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Green functions scattering method is generalized to consider mixing of electromagnetic polarizations
after reflection from the plane boundary between different media and applied to derivation of the Casimir-
Polder potential in systems with Chern-Simons plane boundary layers. The method is first applied to derive
the Casimir-Polder potential of an anisotropic atom in the presence of a Chern-Simons plane boundary
layer on a dielectric half-space. Then a general result for the Casimir-Polder potential of an anisotropic
atom between two dielectric half-spaces with Chern-Simons plane parallel boundary layers is derived. The
Casimir-Polder potential of an anisotropic atom between two Chern-Simons plane parallel layers in
vacuum is expressed through special functions. Novel P-odd three-body vacuum effects are discovered and
analyzed in the system of two Chern-Simons plane parallel layers and a neutral atom in its ground state
between the layers. Remarkably, P-odd three-body vacuum effects arising due to 180 degree rotation of one
of the Chern-Simons layers can be verified in experiments with neutral atoms having QED dipole
interaction with an electromagnetic field.
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I. INTRODUCTION

The Casimir effect [1,2] is a quantum effect which
studies interaction between macroscopic objects in their
ground state. Interaction between two dielectric half-spaces
separated by a vacuum slit is determined by the Lifshitz
formula [3]. Theoretical study of the Casimir effect has
received new possibilities in the framework of the scatter-
ing approach, and the formalism has been effectively
applied to nonflat geometries including diffraction
gratings [4–6], spheres, and cylinders [7–11]. One can
find details of theoretical and experimental research in
various reviews and books on the subject [12–32].
Chern-Simons action modifies the Casimir interaction

essentially; its study within 2þ 1 Abelian electrodynamics
with Chern-Simons term has been started in Ref. [33]
where the Maxwell-Chern-Simons electrodynamics has a
massive spin-1 excitation. Chern-Simons constants of the
layers are dimensionless in the 3þ 1 case. Rigid non-
penetrable boundary conditions modified by a Chern-
Simons term in the 3þ 1 case have been considered in
Refs. [34,35], and the Hall conductivity is not described by

these conditions. The Casimir energy of two flat Chern-
Simons layers in a vacuum has been derived in
Refs. [36,37], Casimir attraction and repulsion due to
Chern-Simons boundary layers on dielectric and metal
half-spaces have been studied in Refs. [38,39].
The Casimir-Polder potential for an anisotropic atom is

obtained by direct application of quantum electrodynam-
ics in the second order perturbation theory [40–44]. The
Casimir-Polder effect for conducting planes has been
considered in Refs. [45,46], and the Casimir-Polder effect
for conducting planes with a tensorial conductivity [47]
has been considered in Refs. [12,48,49]. The Casimir-
Polder potential of a neutral anisotropic atom in the
presence of a plane Chern-Simons layer has been derived
in Ref. [50], and charge-parity violating effects due
to the Chern-Simons layer have been investigated in
Ref. [51].
In the low-energy effective theory of topological insula-

tors there is a term proportional to θE⃗ H⃗ in addition to the
standard electromagnetic energy density; this action can be
integrated over the volume of the topological insulator into
Chern-Simons action at the boundary. The parameter a of
Chern-Simons action is quantized in this case as follows:
a ¼ αθ=ð2πÞ, θ ¼ ð2mþ 1Þπ, α is QED fine structure
constant, and m is an integer number [52]. Various aspects
of the Casimir interaction of topological insulators have
been studied in literature [53–58].
The theoretical description of Chern insulators [59–61]

is given in a nondispersive case by Chern-Simons action
with the parameter a ¼ Cα, C is a Chern number—a
topological invariant giving the winding number of a
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map from a two-dimensional torus to a two-dimensional
unit sphere. The Casimir interaction of Chern insulators is
studied in Refs. [37,62,63].
Quantum Hall layers in an external magnetic field also

lead to a quantized Casimir force, where in the parameter
of the Chern-Simons action a ¼ να, ν is an integer or a
fractional number characterizing the plateau of the quantum
Hall effect [38,64,65].
The Casimir repulsion attracts a special attention in the

Casimir effect research, and repulsion is a promising
regime from the point of view of technology. The rotation
of polarization after reflection of the electromagnetic wave
from the Chern-Simons plane layer is an important property
which leads to regimes of attraction and repulsion in the
Casimir pressure between two Chern-Simons plane parallel
layers in vacuum and on boundaries of dielectrics or
metals [36–39]. Repulsive Casimir pressure has not been
investigated experimentally in this geometry so far.
A complementary way to study the Casimir effect is a

local probe of vacuum by a neutral atom in its ground state.
It is tempting to study the vacuum between two Chern-
Simons plane parallel layers locally due to intriguing
properties of this system. This paper fills the gap in an
important direction of local study of the vacuum in the
geometry of two Chern-Simons layers. Analytic results for
the Casimir-Polder potential of an anisotropic atom
between two Chern-Simons plane parallel layers in vacuum
and on boundaries of dielectric half-spaces are derived for
the first time in the present work.
Recently the formalism based on Green functions

scattering has been introduced [12]; in this approach one
evaluates electric, magnetic Green functions and the
Casimir pressure in an explicit gauge-invariant derivation.
In Ref. [12] we have derived the Casimir pressure and the
Casimir-Polder potential in systems without the rotation of
polarizations after reflection of electromagnetic waves from
boundaries between different media.
In the present paper we develop a principal generaliza-

tion of the Green functions scattering approach to a general
case of reflection from plane boundaries. In the presence of
several Chern-Simons layers one cannot express the
Casimir-Polder potential in terms of two reflection coef-
ficients even for a diagonal tensor of atomic polarizability
due to the rotation of the transverse electric (TE) and the
transverse magnetic (TM) polarizations after reflection of
the electromagnetic field from each Chern-Simons layer.
The matrix of reflection coefficients is nondiagonal in this
case [37,38]. The derivation of the Casimir-Polder potential
in the presence of several Chern-Simons layers has required
a development of a novel technique presented in this paper.
We derive new formulas for the Casimir-Polder potentials
for all systems considered in this paper. We also discover
and investigate novel three-body vacuum effects in an atom
—a two layers system due to the 180 degree rotation of one
of the layers.

