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We consider a free Dirac field in flat spacetime and we derive the representation of the Minkowski

vacuum as an element of the Rindler-Fock space. We also compute the statistical operator obtained by
tracing away the left wedge. We detail the resulting thermal state for fermionic particles.
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I. INTRODUCTION

The Unruh effect is the prediction that an accelerated
observer detects Rindler particles in the Minkowski vac-
uum [1-3]. The phenomenon was originally studied in the
context of scalar fields. Scalar particles in the accelerated
frame are expected to follow the bosonic thermal distri-
bution (e#* — 1)1, where A< is the particle’s energy and
B = 2x/(ca) is inversely proportional to the acceleration of
the observer c?a.

More recent works considered Dirac fields [4,5]. The
result is a fermionic thermal distribution (e + 1)~! for
Rindler-Dirac particles in the Minkowski vacuum. Despite
these investigations, a complete description of the
Minkowski vacuum in terms of Dirac Rindler-Fock states
is missing.

The Bogoliubov coefficients relating Minkowski oper-
ators to Rindler operators have been derived in Ref. [4].
Here, we give the explicit algebraic representation of the
Minkowski vacuum in the Rindler frame and its thermal
representation in one wedge.

We follow the algebraic approach [6] to relate states of
the inertial frame to the accelerated frame. We show how a
Rindler-Fock representative for the Minkowski vacuum
exists. Notice that the algebraic approach does not always
guarantee the possibility to map the Fock space of one
frame to the Fock space of another frame. The approach
only guarantees the equivalence between mean values of
states up to an arbitrarily large precision and for finite sets
of operators.

We rederive the Bogoliubov transformation relating the
Minkowski operators to the Rindler operators and we
derive the Minkowski vacuum as an element of the
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Rindler-Fock space. We, hence, use the Bogoliubov coef-
ficients to give a complete description of the Minkowski
vacuum in the Rindler spacetime.

We obtain different Rindler-Fock representations
depending of the choice for the spin basis in each wedge.
The dependence of the spin basis is due to the presence of a
spin coupling between modes of opposite wedges.

We also derive the statistical operator describing the
Minkowski vacuum seen by the accelerated observer with
positive acceleration. We compute the partial trace with
respect to the left wedge by adopting a many-body
approach for Dirac particles. The result is a fermionic
thermal state that completely describes the Minkowski
vacuum in the right Rindler spacetime.

The paper is organized as follows. In Sec. Il we give a brief
review of the Dirac field in Minkowski spacetime. In Sec. I11
we consider the Rindler spacetime and derive the positive
and negative frequency solutions of the Rindler-Dirac
equation. In Sec. IV, we compute the Bogoliubov trans-
formations relating Minkowski to Rindler operators. The
Bogoliubov coefficients are then used in Sec. V to give the
representation of the Minkowski vacuum in the Rindler
spacetime. We compute the partial trace with respect to the
left wedge and obtain the fermionic thermal state in Sec. VL.
In Sec. VII we discuss the dependence of the results with
respect to the spin basis choice. Conclusions are drawn in
Sec. VIII. Proofs related to the Bessel functions appearing in
the Rindler-Dirac modes are provided in the Appendix.

II. MINKOWSKI-DIRAC MODES

In this section we give a brief review of free Dirac fields
in Minkowski spacetime (7, X). We derive the Minkowski-
Dirac modes as orthonormal positive and negative fre-
quency solutions of the Dirac equation. We consider modes
with defined momentum, but we will not choose any
particular basis for the spin degrees of freedom.

The Dirac field in Minkowski spacetime (7,X) is
described by the Dirac equation, that reads

Published by the American Physical Society


https://orcid.org/0000-0002-0959-0647
https://orcid.org/0000-0003-2583-3415
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.105021&domain=pdf&date_stamp=2023-05-25
https://doi.org/10.1103/PhysRevD.107.105021
https://doi.org/10.1103/PhysRevD.107.105021
https://doi.org/10.1103/PhysRevD.107.105021
https://doi.org/10.1103/PhysRevD.107.105021
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

RICCARDO FALCONE and CLAUDIO CONTI

PHYS. REV. D 107, 105021 (2023)

I’l’lC2

(icyﬂa,, - T)"’ =0, (1)

where c is the speed of light, m is the mass of the Dirac
field,

are gamma matrices and

(o) 209 G0 e

are Pauli matrices. The following identities for gamma
matrices will be used throughout the paper:

{r.r} =-2n", (4a)
)= )= (4b)
where
, 1
n””—dlag(——z,l,l,l) (5)
C

is the Minkowski metric.
The solution of the Dirac equation (1) is

2
P09 =Y [ @kl Eor D) + o,(Fr D D)
(©

with és(l_c’) and fix(l_c)) as annihilation operators for the
particle and antiparticle with momentum k and spin number
s and with (k) and v,(k) as orthonormal positive and

negative frequency modes having the form
ux(l_c', 1,%) = (2”)—3/2€—i,,;(1€)z+i1€-£b~ts(1‘(’)7 (7a)
11_\‘(/;, X)) = (2”)—3/261'(0(1}')1—{1}'.)?17“‘(]_('), (7b)

with

as the frequency of each mode.

The modes u,(k) and v, (k) are solutions of the Dirac
equation (1). Their orthonormality condition reads

(@ (@ = 8,8 E=T) (%)

(0@ 00 @y = 8,8 F=F). (o0)

(1B 00 ({ )y = 0. (%)
where

= [ PR o)

is the Minkowski-Dirac product. _
The functions i (k) and 94(k) are solutions of the
equations

{a)(k)yo —ky - %} i, (k) = 0, (11a)
[a)(/?)yo — kg + % 7,(k) = 0, (11b)
il (k)ig (k) =8,y (1lc)
(k)T (k) = 6,0, (11d)

it} (k) by (—k) = 0 (1le)

- -

One can use Eq. (7) and the fact that u (k) and v, (k) are
solutions of Eq. (1) to obtain Eqgs. (11a) and (11b). The
orthonormality conditions (11c), (11d), and (11e), instead,
can be checked by plugging Eq. (7) in Eq. (9) and
using Eq. (10).

The index s is associated to the two independent spin
degrees of freedom. One can consider any couple of
solutions of Eq. (11) and associate each solution to either
s =1 or s =2. This freedom is due to the arbitrary
definition of the spin basis for positive and negative
frequency modes.

A possible basis is given by particles with defined spin
along one direction. For instance, states with spin up and
down with respect to z are such that in the particle
comoving frame (i.e., by performing a Lorentz boost with

opposite momentum —I_c)) the representative has only one
spinorial component different from zero. A basis of modes
with the same property is not available in the Rindler
spacetime. Indeed, the translational symmetry with respect
to the direction of the acceleration is absent, and particles
with defined energy do not have defined momentum
component along such a direction. Hence, no Lorentz
boost leads to the comoving frame of these particles.
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For this reason, Rindler-Dirac modes with defined fre-
quency and spin cannot be considered.

Since our aim is to relate Minkowski modes with Rindler
modes, there is no reason to prefer the basis with defined
spin. Hereafter, we consider the general solutions of
Eq. (11) and we do not choose any particular basis for
the spin degrees of freedom.

IT1. RINDLER-DIRAC MODES

In the previous sections we considered a Minkowski
spacetime (z,X) and studied the Minkowski-Dirac modes
u,(k) and vy(k) as positive and negative frequency sol-
utions of the Dirac equation. Here, instead, we consider

Rindler coordinates (7, X ) for the left and the right wedge,
defined as

t=1,(T.X), *=x(T.X), (12)

where v € {L,R} is the variable associated to the left (L)
and the right (R) wedges and 7, (T, X) and X, (T, X) are the
coordinate transformation from the Rindler to the
Minkowski frame. By assuming that the acceleration of

the Rindler observer is along the direction of z, one may
write

-

:=2(T.X).  * =X, (13)
where X, = (x.y) and X, = (X,Y) are the transverse
coordinates in each frame. The functions #,(7,X) and
72, (T, )?) appearing in Eqgs. (12) and (13) read

e’ aZ

v

tv(T’ }?) =

sinh(caT), (14a)

ca

s,aZ

v

(T, X) =5, cosh(caT), (14b)

where c?a > 0 is the acceleration of the right Rindler
observer and s, is such that s;, = —1 and sg = 1. The left
and the right wedges are defined by z < c|t| and z > c|t],
respectively.

