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We investigate generalized thermalization in an isolated free fermionic chain evolving from an out of
equilibrium initial state through a sudden quench. We consider the quench where a fermionic chain is
broken into two disjoint chains. We focus on the evolution of the local observables namely, occupation
number, nearest neighbor hopping, information sharing and out-of-time-order correlations after the quench
and study the relaxation of the observable, leading to generalized Gibbs ensemble for the system in the
thermodynamic limit though it has been argued that noninteracting or free fermionic models in general do
not relax to the generalized Gibbs ensemble (GGE). We obtain the light cone formed by the evolution of the
observables along the fermionic lattice chain due to the sudden quench which abides by the Lieb-Robinson
bound in quantum systems. We also analytically study a simpler model which captures the essential
features of the system. Our analysis strongly suggest that the internal interactions within the system do not
remain of much importance once the quench is sufficiently strong.
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I. INTRODUCTION

Numerous fascinating processes proposed within the
context of relativistic quantum field theory in curved space-
time—such as the particle creation in the early universe [1],
Hawking radiation [2], and Unruh effect [3]—are currently
inaccessible to direct observation. Since these processes
occur at extreme conditions, creating such conditions
in a laboratory environment is a formidable challenge.
However, analog models can be established as an alter-
native method for gaining insight into this exotic process
[4]. Since Unruh’s seminal work, a multitude of analogs
were studied, including flowing water, Bose-Einstein con-
densates (BEC), dilute gases, fiber optics, and nonlinear
dielectrics (for a review, see [5]). In addition, a number of
experimental tests have been conducted, despite the lack of
conclusive confirmation of the phenomenon (for a review,
see [6]).
One fundamental difference between these exotic phe-

nomena and the experimental setup is the system size. In
the case of Hawking radiation or particle creation in the
early Universe, the field theoretic assumption is valid,
however, in the low-temperature quantum gas experiments
this is not the case. To understand how far these analog
models mimic the exotic phenomena, one need to under-
stand some of the fundamental questions in quantum

many-body systems: If the many-body system starts out
in a ground state at early times what is the fate of the system
at late times? Does the system evolve into a steady state at
late times? If so does the state resemble a thermal state?
What is the characteristic timescale for this to happen? An
important setting where these problems come to forefront
is when matter collapse leads to a black hole formation.
Not only the thermality of exterior modes post the horizon
formation, is an open problem but there also have been
arguments suggesting a possible setting up of chaos as a
result of thermality and protection of monogamy of
entanglement [7–9]. In this work we model the black hole
formation by an analogue coupled atomic chain system
undergoing quench action in terms of getting disjoint at a
particular time. In terms of gravitational collapse this
resembles formation of a black hole event horizon where
certain modes get causally disconnected [10]. Such atomic
Kitaev chain models have extensively been studied for
undergoing quench action and post quench relaxation,
see [11] and references therein.
In recent years the relaxation of such atomic chains has

received attention as these can now be experimentally
measured in cold atom experiments [12]. Large enough
systems left on their own, over large times seem to settle
into a thermodynamic configuration. However, the ideas of
thermalization and unitary evolution of the underlying
quantum theory do not go hand in hand [13]. A quantum
evolution keeps a pure state as pure throughout, whereas
thermalization demands a mixed state description. The
initial contributions to resolve this apparent conflict in this
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area came in the 1920’s from von Neumann about thermal-
ization in isolated many-body quantum systems, proposing
that demand on thermalization on large systems may be
relaxed to the demand that only the expectation values of
macroscopic observables need to thermalize [14,15]. Thus,
for large enough systems the late time expectations should
closely resemble those of a thermalized system, and that is
about it! The system then thermalizes without really
thermalizing [16].
However the problem of explicit verification of this idea

remained dormant for nearly eight decades because of the
analytical complexity; as the thermalization is supposed to
work for large systems and the Hilbert space dimension
increases exponentially as the number of degrees of
freedom increases, making the analytic handling almost
intractable.
When a system thermalizes, we expect the macroscopic

properties of the system to equilibrate to its corresponding
statistical ensemble predictions. Classically a system is
called integrable if it has N independent constants of
motion in a 2N dimensional phase space; by doing a
canonical transformation to its corresponding action-angle
coordinates, the action is conserved, and the angle evolves
linearly in time. Hence for an integrable system, its
dynamics can be predicted at all times, and it will never
be ergodic. However, dynamics for generic nonintegrable
systems sufficiently away from any integrable limit is
governed by nonlinearity and chaos, making the evolution
ergodic thereby, resulting in thermalization [17–19].
See references for some interesting exceptions to this
dictum [20–22].
The isolated quantum many-body systems have a differ-

ent mechanism for thermalization owing to its unitary time
evolution. A pure initial state would never evolve into a
mixed thermal state density matrix through unitary evolu-
tion in an isolated system. However as pointed out by von
Neumann, one needs to compare the expectation value of
macroscopic observables in the thermodynamic limit, and
not the density matrix themselves [14]. Isolated quantum
systems with short-range interactions are said to thermalize
if, after a long time, the expectation values of few-body
observables equilibrate to a steady state predicted by
statistical mechanics [19]. Srednicki and Deutsch proposed
a mechanism suggesting that the thermalization occurs at
the level of eigenstates [23,24]. This mechanism is referred
to as the eigenstate thermalization hypothesis. Eigenstate
thermalization holds for nonintegrable systems where the
expectation value of observables settles down to the value
given by the ensemble description.
In order to look at how unitary time evolution generated

by an arbitrary Hamiltonian Ĥ in an isolated quantum
system could lead to thermalization, let us consider the
dynamics of an initial state ρI ¼ jψð0Þihψð0Þj (where
½ρ̂I; Ĥ� ≠ 0) and compare the expectation value of the
macroscopic observables with the value given by statistical

ensemble. For now, let the Hamiltonian be the only
physically relevant conserved quantity for the system.
Let En and jni be the eigenvalues and eigenvectors of Ĥ.