We proceed as follows. In Sec. II we write expressions
for the field of a point dipole in a vacuum in terms of
electric and magnetic fields following Ref. [12] and
generalize Green functions scattering formalism to the
important case of nondiagonal reflection matrices. Then
we derive the result for the Casimir-Polder potential of an
anisotropic atom in the presence of a Chern-Simons plane
boundary layer on a dielectric half-space. In Sec. III we
derive a general result for the Casimir-Polder potential
of an anisotropic atom between two dielectric half-spaces
with the Chern-Simons plane parallel boundary layers. In
Sec. IV we derive results for the Casimir-Polder potential of
an anisotropic atom between two Chern-Simons plane
parallel layers in a vacuum expressed through Lerch
transcendent functions and polylogarithms. Section V is
devoted to the analysis of P-odd three-body vacuum effects,
and experiments to measure the Casimir-Polder potential in
the slit are outlined.
Magnetic permeability of materials μ ¼ 1 throughout the

text. We use ℏ ¼ c ¼ 1 and Heaviside-Lorentz units.

II. THE CASIMIR-POLDER POTENTIAL OF AN
ANISOTROPIC ATOM ABOVE A DIELECTRIC

HALF-SPACEWITHCHERN-SIMONS BOUNDARY
LAYER

Green functions scattering method has been introduced
in Ref. [12] where it has been applied to derivation of
various classical results for the Casimir-Polder potential
and the Casimir pressure in geometries with plane boun-
daries; an explicit gauge-invariant derivation of results has
been worked out. All the results in Ref. [12] are expressed
in terms of reflection coefficients for TE and TMmodes for
problems when no mixing of TE and TM modes is present
after reflection of the electromagnetic wave from the plane
boundary between different media.
The Chern-Simons boundary layer rotates each polari-

zation of the incoming electromagnetic field after reflection
from the layer, and the rotation of polarizations is described
in this case by a nondiagonal reflection matrix [37,38]. The
Green functions scattering method is generalized in this
work to a general nondiagonal reflection problem when
applied to derivation of the Casimir-Polder potential. The
generalized formalism is developed and presented in detail
in this paper.
The result for the Casimir-Polder potential of a neutral

anisotropic atom interacting with the Chern-Simons plane
layer in a vacuum is derived in Ref. [50]. In this section we
generalize the result of Ref. [50] and derive the Casimir-
Polder potential of a neutral anisotropic atom in its ground
state located at a distance z0 from a dielectric half-space
with a plane Chern-Simons boundary layer.
Consider a dipole source at the point r0 ¼ ð0; 0; z0Þ

characterized by electric dipole moment dlðtÞ with com-
ponents of the four-current density [50]
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ρðt; rÞ ¼ −dlðtÞ∂lδ3ðr − r0Þ; ð1Þ

jlðt; rÞ ¼ ∂tdlðtÞδ3ðr − r0Þ: ð2Þ

An exact electric Green function can be found from
the electric field part solution of Maxwell equations
for the electromagnetic field propagating from a dipole
source (1) and (2). The scattered electric Green function
DE

ijðt1 − t2; r; r0Þ is a difference of the exact electric Green
function and the vacuum electric Green function. The
Casimir-Polder potential is defined in terms of the scattered
electric Green function DE

ijðt1 − t2; r; r0Þ from the source

(1) and (2) and the atomic polarizability αijðt1 − t2Þ ¼
ihTðd̂iðt1Þ; d̂jðt2ÞÞi as follows [12]:

Uðz0Þ ¼ −
Z∞
0

dω
2π

αijðiωÞDE
ijðiω; r0; r0Þ: ð3Þ

From the Weyl formula [66]

eiωjr0−rj

4πjr0 − rj ¼ i
ZZ

eiðkxðx
0−xÞþkyðy0−yÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−k2x−k2y

p
ðz0−zÞÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2x − k2y

q dkxdky
ð2πÞ2 ;

ð4Þ

valid for z0 − z > 0, one can write electric and magnetic
fields propagating downwards from the dipole source (1)
and (2) in the form [12]

E0ðω; rÞ ¼
Z

Ñðω;kkÞeikk·rke−ikzðz−z0Þd2kk; ð5Þ

H0ðω; rÞ ¼ 1

ω

Z
½k̃ × Ñðω;kkÞ�eikk·rke−ikzðz−z0Þd2kk; ð6Þ

Ñðω;kkÞ ¼
i

8π2kz
ð−ðd · k̃Þk̃þ ω2dÞ; ð7Þ

where kk ¼ ðkx; kyÞ, kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2k

q
, and k̃ ¼ ðkk;−kzÞ.

Components of the vacuum electric Green function for
z0 − z > 0 can be determined from (5).
Consider a diffraction problem on a homogeneous

dielectric half-space z < 0 characterized by a dielectric
permittivity εðωÞ and a plane Chern-Simons boundary
layer at z ¼ 0 described by the action

SCS ¼
a
2

Z
εzνρσAνFρσ dtdxdy: ð8Þ

To solve a diffraction problem we write electric and
magnetic fields for z > 0 in the form

E1ðω; rÞ ¼
Z

Ñðω;kkÞeikk·rke−ikzðz−z0Þd2kk

þ
Z

vðω;kkÞeikk·rkeikzzd2kk; ð9Þ

H1ðω; rÞ ¼ 1

ω

Z
½k̃ × Ñðω;kkÞ�eikk·rke−ikzðz−z0Þd2kk

þ 1

ω

Z
½k × vðω;kkÞ�eikk·rkeikzzd2kk; ð10Þ

and for z < 0 in the form

E2ðω; rÞ ¼
Z

uðω;kkÞeikk·rke−iKzzd2kk; ð11Þ

H2ðω; rÞ ¼ 1

ω

Z
ð½kk × uðω;kkÞ� − Kz½n × uðω;kkÞ�Þ

× eikk·rke−iKzzd2kk ð12Þ

with Kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εðωÞω2 − k2x − k2y

q
and n ¼ ð0; 0; 1Þ.