We study the Dirac field in Rindler coordinates ¥, (T, X)
defined by the Rindler-Dirac equation, which reads (see,
for instance, Refs. [4,5,7])

ca
{e“"v“z (icyodo + syi?ﬁ +icy?os

+icylo, + icy*o, — mT]‘i’ =0. (15)

We derive the orthonormal positive and negative frequency

modes UDS(Q,I? 1) and V,(Q, K 1) that are solutions of
Eq. (15) have the form

U (Q.K,.T.X) = eKeXi=i97( (Q K,,7), (16a)
Vis(Q.K .. T.X) = e KXy, (Q K, . Z) (16b)
and generate Dirac fields in Rindler spacetime as
(T X) = / aQ / d*K |
RZ
[ Uy (K. T.X)C,0(Q.K L)
Vi, QKL T.X)DL QK. (17)

The orthonormality condition for such modes reads

(UDS(Q’ I_{)J_)’ Uys’(Q/’ I_{)/J_))y - 5ss’5(g - Q/)

x 82K, —K'\), (18a)

(VUS(Q’ I_('L)’ VL/S’ (Q/’ I_('/L))u = 5ss’5“2 - ‘Q'/>
x8*(K, -K'\).  (18b)
(Uys(gv I_('J_>7Vvs’(gl’l_{vll_)>p =0, <18C)

with
(W.¥), = / dPX e 2 (T, X)W (T, X)  (19)
R3

as the Rindler-Dirac product.

The operators C},(Q, K ) and D} (Q, K | ) appearing in
Eq. (17) create particles and antiparticles of the v wedge
with spin number s, frequency € and transverse momentum

K | and satisfy the following anticommutation rules:

{CDS(Q’ I?J_)’ CI’S’(Q,’ [_él)} - 51/1/’6”’6(9 - Q/)

x 8K, —K)),  (20a)
{D,,(Q.K ). D], (. K} = 8,08,,6(Q - Q)

x8* (K, -K\), (20b)
{Ci(Q.K)). Cpry(Q.K))} =0, (20c)
{D,s(Q.K1).Dyy(Q.K)} =0, (20d)
{Cus(Q. K1), Dyy(Q,K')} =0, (20¢)
{Cs(Q.K,).D (e K')}=o. (20f)
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By extending the definition of the variable Q also for
negative values, one may define the function

. - U, (Q.K,,T.X) if Q>0
WI/S(Q’KJ_’T’X) = - - ’
V,(—Q.-K,.T.X) ifQ<0

(21)

that includes both positive and negative frequency solutions
of the Rindler-Dirac equation (15). Equation (17) can now
be written in the following equivalent ways:

¥,(7,%) /dQ/ 2K, W, (., T, %)
[RZ

X [9(9)@”(9, K1) +0(-@)Dj,(-,-K )],

(22a)

¥ 2 /dg/zdﬁg (9. —K . T.X)
X 6<_Q)CD\(_Q KJ_)+9( ) Zs(gll?l)]’
(22b)

with 0 as the Heaviside step function. The orthonormality
condition (18) with respect to the modes W, (€2, K 1) reads

W,o(Q,K))), = 5,8(Q - Q)
x 8K, —K\). (23)

(WI./S (Q’ I?L)’

Notice that Eq. (21) is compatlble with Eq. (16). Indeed,
one may define the function W, (Q, K., Z) such that

W, (K, .T.X) = eKeXi=i9TVy (. K|, Z) (24)
and that

8 - U,,(QK, .7 if Q>0
W, (K, ,Z) = { 3 ( b ) . (25)
V. (-Q.-K,.Z) ifQ<0

The modes W, (Q.K ) are solutions of the Rindler-

Dirac equation (15); hence, WDS(Q,I? 1,Z) satisfies the
differential equation

a
{e‘sv"z (Qyo + sbi§y3 + i7303>
- (K vk ) [ Wa@ kL =0 9

By multiplying Eq. (26) with ¢y° on the left and using
Eq. (4a), one obtains

Q ca
|:e—sVaZ (z + Syl.770}/3 + iC}/OJ/3a3>

- sbix<f<l>csx<zm} W, (@R.2)=0. (27)

with
- s ic
G, (K )=-——5—7 (Kl}’l + Koy? +—>’ (28)
k(K1)
and
- me
B = () kP09

The spinor W, (Q, K 1,Z) can be decomposed into
eigenvectors of ¢y’y® with eigenvalues +1 by using the
following projectors:

Po=_(1+c/%). (30)

I\JI'—‘

The projected modes W (Q, K., Z) are such that

W, (Q.K,,Z) =W, (K., Z)+W;,(QK,.Z), (3la)
WE(Q.K,.Z) = P.W,(Q.K,.Z). (31b)
P PWEQ. K. Z) = +WE(Q.K,. 7). (31c¢)
By using Egs. (4a) and (28) one can prove that

P16, (K1) = =6, (K )y, (32)

Hence, the projectors P and the matrix (BU(I? 1) are related
by the identity

Pigv(l_éj_) = (gv(l_él)P:F’ (33)
which can be proved by using Eqgs. (30) and (32). By
projecting Eq. (27) with respect to P and using Egs. (31b),
(31c¢), and (33), one obtains the following coupled equa-
tions for W,(Q. K, .Z) and W;,(Q.K . Z):

Q - -

ez [— + i<sp g n 03)] WE(Q. K, Z)
c
= 5,ix(K )8, (K )Wi(Q.K,.Z). (34)

Equation (34) can be decoupled by applying
e=2[Q/c F i(s,a/2 + 03)] on the left, leading to

105021-4
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Q Q ~ e - - ~ -
e~z {— F i(syg—}— 53)] {e‘svaz {— =+ i<sug + @)} }W,ﬁ(Q, K,,Z)=-k*(K|)®2(K )WL (Q,K ,Z). (35)
c c

The derivative operator on left side of Eq. (35) can be computed in the following way:

Q Q Q Q\2 2
Cxils,fvo ) [demz | hils,d 10 )| = ez hgial i, 10 )|+ (22) 4 (5,24 0
c 2 c 2 c 2 c 2

Q a? Q\?2
= e~ [:I:s,,ia— 4y <—> + 0%]
c 4 c

Q 2
= e~z [(; + s,,i%) + 64 . (36)

The right side of Eq. (35), instead, can be computed by using Egs. (4a), (28), and (29),

= C2 mc mc
G(K ) =——= 0<K '+ K 2+—) O(K '+ K 2+—>
(K1) 2@, K K 50 )P K+ Kot
2
_ ¢ 00<K1 K2 mc)( 1 2 mc)
=—— —Kir' =Ko+ o ) (Kt Koy
Kz(Kl)V 4 17 27 7 17 27 7
SN S (3 N S | T o i
= Kz(f(l) 17 27 7 17 27 7
1 mc\ 2
— _ — —K211—K222+( )_KK 1’2:|
Kz(KJ_)|: ' =K'y P 1Kofy'. v}
1 2
= {K’;‘+K§+<E>}
K*(K ) h
- -1 (37)

|
By using Eqgs. (36) and (37) in Eq. (35), one obtains the  Hence, we now look for the spinor functions 2B (L, K 1)

differential equation of Eq. (39) such that W (Q, K |, Z) satisfies Eq. (34).
O a\2 5 . The first order derivatives of Wi (Q, K |, Z) that appear
e~2aZ K—isyi 5) +0§} Wi (Q,K,,Z) in Eq. (34) can be computed by using the following
f R recurrence relation for Bessel functions [8]:
=iX(K)W5(Q.K L, 2). (38) ¢
The solutions of Eq. (38) that converge to 0 for 9:K (&) - EKC (&) = —Ken (&) (41)

s,Z — +oo have the form
‘ and the fact that K(£) is even with respect to the order ¢,

WEQK,.Z) = K(£5,Q2.K,.5,2)5(Q.K,).  (39)  which means that
¢
where 0:K (&) - EKC@) =—K_¢1(8). (42)

o N eaZ
K(Q.K1,Z) = Kig/(ca)-172 (K(Kl)7> (40) By considering &= K(I%J_) exp(s,aZ)/a and (=
+5,iQ/(ca) — 1/2, one may write Eq. (42) in terms of

and K,(¢) is the modified Bessel function of the second  the functions K(Q, K |, Z) [Eq. (40)] as follows:
kind. An integral representation for K:(£) can be found in
the Appendix. Notice that Eq. (38) is a necessary but not e~z Q a -
sufficient condition for the modes W (Q, K 1,Z). Indeed, K( K 1) <S”a3 TS c + E) R(E5.0.K,,5,2)
Eq. (38) is a decoupled second order differential equation -
originated from the first order differential equation (34). = -8(F 5.Q.K1,5.2), (43)
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which, multiplied with +s,ix(K | ), reads

Q -
— {_ + i(s,, g n (33)} K(£s,Q.K |, 5,2)
C
=F s5,ic(K )KR(F 5,9.K |, 5,7). (44)

By using Egs. (39) and (44) in Eq. (34) one obtains the
linear equation for BB (€2, K 1)

W (Q,K,) =F 6,(K)BH(Q,K)). (45)