The energy of the system is a conserved quantity and is set
by the initial state given by Ē ¼ TrðρIHÞ. The fluctuations
in energy is given by δE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðρIH2Þ − Ē2

p
. We choose ρI

such that δE is subextensive. The time evolution of the state
jψðtÞi is given by

jψðtÞi ¼ exp ð−iĤtÞjψð0Þi ¼
XD
n¼1

Cneð−iEntÞjni ð1Þ

where Cn ¼ hnjψð0Þi and D is the dimension of the Hilbert
space. (Throughout this work, we set Planck constant
ℏ ¼ 1 and Boltzmann constant kB ¼ 1.)
The expectation value of an observable is given by

hÔðtÞi ¼ hψðtÞjÔjψðtÞi ¼
X
n

jCnj2hnjÔjni

þ
X

n;m;n≠m
C�
mCneð−iðEn−EmÞtÞhmjÔjni ð2Þ

For nonintegrable systems, after a reasonably long time, it
is phenomenologically observed that hÔðtÞi equilibrates to
a steady state given by the Gibbs (microcanonical) ensem-
ble, i.e.,

lim
t→∞;L→∞

hÔðtÞi ≈OðĒÞ ð3Þ

where OðĒÞ ¼ 1
Ω
P

n Onn where Ω is the number of energy
eigenstates with energies within the window ½Ē − ΔE;
Ēþ ΔE� with ΔE ≪ Ē, [19,25,26]. It is important to note
that this is not a mathematically proven result, but is
motivated from the ideas of random matrix theory and
quantum chaos, [27–29] and is referred to as eigenstate
thermalization hypothesis (ETH) [23,24]. However, it has
been studied and verified in a variety of nonintegrable
systems [19,25,30].
In the case of integrable systems—which is the focus of

this work—the expectation of observables do not thermal-
ize to Gibbs ensemble. This is because such systems have
other conserved quantities (totaling N) and can relax only
to a steady state predicted by the generalized Gibbs
ensemble (GGE) [31–37]. The notion of generalized
thermalization was obtained in integrable systems by
generalizing the statistical ensemble description for inte-
grable systems by including all the integrals of motion. We
can arrive at GGE by maximizing entropy subject to
constraints imposed by the integrals of motion, i.e.,

ρ̂GGE ¼ eð−
P

m
λmÎmÞ

Tr½eð−
P

m
λmÎmÞ�

; ð4Þ
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where Îm is the set of all integrals of motion and λm are the
Lagrange multipliers which are fixed using initial condition
Tr½ρ̂GGEÎm� ¼ hÎmiðt ¼ 0Þ. Using which we arrive at the
state to which the diagonal ensemble settle down. Just
like ETH, there is no general proof for generalized
thermalization [38,39].
Though a complete analytical understanding of the

generalized thermalization is still lacking, recent advances
in ultracold atom experiments and computational techniques
made it possible to simulate dynamics of nearly isolated
quantum systems and study out of equilibrium dynamics
[35,40–51]. Also, there have been various studies in the
literature for fermionic and bosonic integrable systems to
understand thermalization for integrable systems [38,52–55].
Most of the fermionic system’s studies have focused on the
1-dimensional fermionic chain that makes a transition from a
nonintegrable to an integrable configuration.
The primary goal of this work is to study the equilibra-

tion of observables in isolated integrable 1-D free non-
number conserving fermionic lattice (Kitaev) chain [56–58]
and compare it with the GGE prediction. We study the
quench [40,45–47,59,60] where a fermionic lattice chain is
broken into two smaller disjoint chains which result in
moving the initial system out of equilibrium. Thus a
fermionic system jumps from one integrable set up to
another integrable setting. We verify whether the systems
lands into a GGE owing to this quench. We calculate
expectation values for observables which play the role of
conserved charges. To visualize the dynamical evolution
of the system into a GGE description, we calculate the
information content in bits per fermion before and after the
quench [29] and out of time ordered correlators (OTOC)
[13]. We show that information content per fermion
provides crucial information about thermalization of the
isolated system under quench.
It is essential to compare and contrast the current work

with the earlier works: To visualize the thermalization in
integrable systems, one of the most analyzed models is the
1-dimensional fermionic chain that makes a transition from
nonintegrable to integrable configuration [61] (see also,
[62–78]). In our case, the fermionic system jumps from one
integrable set up to another integrable setting.
As mentioned earlier, the current framework mirrors the

gravitational setting, where the thermalization is related to
the formation of black-hole. Once a black hole forms, the
Hilbert space of the initial data gets bifurcated into Hilbert
spaces of interior and exterior, where the exterior appears to
be put (at late times) in the thermal environment. Further, as
shown in Fig. 1, the exterior region of the hole is made up
of two sets of modes that disjoint after the formation of the
so-called bifurcation horizon, mimicking the system, which
undergoes quench at a particular time. Thus, the current
model helps us get insights into the settings where one part
of the system is dynamically decoupled from another part
in a thermal backdrop. In Ref. [79], two of the present

authors studied a bosonic system jumping from an inte-
grable to another integrable setting. However, the effect of
quench in that system was the joining of two disjoint
chains, the inverse of the present system of study. It was
shown that the system tends toward the GGE at large times
as the system size increases. In the bosonic case, the
physical quantities can be computed only up to the leading
order of the product of the creation/annihilation operator.
Post quench state can be expressed in terms of excitations
of various normal modes. This work analyzes the reverse
scenario (disjointing of a chain) for fermionic degrees of
freedom. In a model set-up for fermionic degrees of
freedom, the fermionic nature of the system controls the
dimension of the Hilbert space involved. In fermionic
systems, due to the anticommutator structure, the expan-
sion of the ground state in terms of post-quench operators
truncates at the leading order of the product of creation/
annihilation operators. Therefore, in the present case, we
can compute the quantities precisely for all orders.
The rest of the paper is organized as follows: In Sec. II,

we introduce the model Hamiltonian, the quench protocol
and the observables of interest. In Sec. III, we compare the
long time evolution of the observable quantities against the
corresponding GGE value by varying the system size and
the time of evolution. Through various estimators, we
demonstrate that the system quickly settles into a GGE
configuration with increasing size. In Sec. IV, we provide
the analytical calculations for the observable quantities of
interest in a similar yet simpler model to attain a better
understanding of the general characters observed. Finally,
Sec. V sums up the findings and discuss the implications
for the field theoretic setup.

II. MODEL AND SETUP

In this work, we wish to study the effect of horizon
formation in a gravitational collapse culminating into a

FIG. 1. Black hole formation in isotropic coordinates.
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black hole on the matter escaping the black hole. Standard
consideration explores the interior and the exterior region
of the black hole and the entanglement between them.
However, there exists another class of disjoint Hilbert space
between outgoing left-moving modes and outgoing right-
moving modes which become decoupled once they move
sufficiently apart, i.e., t > tcross, a configuration best
viewed in the isotropic coordinates, as shown in Fig. 1.
For matter moving in a black hole background, the

particles entering the horizon get causally disconnected (in
one direction) from the particles in the exterior. However,
they do not become decoupled systems as such. However,
the left moving and right moving modes (particles) which
do not cross the horizon become decoupled as there is no
causal communication (to and fro) between them possible
after a time (tcross). Thus, the data on the initial constant
time slice tinitial, after t > tcross, become two disjoint
systems. In Fig. 1, the right-moving modes (magenta
curves) and the left-moving modes (cyan curves) depict
the decoupled modes in black hole spacetime.
Such a system where an initial set of particles breaks

into two disjoint sets can be considered in the purview of
the Kitaev chain [56–58] undergoing a sudden quench. We
wish to study if this kind of sudden quench, introduced
naturally in the exterior of a black hole through the
bifurcate horizon formation, leads to any instabilities
instead of thermalization as supposed in the black hole
exterior. For this purpose, we consider a Kitaev chain
[56–58] which undergoes a break at a given time in a
thermal setting (accounting for the black hole mass).