Unknown vector functions vðω;kkÞ and uðω;kkÞ can be
found from the system of boundary conditions imposed on
electric and magnetic fields:

divðE1 − E0Þ ¼ 0; ð13Þ

divE2 ¼ 0; ð14Þ

E1
xjz¼0 ¼ E2

xjz¼0; ð15Þ

E1
yjz¼0 ¼ E2

yjz¼0; ð16Þ

H1
xjz¼0þ −H2

xjz¼0− ¼ 2aE1
xjz¼0; ð17Þ

H1
yjz¼0þ −H2

yjz¼0− ¼ 2aE1
yjz¼0: ð18Þ

Boundary conditions (17) and (18) have been considered in
a study of propagation of a plane electromagnetic wave in a
medium with a piecewise constant axion field [67] and in a
medium with Chern-Simons layers [68]. Note that the
parameter a is proportional to a nondiagonal part of
the surface conductivity [58]. With this understanding
the frequency dispersion aðωÞ may be considered in
boundary conditions (17) and (18). To simplify notations
we do not write explicitly the frequency ω in aðωÞ in what
follows. In the Casimir-Polder potential formulas we
implicitly assume aðiωÞ dependence.
It is convenient to use polar coordinates in two-

dimensional ðkx; kyÞ momentum space and local orthogo-
nal basis er, eθ, ez so that kk ¼ krer, kr ¼ jkkj. We write
boundary conditions in this basis
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vrkr þ kzvz ¼ 0; ð19Þ

urkr − Kzuz ¼ 0; ð20Þ

ur ¼ vr þ Ñreikzz0 ; ð21Þ

uθ ¼ vθ þ Ñθeikzz0 ; ð22Þ

−kzvθ þ kzÑθeikzz0 − Kzuθ ¼ 2ωaur; ð23Þ

kzvr−krvz−kzÑreikzz0−krÑzeikzz0þKzurþkruz¼2ωauθ;

ð24Þ

and get

vr ¼
�
−
rTM þ a2T
1þ a2T

Ñr þ
kz
ω

aT
1þ a2T

Ñθ

�
eikzz0 ; ð25Þ

vθ ¼
�
−
ω

kz

aT
1þ a2T

Ñr þ
rTE − a2T
1þ a2T

Ñθ

�
eikzz0 ; ð26Þ

vz ¼
kr
kz

�
rTM þ a2T
1þ a2T

Ñr −
kz
ω

aT
1þ a2T

Ñθ

�
eikzz0 ; ð27Þ

where rTM and rTE are Fresnel reflection coefficients

rTMðω; krÞ ¼
εðωÞkz − Kz

εðωÞkz þ Kz
; rTEðω; krÞ ¼

kz − Kz

kz þ Kz
;

ð28Þ

and

Tðω; krÞ ¼
4kzKz

ðkz þ KzÞðεðωÞkz þ KzÞ
: ð29Þ

Note that we omit dependence of reflection and trans-
mission coefficients on ðω; krÞ in (25)–(27) for brevity.
At this point it is convenient to define the local matrix R

resulting from Eqs. (25) and (26):

Rða; εðωÞ;ω; krÞ≡ 1

1þ a2T

�−rTM − a2T kz
ω aT

− ω
kz
aT rTE − a2T

�
:

ð30Þ

To find the reflected part of the electric field one should
use rotation between two local bases and make substitutions

dr ¼ dx cos θ þ dy sin θ; ð31Þ

dθ ¼ dx sin θ − dy cos θ; ð32Þ

vx ¼ vr cos θ þ vθ sin θ; ð33Þ

vy ¼ vr sin θ − vθ cos θ ð34Þ

for every given kk to the scattered field part of the expression
(9) by the use of (7) and (25)–(27). In doing so and noting that

Ñr ¼
i

8π2
ðkzðdx cos θ þ dy sin θÞ þ krdzÞ; ð35Þ

Ñθ ¼
i

8π2
ω2

kz
ðdx sin θ − dy cos θÞ; ð36Þ

we obtain local contributions to Cartesian components of
scattered electric Green functions for coinciding arguments at
the point of a dipole source:

DE
xxðω; kr; θ; z ¼ z0 ¼ z0Þ

¼ i
8π2

��
R11kz cos θ þ R12

ω2

kz
sin θ

�
cos θ

þ
�
R21kz cos θ þ R22

ω2

kz
sin θ

�
sin θ

�
e2ikzz0 ; ð37Þ

DE
yyðω; kr; θ; z ¼ z0 ¼ z0Þ

¼ i
8π2

��
R11kz sin θ − R12

ω2

kz
cos θ

�
sin θ

−
�
R21kz sin θ − R22

ω2

kz
cos θ

�
cos θ

�
e2ikzz0 ; ð38Þ

DE
zzðω; kr; θ; z ¼ z0 ¼ z0Þ ¼ −

i
8π2

k2r
kz

R11e2ikzz0 ; ð39Þ

DE
xyðω; kr; θ; z ¼ z0 ¼ z0Þ

¼ i
8π2

��
R11kz sin θ − R12

ω2

kz
cos θ

�
cos θ

þ
�
R21kz sin θ − R22

ω2

kz
cos θ

�
sin θ

�
e2ikzz0 ; ð40Þ

DE
yxðω; kr; θ; z ¼ z0 ¼ z0Þ

¼ i
8π2

��
R11kz cos θ þ R12

ω2

kz
sin θ

�
sin θ

−
�
R21kz cos θ þ R22

ω2

kz
sin θ

�
cos θ

�
e2ikzz0 ; ð41Þ

DE
xzðω; kr; θ; z ¼ z0 ¼ z0Þ

¼ i
8π2

½R11kr cos θ þ R21kr sin θ�e2ikzz0 ; ð42Þ

DE
zxðω; kr; θ; z ¼ z0 ¼ z0Þ
¼ i

8π2
½−R11kr cos θ þ R21kr sin θ�e2ikzz0 ; ð43Þ
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DE
yzðω; kr; θ; z ¼ z0 ¼ z0Þ

¼ i
8π2

½R11kr sin θ − R21kr cos θ�e2ikzz0 ; ð44Þ

DE
zyðω; kr; θ; z ¼ z0 ¼ z0Þ
¼ i

8π2
½−R11kr sin θ − R21kr cos θ�e2ikzz0 : ð45Þ

The Casimir-Polder potential of an anisotropic atom
above a dielectric half-space with a plane Chern-
Simons boundary layer is found by integrating expressions
(37)–(45) over polar coordinates and making use of the
formula (3) [we separately write contributions to the
Casimir-Polder potential from different components of
αijðiωÞ]:

Uxxðz0Þ þ Uyyðz0Þ ¼ −
1

16π2

Z∞
0

dωðαxxðiωÞ þ αyyðiωÞÞ
Z∞
0

dkrkre−2kzz0
�
rTM þ a2T
1þ a2T

kz −
rTE − a2T
1þ a2T

ω2

kz

�
; ð46Þ

Uzzðz0Þ ¼ −
1

8π2

Z∞
0

dωαzzðiωÞ
Z∞
0

dkr
k3r
kz
e−2kzz0

rTM þ a2T
1þ a2T

;

ð47Þ

Uxyðz0Þ þUyxðz0Þ ¼ −
1

8π2

Z∞
0

dωωðαxyðiωÞ − αyxðiωÞÞ

×
Z∞
0

dkrkre−2kzz0
aT

1þ a2T
; ð48Þ

Uxz ¼ Uzx ¼ Uyz ¼ Uzy ¼ 0: ð49Þ

Note that the Casimir-Polder potential (46)–(49) has a
contribution of an antisymmetric part of the atomic polar-
izability [69]. For a plane Chern-Simons layer in vacuum
the result of Ref. [50] can be deduced from the formu-
las (46)–(49).

III. THE CASIMIR-POLDER POTENTIAL OF AN
ANISOTROPIC ATOM BETWEEN TWO

DIELECTRIC HALF-SPACES WITH CHERN-
SIMONS BOUNDARY LAYERS

The geometry of two Chern-Simons plane parallel layers
in a vacuum or on boundaries of dielectrics is of particular
interest due to the prediction of repulsive and attractive
Casimir pressure regimes [36–39]. For two Chern-Simons
plane parallel layers in vacuum and the condition a1 ¼ a2
the Casimir repulsion holds in an interval a1 ∈ ½0; a0�,
where a0 ≈ 1.032502 [36,38], while for a1 ¼ −a2 the
Casimir attraction holds for all values of the parameter
a1 [37].
It is definitely important to probe analogous geometry

locally by inserting neutral atoms into a cavity with Chern-
Simons boundary layers. The Casimir-Polder potential

determines quantum interaction of an anisotropic neutral
atom in its ground state with cavity walls, and it depends on
the geometry and material of the cavity. A local probe of the
cavity with parallel plane boundaries by neutral atoms is
really promising from the experimental point of view since
in this case one avoids expected problems with parallelism
in measurements of the Casimir forces in geometries with
parallel plane boundaries.
Consider two dielectric half-spaces z > d, z < 0 with

dielectric permittivities ε1ðωÞ and ε2ðωÞ, respectively, and
the vacuum slit 0 < z < d between them. Two Chern-
Simons plane parallel boundary layers are located at z ¼ d
and z ¼ 0 and are characterized by the parameters a1ðωÞ
and a2ðωÞ, respectively [see the discussion after (18)]. We
omit frequency dispersion in a1ðωÞ and a2ðωÞ for brevity in
what follows as before. The atom is located at the point
r0 ¼ ð0; 0; z0Þ, 0 < z0 < d (see Fig. 1). In this section we
derive a general result for the Casimir-Polder potential of a
neutral anisotropic atom in this system.

FIG. 1. Anisotropic neutral atom between two dielectric half-
spaces with plane Chern-Simons boundary layers, z0 is a distance
of the atom from the layer and the dielectric medium charac-
terized by the index 2, and d is a width of the vacuum slit.

CASIMIR-POLDER INTERACTION WITH CHERN-SIMONS … PHYS. REV. D 107, 105019 (2023)

105019-5



First it is convenient to solve a diffraction problem from
an upper half-space (z ≥ d) when the lower half-space is
absent. Consider an upward propagation of an electromag-
netic field from a point dipole located at r0 ¼ ð0; 0; z0Þ,
z0 < d. For z < d the expansions for electric and magnetic
fields can be written as follows:

E1ðω;rÞ¼
Z

Neikk·rkeikzðz−z0Þd2kkþ
Z

v1e
ikk·rke−ikzzd2kk;

ð50Þ

H1ðω;rÞ ¼ 1

ω

Z
½k×N�eikk·rkeikzðz−z0Þd2kk

þ 1

ω

Z
ð½kk × v1�− kz½n× v1�Þeikk·rke−ikzzd2kk;

ð51Þ

N ¼ i
8π2kz

ð−ðk · dÞkþ ω2dÞ: ð52Þ

The vector function v1 depends on ω;kk, z0, d, and the
dipole moment d. For z > d we write transmitted fields in
the form

E2ðω; rÞ ¼
Z

u1e
ikk·rkeiKz1zd2kk; ð53Þ

H2ðω;rÞ ¼ 1

ω

Z
ð½kk ×u1� þKz1½n×u1�Þeikk·rkeiKz1zd2kk:

ð54Þ

Note that the parameter a1 enters boundary conditions

H2
xjz¼dþ −H1

xjz¼d− ¼ 2a1E1
xjz¼d; ð55Þ

H2
yjz¼dþ −H1

yjz¼d− ¼ 2a1E1
yjz¼d: ð56Þ

In analogy to Sec. II we find

v1r ¼
�
−
rTM1

þ a21T1

1þ a21T1

Nr þ
kz
ω

a1T1

1þ a21T1

Nθ

�
eikzð2d−z0Þ;

ð57Þ

v1θ ¼
�
−
ω

kz

a1T1

1þ a21T1

Nr þ
rTE1

− a21T1

1þ a21T1

Nθ

�
eikzð2d−z0Þ;

ð58Þ

v1z ¼ −
kr
kz

�
rTM1

þ a21T1

1þ a21T1

Nr −
kz
ω

a1T1

1þ a21T1

Nθ

�
eikzð2d−z0Þ;

ð59Þ

where rTM1
, rTE1

, and T1 are written for a medium with a
dielectric permittivity ε1ðωÞ.
Now we turn to a solution of a diffraction problem when

both half-spaces are present. It is convenient to define from
(30) the matrices R1ðωÞ and R2ðωÞ for a reflection of
tangential components of the electric field from the media
above and below the point dipole, respectively, in a local
basis er, eθ, ez:

R1ðωÞ≡Rða1;ε1ðωÞ;ω;krÞ; R2ðωÞ≡Rða2;ε2ðωÞ;ω;krÞ;
ð60Þ

where the medium for z ≤ 0 is denoted by the index 2.
Then the tangential local components of the electric field in
the interval 0 < z < d from the point dipole (1) and (2)
located at ð0; 0; z0Þ are expressed in terms of matrices
R1ðωÞ and R2ðωÞ as follows:

�
Er

Eθ

�
¼ eikzz

I − R2R1e2ikzd

�
R2R1

�
Nr

Nθ

�
eikzð2d−z0Þ þ R2

�fNrfNθ

�
eikzz0

�

þ eikzð2d−zÞ

I − R1R2e2ikzd

�
R1R2

�fNrfNθ

�
eikzz0 þ R1

�
Nr

Nθ

�
e−ikzz0

�
: ð61Þ

In (61) the local components of the electric field are
obtained by a summation of multiple reflections from
media with indices 1 and 2.
It is convenient to define four matrices entering (61) after

Wick rotation:

M1 ¼ ðI − R2ðiωÞR1ðiωÞe−2kzdÞ−1R2ðiωÞR1ðiωÞ; ð62Þ

M2 ¼ ðI − R2ðiωÞR1ðiωÞe−2kzdÞ−1R2ðiωÞ; ð63Þ

M3 ¼ ðI − R1ðiωÞR2ðiωÞe−2kzdÞ−1R1ðiωÞR2ðiωÞ; ð64Þ

M4 ¼ ðI − R1ðiωÞR2ðiωÞe−2kzdÞ−1R1ðiωÞ: ð65Þ
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Components of scattered electric Green functions can be expressed in terms of matrices (62)–(65) following the scheme
explicitly presented in Eqs. (37)–(45). After integration over polar coordinates we express scattered electric Green functions
at imaginary frequencies for coinciding arguments r ¼ r0 in terms of matrix elements of matrices (62)–(65):

DE
xxðiω; r ¼ r0Þ ¼ DE

yyðiω; r ¼ r0Þ ¼ −
1

8π

Z∞
0

dkrkr

�
kzðe−2kzdM1

11 þ e−2kzz0M2
11 þ e−2kzdM3

11 þ e−2kzðd−z0ÞM4
11Þ

þ ω2

kz
ðe−2kzdM1

22 þ e−2kzz0M2
22 þ e−2kzdM3

22 þ e−2kzðd−z0ÞM4
22Þ
�
; ð66Þ

DE
zzðiω; r ¼ r0Þ ¼ −

1

4π

Z∞
0

dkr
k3r
kz

½−e−2kzdM1
11 þ e−2kzz0M2

11 − e−2kzdM3
11 þ e−2kzðd−z0ÞM4

11Þ�; ð67Þ

DE
xyðiω; r ¼ r0Þ ¼ −DE

yxðiω; r ¼ r0Þ ¼ −
1

8π

Z∞
0

dkrkr

�
−
ω2

kz
ðe−2kzdM1

12 þ e−2kzz0M2
12 þ e−2kzdM3

12 þ e−2kzðd−z0ÞM4
12Þ

þ kzðe−2kzdM1
21 þ e−2kzz0M2

21 þ e−2kzdM3
21 þ e−2kzðd−z0ÞM4

21Þ
�
; ð68Þ

DE
xzðiω; r ¼ r0Þ ¼ DE

zxðiω; r ¼ r0Þ ¼ DE
yzðiω; r ¼ r0Þ ¼ DE

zyðiω; r ¼ r0Þ ¼ 0: ð69Þ

Now one can substitute expressions (66)–(69) into formula (3) and evaluate the Casimir-Polder potential of an anisotropic
atom between two dielectric half-spaces with Chern-Simons plane parallel boundary layers. The Casimir-Polder potential in
the limit a1, a2 → ∞ is derived in Appendix A.

IV. THECASIMIR-POLDER POTENTIALOFANANISOTROPIC ATOMBETWEENTWOCHERN-SIMONS
LAYERS IN VACUUM

In this section we derive analytic results for the Casimir-Polder potential of an anisotropic atom between two Chern-
Simons plane parallel layers in vacuum separated by a distance d; the atom is positioned at the point ð0; 0; z0Þ. The layer
characterized by the parameter a1 is located at z ¼ d, and the layer characterized by the parameter a2 is located at z ¼ 0.
In the system under consideration εðωÞ ¼ 1 for z < 0 and z > d. In this case the matrices (62)–(65) have the form

M1 ¼ M3 ¼ −
1

ð1þ a21Þð1þ a22Þ det½I − R1R2e−2kzd�

 
a1a2ð1 − a1a2ð1 − e−2kzdÞÞ a1a2ða1 þ a2Þ kzω

−a1a2ða1 þ a2Þ ω
kz

a1a2ð1 − a1a2ð1 − e−2kzdÞÞ

!
; ð70Þ

M2 ¼ −
1

ð1þ a21Þð1þ a22Þ det½I − R1R2e−2kzd�

 
a22ð1þ a21ð1 − e−2kzdÞÞ −a2ð1þ a21 þ a1a2e−2kzdÞ kzω

a2ð1þ a21 þ a1a2e−2kzdÞ ω
kz

a22ð1þ a21ð1 − e−2kzdÞÞ

!
; ð71Þ

M4 ¼ −
1

ð1þ a21Þð1þ a22Þ det½I − R1R2e−2kzd�

 
a21ð1þ a22ð1 − e−2kzdÞÞ −a1ð1þ a22 þ a1a2e−2kzdÞ kzω

a1ð1þ a22 þ a1a2e−2kzdÞ ω
kz

a21ð1þ a22ð1 − e−2kzdÞÞ

!
; ð72Þ

where

1

ð1þ a21Þð1þ a22Þ det½I − R1R2e−2kzd�
¼ 1

1þ a21 þ a22 þ 2a1a2e−2kzd þ a21a
2
2ð1 − e−2kzdÞ2 ¼

γ1
1þ β1y

þ γ2
1þ β2y

ð73Þ

with y ¼ expð−2kzdÞ, A ¼ a21a
2
2, B ¼ 2ða1a2 − a21a

2
2Þ, C ¼ ð1þ a21Þð1þ a22Þ, y1;2 ¼ −B�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
B2−4AC

