms of the Galilean electric and
magnetic fields. From (32) we get

∂i∂
ia0 ¼ 0 ⇒ ∂ið−eiÞ ¼ 0 ⇒ ∇!:e⃗ ¼ 0: ð49Þ

Similarly Eq. (33) implies

∂t∂
ja0 þ ∂i∂

jai − ∂i∂
iaj ¼ 0 ⇒ ð∇!× b⃗Þj ¼ ∂tej: ð50Þ

We can see clearly that

∇!:b⃗ ¼ ∂ibi ¼ ∂iϵ
ij
k∂ja

k ¼ ϵijk∂i∂ja
k ¼ 0: ð51Þ

We now compute ∇!× e⃗,

ð∇ × eÞi ¼ ϵijk∂je
k ¼ ϵijk∂jð−∂ka0Þ ¼ 0: ð52Þ

So in the electric limit, we get the following set of
equations:

∇!:e⃗ ¼ ∂iei ¼ 0; ð53Þ

∇!:b⃗ ¼ ∂ibi ¼ 0; ð54Þ

ð∇!× e⃗Þi ¼ ϵijk∂je
k ¼ 0; ð55Þ

ð∇!× b⃗Þi ¼ ϵijk∂jb
k ¼ ∂tðe⃗Þi: ð56Þ

It is now possible to obtain Eqs. (53)–(56) directly from
Maxwell’s equations,

∇!:E⃗ ¼ 0; ∇!:B⃗ ¼ 0; ∇!× E⃗ ¼ −
1

c
∂B⃗
∂t

;

∇!× B⃗ ¼ 1

c
∂E⃗
∂t

ð57Þ

by using the identification in Eq. (48) and taking c → ∞.
For the electric limit, it is seen from (56), a change in the

electric field influences the magnetic field. But a change in
the magnetic field does not influence the electric field since
the right-hand side of (55) vanishes. This implies that the
electric field is considerably greater and dominates over the
magnetic field, justifying the nomenclature electric limit.
This is different from the relativistic case where electric and
magnetic fields are treated symmetrically. This asymmetry
in Galilean electromagnetism leads to physical effects,
some of which have been discussed in [26].
We will now consider the magnetic limit.

2. Magnetic limit

The electric field can be written in this limit from the
mapping relations in Table I as

Ei ¼ −
1

c
∂tai þ

1

c
∂ia0; ð58Þ

and we can define the Galilean electric and magnetic
fields as

ei ¼ lim
c→∞

cEi ¼ −ð∂tai − ∂
ia0Þ; bi ¼ lim

c→∞
Bi ¼ ϵijk∂ja

k:

ð59Þ

Using these relations, Eqs. (41) and (42) and two Bianchi
identities are expressed in terms of electric/magnetic
fields as

∇!:e⃗ ¼ ∂iei ¼ 0; ð60Þ

∇!:b⃗ ¼ ∂ibi ¼ 0; ð61Þ

ð∇!× e⃗Þi ¼ ϵijk∂je
k ¼ −∂tðb⃗Þi; ð62Þ

ð∇!× b⃗Þi ¼ ϵijk∂jb
k ¼ 0: ð63Þ

The above equations [(60)–(63)] also follow from
Maxwell’s Eq. (57), using the map (59) and taking the
limit c → ∞. In contrast to the electric limit, here a change
in the magnetic field influences the electric field but the
converse does not hold. In this case the magnetic field
dominates over the electric field.
We can clearly see that equations in the electric limit are

mapped to those of the magnetic limit and vice versa under
the following duality transformations:

ei → bi; bi → −ei; ð64Þ

ei → −bi; bi → ei: ð65Þ

This is the analog of the electromagnetic duality in the
usual Maxwell’s source free theory.

B. Covariant sector

The relativistic electric and magnetic fields are defined as

Ei ¼ −ð∂0Ai − ∂iA0Þ; ð66Þ

Bi ¼ ϵi
jk
∂jak: ð67Þ

Now we consider the electric limit.