A. Model Hamiltonian

In this subsection we study the dynamics of local quench
in analytically solvable one dimensional spinless fermionic
system. The model we consider is the non-number con-
serving free fermionic model whose Hamiltonian is [80]:

H ¼ −
J
2

X2N
j¼1

ðâ†jþ1âj þ â†j âjþ1Þ − h
X2N
j¼1

â†j âj

−
J
2

X2N
j¼1

ðâ†j â†jþ1 þ âjþ1âjÞ ð5Þ

where a†jðajÞ creates(annihilates) fermion at lattice site j.
As mentioned earlier, this is an integrable model. For the
ease of computations, we assume a periodic boundary
condition for the fermionic chain. In Sec. IV, we provide an
analytic study of a simpler yet similar number conserving
system, tight binding model with fermions.
The Hamiltonian (5) can be diagonalized to normal modes

by a Fourier transformation followed by the Bogoliubov
transformation. Under the Fourier transformation,

b̂k ¼
1ffiffiffiffiffiffiffi
2N

p
X2N
j¼1

âjeð
2πijk
2N Þ; b̂†k ¼

1ffiffiffiffiffiffiffi
2N

p
X2N
j¼1

â†je
ð−2πijk

2N Þ

the Hamiltonian (5) gets transformed to

H ¼
XN
k¼1

ωkðb̂†kb̂k þ b̂†−kb̂−kÞ þ
XN
k¼1

iΔkðb̂†kb̂†−k − b̂−kb̂kÞ

ð6Þ

where

ωk ¼ −h − J cos

�
2πk
2N

�
and Δk ¼ J sin

�
2πk
2N

�
:

Thereafter, performing the Bogoliubov transformation:

γ̂k1 ¼ αkb̂k þ iβkb̂
†
−k; γ̂k2 ¼ αkb̂−k − iβkb̂

†
k;

the Hamiltonian (5) becomes

H ¼
XN
k¼1

Ekðγ̂†k1γ̂k1 þ γ̂†k2γ̂k2Þ − ðEk − ωkÞ ð7Þ

where

α2k ¼
1

2

�
1þ ωk

Ek

�
; β2k ¼

1

2

�
1 −

ωk

Ek

�
;

and Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ h2 þ 2Jh cos 2πk

2N

q
, k ¼ 1; 2;…; N are the

normal mode frequencies.

B. The quench and covariance matrix

The initial Hamiltonian HI is HI ¼ H2Nþ2M where
H2Nþ2M describes the fermionic lattice of size ð2N þ 2MÞ
with periodic boundary condition. The effect of quench
corresponds to (i) simultaneously switching off the hopping
term between 1st, and ð2N þ 2MÞth sites and 2Nth and
(2N þ 1)th sites ofH2Nþ2M and (ii) introducing the hopping
term (with coupling constant J) between 1st and 2Nth site
resulting in H2N and (2N þ 1)th and ð2N þ 2MÞth site
resulting in H2M. In other words, we break the chain
of lattice size ð2N þ 2MÞ into two independent chains
of sizes ð2NÞ and ð2MÞ, resulting in the quenched
Hamiltonian Hf ¼ H2N ⊕ H2M. Since the initial and the
final Hamiltonian can be diagonalized, the system is
described by noninteracting quasiparticles. The noninteract-
ing nature implies that all the information about the system
can be obtained from the expectation value of the two-point
correlators between various lattice points which can be
compactly arranged in the covariance matrix Ĝ defined as
the outer product of A⃗ and A⃗T i.e., Ĝ ¼ A⃗A⃗T where the
column vector A⃗ ¼ ½a1a†1a2a†2…aNa

†
N �, leading to
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G ¼

2
666666664

ha1a1i ha1a†1i … ha1aNi ha1a†Ni
ha†1a1i ha†1a†1i … ha†1aNi ha†1a†Ni

..

. ..
. . .

. ..
. ..

.

haNa1i haNa†1i … haNaNi haNa†Ni
ha†Na1i ha†Na†1i … ha†NaNi ha†Na†Ni

3
777777775

ð8Þ

Hence a symplectic transformation (linear transforma-
tions that preserve fermionic anticommutation relation) of
the creation and annihilation operators like, γ⃗ ¼ Ua⃗ would
cause the covariance matrix to transform as

G0 ¼ UGUT ð9Þ

and one can use the transformed covariance matrix to
obtain correlators. The creation and annihilation operators
for fermions in the energy eigenstates of the quenched
Hamiltonian evolves in time as γkðtÞ ¼ e−iEktγk and
γ†kðtÞ ¼ eiEktγ†k where Ek are the energy eigenvalues of Hf.

C. Observables and GGE

In this work, we have used three estimators to quantify
thermalization. As we will show in the next section, these
three estimators provide complementary information about
how the system drives to a generalized Gibbs ensemble.
(1) Occupancy of a site One of the macroscopic ob-

servables of our interest is the number density per
lattice site in real space. The expectation value of
the time evolved number operator can be obtained
from the time evolved covariance matrix G, given
by hniðtÞi ¼ ha†i ðtÞaiðtÞi. The main aim would be
to verify if the longtime expectation value of the
number operator per lattice site in the real space
would converge to GGE.
In order to find the GGE ensemble, we need to

find the conserved quantities of the system. Since
the system is noninteracting in the normal modes, the
occupation number of each normal mode after the
quench is conserved. Hence the independent con-
served quantities are nk ¼ γ̂†k1ð2Þγ̂k1ð2Þ where k¼
1;2� ��ðNþMÞ. The GGE density matrix is given by

ρ̂ ¼ exp ð−PNþM
k¼1 λkn̂kÞ

Tr½exp ð−PNþM
k¼1 λkn̂kÞ�

ð10Þ

where λk are the Lagrange multipliers which are fixed
using the initial condition Tr½ρ̂n̂k� ¼ hn̂kð0Þi. Using
the initial condition, we obtain the Lagrange multi-
pliers to be

λk ¼ ln

�
1 − hn̂kð0Þi
hn̂kð0Þi

�
ð11Þ

where hn̂kð0Þi can be obtained from the covariance
matrix in the normal modes.