p
2A ¼

ða1a2 − 1� iða1 þ a2ÞÞ=ða1a2Þ, β1 ¼ −1=y1, β2 ¼ −1=y2, γ1 ¼ 1=ðAy1ðy2 − y1ÞÞ, and γ2 ¼ 1=ðAy2ðy1 − y2ÞÞ.
Decomposition of the denominator in (73) into two terms leads to an analytic result for the Casimir-Polder potential in

terms of Lerch transcendent functions. We change variables

CASIMIR-POLDER INTERACTION WITH CHERN-SIMONS … PHYS. REV. D 107, 105019 (2023)

105019-7



Z∞
0

krdkrfðkzÞ ¼
Z∞
ω

kzdkzfðkzÞ ð74Þ

and use the integral

G0ðχ; β;ωÞ≡
Z∞
ω

e−2kzχ

1þ βe−2kzd
dkz

¼ 1

2d

Ze−2ωd
0

y
χ
d−1

1þ βy
dy

¼ e−2ωχ

2d
Φ
�
−βe−2ωd; 1;

χ

d

�
; ð75Þ

where Φðα1;α2; α3Þ is a Lerch transcendent function.
Derivatives over the parameter χ are defined as follows:

G1ðχ; β;ωÞ≡ 1

2

d
dχ

G0ðχ; β;ωÞ ¼ −
Z∞
ω

kz
e−2kzχ

1þ βe−2kzd
dkz;

ð76Þ

G2ðχ; β;ωÞ≡ 1

4

d2

dχ2
G0ðχ; β;ωÞ ¼

Z∞
ω

k2z
e−2kzχ

1þ βe−2kzd
dkz:

ð77Þ

The Casimir-Polder potential of an anisotropic atom
between the two layers is derived by making use of (3),
(66)–(68), (70)–(73), and (75)–(77):

Uxxðz0; dÞ þUyyðz0; dÞ ¼
1

16π2
X
i¼1;2

γi

Z∞
0

dωðαxxðiωÞ þ αyyðiωÞÞ½−2a21a22G2ð2d; βi;ωÞ þ 2ða21a22 − a1a2ÞG2ðd; βi;ωÞ

− a22ð1þ a21ÞG2ðz0; βi;ωÞ þ a21a
2
2G2ðz0 þ d; βi;ωÞ − a21ð1þ a22ÞG2ðd − z0; βi;ωÞ

þ a21a
2
2G2ð2d − z0; βi;ωÞ þ ω2ð−2a21a22G0ð2d; βi;ωÞ þ 2ða21a22 − a1a2ÞG0ðd; βi;ωÞ

− a22ð1þ a21ÞG0ðz0; βi;ωÞ þ a21a
2
2G0ðz0 þ d; βi;ωÞ − a21ð1þ a22ÞG0ðd − z0; βi;ωÞ

þ a21a
2
2G0ð2d − z0; βi;ωÞÞ�; ð78Þ

Uzzðz0; dÞ ¼
1

8π2
X
i¼1;2

γi

Z∞
0

dωαzzðiωÞ½2a21a22G2ð2d; βi;ωÞ − 2ða21a22 − a1a2ÞG2ðd; βi;ωÞ − a22ð1þ a21ÞG2ðz0; βi;ωÞ

þ a21a
2
2G2ðz0 þ d; βi;ωÞ − a21ð1þ a22ÞG2ðd − z0; βi;ωÞ þ a21a

2
2G2ð2d − z0; βi;ωÞ

þ ω2ð−2a21a22G0ð2d; βi;ωÞ þ 2ða21a22 − a1a2ÞG0ðd; βi;ωÞ þ a22ð1þ a21ÞG0ðz0; βi;ωÞ
− a21a

2
2G0ðz0 þ d; βi;ωÞ þ a21ð1þ a22ÞG0ðd − z0; βi;ωÞ − a21a

2
2G0ð2d − z0; βi;ωÞÞ�; ð79Þ

Uxyðz0; dÞ þ Uyxðz0; dÞ ¼
1

8π2
X
i¼1;2

γi

Z∞
0

dωωðαxyðiωÞ − αyxðiωÞÞ½−2a1a2ða1 þ a2ÞG1ð2d; βi;ωÞ

þ a2ð1þ a21ÞG1ðz0; βi;ωÞ þ a1a22G1ðz0 þ d; βi;ωÞ
þ a1ð1þ a22ÞG1ðd − z0; βi;ωÞ þ a2a21G1ð2d − z0; βi;ωÞ�: ð80Þ

One can express components of the Casimir-Polder
potential (78)–(80) in terms of Lerch transcendent func-
tions due to relations

G1ðχ; β;ωÞ ¼ −
e−2ωχ

4d2

�
2ωdΦ

�
−βe−2ωd; 1;

χ

d

�
þΦ

�
−βe−2ωd; 2;

χ

d

��
; ð81Þ

G2ðχ; β;ωÞ ¼
e−2ωχ

4d3

�
2ω2d2Φ

�
−βe−2ωd; 1;

χ

d

�
þ 2ωdΦ

�
−βe−2ωd; 2;

χ

d

�
þΦ

�
−βe−2ωd; 3;

χ

d

��
: ð82Þ

MARACHEVSKY and SIDELNIKOV PHYS. REV. D 107, 105019 (2023)

105019-8



At large distances of the atom from the layers z0,
d − z0 ≫ λ0 ≡ 2π=ω0, λ1 ≡ 2π=ω1, and λ2 ≡ 2π=ω2 (λ0
is a wavelength corresponding to a typical absorption
frequency of the atom ω0, and λ1 and λ2 are wavelengths
of the layers corresponding to absorption frequencies ω1

and ω2 of the layers), the Casimir-Polder potential can be
derived analytically for arbitrary values of constants a1, a2
[a1 ¼ a1ð0Þ and a2 ¼ a2ð0Þ for z0, d − z0 ≫ λ1, λ2].
Noting that