1. Electric limit

In this limit the electric field looks like

Ei ¼ −
�
1

c
∂tai þ

1

c
∂ia0

�
; ð68Þ
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and we can define Galilean electric and magnetic fields as

ei ¼ lim
c→∞

cEi ¼ −ð∂tai − ∂ia0Þ; bi ¼ lim
c→∞

Bi ¼ ϵi
jk
∂jak:

ð69Þ

From Eq. (34) we get

∂
ið∂tai − ∂ia0Þ ¼ ∂

ið−eiÞ ¼ ∂
iei ¼ ∇!:e⃗ ¼ 0: ð70Þ

Equation (35) yields

∂
ifij ¼ −ϵjik∂ibk ¼ 0 ⇒ ð∇!× b⃗Þj ¼ 0: ð71Þ

Finally, calculation of ∇!× e⃗ yields

ð∇!× e⃗Þi ¼ ϵi
jk
∂jek ¼ −ϵjki ∂jð∂tak − ∂ka0Þ

¼ −∂tϵijk∂jak ¼ −∂tbi: ð72Þ

So the Maxwell equations in the electric limit are

∇!:e⃗ ¼ ∂
iei ¼ 0; ð73Þ

∇!:b⃗ ¼ ∂
ibi ¼ 0; ð74Þ

ð∇!× e⃗Þi ¼ ϵi
jk
∂jek ¼ −∂tðb⃗Þi; ð75Þ

ð∇!× b⃗Þi ¼ ϵij
k
∂
jbk ¼ 0: ð76Þ

The above equations [(73)–(76)] also follow from
Maxwell’s Eq. (57), using the map (69) and taking the
limit c → ∞.

2. Magnetic limit

A0 → −ca0 Ai → ai

In this limit the electric field is scaled as

Ei ¼ −
�
1

c
∂tai þ c∂ia0

�
; ð77Þ

and we can define the Galilean electric and magnetic
fields as

ei ¼ lim
c→∞

Ei

c
¼ −∂ia0; bi ¼ lim

c→∞
Bi ¼ ϵi

jk
∂jak: ð78Þ

Equations (43) and (44) and two Bianchi identities are
now written as

∇!:e⃗ ¼ ∂
iei ¼ 0; ð79Þ

∇!:b⃗ ¼ ∂
ibi ¼ 0; ð80Þ

ð∇!× e⃗Þ ¼ ϵi
jk
∂jek ¼ 0; ð81Þ

ð∇!× b⃗Þi ¼ ϵij
k
∂
jbk ¼ ∂tei: ð82Þ

The above equations [(79)–(82)] also follow from
Maxwell’s Eq. (57), using the map (78) and taking the
limit c → ∞. Here also we see that electric and magnetic
fields satisfy certain duality relations as follows:

ei → bi; bi → −ei; ð83Þ

ei → −bi; bi → ei: ð84Þ

The galilean limit scalings for the fields (electric/magnetic)
are shown in Table III.

C. Effect of the dualities at the level of Lagrangian

In the electric limit the Lagrangian is represented
by Eq. (31). Now in this limit, the contravariant and
covariant electric fields as well as magnetic fields are
represented by (48) and (69) respectively. Using these
definitions we can write the electric limit Lagrangian in the
following form:

Le ¼
1

2
ðeiei − bibiÞ: ð85Þ

Similarly in the magnetic limit the Lagrangian is repre-
sented by Eq. (40). Here the electric and magnetic fields
for contravariant and covaraint cases are given in Eqs. (59)
and (78) respectively. So now the Lagrangian in this limit
takes the following form in terms of the fields:

Lm ¼ 1

2
ðeiei − bibiÞ: ð86Þ

We observe that both Lagrangians [Eqs. (85) and (86)]
are identical,

Le ¼ Lm ¼ L: ð87Þ
In other words, expressed in terms of the gauge invariant
fields (electric and magnetic), the Lagrangians in the two
limits are the same. This is to be contrasted with the potential
formulation where Le and Lm appear to be different.
However if we interchange the covariant and the contra-
variant indices then Le and Lm get interchanged. Similar
things happen when the Lagrangians are expressed in terms
of the electric and magnetic fields. However, since the
expressions are symmetrical with respect to the covariant
and contravariant indices, Le and Lm become identical. We
observe there is an overall sign change (i.e. L → −L) under
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the duality transformations (ei → bi; bi → −ei; ei → bi;
bi → −ei or ei → −bi; bi → ei; ei → −bi; bi → ei); how-
ever, the Lagrangians remain invariant (i.e. L → L) under
the twisted duality relations (i.e. ei → −bi; bi → ei; ei →
bi; bi → −ei or ei → bi; bi → −ei; ei → −bi; bi → ei).
This has been shown clearly in Table IV. We like to mention
that the twisted relations have not been discussed earlier.