The two equations appearing in Eq. (45) are equivalent.
This can be proven by acting on Eq. (45) with £6,(K )
and by using Eq. (37). Hence, one can consider a single

spinor function 28, (2, K 1) such that
W5 (QK L) = [6,(K)]" T8, QK. (46)

Notice that each spinor B (€, K 1) is an eigenvector of
cy%y® with eigenvalue £1 [Egs. (31c) and (39)]. Hence the
following identity must be considered together with
Eq. (46):

PWE(Q K |) = +BE(QK ). (47)

Equations (46) and (47) are outnumbered. Indeed, one may
consider one of the two equations appearing in Eq. (47) and
obtain the other by using Eq. (46). For instance, by

choosing ¢y°7*%B,,(Q. K| ) = B, (Q, K | ), one can use
Egs. (32) and (46) to prove that
PP QK L) = '8, (K )W, (Q.K,)

= o/*7 8, (K )W (Q.K 1)

= —c6,(K )Y (LK)

= -6, (K )B}(Q.K))

= _(gv(l_él_)mys(g’ I_{L)

= -, (QK)). (48)

Both equations appearing in Eq. (47) are equivalent to the
single equation

C}/O}/B%DS(Q,IZL) :%DS(Q’EJ_)' (49)

The third identity defining 28, (€2, K 1) comes from the
orthonormality condition (23). The product (W, (2, K 1),
W,g (&Y, I?’L))D can be computed by using Egs. (19), (24),
(31a), (39) and the orthogonality condition between eigen-
states of cy%y? with different eigenvalues. Explicitly, the
product reads

(WUS(Q?EL)?WDS,(Q/’El))D

:ei(ﬂ—ﬂ’)TZ/ d3X€S"azei<ﬁi_iJ—)ilﬁ*(JSUQ,I?J_,SDZ)
o=+ R’

x R (05,Q K5, 7)[ B, (Q.K )] 'W2,(X.K).  (50)

By using Egs. (4) and (28), one can prove that (ﬁy(ffl) is
anti-Hermitian,

k(K1) n
=L 7°<K171+K272+E)
k(K1)
=-6,(K.). (51)

Equations (37) and (51) imply that (Sﬁ,,(l_f 1) is also unitary

(Bz(EL)&u(KL) =1 (52)

By using Egs. (46) and (52) one can prove that for any
o ==,

(28,2 K )] '8, (@ K))
- EZB:ES(Q" Kl)mw’ (9/7 I?l), (53)
which means that Eq. (50) reads
(W”(Q, I_fl), WVS,(Q/, I‘('/l))y — pil@-Q)T
X QB:C;(Q, I%L)%jys,(g”l?l)z:/ BX sz
o=+ R’

x el(Ki-K0)-X, K% (05,9, K, 5,Z)K (05,2, K, 5,Z).
(54)

Furthermore, one can use the property for the Bessel
function,

K (&) = K (), (55)
with £ € R. A proof for Eq. (55) can be obtained by
considering the integral representation for the Bessel func-
tion (Appendix). In terms of the functions Q(Q,Iz .2),
Eq. (55) reads [Eq. (40)]

KR(QK,,Z) = K(-Q.K,2), (56)

which can be plugged into Eq. (54) to give

105021-6
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(Wus(Q’ I_{)L) us (Q/ Kl)) i@-ar

X EIBZY(Q, I_('L)EIBM,(Q/’I_()/L)Z/ BXesZ
o=+ R}
X ei(kl_l}l).il@(_g‘gvgv I_{’J_v SI/Z)
x K(os,Q, I?l, s, 7). (57)

By computing the integral with respect to X and Y in
Eq. (57), one obtains

(W (Q.K 1), W, (. K))), = 4n°8 (K - K'))

X ei<Q_Q,>T2IBZS (Qv I_{vl)mys/ (le El)z / dzesvaz
o=+ JR
x K(-0s,Q,K | .5,2)K (05,2 .K | .5,7). (58)

The integral with respect to Z, instead, can be computed by
using the following identity for Bessel functions:

/°° dé[K_ig_l/2(§)Ki§’—1/2(§)

0
7*5(8 =)

+Ki§—1/z(§)K—ié’—l/2(§)]: cosh(n{)

(59)

A proof for Eq. (59) can be found in the Appendix. By
replacing &, ¢, and ¢ with k(K | )e*%/a, 5,Q/(ca) and
5, /(ca), respectively, in Eq. (59), one obtains the
identity

Z/ dZe" 2 Q(—65,9.K | . 5,2)K (05, . K | . 5,Z)

_ % [cosh <§ Q)} N (60)
with
B = i—z (61)

Equation (60) can be plugged into Eq. (58) to give

(Wo( QR ). W, (Q.KL), = 5@ - @)K, - K')

4n*ca

k(K ,) W (Q K )W, (LK) [cosh <§Q>] _1’

(62)

which is equivalent to Eq. (23) only when the following
condition is met:

q _ K
QBZS(Q,KL)%}W/(Q’,KD:5‘”/¥cosh éQ . (63)
4r*c 2

a

Equation (63) suggests the definition of the spinor
function 28,,(Q., K| ) such that

W, (QK,)= 21? \/ k(K1) cosh (é Q> W, (ALK,

ca 2

The equations defining 28, (Q, K 1) are given by Egs. (49)
and (63) and explicitly read
gfﬁus (Q’ I%J_ ) ’

P W, (Q.K ) = (65a)

-

fﬁis ('Q‘v I?L)@us’ (Q’ Kl) = Oy (65b)
For fixed v, Q, and I_fl and for varying s = {1,2}, the
spinors iBM(Q,I? 1) are an orthonormal basis for the
eigenspace of cy%y® with eigenvalue 1. Hence, the only
freedom left by Eq. (65) is about the arbitrary choice for the
spin basis 2B, (Q. I_('L). . . : .
Any change of basis 28,,(Q,K ) — QB,J (Q,K)) is
defined by an unitary matrix MMS/(Q, 1)
indexes s and s’) as

2
= M, (Q.K,)B

s'=1

with matrix

L (QK|),  (66a)

Mvss’(gvf()l) = Q’-BZS’(Q7I?J_)EITBDS(Q’I?J_)' (66b)
Notice that for any basis 2B, (€, K 1) satisfying Eq. (65),
also the spinor functions fBDS(—Q,I? 1) (with D as the
opposite of v, i.e., =L if v=R and v =R if v =1L)
satisfy Eq. (65). By acknowledging this symmetry, we
prove the existence of the change of basis M, (€, K 1)
such that

iﬁf/.\'(_g’ I?L) = ZMUHI(Q’ Kl)%lﬂ,(g’ KJ.)? (673)
s'=1
yss (Q KJ_) = (Q KJ_>§IB ( Q KJ_) (67b)
The unitarity of M, (Q, K ) reads
2 -
Z us”s(Q Kl) us”\’(Q Kl) = 53‘.\"7 (683)
s"=1
2 -
yss (Q KJ_) us’s”(Q’Kl) = 5ss" (68b)

s"=1
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Hereafter we do not specify any particular solution of
Eq. (65). Instead, we consider a general basis 28,,(Q, K 1)
for the eigenspace of cy’y? with eigenvalue 1. We will show
that for different choices of 2B, (Q, K 1), different Rindler-
Fock representations of the Minkowski vacuum exist.
Then, by tracing the left wedge, the dependency of
B,,(Q, K 1) will disappear. Only in Sec. VII, we will
discuss different choices for the spin basis fBDs(Q, K 1)

IV. BOGOLIUBOV TRANSFORMATION

In the previous sections we considered the Minkowski
(1,X) and the Rindler (T, X) spacetimes and we studied the
respective Dirac fields (¢, %) and ¥, (T, X). We defined

A

the operators &,(k), d,(k), C,(€, I_ﬁ), and D, (Q, I?l) as
the annihilators of positive and negative frequency modes
for each spacetime.

In this section, we consider both the Minkowski (¢, X)
and the Rindler (T, X) spacetimes to describe the inertial
and the accelerated frame of a flat spacetime. The operators
(1, %) and ¥,(T, X) define the same Dirac field in each
coordinate system. We compute the Bogoliubov trans-
formation relating Minkowski (¢,(k) and d,(k)) and
Rindler (C,,(Q.K,) and D,,(Q.K ,)) operators. We fol-
low the same method presented in [9] for scalar fields. A
different approach can instead be found in [4].