Z∞
0

dωG2ðχ; βi;ωÞ ¼ 3

Z∞
0

dωω2G0ðχ; βi;ωÞ

¼ 3

8d4
Φ
�
y−1i ; 4;

χ

d

�
; ð83Þ

we find from (78) and (79) the Casimir-Polder potential of
the atom between two Chern-Simons plane parallel layers
at large distances from the layers resulting from the
symmetric part of the atomic polarizability:

Usðz0; dÞ ¼ Us1ðz0; dÞ þ Us2ðdÞ ¼
αxxð0Þ þ αyyð0Þ þ αzzð0Þ

32π2d4
X
i¼1;2

γi

�
−a22ð1þ a21ÞΦ

�
y−1i ; 4;

z0
d

�
− a21ð1þ a22ÞΦ

�
y−1i ; 4;

d − z0
d

�
þ a21a

2
2Φ
�
y−1i ; 4;

dþ z0
d

�
þ a21a

2
2Φ
�
y−1i ; 4;

2d − z0
d

��
þUs2ðdÞ; ð84Þ

Us2ðdÞ ¼
αxxð0Þ þ αyyð0Þ − αzzð0Þ

32π2d4
X
i¼1;2

Li4ðy−1i Þ

¼ αxxð0Þ þ αyyð0Þ − αzzð0Þ
32π2d4

�
Li4

�
a1a2

ða1 þ iÞða2 þ iÞ
�
þ Li4

�
a1a2

ða1 − iÞða2 − iÞ
��

; ð85Þ

where Li4ðzÞ is a polylogarithm function. For a2 ¼ −a1 one finds from (84)

Usðz0; dÞ ¼
αxxð0Þ þ αyyð0Þ þ αzzð0Þ

32π2d4

�
−

a21
1þ a21

�
Φ2

�
a21

1þ a21
; 4;

z0
d

�
þΦ2

�
a21

1þ a21
; 4;

d − z0
d

��
þ a41
ð1þ a21Þ2

�
Φ2

�
a21

1þ a21
; 4;

dþ z0
d

�
þΦ2

�
a21

1þ a21
; 4;

2d − z0
d

���
þ Us2ðdÞ; ð86Þ

where

Φ2ðz; s;αÞ≡Φðz; s; αÞ þ z
∂Φðz; s; αÞ

∂z
: ð87Þ

To find the leading contribution to the Casimir-Polder
potential at large distances from the layers resulting from the
antisymmetric part of the atomic polarizability tensor, it is

sufficient to take into account the leading term in the expansion
of the antisymmetric part of the polarizability tensor for small
ω [50]: αxyðωÞ − αyxðωÞ ≃ iωCas. In doing so, we obtain
from (80) the leading contribution to the Casimir-Polder
potential of the atom between two Chern-Simons plane
parallel layers at large distances from the layers resulting
from the antisymmetric part of the atomic polarizability:

Uasðz0; dÞ ¼
Cas

32π2d5
X
i¼1;2

γi

�
a2ð1þ a21ÞΦ

�
y−1i ; 5;

z0
d

�
þ a1ð1þ a22ÞΦ

�
y−1i ; 5;

d − z0
d

�
þ a1a22Φ

�
y−1i ; 5;

dþ z0
d

�
þ a2a21Φ

�
y−1i ; 5;

2d − z0
d

��
þ Uas2ðdÞ; ð88Þ

Uas2ðdÞ ¼
Cas

16π2d5
ℑðy1Li5ðy−11 ÞÞ: ð89Þ

For a2 ¼ −a1 one finds from (88) and (89)
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Uasðz0; dÞ ¼
Cas

32π2d5

�
a1

1þ a21

�
−Φ2

�
a21

1þ a21
; 5;

z0
d

�
þΦ2

�
a21

1þ a21
; 5;

d − z0
d

��
þ a31
ð1þ a21Þ2

�
Φ2

�
a21

1þ a21
; 5;

dþ z0
d

�
−Φ2

�
a21

1þ a21
; 5;

2d − z0
d

���
: ð90Þ

In the limit a1, a2 → ∞ the potential Usðz0; dÞ is in agreement with Barton [70] (ρ ¼ z0=d):

Uidðz0; dÞ ¼ −
π2

96d4
ðαxxð0Þ þ αyyð0Þ þ αzzð0ÞÞ

3 − 2sin2ðπρÞ
sin4ðπρÞ þ π2

1440d4
ðαxxð0Þ þ αyyð0Þ − αzzð0ÞÞ; ð91Þ

and the asymptotics of Us1ðz0; dÞ at large a1, a2 is derived
in Appendix B.
We use (84) and (91) to evaluate the ratio of the Casimir-

Polder potential of a neutral polarizable atom in the
presence of two Chern-Simons plane parallel layers to
the Casimir-Polder potential of an atom in the presence of
two perfectly conducting parallel planes (a1 → ∞,
a2 → ∞). Ratios Us=Uid are shown in Fig. 2 for an
isotropic atom with αxxð0Þ ¼ αyyð0Þ ¼ αzzð0Þ for a1 ¼
a2 and a2 ¼ 2a1 in an interval a1 ∈ ½0; 3.5�.

V. P-ODD VACUUM EFFECTS

Now we present the most intriguing result of the paper—
theoretical prediction of P-odd three-bodyvacuumeffects.By
P-odd three-body effectswe denote physical effects that differ
after 180 degree rotation of one of theChern-Simons layers in
the presence of a neutral atom. In our notations 180 degree
rotation of one of the layers corresponds to the substitution
a1 → −a1 (or a2 → −a2) into the Casimir-Polder potential.