D. Dual transformation of electric and magnetic fields
under Galilean boost

1. Contravariant case

The field transforms as

F0μνðx0Þ ¼ ∂x0μ

∂xλ
∂x0ν

∂xρ
FλρðxÞ: ð88Þ

Boost transformations are written as

x00 ¼ γx0 −
γvi
c

xi; ð89Þ

x0i ¼ xi −
γvi

c
x0 þ ðγ − 1Þ v

ivj
v2

xj: ð90Þ

From (88) using (89) and (90) we get following relations:

F00i ¼ E0i ¼ γEi þ γ − 1

v2
vivjEj −

γvj
c

Fji ð91Þ

F0ij ¼ −
γvi

c
Ej þ γvj

c
Ei þ Fij þ γ − 1

v2
vmvjFim

þ γ − 1

v2
vlviFlj ð92Þ

2. Electric limit

From Eq. (91) using the electric limit scaling given in
Table I and keeping in mind that in this limit γ → 1 as
c → ∞, we get

e0i ¼ ei: ð93Þ

Similarly, Eq. (92) yields

f0ij ¼ −viej þ vjei þ fij ⇒ b0k ¼ bk − ðv⃗ × e⃗Þk: ð94Þ

The transformations (93) and (94) manifest the same
asymmetry that was observed in the Maxwell’s Eqs. (55)
and (56). A change in the electric field induces a change in
the magnetic field but the converse is not true. For the
magnetic limit, discussed right below, it is the other
way round.
There is a simple group theoretical argument for the

absence of any b-term in (93). For the sake of argument, if
we retain (94) but include a term in (93) like

e⃗0 ¼ e⃗þ ðv⃗ × b⃗Þ ð95Þ

then the group composition law fails since

e⃗00 ¼ e⃗0 þ ðu× b⃗0Þ ¼ e⃗þ ððv⃗þ u⃗Þ× b⃗Þ− u⃗× ðv⃗× e⃗Þ ð96Þ

and the last term spoils the transformation (95).

3. Magnetic limit

From Eq. (91) using the magnetic limit scaling from
Table I we get

e0i ¼ ei − vjfji ⇒ e0i ¼ ei þ ðv⃗ × b⃗Þi: ð97Þ

Similarly from Eq. (92) we get

f0ij ¼ fij ⇒ b⃗0 ¼ b⃗: ð98Þ

Adopting the same method, the transformations in the
covariant sector are obtained. All these results are sum-
marized in Table V. We can clearly see from this table
that under duality transformation (ei → bi; bi → −ei and
ei → bi; bi → −ei) the electric limit reproduces the mag-
netic limit and vice versa for both covariant and contra-
variant cases.

V. GAUGE SYMMETRY

We know in the relativistic case the Maxwell Lagrangian

L ¼ −
1

4
FμνFμν ð99Þ

is invariant under the following gauge transformation:

δAμ ¼ ∂μα; δAμ ¼ ∂
μα: ð100Þ

We consider the Galilean version of this gauge
invariance.

A. Galilean version

Here we can consider a relatively more general gauge
condition,

TABLE IV. Effect of duality on the Lagrangian.

Duality relation Change in the Lagrangian

ei → bi; bi → −ei; ei → bi; bi → −ei L → −L
ei → −bi; bi → ei; ei → −bi; bi → ei L → −L
ei → bi; bi → −ei; ei → −bi; bi → ei L → L
ei → −bi; bi → ei; ei → bi; bi → −ei L → L
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δAμ ¼ ∂μα; δAμ ¼ ∂
μβ: ð101Þ

In the relativistic theory the covaraint and contravariant
vectors are related by a metric implying α ¼ β. This is not
true in the Galilean limit. Hence we take α ≠ β when
deriving the Galilean version of the gauge transformations.
First we consider the electric limit.

1. Electric limit

From Eq. (101) and using the mapping relations given in
Table I we deduce the following relations:

δA0 ¼ ∂0α ⇒
1

c
δa0 ¼

1

c
∂tα ⇒ δa0 ¼ ∂tα; ð102Þ

δAi ¼ ∂iα ⇒ δai ¼ ∂iα; ð103Þ

δA0 ¼ ∂
0β ⇒ cδa0 ¼ −

1

c
∂tβ⟶

c→∞
δa0 ¼ 0; ð104Þ

δAi ¼ ∂
iβ ⇒ δai ¼ ∂

iβ: ð105Þ

Taking the variation of (31) in the electric limit,

δLe ¼
1

2
∂
iδa0ð∂tai − ∂ia0Þ þ

1

2
∂
ia0ð∂tδai − ∂iδa0Þ ¼ 0;

ð106Þ

and exploiting Eqs. (102)–(105) shows the invariance
of Le.