(2) Nearest neighbor correlation We also study the
nearest neighbor correlation in the real lattice.
The nearest neighbor correlation is defined as
ha†i ðtÞaiþ1ðtÞ þ a†iþ1ðtÞaiðtÞi. Here again we verify
if the longtime expectation value of the operator in
the real space would converge to its correspond-
ing GGE.

(3) Bits per fermion Another important quantity we
calculate is the information content in bits per
fermion in each normal mode and compare its profile
before and after the quench. The von Neumann
entropy for the density matrix ρ is given by
SðρÞ ¼ −Trðρ ln ρÞ. The von Neumann entropy for
the GGE density matrix, for a normal mode k, is
given by

SðkÞ ¼−hn̂ki lnhn̂ki− ð1− hn̂kiÞ lnð1− hn̂kiÞ; ð12Þ

where hn̂ki is the expectation value of the number
operator in the corresponding mode. One can define
the information content in bits per fermion per
normal mode as [29]

IðkÞ ¼ SðkÞ
hn̂ki logð2Þ

: ð13Þ

(4) Out-of-time-order correlator Out of time order
correlator (OTOC) corresponding to ½x̂ðtÞ; p̂ð0Þ�
measures the quantum analog of the classical quantity
δxðtÞ=δxð0Þ for Bosonic systems, identifying the
measure of chaos in the system. If the system turns
chaotic, this quantity should gradually rise with time,
while for a system landing in a pre-ascribed configu-
ration, the strength of OTOC should remain within
bounds for large times [81], whereas for fermionic
systems it shows a tendency of flattening out [82]. An
OTOC can be constructed for any two non commut-
ing observables. We will be considering an out-of-
time-order correlator for the chain, given by

FijðtÞ ¼
1

2
h½x̂iðtÞ; p̂jð0Þ�2i ð14Þ

2N 2M+

2N

2M

FIG. 2. An illustration of the quench that breaks an initial chain
of size 2N þ 2M into two disjoint chains with periodic boundary
condition for all the chains.
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where we define Hermitian observables

x̂iðtÞ ¼
â†i ðtÞ þ âiðtÞffiffiffi

2
p ; p̂jð0Þ ¼ i

â†jð0Þ − âjð0Þffiffiffi
2

p

ð15Þ

in analogy to the bosonic case (but keeping in mind that in
fermionic systems they satisfy anticommutation relation).
We will now calculate these estimators in order to test the
robustness of generalized thermalization and confirm
whether the jump of a system from one integral configu-
ration to another integral configuration with causal dis-
ruption does not make it chaotic [83].

III. RESULTS

In this section, we present semianalytical results for
the model Hamiltonian (5) with the effect of quench. As
mentioned earlier, we use the following estimators—
occupancy at a site, nearest neighbor hopping, Bits per
fermion and OTOC—to identify the late-time evolution of
the initial state.
The flowchart of the procedure used in numerical evalu-

ation of the physical quantities can be seen in Fig. 3.
Numerics is done in MATLAB [94].

A. Occupation number

To study equilibration of a local observable, we look at
the evolution of expectation value of the number operator
at a particular lattice site in real space. For the verification,

we have plotted the mean value of the evolved number
operator and the value given by the GGE. For all the plots,
we have fixed the parameters h=J ¼ −2 and the nearest
neighbor interaction J to be 0.5. The initial state is chosen
to be a thermal state with the lattice chain at temperature
T=J ¼ 0.5, i.e., inverse temperature βI ¼ 1=T ¼ 4.
We calculate the energy in the unit of the on site coupling
constant h ¼ −1. This value sets the unit of time to
be 1=h.
In Fig. 4, we plot the expectation value of the number

operator hniðtÞi at a lattice site i slightly away from the site
of quench as a function of time.
We infer the following: First, until the effect of quench

reaches the particular site of observation, it remains in the
initial thermal state. As soon as the effect of quench reaches
the site, the value fluctuates, and the system goes out of
equilibrium. Second, the fluctuations tend to decay in time,
and the expectation value of the number operator equili-
brates to the GGE value and has a recurrence property.
Third, as the lattice size increases, the fluctuations become
smaller, and the system tends to come closer to the GGE
value, with recurrences becoming sparse. As N increases,
the difference between GGE and hniðtÞi decreases.
Therefore in large N limit (and hence large t limit before
the first recurrence), it can be seen that the system settles to
the GGE description. Hence, the GGE description is
expected to be valid for large N.
As mentioned above, from Fig. 4, we observe that

sufficiently long time average value matches the GGE
value. In order to substantiate the same, we evaluate the
time average of the observable:

FIG. 3. Flowchart of the procedure used in numerical evaluation of the physical quantities.
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n̄ðτÞ ¼ 1

τ

Z
τ

0

hn̂iðtÞidt: ð16Þ

and calculate the relative deviation of n̄ðτÞ (Δn)

Δn ¼ jn̄ðτÞ − hniGGEj
hniGGE

ð17Þ

from the GGE value as a function of τ. Figure 5 contains the
plot of ΔnðτÞ as a function of τ. The figure explicitly shows
a power-law decay of the relative deviation. Thus, in the
infinite time limit, the relative deviation vanishes.
To further quantify, we evaluate the relative deviation

of the lattice occupation number hniðtÞi from the GGE
value, i.e.,

δniðtÞ ¼
jhniðtÞi − hniiGGEj

hniiGGE
ð18Þ

as a function of time. From the Fig. 6, we infer the
following: Initially δðniðtÞÞ relaxes to zero after quench
and at later times, starts showing fluctuations. As the
number of lattice sites increases, the time of initiation of
the late time fluctuations is delayed in a linear fashion and
the magnitude of fluctuation also reduces.