Equation (9) can be used to invert Eq. (6) as

-

&,(k) = (uy (k). )y,

A - -

dy (k) = (v,(k). @)y (69)

Equation (69) explicitly reads

&y(k) = / dBxul(k, 1, 30 (1, %), (70a)
R3

B(R) = / Pl DP(LT).  (70b)
R}

The Dirac field transforms as a spinor field under diffeo-
morphisms. In the case of Rindler coordinates, the trans-

formation W, — y reads [4]

(1. 7) =

> oo (5177, 00)

v={LR}

x B, (T,(1.3). X, (1. %), (71)

where the functions 7,(z,¥) and X,(7,X) map the
Minkowski coordinates (#,X) to the Rindler coordinates
(T.X) and are the inverse of Eq. (12). When ¢ = 0, the
transformation (71) reads

PO.3) = > 0P 0.X,E).  (72)
v={L,R}

where )?,,(55) is the coordinate transformation from the

Minkowski to the v-Rindler spacetime when t = 0. The
function X, (¥) explicitly reads

X,(%1.2) = (31.Z,(2)), (73)
where Z,(z) is such that
az = s, exp(s,aZ,(z)), (74)

for any z such that s,z > 0. By choosing ¢ = 0 and using
Eq. (72) in Eq. (70) one obtains

=3 / dxb(s, )l (£.0.9)%,0.%,(9).
v={LR} /R

(75a)

df (k) = dPx0(s,z)vi(k,0,3)WP,(0,X,(3)).
D%,:R} /RB
(75b)

By plugging Eq. (22) into Eq. (75) one is able to relate the
Minkowski operators &,(k) and d,(k) to the Rindler

operators  C,(€, K 1) and IA)M(Q,I? 1) through the
Bogoliubov transformation,

2
(k)= Y Z/dQ &K,
v={LR} y=1 /R R?
< [ 05,2l (7.0 7)W,p (@ RL.0.5,(5)
R3
x [0(Q)C,0(Q. K ) +0(-Q)D (-2, K )],
(76a)
2
/\_%, - o 2
diky=3 Z/RdQAZd K,

v={LR} s'=
x / dPx0(s,2)vi(k,0, X)W,y (-Q,-K |,0,X,(¥))
R3
x [9(_9)61/_?’(_9’ _I?L) + H(Q)DI;/ (Q’ El)]
(76b)

By using Eqgs. (7) and (24) and by performing the
integration with respect to x and y, the Bogoliubov trans-
formation (76) reads
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V={LR} =1
X / dz0(s,2)e" @l (K) W, (R, k1. Z,(2))
R

x [0(Q)C,e (K1) +0(-Q)D] (-2, -K )],
(77a)

di(k) = V2n

v={L,

R

x [0(—Q)C, (—Q. -K ) + 0(Q)

R} s

x / dz0(s,z)e™ B (R) W, 0 (-9, —k

2
/ dQ / K 8k, —
R R2

VEY Y

2
Z / dQ / LK Pk, -K))
=1 R

Z,(2))

DI (Q.K)).

(7

7b)

~F
Vs

(K)®, (k) B

We now focus on the scalar products i‘tZ(k)
W, (Q.k1,Z,(2) and 5(k)W,(-Q,—k,,Z,(z)) that
appear in Egs. (77a) and (77b), respectively. By using
Egs. (31a), (39), and (46), one can write

Wus'(QvIzJ_aZu(Z)) = ZR(GSVQ’ EJJSDZ)
o=+

x [6,(K )], (Q.K,). (78)

Hence, to obtain it} (K)W,,(Q.k,.Z,(z)) and ®!(k) x
W, (-2, -k 1,Z,(z)), one firstly has to compute the
following scalar products: L“t?(l?)(ﬁ,,(/? 1), (Q, k 1) and
b:(%)Gy(—%L)ﬂﬁysr(—Q, —l%_). The former can be
obtained by using Egs. (4), (11a), (28), (49), and (51):

—s,1

K(l_ﬁ)

Similarly, for the second scalar product one can use Eq. (11b) instead of Eq. (11a),

us'(_g’ _kL) =

C

[@

—ks] i (F) B, (. 7). (79)

~[6, (=K )0, (k)] B, 0 (-2, —k )

:”Tif)w (B = ka5, (0)) 98,0 (~2. ~F )
K(sii){[@_ckﬂoyz}w)} (~Q.—k,)
e elpemca "

10502
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Equations (8) and (29) lead to

(k)
6‘2

-

RB=k2(k.), wk)>0, «(k)>0 (81)

which suggests the definition of the function 19(12) such that

w(k) = cx(k, ) cosh(9(k)). (82a)
ky = x(k ) sinh(39(k)). (82b)
In this way, Egs. (79) and (80) read as
7 (k)8 (kL) BB, (2, k)
= exp <—s,,ig - ,9(/}')) il (0%, (Q.%,). (83a)
B (R)8, (k) B,y (-, k1)
= exp (515 - 00 ) L (098, (-2~F). (830
which means that
7 ()[6, (k)29 (. )
—exp ("; ! {s,,i;[Jr&(lg)] > il ()2, (k). (84a)

1 (K)[6,(—k )] P, (—Q, k)

_exp <" . ! {—s,,ig + 19(/2)} ) 5 (F) 28,0 (=0, —F ).

(84b)
Equations (56), (78), and (84) and the fact that K(I% 1) and
K(Q, K 1,Z) are even with respect to K | [Egs. (29) and
(40)] allow one to compute the following scalar products:
[Giu(l_éL)](l_G)/szs’ (Q’ ]_éi’ ZU(Z))

- -1 -
= Sosles k2@ e (75 [sif 00 )
—~ 2 2

(85a)

i (k

~—

X ﬁl (k)%”/ (Q’ kJ_)’

B (6)[6, (k)] PW, 0 (—Q, k1, Z,(2))
= Zﬁ* (GSDQ’ ]_éJ_’ ZD(Z))
o=+

X exp <"’;1 {—s,,i;[ + 8(12)] > B (F) 2B, (-0, ).

(85b)

By plugging Eq. (85) into Eq. (77) and using Eq. (64), one
obtains

k)= > f:AdQAdeKL

v={LR} s/'=

x o, (k, Q. K )il (k)B,(Q.K )

x [0(Q)C,0 (Q.K,) +0(-Q)D],(-Q, -K )],
(86a)

0(-Q)C.y (-Q. —K 1) + 6(Q)D] (2, K )],
(86b)

X

with the Bogoliubov coefficient

n 9(k)
2N (k9
xexp< sl,14 5 > Lk, Q) (87)
and with
- .- 9(k
Lk Q) =S 1,(k 6Q) exp <0sDiZ—|—0'(2)>, (88a)
o=%

1,(k.Q) = / dz0(s,2)e ™ R (s, 9.k, .5,Z,(z)). (88b)
R

The integral appearing in Eq. (88b) can be computed by
considering the identity for Bessel functions,

_ msin(¢(5 —ir))

—i&sinh(z) —_
A dgo(&)e™ MK (&) = sin(z¢) cosh(z)

(89)

A proof for Eq. (89) can be found in the Appendix. By
replacing the variables &, ¢, and 7 with, respectively,
sm(lﬁ)z, 5,iQ/(ca) —1/2, and s,,&(l?) and by dividing
the equation with K(]_é 1), one obtains

A dz0(s,z) exp(—ix(k ) sinh(9(k))z)

X stiQ/(ca)—l/Z(va(kJ)Z)

7 8in (s,,i% -5+ —8@9 + sJ@)

=—— —=.  (90)
k(k, ) sin (s,i %2 — %) cosh(9(k))
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By using Egs. (40), (61), (74), (82b), (88b), and (90), one can compute iy(l_c', Q) in the following way:

o . N R s,aZ,(z)
1E.9) = [ d00s2) expl-iv(E) snb 00K, s o (<) )

= / dz0(s,2) exp(ik(k ) sinh (9(k))2) K s i (cay-1/2 (s, (k1 )2)
ﬂSil’l( ﬁQ -7+ (> +syi@)

k(K ) sin (s, z/}E — %) cosh(¥ (k))

s,yrsin( ﬁTQ—syZ+sy (C]{zg—i—i%)

—_ _ : o1
K(kl) cosh(7) cosh(9(k))

By plugging Eq. (91) into Eq. (88a) one can compute the following function:

> 9(k Q 9(k 9(k
I,(k,Q) = —syzz[ cosh( ) cosh(9 ] exp <0s lZ—l- 0%) sin (aiﬂT— Suyg + o5, (cc)z + l%)

-1 -1 o-1_- pQ I(K)Q
= 2k( h h ——— —— j
=5 m{ K kl cos < >cos (9(k )] E [exp <sbz 1 T+ > 9(k)—o 1 + 05,0 >

o==+

1 1 - Q I(k)Q
—exp (syiaj JH-G; 8(k)+a%—asvi%>]

_sm{21<(kl)cosh< >cosh(& ] [ exp (Svi;+19(75)+ﬁf .8(Z)Q>
k)