2. Magnetic limit

From Eq. (101) and using the mapping relations given in
Table I and repeating the steps done for the electric limit,
we obtain similar results here also. These are given in
Table VI.
Taking the variation of the Lagrangian (40) and using the

results in Table VI we get

δLm ¼ 1

2
∂iδa0ð∂tai − ∂

ia0Þ þ 1

2
∂ia0ð∂tδai − ∂

iδa0Þ ¼ 0:

ð107Þ

This shows the invariance of Lm.

B. Noether current conservation

We know in relativistic classical field theory the Noether
current is defined as

Jμ ¼ ∂L
∂ð∂μAνÞ

δAν ð108Þ

which is conserved on-shell i.e. ∂μJμ ¼ 0. Specifically for
the Maxwell Lagrangian,

L ¼ −
1

4
FμνFμν;

the current in Eq. (108) has the form

Jμ ¼ −Fμν
∂να ð109Þ

and is on-shell conserved i.e.

∂μJμ ¼ −ð∂μFμνÞ∂να − Fμν
∂μ∂να ¼ 0: ð110Þ

The first term is zero because ∂μFμν ¼ 0 and the second
term is zero because of antisymmetry of Fμν.
We now consider here a suitable Galilean version of this

conservation. For this we will directly start from the
relativistic definition and substitute the Galilean results
in the proper limit (electric or magnetic).2 Analogous
conservation laws, either in electric or magnetic limit,
are obtained.

VI. SHIFT SYMMETRY

We know that Goldstone’s theorem is a crucial input of
the study of low-energy effective Lagrangians implying
that whenever a global symmetry is spontaneously broken,
a gapless mode will appear. In relativistic theories this leads
to a massless Goldstone particle described by a shift
symmetry of the field

TABLE V. Transformation of fields under Galilean boost.

Limits Contravariant case Covariant case

Electric limit e0i ¼ ei; b0k ¼ bk − ðv⃗ × e⃗Þk e0i ¼ ei þ ðv⃗ × b⃗Þi; b⃗0 ¼ b⃗
Magnetic limit e0i ¼ ei þ ðv⃗ × b⃗Þi; b⃗0 ¼ b⃗ e0i ¼ ei; b0k ¼ bk − ðv⃗ × e⃗Þk

TABLE VI. Variations of the Galilean potentials.

Variable Electric limit Magnetic limit

a0 δa0 ¼ 0 δa0 ¼ ∂tβ
ai δai ¼ ∂

iβ δai ¼ ∂
iβ

a0 δa0 ¼ ∂tα δa0 ¼ 0
ai δai ¼ ∂iα δai ¼ ∂iα

2The details of the Noether current calculations are provided in
Appendix A.
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ϕðxÞ → ϕðxÞ þ c ð111Þ

where c is constant and is characterized by the scalar field
action

S ¼ 1

2

Z
ddx∂μϕ∂μϕ: ð112Þ

The above action is invariant under (111). Since (111) is a
global transformation, the conserved currents can be found
by exploiting Noether’s first theorem

Jμ ¼ ∂L
∂ð∂μϕÞ

δϕ ¼ c∂μϕ; ð113Þ

and corresponding conservations are demonstrated as

∂μJμ ¼ c∂μ∂μϕ ¼ 0: ð114Þ

Consider a constant shift in the four potential

A0
μ ¼ Aμ þ Cμ; A0μ ¼ Aμ þDμ ð115Þ

that leaves the Maxwell Lagrangian invariant. We take C
and D to be different for reasons stated in Sec. VA.

A. Electric limit

We can define the following:

δA0 ¼ C0 ⇒
1

c
δa0 ¼ C0 ⇒ δa0 ¼ cC0; ð116Þ

δAi ¼ Ci ⇒ δai ¼ Ci: ð117Þ

Similarly, from expressions for δA0; δAi we find

δa0 ¼ 0; δai ¼ Di: ð118Þ

From (31) Noether currents are found to be

jt ¼ 1

2
ð∂ia0ÞCi; ji ¼ −

1

2
∂
ia0C0 −

1

2
fijCj: ð119Þ

And current conservation can be explicitly demonstrated as

∂μJμ⟶
Electric limit

c→∞
∂tjt þ ∂iji ¼

1

2
ð∂t∂ia0ÞCi −

1

2
ð∂i∂ia0ÞC0

−
1

2
ð∂ifijÞCj ¼ 0: ð120Þ

The covariant components of the currents are

jt ¼ 0; ji ¼ −
1

2
fijDj: ð121Þ

The current conservation gives us

∂
μJμ⟶

Electric limit

c→∞
∂
iji ¼ −

1

2
ð∂ifijÞDj ¼ 0: ð122Þ

B. Magnetic limit

We can define the following:

δA0 ¼ C0 ⇒ −cδa0 ¼ C0 ⇒ δa0 ¼ 0; ð123Þ

δAi ¼ Ci ⇒ δai ¼ Ci: ð124Þ

Similarly, from the expressions for δA0; δAi we find

δa0 ¼ −cD0; δai ¼ Di: ð125Þ

From (40) the Noether currents are found to be

jt ¼ 0; ji ¼ −
1

2
fijCj: ð126Þ

So the current conservations are demonstrated as

∂μJμ⟶
Magnetic limit

c→∞
∂iji ¼ −

1

2
∂ifijCj ¼ 0: ð127Þ

Similarly the covariant current components are

jt ¼
1

2
∂ia0Di; ji ¼ −

1

2
∂ia0D0 −

1

2
fijDj: ð128Þ

The current conservations give

∂
μJμ⟶

Magnetic limit

c→∞
∂tjt þ ∂

iji ¼
1

2
ð∂t∂ia0ÞDi −

1

2
ð∂i∂ia0ÞD0

−
1

2
∂
ifijDj ¼ 0: ð129Þ

VII. INCLUSION OF SOURCES

The relativistic Maxwell Lagrangian with source is as
follows:

L ¼ −
1

4
FαβFαβ − AαJα: ð130Þ

We can write the Lagrangian in the following form for
convenience:

L ¼ −
1

4
ð2F0iF0i þ FijFijÞ − 1

2
AαJα −

1

2
AαJα: ð131Þ

We know that the Maxwell theory respects the following
gauge transformations:

Aμ → Aμ þ ∂μΛ: ð132Þ
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The gauge invariance of the action demands the following
condition:

AμJμ → ðAμþ ∂μΛÞJμ ¼AμJμ−Λ∂μJμ ⇒ ∂μJμ ¼ 0: ð133Þ

A. Electric limit

In the electric limit the scaling of the components of the
source Jμ will be

J0 → cj0; Ji → ji; J0 →
j0
c
; Ji → ji: ð134Þ

In this limit the Lagrangian looks like

Le ¼
1

2
∂
ia0ð∂tai − ∂ia0Þ −

1

4
fijfij −

1

2
a0j0 −

1

2
aiji

−
1

2
a0j0 −

1

2
aiji: ð135Þ

Varying the Lagrangian with respect to a0; aj; a0; aj will
give following set of equations:

∂
i
∂ia0 ¼ j0; ð136Þ

∂t∂
ja0 þ ∂i∂

jai − ∂i∂
iaj ¼ −jj; ð137Þ

∂
i
∂tai − ∂

i
∂ia0 ¼ −j0; ð138Þ

∂
i
∂iaj − ∂

i
∂jai ¼ jj: ð139Þ

We now derive these equations directly from the equations
of motion. The relativistic equations are given by

∂iFi0 ¼ J0; ∂0F0j þ ∂iFij ¼ Jj: ð140Þ

Using maps given in Table I and (134) it is simple to verify
that they reproduce Eqs. (136) and (137). Using the
covariant counterpart of Eq. (140) we can get Eqs. (138)
and (139). This shows the consistency of the equation of
motion in Galilean electrodynamics with source.
Taking the variation of the source part of the Lagrangian

we get

δLe ¼ −
1

2
∂tαj0 −

1

2
∂iαji −

1

2
∂
iβji

¼ 1

2
αð∂tj0 þ ∂ijiÞ þ

1

2
β∂iji ¼ 0: ð141Þ

Since α, β ≠ 0 we have two conditions:

∂tj0 þ ∂iji ¼ 0; ∂
iji ¼ 0: ð142Þ

The sources as given in Eqs. (136)–(139) satisfy the above
conditions. We observe that sources are conserved off-shell.