B. Characteristic function of fluctuation

In order to study the evolution of the system toward the
GGE post quenching, one can look at the charactersitic
function ϕμ which gets determined from the probability
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FIG. 4. Plot of the expectation value of the number operator at a
site slightly away from the quenching site hniðtÞi as a function of
time for the case when 2N ¼ 2M, i.e., (a) 2N ¼ 2M ¼ 300,
(b) 2N ¼ 2M ¼ 400, (c) 2N ¼ 2M ¼ 500, (d) 2N ¼ 2M ¼ 600.
GGE value and time average of hniðtÞi is also plotted in each case.
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FIG. 6. The deviation of hniðtÞi from the GGE value δðniðtÞÞ is
plotted as a function of time for (a) 2N ¼ 2M ¼ 300,
(b) 2N ¼ 2M ¼ 400, (c) 2N ¼ 2M ¼ 500, (d) 2N ¼ 2M ¼ 600.
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distribution PðΔnÞ of the fluctuations and subsequently
through the fluctuations themselves in various orders of
fluctuation and probe wavelength. The characteristic func-
tion is defined as

ϕμ ¼
Z

∞

−∞
dΔneiμΔnPðΔnÞ: ð19Þ

Expanding the exponential in the above expression, we get

ϕμ ¼
Z

∞

−∞
dΔnð1þ iμΔnþOðμΔn2ÞÞPðΔnÞ

≈ 1þ iμhδni: ð20Þ

There are a couple of observations to make. For small
“chemical potential” (parameter conjugate to δn) limit
μ → 0 the characteristic function goes to unity very quickly
as hδni decays over time (see Fig. 6). Thus, such systems
are virtually indistinguishable from the GGE configurations
soon after quenching. Further on the timescales (within one
boundary reflections time cycle), when hδni approaches
vanishing value, ϕμ will approach unity for noninfinites-
imal μ too. Therefore, generic systems approach GGE
configurations on their characteristic timescales.
To investigate further, in Fig. 7, we plot the expectation

value of the number operator at the site where quench
happens as a function of time. Fig. 7 shows the same trend
as in Fig. 4. In other words, as the lattice size increases, the
deviation from the GGE is small and better relaxation is
observed. The plot indicates that the observable will relax
to GGE in the thermodynamic limit. Also, the late time
fluctuations get delayed linearly with the increase in lattice
size confirming the finite size effect.
To understand the time-delay for the quench to reach a

lattice site, in Fig. 8, we plot the expectation of number
operator (as a color intensity) as a function of the lattice
position (in the x-axis) and time (in the y-axis). The color
intensity map shows how the disturbance travels along
the quenched lattice in time. We observe the following
features: First, number density peaks propagate along the
lattice with constant speed. The figure also shows the
formation of a light cone (in analogy to causal propagation)
which marks the existence of maximum speed for the
information propagation. This result is consistent with the
Lieb-Robinson bound [84] for short-range interactions
which give a theoretical limit for the speed of propagation
of information in nonrelativistic quantum systems. Second,
the fluctuations are caused by the interference between
different light cones due to finite size effect and periodic
boundary condition. Once the effect of quench reaches the
lattice, it goes out of equilibrium and then equilibrates to an
almost steady state which matches with the GGE value but
later starts to fluctuate due to the finite size effect. As the
lattice size increases, the fluctuations from the average
value reduces. In the thermodynamic limit, we then expect

the system to equilibrate to the GGE value thus verifying
generalized relaxation.
In Fig. 9, connected correlation hninji− hniihnji between

two sites each in the disconnected chains after quench is
plotted. We consider the two cases where i and j are the two
nearby sites before breaking and the case where they are far
apart. In the first case, the connected correlation is large
when the quench happens and then decays to zero since the
two sites are in independent chains after the quench. When
the two sites are far away fromeach other and the quench, the
connected correlation is minimal initially and then goes to
zero after the quench. Any fluctuation which might occur at
a later time is due to the finite size.
To see how the expectation value of the number operator

at a site equilibrates to GGE, in Fig. 10, we plot the
logarithm of δniðtÞ defined in Eq. (18) against logarithm of
time. For immediate comparison, the figure contains a
linear plot with coefficient −1. Following points are worth
noting regarding the above figure: First, as the lattice size
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FIG. 7. The expectation value of the number operator at a site
where quench happens is plotted against time where (a) 2N ¼
2M ¼ 300, (b) 2N ¼ 2M ¼ 400, (c) 2N ¼ 2M ¼ 500, (d) 2N ¼
2M ¼ 600. The GGE value and time average of hniðtÞi are also
plotted in each case.
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increases, δniðtÞ decays as a power-law with exponent close
to −1. Second, the exponent −1 is indicative of ballistic
behavior rather than diffusive behavior where the exponent
needs to be −0.5 [85]. Classically, ballistic behavior arises
due to the collisionless transport of particles whereas the
system under consideration is composed of noninteracting
quasiparticles, mimicking the classical behavior.

C. Nearest neighbor hopping

Another local observable that we have studied is the
nearest neighbor hopping in the real lattice chain defined as
ha†i ðtÞaiþ1ðtÞ þ a†iþ1ðtÞaiðtÞi. Here also we have fixed the
parameters h=J ¼ −2 and the nearest neighbor interaction
J to be 0.5. The initial state is again a thermal state with the
lattice chain at temperature T=J ¼ 0.5.
In Fig. 11, we plot the nearest neighbor hopping at a

lattice site i near to the site of quench as a function of time.
As in the previous case of the number operator, we can

observe that until the effect of quench reaches the particular
site i, the system remains in the initial thermal state and
as soon as the effect of quench reaches the site, the value
fluctuates, and the system goes out of equilibrium. The
fluctuations also decay in time, and the nearest neighbor
hopping operator equilibrates to the GGE value. Also as the
lattice size increases, the fluctuations become smaller, and
the system tends to come closer to the GGE value, with
sparse recurrences.
In Fig. 12 we plot the nearest neighbor hopping (color

intensity) as a function of the lattice position (in the x-axis)
and time (in the y-axis). Here again we observe all the
features observed for the case of expectation value of the
number operator and in the thermodynamic limit, we then

(a) (b)

(c) (d)

FIG. 8. This plot shows the expectation of number operator
(color intensity) as a function of the position of lattice (x-axis)
and time (y-axis) for the four cases: (a) 2N ¼ 2M ¼ 300,
(b) 2N ¼ 2M ¼ 400, (c) 2N ¼ 2M ¼ 500, (d) 2N ¼ 2M ¼ 600.
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FIG. 9. Connected correlation hninji − hniihnji between two
sites each in the disconnected chains after quench. Consider two
cases where i and j are the two nearby sites before breaking and
the case where they are far apart.
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expect the system to equilibrate to the GGE value thus
verifying generalized relaxation.