+exp<—sz§—8() ﬂg -5, 8 )}

=s,in {ZK(I_Cl) cosh <ﬁ79> cosh(&(ié))] B exp <ﬁ_g2 - su’%) [—svies(’a - s,,ie“g@)]

4
— 7 [K(JQL) cosh (f’?ﬂ exp <€TQ — s, '9(29> . (92)

Equation (92) can be used in Eq. (87) to obtain the final expression for the Bogoliubov coefficients,

a,(k, QK ) =&k, ~K,) = (93)
\/ZRCQK(/CJ_) cosh (5Q)
By using the fact that s; = —s,, Eq. (93) leads to the identity
a,(k,—Q.K|) = s,ie " 2a,(k,Q.K ), (94)

which can be used in Eq. (86) to relate operators of opposite frequency and wedge. By inverting the variables Q — —CQ and
v v when Q < 0, Eq. (86) reads
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6‘?(k / dQ/ d’K |
v= {LR} 5= R?

x i1} (k) [, (K, 2, K )8, (2, K ) Co (R K )
‘Hla(kv—gjﬁ)% (= QKJ_) (Q, KJ_)}
(95a)

v={LR}s'=1
x 01 (i) [ (e, —Q, K | ) B0 (Q,—K | ) Crp (,-K )
o (k. QK ), (-Q,—K )D! (Q.K,)]. (95b)

By plugging Eq. (94) in Eq. (95) we get

v= {LR}s’ 1 R?

-

+s, ze_/}Q/ZEIB ( I?) T ( —I%L)],

/ dQ/ dela kQKl)
V= {LR}\/

x DY (k)[~s,ie P28, (Q

(96a)

di (k) =

_I%J_)CDS’ (Q’ _I?L)

B, (~Q KL )D] (. K L)), (96b)
Finally, by using Eq. (67a) we obtain
&(k) = / dsz/ K o, (k.Q.K )
v= {LR}S 1 R?
X ﬁ1(§)ﬁ3us’(ga [?L) |:Cm/ (Q, [?L)
2 -
+syie—ﬂQ/ZZMysu (QK D! (Q.-K )|,
s"=1
(97a)

2 o R R
th= 3 3 [Tae [ exakek
v={LR} s'=1 R
< 5 (BB, (-0, - ) [ﬁ;m, %)

2
_syie_ﬁg/z Z M ’( —Q, _KJ_)CDS”( _KJ_) :

s"'=

(97b)

From the definition of M,y (<, K 1) [Eq. (67b)], one can
compute its complex conjugate, that reads as

(Q Kl) DS s( Q KL) (98)

By using Eq. (98), one can also conjugate Eq. (97b) to
obtain

v= {LR} s’ R?

A -

< (-, R )7 (B) [D (@)

+s, ie P/ Z Mbs’s” Q’ _I_él)é;s”(g’ _I%L) :

s"

(99)

In conclusion, we computed the Bogoliubov transfor-
mations relating Minkowski and Rindler operators
[Eq. (86)]. The explicit form of the Bogoliubov coefficient
au(%,Q, K 1) is reported in Eq. (93). The symmetry
between Bogoliubov coefficients of opposite wedge
[Eq. (94)] resulted in a coupling between Rindler operators
of opposite wedge and frequency in the Bogoliubov
transformation [Eqs. (97a) and (99)]. In the next section,
we will show how this coupling is involved in the Rindler-
Fock representation of the Minkowski vacuum.

V. MINKOWSKI VACUUM IN THE LEFT
AND RIGHT RINDLER FRAME

In Sec. IV we derived the Bogoliubov transformations
relating Minkowski and Rindler operators. We obtained an
expression in which operators of opposite wedge and
frequency are coupled. Here, we will use these trans-
formations to show how the Minkowski vacuum can be
represented as an element of the Rindler-Fock space. We
will obtain two-modes squeezed states where each Rindler
mode is paired with the mode with opposite wedge and
frequency. The spin degrees of freedom are coupled
through the matrix M,y (Q, K 1) defined in Sec. IIL
Hence, we will obtaln different representations depending

of the chosen basis 8,,(Q. K | ).
The Minkowski vacuum |0y;) is defined as the state that

is always annihilated by the Minkowski operators ¢, (l;) and

le(l_c'), ie.,

&(k)op) =0, d(k)[oy) =0, (100)
for any s and k. Conversely, the Rindler vacuum |0, OR) is
defined in the following way:

CUS(Q’EL>|OL7OR> =0,

D, (©.K,)|0..05) =0, (101)

for any v, s, Q and I_fl.
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In order to see |Oy) as an element of the Rindler-Fock
space, one has to plug the Bogoliubov transformations
(97a) and (99) in Eq. (100) and look for a Rindler-Fock
state such that

/ dQ/dKla k. Q.K))
v= {LR}s’l R?

-

x it} (k)8 g (K ) [C (QK|)+s,ie P2

X Z L/S”f’(g KL)DT ,,(Q, _fl)] |OM> = O, (1023)

/ dQ/dKJ_a kQKJ_)
u{LR}sl R?

X 2NBZs’(_Sz’ _I_{'L)ﬁs(;) [Dvs’ (Qa I_éj_) + S,/l.e_ﬂg/2

X E MUT/_S”

s"=1

R0, ) o) =0, (1020

for any s and k. Asa consequence of the generality of s and
k, Eq. (102) reads

2
|:C‘DS (97 I_()J‘) + sl’ie_ﬁg/z z My, ('Q" I?J_)

s'=1

x DI ,(Q, —fg)} |0p) = 0, (103a)
|: vs(Q KJ_) +S ie ﬁQ/2ZMD“ Q’ _EL)
s'=1
x Cl(Q, —I?L)} 0p) = 0. (103b)
A solution for Eq. (103) exists and reads as
Onm) CXP(O>|0L70R> (104)
with
. 2. [+oo
0—-i Y Y3 [Tae [ ek
v={LR} s=1 ¢=1Y0 R?
XMus’s Qv KL>AIS(Q’ KJ_)D; (Q _KJ_) (105)

Equation (104) is the representation of the Minkowski
vacuum in terms of left and right Rindler particles.

We now provide a proof for Eq. (104) as the solution of
Eq. (103). By using the anticommutation properties of the
Dirac operators (20), one obtains the following identities:

C.o(Q.K1)C) (. K)D) (@ -K)
= 5uu’5fs’5(g - Q/)éz( 1= I_{’/L)D;q”(gf _Izl)

+ O (@ K)DL (K )G (@KL ), (106a)
Doy(Q.K ) (. K\ )D] (2. K
_51/17’6””5(9 - Q/)ﬁz(KJ_ + I_('/J_>Cl ( _I?J_)
+ ¢ (@K' )D) Q. —K' D, (Q.K ). (106b)
CH(QK ), (2, KJ_)DT/ Q. -K)
=l (@, K))D} (@, -K')E(,K,), (106¢)
Di(@,K,)C (@, KD}, (@, -K'))
- CDIS/(Q/’ KJ_)D;/X//(Q . _KJ_) DS(Q7 I_()J_) (106(1)

By using Egs. (105) and (106) and the fact that s; = —s,,

A - A

Cos(QK, )0 =—s,ie 2 iMm(Q, K))
s'=1
x D! (Q,-K,)+0C,(QK,), (107a)
2
D,y (Q.K )0 ==s,ie "2 "M (Q.-K )
s'=1
xCl(Q,~K )+ 0D, (Q.K,), (107b)
CH(Q.K,)0 =0CH(Q.K,), (107¢)
DI (Q.K )0 = 0D},(Q.K,) (107d)

Recursively one may prove the following identity from
Eq. (107):

2
C, (Q.K | )O" = —ns, ie P2 ZM”“"“'(Q’ K))
s'=1
x D! (Q,—K,)0" " + 0"C, (2K ),

(108a)

D, (Q.K )0" = —ns,ie ﬂQ/ZZMm (Q.-K))

s'=1
x €T (Q,~K,)0" + 0"D,(Q.K ),
(108b)

which holds for any n € N. By acting on the Rindler
vacuum state |0p, Og), Eq. (108) leads to
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2
Coo(Q K )00, 0g) = —ns,ie 23" M, (Q.K )

s'=1
—K,)0" 10, 0g),
(109a)

x DT, (Q,
s

DUS(Q’I?L)O”OL’O]O = —ns, le—ﬁQ/Z ZMUSS Q’ _I?L>

s'=1
X @;S/ (Q, —I_él)én_l |0L1 OR>
(109b)

By multiplying Eq. (109) with 1/n! and summing with
respect to n, one obtains

CUS(Q I?L) eXP(ONOLa OR>

= =S ie ﬂQ/zZMws Q KJ_) gs (99 _I?J_)
s'=1

x exp(0)[0.. 0g). (110a)
D,,(Q, K1) exp(0)[0L, Og)
2
= _Syie_ﬂg/z Z Mﬁss’ (.Q., _I—()J_)
s'=1
x €1 (Q,—K ) exp(0)|0y, Og), (110b)

which proves that Eq. (104) is the solution of Eq. (103).