B. Magnetic limit

Here the scaling relations are as follows

J0 → −
j0

c
; Ji → ji; J0 → −cj0; Ji → ji ð143Þ

The Lagrangian in this limit is as follows

Lm ¼ 1

2
∂ia0ð∂tai − ∂

ia0Þ − 1

4
fijfij −

1

2
a0j0 −

1

2
aiji

−
1

2
a0j0 −

1

2
aiji ð144Þ

Varying the Lagrangian wrt a0; aj; a0; aj we get the
following set of equations

∂i∂tai − ∂i∂
ia0 ¼ −j0 ð145Þ

∂i∂
iaj − ∂i∂

jai ¼ jj ð146Þ

∂
i
∂ia0 ¼ j0 ð147Þ

∂t∂ja0 − ∂
i
∂iaj þ ∂

i
∂jai ¼ −jj ð148Þ

These equations may also be derived directly from the
equations of motion following the same method adopted
for the electric limit. The field equations for both electric
and magnetic limit have been shown in Table VII. Taking
the variation of the source part of the Lagrangian we get

TABLE VII. Field equations.

Variables Electric limit Magnetic limit

a0 ∂
i
∂tai − ∂

i
∂ia0 ¼ −j0 ∂

i
∂ia0 ¼ j0

aj ∂
i
∂iaj − ∂

i
∂jai ¼ jj ∂t∂ja0 þ ∂

i
∂jai − ∂

i
∂iaj ¼ −jj

a0 ∂
i
∂ia0 ¼ j0 ∂i∂tai − ∂

i
∂ia0 ¼ −j0

aj ∂t∂
ja0 þ ∂i∂

jai − ∂i∂
iaj ¼ −jj ∂i∂

iaj − ∂i∂
jai ¼ jj
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δLm ¼ −
1

2
∂iαji −

1

2
∂tβj0 −

1

2
∂
iβji

¼ 1

2
αð∂ijiÞ þ

1

2
βð∂tj0 þ 6ijiÞ ¼ 0 ð149Þ

Since α, β ≠ 0 we have two conditions

∂iji ¼ 0; ∂tj0 þ ∂
iji ¼ 0 ð150Þ

Here also sources given by Eqs. (145) to (148) satisfy the
above off-shell conservation equations.

VIII. CONCLUSIONS

Let us summarize, point by point, the new significant
findings of the paper, comparing with existing results found
in the literature.

(i) An unambiguous construction of the nonrelativistic
Lagrangian, for both electric and magnetic limits, was
given. We have shown that it correctly reproduces the
equations of motion either in the potential or field
(electric/magnetic) formulation. This Lagrangian was
deduced from the standard relativistic Lagrangian
adopting the dictionary given here. It is expressed
either in terms of potentials or fields. In the later case
both electric and magnetic limit Lagrangians become
identical having the same functional form as the usual
Maxwell Lagrangian.
In Ref. [21], a nonrelativistic Lagrangian has

been given, also derived from the relativistic Max-
well expression, which has, however, several short-
comings.3

(ii) It is observed from Table II that if we replace the
covariant components by contravariant ones in the
electric limit case we will end up with the magnetic
limit case and vice versa. This fact manifests itself
only if we consider the covariant and contravariant
sectors separately as we have done here. The
interplay between the covariant and the contra-
varaint indices that leads to an interchange of the
electric and the magnetic limits of the theory is a
new feature observed here. The reason that it was
not noticed earlier stems from the fact that various
applications [14–23] only considered the contra-
variant components. There is a paper [27] that only
gives the Galilean transformation for both covariant
and contravariant components and that too confined
to the coordinates and derivatives, and not for an
arbitrary field. Our analysis is much more general
where we provide maps, for both covariant and
contravariant sectors, relating arbitrary four vectors
in the Lorentz relativistic and Galilean relativistic
formulations. These maps are the genesis of our

analysis where we use them to obtain Galilean
relativistic expressions from their corresponding
Lorentz relativistic counterparts. These issues are
not even remotely mentioned, much less discussed,
in [27].

(iii) A central point is the formulation of a dictionary
that translates four vectors in the relativistic theory
to their corresponding vectors in the nonrelativistic
theory. Thus the formalism developed in terms of
potentials was extended to field (electric and
magnetic) formulation. In this setup the duality
symmetry was discussed. One can clearly see that in
the nonrelativistic limit the duality relations are
quite nontrivial. In this limit we show that apart
from the usual duality relations a twisted duality
relation also exists. The feature of twisted duality
manifests precisely because the covariant and con-
travariant vectors are treated separately. This also
shows that, on the Lagrangian level, duality plays
quite a subtle role.