D. Information content in bits per fermion

In the previous subsection, to evaluate the occupation
number in a lattice site, we fixed J ¼ 0.5 and βI ¼ 4. To
obtain information about the response of the system for
different parameters, in Fig. 13, we plot the information
content in bits per fermion IðkÞ for each normal-mode k=L
(where L is the length of the lattice chain and k ¼ 1; 2;…)
before and after the quench for different T=J parameters.
Note that we have fixed the values of J and h=J to be 0.5
and −2, respectively.
We see two distinct features: When T=J is high, corre-

sponding to a high temperature initial thermal state, IðkÞ
before and after the quench almost overlaps. However, when
the temperature is low, say at T=J ¼ 0.01, the profile shows
a different trend. We thus infer the following: First, for the
low-temperature initial state, the information content per
fermion after the quench is distributed evenly to all the
normal modes in contrast to before the quench distribution.
Second, the information content per fermion in each mode

after quench is smaller compared to before the quench.
However, the total entropy of the system increases after the
quench, consistent with the second law of thermodynamics.
Third, it implies that the initial state of the system before the
quench for small T=J and large T=J is not identical.
To further investigate this, we calculate fidelity which is

a measure of closeness or overlap between two quantum
states [86,87]. Fidelity between two density matrices ρ1 and
ρ2 can be written as:

Fðρ1; ρ2Þ ¼
X
i

ffiffiffiffiffiffiffiffiffi
piqi

p ð21Þ

where pi and qi are the eigenvalues of two density matrices,
i.e.,

ρ1 ¼
X
i

pijiihij and ρ2 ¼
X
i

qijiihij ð22Þ

for some orthonormal basis jii. Note that we have taken the
situation where the two density matrices can be simulta-
neously diagonalized by unitary matrices.
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FIG. 11. The nearest neighbor hopping at a site near quench is
plotted against time where (a) 2N ¼ 2M ¼ 300, (b) 2N ¼ 2M ¼
400, (c) 2N ¼ 2M ¼ 500, (d) 2N ¼ 2M ¼ 600. The GGE value
is also plotted.

(a) (b)

(c) (d)

FIG. 12. This plot shows the nearest neighbor hopping (color
intensity) as a function of the position of lattice (x-axis) and time
(y-axis) for the four cases: (a) 2N ¼ 2M ¼ 300, (b) 2N ¼
2M ¼ 400, (c) 2N ¼ 2M ¼ 500, (d) 2N ¼ 2M ¼ 600.
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Figure 14 contains the plot of the fidelity between ρT and
ρGS—between the initial thermal (with nonzero T=J) and
ground state—as a function of T=J. We see that as T=J
decreases, the fidelity goes closer to unity. Thus, the
information content in bits per fermion can be used as
an indicator to identify the driving term of the dynamics in
the thermal background [88,89].

E. OTOC

As mentioned in the previous section, thermalization can
be associated with the loss of accessible information (or
scrambling) and OTOC is considered a good diagnostic for
the strength of scrambling. We evaluate OTOC, given in
Eq. (14), for the model Hamiltonian (5).
Figure 15 is the plot of OTOC as a function of time and

lattice position. Plot (a) contains FðtÞ (color intensity) as a
function of position j (along the x-axis) and time (along
y-axis) for the lattice chain of size 2N þ 2M ¼ 600 and
i ¼ 300 which is on the disconnected chain size 2N after

the quench. From the plot, we observe the following: First,
in the case of i ≠ j, the time evolution of OTOC is present
only when j is in the same broken chain as i. Second, the
evolution of the light cone is just one half of the entire
initial chain of size 2N þ 2M. OTOC ascertains that the
correlations between the two chains vanish with the
quench. Third, the long-time value of FijðtÞ moves toward
−0.5 which equals 1

2
h½x̂ið0Þ; p̂jð0Þ�2i.
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FIG. 13. Plot of IðkÞ against k=L where (a) 2N ¼ 2M ¼ 300;
T=J ¼ 0.01, (b) 2N ¼ 2M ¼ 300; T=J ¼ 0.1, (c) 2N ¼ 2M ¼
300; T=J ¼ 1, (d) 2N ¼ 2M ¼ 300; T=J ¼ 10.
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FIG. 15. OTOC FijðtÞ ¼ 1
2
h½x̂iðtÞ; p̂jð0Þ�2i is calculated for the

chain of size 2N þ 2M ¼ 600. At t ¼ 0 the quenching (chain
breaking) is done, so subsequently the two chain segments are
causally disconnected. A point in one segment will be affected by
the initial condition in that segment only. (a) FðtÞ (color intensity)
is plotted as a function of position j (along the x-axis) and time
(along y-axis) for i ¼ 300 which is on the chain of size 2N after
the quench. (b) FijðtÞ is plotted as a function of time for i ¼ 300

and j ¼ 300 (i ¼ j).

QUENCHED KITAEV CHAIN: ANALOGOUS MODEL OF … PHYS. REV. D 107, 105020 (2023)

105020-11



The initial value of OTOC, i.e., Fijð0Þ ¼ −0.5 for any i,
j since the operators are fermionic in nature. From the
OTOC analysis (see Fig. 15) we can see that OTOC
parameter, after being affected by the quench, decays with
time. Theoretically, it indicates that due to some initial
perturbation at jth site, the effect on the configuration at ith
site (recalling ½x̂iðtÞ; p̂jð0Þ� measures δxiðtÞ=δxjð0Þ) settles
over time, for any pair ði; jÞ, to the value −0.5 indicating
that at long time, the system equilibrates. In the Fig. 15, the
long time average value obtained is −0.4983 which is close
to −0.5. Therefore, in the thermodynamic limit, the OTOC
is expected to settle down to steady value to−0.5 indicating
homogeneity.

IV. ANALYTICAL UNDERSTANDING

The results in the previous section are exact for the
model Hamiltonian (5). Since it is cumbersome to obtain an
analytical expression for these observables and to have a
better understanding of the features of the above model, we
now analytically study a qualitatively similar yet simpler
model namely the tight-binding model [90]. In the rest of
this section, we explicitly write down the analytic expres-
sions for the three observables in this model and discuss the
essential features.
Hamiltonian of the tight-binding model is

HTB ¼ −h
X2N
j¼1

a†jaj −
J
2

X2N
j¼1

�
a†jþ1aj þ a†jajþ1

�
ð23Þ

where a†jðajÞ creates(annihilates) fermion at lattice site j.
Comparing the above Hamiltonian with (5), it is clear that
this model is number conserving.
This Hamiltonian with periodic boundary condition can

be diagonalized by the Fourier transformation:

b̂k ¼
1ffiffiffiffiffiffiffi
2N

p
X2N
j¼1

âje
2πijk
2N ; b̂†k ¼

1ffiffiffiffiffiffiffi
2N

p
X2N
j¼1

â†je
−2πijk
2N ð24Þ

Substituting the Fourier transforms in the Hamiltonain
(23), we get

HTB ¼
X2N
k¼1

ωkb̂
†
kb̂k ð25Þ

where

ωk ¼ −h − J cos
2πk
2N

; k ¼ 1; 2;…; 2N: ð26Þ

As compared to the Hamiltonian (5), the tight-binding
model does not require one to perform Bogoliubov trans-
formation to diagonalize the Hamiltonian.

A. hnjðtÞi for the tight-binding model

Like in the earlier case, we assume the state to be in a
thermal state for the initial Hamiltonian, HTB

I ¼ HTB
2Nþ2M.