We now show how to write Eq. (105) in a more compact
form. By computing the sum with respect to v and
performing the integral variables transformation Q> —Q

and I?L — —I?l when v = L, one obtains

2 2

O=-i) > [— /_(; dQ AZ d*K | P22

s=1 s'=1

X MLs’s(_Qv _KJ_)C‘IJCV(_ _KJ_)

oo %
—|—/ dQ/ JZKJ_e_ﬁQ/ZMRS’s(Q’ KJ-)
0 R

(QKJ_)

x Ch,(Q.K1)D] (@, —fﬁ)]. (111)

By letting C‘;S(Q,I_f 1) and D;S,(Q, -K 1) anticommute
[Eq. (20e)], we get

OIIZ

s=1 §'=

U dQ/ d*K | eP?
R2

X Mygo(—Q,—K ) C] (-, KL) (-9, K))

+o0
/ dQ/ K | e P2 M (QK )
RZ
x D] ,(Q,-K,)Ch, (@, Kl)} . (112)

Equation (112) suggests the definition of the operators
E(©), with © = (1,5.Q,K,) € {L.R} ® {1.2} ® R3,

such that
Ef(L.s.Q.K))
{zs Mgy (Q.K )DL (Q,-K ) if Q>0
2 My (-Q,—K)C L (-Q,-K)) ifQ<0
(113a)
. Ch(Q.K if Q>0
E'R,s,Q.K,)= { R ( i) . (113b)
DL (-Q,K,) ifQ<0
In this way, Eq. (112) reads as
0 => fO)F(0) (114)
[
with 0 = (s.Q.K ) € {1,2} @ R?,
(s, QK |) = ie P92, (115a)
F'(0) = E"(L,0)E(R, ), (115b)

and where ), is a generalized sum for the # variables
consisting in a sum with respect to the discrete variable s
and an integral for the continuum variables € and

KJ_, i.e.,

2
:Z/dQ/ PK,, 0=(s.QK,). (116)
s=1 /R R?

Since the matrix Mm/(Q,f(l) is unitary, Eq. (113) is
invertible. Indeed, by using Egs. (68) and (113) one can
prove the following identities:

Cl(Q.K)) ZM (Q.KE'(L, s, —-Q,-K ),

(117a)
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2

DI (Q.K\) =Y My (Q.-K )E'(L.s'.Q.-K)),
s'=1
(117b)
CITQS(Q’ I?J_) = ET<R7 S,Q, KJ_)y (1170)
Di(Q.K ) = E'(R,s,-Q,Ky),  (117d)

for any Q > 0. For this reason, Eqs. (113) and (117) are a
one-to-one mapping between ET(('D) and the creation
operators C(Q, K ) and D} (Q.K ).

Notice that, from the definition of the Rindler vacuum
|0, O)) [Eq. (101)] and the operator £(®) [Eq. (113)],

E(®)|0.,0g) = 0. (118)

The anticommutation properties for the operator E(@)
read as

{E(©),E"(@)} = A(0,0), (119a)

{E(©),E©)} =0, (119b)

where A(@®,0®’) is a generalized delta function for the
variables © = (v,s,Q,I?l) and ® = (z/,s’,Q’,I?’l). The
function A(®, @) is the product of the Kronecker delta for
the discrete variables v, v/, s, and s’ and the Dirac delta
function for the continuum variables Q — Q' and K - K iE

A(v.5s.Q.K\). (V.5 Q. K)))

= 5yy’5ss'6(9 - Ql)éz(l?l - El) (120)
Equation (119) can be checked by using Eqgs. (20), (68),
and (113). As a consequence of Egs. (118) and (119), the
mapping from CJ (L, I?l) and DIS(Q,fQ) to £7(®) is
canonical.

Equations (115b) and (119b) lead to

[F7(6), FT(9)] =0, (121a)

F'(O)F'(0) = 0. (121b)
The representative of the Minkowski vacuum given by
Egs. (104) and (114) and the algebraic properties of the
operators £(®) and F(6) [Egs. (118), (119), and (121)] will
be used in the next section to derive the statistical operator
describing the Minkowski vacuum in the right Rindler frame.

VI. MINKOWSKI VACUUM IN THE RIGHT
RINDLER FRAME

In the previous section we derived the representation of
the Minkowski vacuum in both left and right Rindler
frames. Here, instead, we will focus only on the right
wedge, which describes the accelerated observer with
positive acceleration c?a. By performing a partial trace
over the left wedge, we will compute the statistical operator
representing the Minkowski vacuum as an element of the
right Rindler-Fock space. The result will be a fermionic
thermal state, which is at the origin of the Unruh effect for
Dirac fields.

In order to perform the partial trace, one needs a basis for
the Rindler-Fock space. The smgle particle space is defined
by the creation operators C) (L, K 1) and D} (Q, K 1)
acting on the vacuum state |0;,0g). Hence, a basis for
single particles and antiparticles in each wedge can be
defined through the quantum numbers s, Q, and K 1.
Alternatively, one may take advantage of the canonical
transformation (113) and use the operator £(®) and
the quantum numbers O = (v, s, Q, K 1) to describe
single particles and antiparticles of both wedges in the
following way:

|©) = ET(®)|OL’OR>~ (122)
Notice that Eq. (122) is an orthonormal basis for the single
particle and antiparticle space. The orthonormality con-
dition can be checked by using Eqgs. (118) and (119a).

Many-particles states are given by the action of sequen-
ces of creation operators £ (©) on the Rindler vacuum. We
define the following Rindler-Fock state:

©) = E7(©)[0,..0x). (123)

with
(124)

and where @ = {Qy, ..., 0, } is an ordered set of quantum
numbers ©; and |@| the cardinality of the set. By using
Egs. (118) and (119), one can prove that the scalar product
of different states defined by Eq. (123) reads

(0|@') = Z sign(z 0),0), (125)
TES‘O‘
with
2]
A(©.0) =35ee [[A(6:.0)) (126)

i=1
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and where §,, is the space of all permutations of sets with n
elements.

Notice that the order of the creation operators £(®,) on
the right side of Eq. (123) cannot be ignored because of the
anticommuting nature of the Rindler operators Ef(®;)
[Eq. (119b)]. Any permutation of quantum numbers ©;
leads to the same many-particles state up to a sign. The set
of states |®) cannot be chosen as basis, due to the presence
of the sign of permutations appearing in Eq. (125).

To define a basis for the particles space, one has to
consider an operator O that acts on any sequence of
quantum numbers ® and rearrange their order by following
a fixed ordering rule. The set of states |O(®)) form an
orthonormal basis for the many-particles space. Indeed the
following equation holds:

(0(0)|0(0))

=) A@(®

TGS‘(.)‘

(127)

Notice that in Eq. (127) the sign of permutations is absent,
as opposed to Eq. (125).

The orthonormality condition (127) can be proven in the
following way. Firstly notice that the ordering function O
acts on any sequence of quantum numbers @ as a ©
dependent permutation. Indeed, for any @, one can define a
permutation Pg € S| such that

0O(0) = Pg(0). (128)
Notice also that the ordering function O is unaffected by
any permutation. Explicitly, this means that

(129)

for any 7 € ). By using Eq. (128) in Eq. (129), one can
also write
P‘L’(@)T(@)

= Po(0), (130)

which means that

sign(P(@)7) = sign(Pe). (131)
Equations (125) and (128) lead to the following scalar
product:

(0(0)|0(@)) =) sign(r)A(Pe(0). Per (€)). (132)

TGS‘Q‘

Notice that from the definition of A(®, ®') [Eq. (126)], by
rearranging the order of the product index i > 7(i) with
any permutation 7 € Sjg| one obtains

A(7(©),7(0')) = A(0,0). (133)

This can be used in Eq. (132) to obtain

(0(0)|0(0")) Zs1gn T)A(TP@PG/((‘)),@/). (134)

TGS‘@‘

By using the fact that the sum ZTES‘(.)‘ runs over all
permutations of S g|, one can perform the transformation
7> 7Pg Py in Eq. (134) and write

(0(0)|0(0)) ngn TPePg )A(7(0),0). (135)

TGS‘@‘

Notice that the A(7(®),®’) function in the right side of
Eq. (135) is nonvanishing only when ®' = z(®). Hence,
Eq. (135) reads

(0(0)|00))

Z sign(7P e

TES‘@‘

Po')A(1(©).0). (136)

By using Eq. (131) in (136), one obtains Eq. (127).
Equation (127) is the orthonormality condition for the
many-particles states |O(0)) defined as follows:
0(©)) = E'(0(0))[0,., 0g). (137)
Notice that Eq. (137) is symmetric with respect to any

permutation of the quantum numbers é,» [Eq. (129)].
Hereafter, we choose any ordering function O such that

for any couple of quantum numbers ® = (v,6) and
o' ={,0),
sy QU 0). (V. 0)}) if0#¢
O({(U, 9)’ (1/ ’ 0 >}) - { W({(U, 9)’ (I/, 9/)}) if =6 ’
(138)

where Q is any ordering function with respect to the

nonrepeating quantum numbers 6 = (s, Q, K ). The order-
ing function W, instead, is with respect to the wedge
variable v. We choose the following definition for W:

({(L.0), (R,0)}),
WH(R,0),(L.0)}) = {(L.6). (R, 0)}).