Duality symmetries have useful physical appli-
cations. For standard Maxwell’s theory, using
duality symmetry we can find new solutions from
given original solutions. Here duality symmetry
switches from the electric limit to the magnetic
limit. Thus the solutions of the Rowland-Vasilescu
Karpen’s effect, which is an example of the Galilean
electric limit, can be exploited, using the duality
relations, to find solutions of Wilson’s effect which
corresponds to the Galilean magnetic limit.4

(iv) Gauge symmetries play a pivotal role in the under-
standing of gauge theories. Since covariant (aμ) and
the contravarinat (aμ) vectors are not connected by
any nondegenerate metric, they have separate gauge
transformations. While this was noticed earlier [21],
its full implications were not analyzed, and not just
because of their problematic Lagrangian (B1). We
show how gauge symmetries in the relativistic case
naturally yield their nonrelativistic counterpart, but
with distinct gauge parameters. Both electric and
magnetic limits were analyzed. The conservation
laws were derived using Noether’s prescription.

(v) Shift symmetries, which have an important role to
describe Goldstone particles in relativistic theories,
were introduced in the nonrelativistic context. Con-
servation laws, associated with such symmetries,
were derived in both electric and magnetic limits.

(vi) We have provided a completely holistic approach in
terms of both potentials and fields, clearly showing
the connection among them, starting from the
rudimentary structures of usual Maxwell’s theory.
Such an analysis is lacking in the literature.

3Details are provided in Appendix B.

4These effects and their implications have been discussed in
[26], but there is no mention of duality symmetry.
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A. Future prospects

This is quite a new research area and has gained attention
of late as a part of the resurgence of non-Lorentzian
structures in quantum field theories, holography and string
theory, and hence many aspects and directions are yet to be
looked at. There is no consistent Hamiltonian formalism for
Galilean electrodynamics for example. Also it will be
interesting to study the nonrelativistic limits of other gauge
theories for example Proca theory which describes a massive
spin-1 field or Maxwell Chern-Simons theory which is a
2þ 1 dimensional gauge theory, in the same way described
here. The analysis described here for vector field could be
extended to include tensor fields like the Kalb-Ramond
fields. Since the connection of these fields with nonrelativ-
istic fluid dynamics is known [28,29], though relatively less
studied, the present formulation could find application to
illuminate this connection. All these possibilities should be
tractable since we have provided independent maps for both
covariant and contravariant sectors. Finally, we hope to
elucidate the nature of Carrollian electrodynamics [16] using
the methods developed here. We expect we can address these
issues in the near future.
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APPENDIX A: NOETHER
CURRENT CALCULATION

1. Electric limit

The contravariant components of the current for the
relativistic case are

J0 ¼ ∂L
∂ð∂0AνÞ

δAν; ðA1Þ

Ji ¼ ∂L
∂ð∂iA0Þ

δA0 þ
∂L

∂ð∂iAjÞ
δAj: ðA2Þ

Now using the maps for the electric limit given in Table I
we get

cj0 ¼ c
∂Le

∂ð∂ta0Þ
δa0þc

∂Le

∂ð∂taiÞ
δai⇒ j0¼ 1

2
∂
ia0∂iα: ðA3Þ

Similarly,

ji ¼ ∂Le

∂ð∂ia0Þ
δa0 þ

∂Le

∂ð∂iajÞ
δaj

¼ −
1

2
∂
ia0∂tα −

1

2
ð∂iaj − ∂

jaiÞ∂jα: ðA4Þ

Sowe can show the conservation of the Galilean currents as
follows:

∂μJμ⟶
Electric limit

c→∞
∂tj0 þ ∂iji ¼

1

2
∂t∂

ia0∂iαþ ∂i

�
−
1

2
∂
ia0∂tα −

1

2
ð∂iaj − ∂

jaiÞ∂jα
�

¼ −
1

2
ð∂i∂ia0Þ∂tαþ 1

2
ð∂t∂ja0 − ∂ifijÞ∂jαþ 1

2
∂
ia0∂t∂iα −

1

2
∂
ia0∂i∂tα −

1

2
fij∂i∂jα ¼ 0: ðA5Þ

In the second line of Eq. (A5), the first and second term is
zero from equations of motion (32) and (33) respectively,
the third and fourth terms get cancelled and the fifth term
vanishes because of antisymmetry.
Following identical arguments current conservation for

covariant components can be shown as

∂
μJμ⟶

Electric limit

c→∞
∂
iji ¼ 0: ðA6Þ

2. Magnetic limit

Using the maps for the magnetic limit given in Table I
and exploiting Eqs. (A1) and (A2) we get

j0 ¼ −c2
∂Lm

ð−cÞ∂ð∂ta0Þ
δa0 −

∂Lm

∂ð∂taiÞ
δai ¼ 0; ðA7Þ

ji ¼ ∂Lm

ð−cÞ∂ð∂ia0Þ
ð−cÞδa0 þ

∂Lm

∂ð∂iajÞ
δaj ¼ −

1

2
fij∂jα:

ðA8Þ

Using these expressions,

∂μJμ⟶
Magnetic limit

c→∞
∂iji ¼ −

1

2
ð∂i∂iaj − ∂i∂

jaiÞ∂jα ¼ 0; ðA9Þ

where the second equality vanishes from Eq. (42). Likewise
for the covariant case, following identical arguments
current conservation can be shown as

∂
μJμ⟶

Magnetic limit

c→∞
∂tj0 þ ∂

iji ¼ 0: ðA10Þ
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APPENDIX B: PROBLEMS AND
INCONSISTENCIES OF THE LAGRANGIAN

FORMULATION GIVEN IN [21]

Any consistent Lagrangian formulation of Galilean
electrodynamics must yield all the equations of motion,
for either contravariant or covariant vectors in both electric
and magnetic limits. Simultaneously, these equations must
reduce to those given in [14] using the field (electric/
magnetic) formulation. This is not merely desirable, but
essential, since those equations were obtained directly [14]
using Galilean relativistic arguments, bypassing the use of
limiting prescriptions. Since the basic variables in the
Lagrangian are the potentials, equations of motion are
obtained in the potential formulation. One has to now
express the electric and magnetic fields in terms of
potentials and recast the equations of motion in terms of
these fields. Only then a comparison with [14] is feasible.
As we explicitly show, the Lagrangian given in [21] fails on
all counts. The covariant Galilean relativistic Lagrangian
given in [21] is

L ¼ −
1

4
ð∂μaν − ∂νaμÞð∂μaν − ∂

νaμÞ; ðB1Þ

which gives rise to following set of equations:

∂μð∂μaν − ∂
νaμÞ ¼ 0 ðelectric limitÞ; ðB2Þ

∂
μð∂μaν − ∂νaμÞ ¼ 0 ðmagnetic limitÞ: ðB3Þ

Let us first consider Eq. (B2). If we rewrite this equation
componentwise it gives the following set of equations5:

∂i∂
ia0 ¼ 0; ∂t∂

ia0 þ ∂j∂
iaj − ∂j∂

jai ¼ 0 ðB4Þ

which are nothing but Eqs. (32) and (33) respectively. But
we cannot get Eqs. (34) and (35) from the Lagrangian (B1).
In fact we cannot get any equation involving a0 and/or ai
simply because there are no covariant components.
Similarly we can open the magnetic limit Eq. (B3) com-
ponentwise as follows:

∂
i
∂tai − ∂

i
∂ia0 ¼ 0; ∂

j
∂iaj − ∂

j
∂jai ¼ 0: ðB5Þ

These two equations do not correspond to any of our
equations. On top of that there are no equations for a0 and/
or ai simply because contravariant indices do not arise.
Thus the Lagrangian (B1) fails to yield, in the electric

limit, any equation involving covariant indices for poten-
tials. Likewise, in the magnetic limit, there are no
equations in the contravariant sector. It is also not possible
to express Eqs. (B2) and (B3) in the field formulation
since no map relating potentials with fields has been
given. Hence the mandatory comparison with [14] cannot
be done. All these issues have been discussed successfully
in our approach.
If we push the analysis of [21] further, serious incon-

sistencies arise. The master equations (B5), from which
the Lagrangian (B1) was written, was claimed to be
derived by opening the relativistic Maxwell equation (36)
in space-time components and exploiting the map given
in [21],

A0 ¼ −
1

c
a0; Ai ¼ ai: ðB6Þ

Doing this, however, instead of (B5) we find

∂i∂
ia0 ¼ 0; ∂j∂

iaj − ∂j∂
jai ¼ 0: ðB7Þ

Surprisingly, there is a mismatch with the first equality
in (B5). Thus the very construction of the Lagrangian and
the associated equations of motion in [21] are all riddled
with inconsistencies.
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