The density matrix for the initial state is

ρ̂I ¼
eð−βI Ĥ

TB
I Þ

Tr½eð−βIĤTB
I Þ� ð27Þ

½ρ̂I; ĤI� ¼ 0 ð28Þ

At t ¼ 0, we quench the system by splitting into two spin
chains of sizes 2N and 2M. (See the illustration in Fig. 2.)
The Hamiltonian changes to ĤTB

F ¼ HTB
2N ⊕ HTB

2M.
Our aim is to analytically evaluate the time evolution of

average occupation number in real space for the quenched
system, i.e., after the chain is broken:

hnjðtÞi ¼ ha†jðtÞajðtÞi j ¼ 1;…; 2N ð29Þ

Substituting the inverse Fourier transform from (24) in the
above expression and using the time-evolution of the
operators [bkðtÞ ¼ e−iωktbkð0Þ], we get,

hnjðtÞi ¼
X2N
k¼1

X2N
k0¼1

eitðωk−ωk0 Þe
i2πjðk−k0Þ

2N
hb†kð0Þbk0 ð0Þi

2N
; ð30Þ

where k; k0 ¼ 1;…; 2N. From the above expression, we see
that the disturbance propagate as a plane wave with the
speed

v ¼ 2N
ðωk − ωk0 Þ
2πðk − k0Þ ¼ 2NJ

�
cos 2πk

0
2N − cos 2πk

2N

�
2πðk − k0Þ ð31Þ

In the limit of k → k0, the maximum speed of propagation
is J when k ¼ N=2. Comparing this result with Fig. 8,
we see that for the Hamiltonian (5), the maximum speed of
propagation is achieved for k ¼ N=2. In other words,
the number density peaks propagate along the lattice with
constant speed and forms a light cone; implying the existence
of maximum speed for the information propagation.
To obtain the time evolution of the occupation number,

we substitute the Fourier transform (24) in Eq. (30):

hb†kð0Þbk0 ð0Þi ¼
1

2N

X2N
m¼1

X2N
m0¼1

ðe−i2πðkm−k0m0Þ
2N ha†mð0Þam0 ð0ÞiÞ:

ð32Þ

To evaluate ha†mð0Þam0 ð0Þi, we perform the Fourier trans-
form (24) for the chain of size 2N þ 2M, we get,
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ha†mð0Þam0 ð0Þi ¼ 1

2N þ 2M

X2Nþ2M

kI;k0I¼1

e
i2πðmkI−m

0k0
I
Þ

2Nþ2M hb†kIð0Þbk0Ið0Þi

ð33Þ

where,

hb†kIð0Þbk0Ið0Þi ¼ 0 for kI ≠ k0I ð34Þ

hb†kIð0Þbk0Ið0Þi ¼
1

1þ eβEKI
for kI ¼ k0I ð35Þ

EKI
corresponds to the energy Eigenvalues for the chain

2N þ 2M and kI ¼ 1;…; 2N þ 2M.
The advantage of working with the number-conserving

Hamiltonian is that we can control the total number of
particles in the real space since it would be the same as the
number of particles in the normal mode. We can study what
happens when we change the number of particles in the
initial state.
In Fig. 16, we have constructed the initial state with the

particle number nI chosen to be 0, 24, 50, 76 and 100 for
the initial lattice chain of size 2N þ 2M ¼ 100. The
expectation value of the number operator at a site where
the quench happens is plotted against time. We infer the
following: First, the minimum fluctuations are obtained for
half the number of sites (nI ¼ 50). Second, when we have
particles in half the number of sites, the Hilbert space
dimension is ð L

L=2Þ, which is the largest for the system to

span, resulting in better equilibration to GGE. Third, in
fermionic systems like the ground state, the highest excited
state is also unique; therefore, postquench, there is no
freedom left to (re)distribute the population, resulting in a
perfect matching with GGE expectation.
For both models, we see that the expectation of the

number operator equilibrates to the GGE value in the
thermodynamic limit. In the case of the tight-binding model
also, there is the evolution of a light cone due to the local
quench indicating maximum speed, which we have ana-
lytically calculated to be J. The relaxation to GGE in the
case of the tight-binding model also follows the power law
with exponent −1. In other words, the GGE behavior of the
Hamiltonian (5) can be inferred from the tight-binding
model. We can also populate other lattice sites to change
the initial state of the system. Following the discussion in
[79], a well-behaved general state can similarly be argued
to land up in GGE configuration for well-behaved
Bogoliubov transformations, even under nonperiodic boun-
dary conditions.

B. IðkÞ for the tight-binding model

The information content in bits per fermion IðkÞ,
for a given normal mode k, is given by (13). Since the
Hamiltonian (23) is number conserving, average expectation
value of the number operator for a normal mode hn̂ki is a
conserved quantity. Once we obtain hn̂ki ¼ hb†kbki, we can
calculate IðkÞ. The Fourier transform leads to:

hb†kbki ¼
1

2N

X2N
m¼1

X2N
m0¼1

e
−i2πkðm−m0Þ

2N ha†mam0 i ð36Þ

where ha†mð0Þam0 ð0Þi is given by (33).
Figure 17 is the plot of IðkÞ for the tight-binding model.

Comparing these plots with the plots of IðkÞ in Fig. 13,
we conclude the following: For both the models, with the
lower-temperature initial state, the information content per
fermion after the quench is distributed evenly across all the
normal modes in contrast to before the quench distribution.
Also, the information content per fermion in each mode
after the quench is smaller compared to before the quench.
Like the average expectation value of the number operator,
IðkÞ behavior of the Hamiltonian (5) can be inferred from
the tight-binding model.

C. OTOC for the tight-binding model

Out-of-time-order correlator is given by (14). Substituting
(15) in (14) and simplifying the expression, we get,

FijðtÞ ¼ 2

�
Re

�
i
2
ðha†jðtÞa†l ð0Þi − ha†jðtÞalð0Þi

− hajðtÞa†l ð0Þi − hajðtÞalð0ÞiÞ
��

2

−
1

2
ð37Þ
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time
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1
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5
0
>