WH(L,0), (R,0)}) = (139a)

(139b)

We do not choose any particular definition for Q. However,
for completeness, we give a possible example by consid-
ering the lexicographical order as follows:

O({(v.s. QK ). (V.5 Q.K\)})
B {{(u,s,g,lﬂ), (z/,s’,Q’,Izl)} if s<s’

R ~ . g (140a)
{(V/,s',Q,K)),(v,s, QK )} ifs>s
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Q{(v.5,Q.K1), (V.52 .K1)})
{(v.s. QK ). (V.s.Q.K))} if Q<

_{ e TSR (14ob)
{(v,s,Q.K)),(v,s,QK,|)} ifQ>Q

O{(r.5. QK. Ky). (V5. QK. KD)})
_{{(v,s,Q,Kl,Kz),(y’,s,Q,K’l,K’z)} if K, <K/
{V,s,QK|,K), (v,5,Q,K\,K,)} if K, >K)’
(140c¢)

O({(v,5,Q,K,Ky), (V,5,Q,K,K5)})
({5 QKL Ky), (V. s, QK LK) Ky < K
B {{(I/,S,Q,KI,K’z), (v, 5, QK. Ky} if Ky > K}
(140d)

We now show how to write the Minkowski vacuum
[Eq. (104)] in terms of the many-particles basis (137).
Equation (114) leads to

n

= ;an(

0, i=1

(141)

0;) H Fi(o
i=1

for any n €N. The operators F'(6;) that appear in
Eq. (141) are defined by Eq. (115b) and can be written

in terms of E7(®) [Eq. (124)] as follows:

F'(0) = E'({(L.6). (R.0)}). (142)
Notice that the couple of quantum numbers appearing in
Eq. (142) follow the W order [Eq. (139)]. This means that

F(0) =

ETOW{(L,

0). (R.0)})). (143)

Consider the chain of operators [[7_, F7(6;) that appears
in Eq. (141). The operators F7(6;) commute [Eq. (121a)],
and, hence, one may write Eq. (141) by following any order
for the sequence of F'(6;). Notice also that as a conse-
quence of Eq. (121b), no repetition of the quantum
numbers 0; occurs. Therefore one may choose the Q order
for the sequence of £7(6;). By sorting the F (é,) operators
in Eq. (141) with respect to the Q order and by considering
the fact that the £7(®) operators appearing in Eq. (115b)
already follow the W order [Eq. (143)], one derives the
following identity:

ﬁﬁ*(e) (144)

- Ef(o(g{@, 0,), (R

0})).

By plugging Eq. (144) in Eq. (141), one obtains

=2 ZHW

61 9” i=

< B (o(U{(L.

i=1

)Re)})). (145)

By acting on the Rindler vacuum and by using Eq. (137),
Eq. (145) reads

0"(0y.. 0g) :Z;
<|o(Ui.0).R0})).

i=1

(146)

By multiplying Eq. (146) with 1/n! and summing with
respect to n, one obtains

[Se] n

0.00) + >SS T 00

n=1""" 6, 0, i=l

<[o(Uw.0). ®.093)).

eXP(O”OL’ Or) =
(147)

which provides a representation for the Minkowski vacuum
[Eq. (104)] with respect to the basis (137).

We now compute the partial trace with respect to the left
wedge. From Eq. (147), one obtains

Try, [exp(@) 0L, Or) (O, Og| exp(O)T]

SRS S 'm.Z X;Z S

n=1 m=1 4 0;, i=1

xnﬂ@<(6{

i=1

<|o(Utro)){o(Utran)|

m

)o(Uieer)

i=1

(148)
The orthonormality condition in the left wedge reads
(oG .o ))O(U{ -0)))
=Sy H A((L, 0,

€S, i=

(L.G)).  (149)

By plugging Eq. (149) in Eq. (148) and by computing the
sum } ™ | and the generalized sums } 4 ...> 4 . one
obtains
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Try [exp(0)|0y., 0g ) (Or, Og | exp(0) ] = |Og) (O]

S are S-Sl e

€S, 0,

o)) )(O(U(R.0.)))].

By using Eq. (129) and the fact that the cardinality of S, is
n!, Eq. (150) reads as

x ‘(’)(Q{(R (150)

Try [exp(0)[0y. Og) (Or. Og | exp(0)]

— 00l + 3 LSS TP
=" e il

<Jo(Ut®an))(o(Utron)]. (51

The right side of Eq. (151) is proportional to the thermal
state in the right wedge. This can be seen by considering the
following eigenstate decomposition of the Hamiltonian
operator:

{o(Uian)){o(Uir o)

i=1

. (152)

where

he(s.Q.K ) = 1|Q|. (153)
The 1/n! factor comes from the repetition of any inde-
pendent n particles state due to the permutation symmetry
(129). Notice that Egs. (151) and (152) have the same
eigenstate decomposition but with different eigenvalues.
By comparing Eq. (115a) with Eq. (153), one can derive the
following identity relating the eigenvalues of Eqs. (151)
and (152)

,ﬂ 1£(6,))* = exp (—%l’zll hR(95)>7

which means that

(154)

Ti exp(0)/0,.00) 0.l exp(0)'] = exp (=11 ).

By using Egs. (104) and (155) we prove that

Tr|Op) (Opm| o exp <—§I:IR>, (156)

which is the fermionic thermal state with temperature
h/(kgf), where kg is the Boltzmann constant.
Equation (156) represents the Minkowski vacuum seen
by the accelerated observer with acceleration c?a.

VII. SPIN BASIS CHOICE

The result obtained in Sec. V depends of the basis
2B, (Q. K 1 ). Indeed, the matrix M,y (Q, K 1) appears in
the Rindler-Fock representation of the Minkowski vacuum
[Egs. (104) and (105)]. From Eq. (67b), one can see the

relation between M, (Q, K 1) and 8, (Q, K 1). We find

out that different choices for the basis 28,,(Q, K | ) lead to
different representations of the Minkowski vacuum in the
Rindler spacetime.

In Eq. (105), the matrix M,y (€, K 1) couples modes of
one wedge with modes of the opposite wedge. Hence, in the
Minkowski vacuum, any solution g, (Q, K | ) of Eq. (65)
in the right wedge is coupled with a solution of Eq. (65) in
the left wedge that is proportional to Ly, (-, -K 1)

The spin coupling of |Oy;) is then averaged away by the
partial trace over the left wedge in Sec. VI. Indeed, the trace
is computed by considering a basis for the left wedge
[Egs. (113a), (124), and (137)] that absorbs the matrix
M, (Q, K 1) in Eq. (112) and gives an expression for [Oy)
without M, (Q, K ) [Eq. (114)].

Consequently, the result obtained in Sec. VI is indepen-
dent of the choice for the solutions of Eq. (65). Indeed, the
thermal state describing the Minkowski vacuum in the right
wedge [Eq. (156)] is independent of 28, (L, K ). One can
see this by plugging Eqgs. (113b), (124), (137), and (152) in

Eq. (156) and noticing that 28, (<, K |) never appears in
the explicit form of Try |Oy) (Oy]-

In this section, we go back to the representation
of the Minkowski vacuum in both wedges [Eqs. (104)
and (105)] anfl we discuss different choices for the
basis 28,,(Q, K ) that lead to different representations
of |0y). We study the operator O for different choices
of iﬁm‘(Q’ I_('vl_)
M, (Q, K, ). In other words, we consider different outputs

of the function O[M,, (2, K )]

By looking at Eq. (105), one may conclude that the most
natural choice for 28, (Q, KL) is such that M, (Q, Kl) is
proportional to the identity. This choice can be made by
adopting any spin basis for the v wedge and choosing the
spin basis in the other wedge o such that

and, hence, for different matrices

B, (K ) x B, (-Q.K ). (157)
In this way, Eq. (67b) reads
Myss’(g’ iéJ.) 0(555/ (158)

105021-18



MINKOWSKI VACUUM IN RINDLER SPACETIME AND UNRUH ...