2N=2M=50; Varying n
i

FIG. 16. The initial state with the particle number nI chosen to
be 0, 24, 50, 76, and 100 for the initial lattice chain of size
2N þ 2M ¼ 100. The expectation value of the number operator
at a site where quench happens is plotted against time. The GGE
value is also plotted.
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In the case of tight binding model, ha†jðtÞa†l ð0Þi ¼ 0 ¼
hajðtÞalð0Þi. So we are left to calculate the expressions for
hajðtÞa†l ð0Þi and ha†jðtÞalð0Þi.
Assuming j and l to be on the broken chain of size 2N

after the quench, we get,

hajðtÞa†l ð0Þi ¼
1

2N

X2N
k;k0¼1

e−iωkte
−i2πðjk−lk0Þ

2N hbkð0Þb†k0 ð0Þi ð38Þ

where,

hbkð0Þb†k0 ð0Þi ¼
1

2N

X2N
m;m0¼1

ðei2πðkm−k0m0Þ
2N hamð0Þa†m0 ð0ÞiÞ ð39Þ

Since the quench happens at t ¼ 0,

hamð0Þa†m0 ð0Þi ¼ 1

2N þ 2M

X2Nþ2M

kI;k0I¼1

e
−i2πðmkI−m

0k0
I
Þ

2Nþ2M hbkIð0Þb†k0Ið0Þi

ð40Þ

where,

hb†kIð0Þbk0Ið0Þi ¼ 0 for kI ≠ k0I ð41Þ

hbkI ð0Þb†k0Ið0Þi ¼ 1 − hb†kIð0Þbk0Ið0Þi ð42Þ

¼ 1 −
�

1

1þ eβEKI

�
for kI ¼ k0I ð43Þ

EKI
corresponds to the energy eigenvalues for the chain

2N þ 2M and kI ¼ 1…2N þ 2M.
Similarly, we can obtain:

ha†jðtÞalð0Þi ¼
1

2N

X2N
k;k0¼1

eiωkte
i2πðjk−lk0Þ

2N hb†kð0Þbk0 ð0Þi ð44Þ

where hb†kð0Þbk0 ð0Þi is given by (32). In order to evaluate its
thermodynamic limit we use (32), (33), and (35) to obtain
after some manipulations,

ha†jðtÞalð0Þi ¼
1

2ðN þMÞ
X2ðNþMÞ

KI¼1

e
iωNKI

NþM
t

eβEKI þ 1
e
πiðj−lÞ
NþM KI ; ð45Þ

which even in thermodynamic limit, can be shown to be
bounded from above [using (26)]
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FIG. 17. Plot of IðkÞ against k=L for the tight-binding model
for where 2N ¼ 2M ¼ 300where (a) T=J ¼ 0.01, (b) T=J ¼ 0.1,
(c) T=J ¼ 1, (d) T=J ¼ 10.

(a)

0 500 1000 1500

time

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

(1
/2

)<
[x

i(t
)p

j(0
)]

2
>

2N+2M=600; i=j=300

(b)

FIG. 18. OTOC for tight-binding model for the chain of size
2N þ 2M ¼ 600. (a) FijðtÞ (color intensity) is plotted as a
function of position j (along the x-axis) and time (along y-axis)
for i ¼ 300 which is on the chain of size 2N after the quench.
(b) FijðtÞ is plotted as a function of time for i ¼ 300 and j ¼ 300.
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ha†jðtÞalð0Þi <
1

e−βðhþJÞ þ 1
: ð46Þ

Thus, the system does not turn chaotic even in the
thermodynamic limit, hinting at a possible non chaotic
behavior in the continuum limit too [91]. Figure 18
contains the plot of OTOC for the tight-binding model.
Comparing this with Fig. 15, we see that both models have
similar features. More specifically, the evolution of the
light cone in just one half of the entire initial chain of size
2N þ 2M showing the correlations between the two chains
vanishes with the quench. Like in the earlier case, at long-
times the parameter FijðtÞ approaches −0.5.

V. CONCLUSIONS

Motivated by the quench like causal structure of oppo-
sitely moving modes in a collapsing geometry through their
eventual causal disruption after the horizon formation, in
this work, we consider quenching as a possible mechanism
to set up thermality as well as any possible onset of chaos in
the modes exterior to the horizon of the black hole. Since
complete field theoretic treatment of modes in the collaps-
ing geometry in full generality is tedious, we resort to study
an analog model which captures many conceptual similar-
ities. This model of atomic chain undergoes an action of
getting disjoint and one segment post the quench is studied.
The time evolution of local lattice occupation number and
nearest neighbor hopping following quench is calculated.
Thus, the system jumps between two integrable configu-
rations. The expectation value of the observables is seen to
equilibrate to the value given by generalized Gibbs ensem-
ble with the fluctuations vanishing in the thermodynamic
limit. The results show that the observables we studied
for the noninteracting spinless fermions do relax to GGE.
However this is not true in general as it has been shown that
certain one body correlators in such systems do not relax to
GGE in the thermodynamic limit [92]. We have verified for
the two observables that we considered namely, lattice
occupation number and nearest neighbor hopping, that the
expectation value of the observable equilibrates to GGE in
the thermodynamic limit.
We have obtained a light-conelike evolution with which

one can accurately track the evolution of initial data. The
light-cone confirms the existence of the maximum limit for
the speed of propagation of the information of the quench.
This result is consistent with the Lieb-Robinson bound in
quantum systems. We have also seen that the relaxation to
GGE goes as a power law with exponent approaching −1
indicating ballistic dynamics. We also calculated the con-
nected correlation between two sites each in the discon-
nected chains after the quench which gradually vanishes.
Further, we calculated the information content in bits

per fermion IðkÞ per normal mode k=L before and after

the quench. We observed exciting trends in the distribu-
tion of IðkÞ before and after the quench. We see from the
plot of IðkÞ against k=L that for initial low-temperature
thermal states, the information content per fermion after
quench is smaller and spreads evenly for all normal modes
compared to before the quench, in the spirit of thermal-
ization. However, the total entropy of the system increases
after the quench, consistent with the second law of
thermodynamics.
Another measure of predictability of evolution is OTOC.

If OTOC grows in time, the evolution becomes chaotic and
final state cannot be ascribed with accuracy. The dynamics
of the systems demonstrates that post-quench the OTOC
parameter decays once the quench hits the system and the
gradually settles to a value close to −0.5.
We also study a closely resembling model with analyti-

cally more tractable equations, which captures the essential
features of the first model. In this model we also analyti-
cally demonstrated the march of the system toward a GGE
configuration, strongly suggesting that internal interactions
within the system do not remain of much importance once
the quench is sufficiently strong.
Thus the analog model remains integrable even after

undergoing causal disruption and also lands up in GGE
configuration, notwithstanding with the conflict between
apparent thermality and onset of chaos. In the black hole
setting the apparent conflict arises due to maximality of
entanglement between the interior, near horizon and
asymptotic modes. However, the system remains integrable
throughout without any chaotic behavior setting up a GGE
like distribution can well suggest the apparent thermality, in
the spirit of [93]. Since these results appear largely
irrespective of the details of interaction a full field theoretic
calculation can be expected to inherit these features,
probably demonstrable in certain analog systems under-
going similar kind of quench action, will be pursued
elsewhere.
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