PHYS. REV. D 107, 105021 (2023)

and the Minkowski vacuum couples each particle mode of
one wedge with the antiparticle mode of same spin number
s of the other wedge [Eq. (105)].

Possible choices for the unitary matrix M, (Q, K 1)
that satisfy Eqgs. (98) and (158) are F sign(Q)id,y and
F s,i0,y, which, respectively, lead to

O[—sign(Q)id,y] = / dQ/ d*K | e P2

[CSL(Q KJ_) sR(Q KJ_)

— E (@R )DL (@R L) (159%)

A 2 +o0

Olsign(Q)id,y] = > / dQ | d*K e P2
s=1 0 R’

x [-C1 (Q. K, )D]

+ Cl(Q. K )D

®(Q-K))

L(Q, KL)] (159b)

O[—s,i6,] = / dQ/ d*K | e P2
RZ

x [_C;L('Q’ KJ_)D;R(Q, —Kl)
- Cl(Q.K)D] (Q.-K ). (159¢)

A 2 +o0
Ols,idyg] = / dQ A 2 2K | e P92

x [CT (Q.K,)D]
+ CT(Q. K )D!

Dl K,)

L(Q K )] (159d)

By letting the creation operators anticommute [Eq. (20e)],
Eq. (159) reads as

O[-sign(Q)ib,y] = / dQ/ d’K | e
R7

X [ésL(Q? Kl)DSR(Q’ _Kl)

+DIL(Q’_EL)CIR(97EL)]7 (160a)
R 2. [+e
Olsign(Q)id,y] = / dQ / &K | e P
RZ
X [ﬁIR(Q’ _El)éIL(Qa I?L)
+ T (Q.K DT (Q.,—-K )], (160b)

A 2 +o0
O[-s,ib,,] = Z /0 dQ A 2 d*K | e P22

X [DIR('Q _I?L)A:L(Q I%L)

+IA):L(Q _KL)C (@, Ki)] (160c)
~ 2 +o00
Ols,id,] =) / dQ | &K e P2
S Rz
x [Ch(Q fQ)AT (Q.-K))
+ClR(Q K )DL (. -K1)]. (160d)

Notice that the result we obtained for fermionic fields is very
similar to the bosonic case. Indeed, the Minkowski vacuum
of scalars in Rindler spacetimes is equal to Eq. (104), but with

0 replaced by the following operator [7,10]:

A~ +o00
Op = / dQ | d*K e P?
0 R2
x [A] (Q.K | )BL(Q.—K ) +B] (Q.-K )AL (Q.K )],
(161)

where A,(Q, K ) and B,(Q, K | ) are annihilators of scalar
particles and antiparticles. Such operators commute. This

means that the order between A, (€, I?L) and B,(Q, —f(l)
can be switched to give the following equivalent equations:

~ o0
OB:/ dQ JZKJ_e_ﬂQ/Z
0 R?

X [BR(Q.—K A (Q.K )+ AL (Q.K | )B] (Q,-K )]
(162a)

A~ +o00
Op = / dQ | d*K | e P2
0 R2

X [By(Q,—K )A] (Q,K )+ B} (Q,~K,)AR(Q.K )],

(162b)
= / dQ / d*K e/
RZ

Al (QK )BR(Q.—K )+ AR (Q.K B} (Q.-K ).
(162¢)

For Dirac fields, such an equivalence does not occur
because of the anticommuting property of the creation
operators [Eq. (20e)]. Indeed, any swap between creation
operators generates a minus sign. However, any of these
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minus signs can be canceled out by a change of spin basis.
One can see this in Egs. (160a), (160b), (160c), and (160d),
which are different representations of |0y) that are
equivalent up to a change of spin basis. By comparing
Egs. (160a), (160b), (160c), and (160d) with Egs. (161),
(162a), (162b), and (162c), respectively, one can see a
complete analogy between scalar and Dirac fields.

VIII. CONCLUSIONS

We derived the representation of the Minkowski vacuum
|0yp) in the Rindler spacetime for Dirac fields [Egs. (104) and
(105)]. The result is a two modes squeezed state that pairs
particle modes of one wedge with antiparticle modes of the
other wedge. At variance with the scalar case, the
coupling also occurs with respect to the spin number s.
The coupling matrix M, (Q, K | ) can be diagonalized by
suitable choices for the spin basis of the Rindler-Dirac
modes [Eq. (160)].

By computing the partial trace of |Oy)(Oy| with res-
pect to the left wedge, we derived the statistical operator
representing the Minkowski vacuum in the right wedge.
This gives a complete description of the state seen
by the accelerated observer with acceleration c?a. The
result is a fermionic thermal state exp(—pHy/h), with
p=2x/(ca) and Hy as the Hamiltonian in the right
wedge. The consequent thermal distribution of fermionic
particles is at the origin of the Unruh effect for Dirac
fields.
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APPENDIX: BESSEL FUNCTIONS

This section is dedicated to the modified Bessel function
of the second kind K (&) considered throughout the paper.
Here, we use the following integral representation for K (&)
with positive argument [11]

K:(&) = / ” dre~Eeosh(e) cosh(7), E>0. (Al
0

From Eq. (Al) it is straightforward to prove Eq. (595).
At the end of this section, we will also prove Egs. (59)
and (89).

Alternately to Eq. (Al) one may use the following
integrals [4]:

FEE) = % A drexp (ig sinh(z) & ¢ (—ig + r> > . (A2)

When ¢ > 0, both functions f7 (&) are a representation
of K¢(),

K (&) =fi&) =f7(8). &>0. (A3)

Equation (A3) can be proven by using Eq. (Al) and by

performing a contour integral of exp(—¢ cosh(z) + {7) with

respect to 7 along the rectangle with vertexes —oo, +o0,

+00 F in/2, and —co F iz/2, respectively, for f7(£).
Notice that, for any & > 0,

e[ — e (8)
K.(&) = 2isin(z{)

1 o T
_ iésinh(7) o; c
by Sin(a0) A dre sin <Zj <2 n)) (A4)

and that, for any & > 0,

0— [z = f£(8)
~ 2isin(ag)

1 o T
_ i&sinh(7) o; - :
= S anle?) Sin(2) A{ dre sin (C <2 + zr))
1 o T
- - —i&sinh(z) o; L.
= 3 sin(ad) A dre™ 50 (@) gin <C <2 n>>.

By considering both Egs. (A4) and (AS) one obtains the
following identity that holds for any ¢ € R:

O(E)K, () = 251r11(7rC) A dre€smh(@) gin (g <’2’ - i1> ) .
(A6)

(AS)

Equation (A6) can be used to prove both Eq. (59) and
(89). Regarding Eq. (59), the proof reads as
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/oo de[K_ie_1/2(E)Kio—12(8) + Kic_1 2(E)K_jer—112(8)]

0

1 T . z\ . (., =\]|". g r o\ . (= , & 7
_4Ad¢Adr{[sm(—ij—2> sm(mC _2” sm(—z > —Cr—4+12 sin{ i > +¢ —4+12
+ |sin( izt = Z) sin( —ing' == B sin i”—€+ér—f+iz sin —iﬂ—gl—C’r’—E+iT—/ / dgelsinh()+sinh(r')
2 2 2 4 2 2 4 2 R

= 7[ / é,_g/ . ] .Z_T+T/

+exp<—ﬂC;C/+ i({r={'7) +i£+r+rl) —exp<ﬂC;CI— i(Cr+{'7) —T_T/>

2 2 )
_exp<_”C‘;C +i(CT+é’/T/)+T_2T> +CXP<—H§_2§ +i(CT_é'/T/)_ig_T‘;T)
rexp(r 5 ilce )+ 54 5T ) mep (g o) -5

2
— exp (;rC o)+t _21/> } §(sinh(z) + sinh(7’))

- i : e o +
_8cosh(7zC)cosh(7zC’)Adrcosh(r) {exp(n 2 _l(C_C)T_T>+GXP<_” 7 ‘H(C—C)T+1>

+6Xp<—ﬂ§+é‘/+i(g—§/)’[—’[> +6Xp<ﬂ€+§/—i(g—§/)T+1>:|

2 2
B 7 (+¢ . , c+¢ . ,
= Tcosh(aZ) cosh(al) A dr {exp (ﬂ' 7~ i(C-¢ )r) +exp <—7r 5t i(C-¢ )r)]
e + e "¢ ,
- 2cosh2(n:cj) oE=¢)
_ 8¢ -¢)
~ cosh(ng) (A7)
Equation (89), instead, can be proved by using Eq. (A6) to compute the following Fourier transform:
uf [sinh(z")—sinh(7)] T
[aengersomon e - [ ae [ a0 g (5o
M/ dr'5(sinh(7') — sinh(z)) sin <C (g - ir’))
T . T,
- sin(z{) cosh(z) o <§ <§ B n) > ) (A8)
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