Note that in the model under consideration a neutral polar-
izable atom interacts via a quantum electrodynamical dipole
interaction with an electromagnetic field.
From the formulas (84), (86), and (91) we find ratios

of potentials Usðz0 ¼ d=2; d; a2 ¼ a1Þ and Usðz0 ¼ d=2;
d; a2 ¼ −a1Þ to the potential Uidðz0 ¼ d=2; dÞ of the atom
between two perfectly conducting parallel planes, and we
present these ratios for ν ¼ a1=α ≤ 10 in Fig. 3. Note that
the parameter ν is quantized in quantum Hall layers and
Chern insulators. Values of analogous ratios for larger
values of ν can be extracted from Figs. 2 and 4.
In Fig. 4 we compare the Casimir-Polder potentials

of an isotropic atom for two systems differing by parity of
one of the Chern-Simons layers: a2 ¼ a1 and a2 ¼ −a1.
We use formulas (84) and (86) to find the ratio of the
difference ΔU¼Usðz0¼d=2;d;a2¼−a1Þ−Usðz0¼d=2;d;
a2¼a1Þ from maxΔU ≈ 0.00587jUidðz0 ¼ d=2; dÞj,
where maxΔU holds at a1 ≈ 0.678; the ratio is shown
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FIG. 2. Ratios of the Casimir-Polder potential of a neutral
polarizable isotropic atom located between two plane Chern-
Simons layers in vacuum Usðz0; dÞ to the potential of the same
atom between two perfectly conducting planes Uidðz0; dÞ, where
z0 is a distance of the atom from the layer characterized by a
constant a2 and d is a distance between the layers.
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FIG. 3. Ratios of the Casimir-Polder potentials Usðz0; dÞ=
Uidðz0; dÞ differing by 180 degree rotation of the Chern-Simons
layer characterized by a parameter a2: a2 ¼ a1 and a2 ¼ −a1.
Here z0 is a distance of the atom from the layer characterized by a
constant a2, d is a distance between the layers, and a dimension-
less parameter ν ¼ a1=α is quantized in quantum Hall layers and
Chern insulators.
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in Fig. 4. It is interesting to note that the ratio
maxΔU=jUidðz0 ¼ d=2; dÞj ≈ 0.00587 for a1 ≈ 0.678
(ν ≈ 93) is even greater than ratios found in Fig. 3
for ν ¼ 10.
Consider first a classical mechanics reasoning in a

gedanken experiment which demonstrates the way to study
P-odd effects by neutral atoms in the system of two Chern-
Simons plane parallel layers. Consider a neutral atom
which starts moving in free space from the point A far
away from the layers, continues its movement between the
layers so that z0 ¼ d=2, and finally leaves the space
between the layers reaching the point B in free space far
away from the layers (A, z0, and B are on the same straight
line parallel to the layers). The Casimir-Polder potential of
the atom between two Chern-Simons layers in this case is
equal in absolute value to an increase of the kinetic energy
of the atom between the layers. The atom moves at a higher
speed between the layers than its speed in a vacuum, and
the time difference of the flights with and without Chern-
Simons layers can be measured in experiments. When one
changes the parameter a1 (or a2) by changing an external
magnetic field in the case of a quantum Hall layer or by
selecting a layer with a different Chern number in case of a
Chern insulator, one changes the quantum vacuum and the
value of the Casimir-Polder potential. At the same time one
changes the time of the flight of the atom from point A to
point B. In summary, measuring time shifts in flight time of
neutral atoms through the slit between two Chern-Simons
layers is a direct way to study energy shifts in the Casimir-
Polder potential due to changes in a1 and a2.
Another possibility to study the Casimir-Polder potential

is a measurement of the number of atoms passing through a
cavity. The experiment [71] with sodium atoms passing
through a micron-sized cavity clearly proved the existence
of the Casimir-Polder force by measuring the intensity of a

sodium atomic beam transmitted through the cavity as a
function of the separation of cavity boundaries. The
experiment [71] can be considered as a prototype of
experiments for the measurement of P-odd vacuum effects.
One can also study quantum effects of propagation of

neutral atoms in a slit between Chern-Simons layers in the
presence of a gravitational field. A combined effect of
quantum reflection of neutral atoms and the Earth’s
gravitational field during propagation of atoms through
the slit in analogy to experiments with neutrons [72,73]
should expand experimental capabilities in search of dark
matter. Note that the quantum reflection of atoms from rigid
boundaries arises due to an attractive rapidly changing
Casimir-Polder potential [74]. Chern-Simons boundary
layers with P-odd vacuum effects lead to new opportunities
in this research direction.

VI. CONCLUSIONS

In this paper we develop a principal generalization of the
Green functions scattering method [12] for the case when
one cannot express the Casimir-Polder potential in terms of
the diagonal reflection matrix consisting of reflection
coefficients for TE and TM modes. Diffraction of an
electromagnetic wave in a system with a Chern-Simons
plane boundary layer is described by a nondiagonal
reflection matrix due to the rotation of polarizations after
the reflection of the incoming electromagnetic wave from
the layer [37,38]. The technique developed in this paper is
used to derive new formulas for the Casimir-Polder
potential of an anisotropic atom in the presence of dielectric
half-spaces with Chern-Simons plane parallel boundary
layers.
The technique developed in the present paper should be

effective for derivation of the Casimir-Polder potential of an
anisotropic neutral atom located between any media with
plane parallel boundaries when rotation of polarizations
occurs after reflection from boundaries. In general, once the
reflection of electric and magnetic fields from plane parallel
boundaries is defined, the Casimir-Polder potential of an
anisotropic neutral atom in the system can be found by the
application of a technique developed in this work.
We have started from the derivation of the Casimir-

Polder potential of an anisotropic atom in the presence of a
dielectric half-space with a Chern-Simons plane layer at its
boundary, and the result is presented in general formu-
las (46)–(49). We have continued with the derivation of a
general result for the Casimir-Polder potential of an
anisotropic atom between two dielectric half-spaces with
Chern-Simons plane parallel boundary layers; the result
is given by expressions (66)–(69) when substituting into
a well-known formula (3). This general result is then used
to obtain formulas (78)–(80) for the components of
the Casimir-Polder potential of an anisotropic atom
between two Chern-Simons plane parallel layers in a
vacuum expressed through Lerch transcendent functions.
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FIG. 4. Ratio ΔU ¼ Usðz0 ¼ d=2; d; a2 ¼ −a1Þ −Usðz0 ¼
d=2; d; a2 ¼ a1Þ to maxΔU ≈ 0.00587jUidðz0 ¼ d=2; dÞj, and
maxΔU holds at a1 ≈ 0.678.
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The Casimir-Polder potential of the atom between two
Chern-Simons plane parallel layers at large distances of the
atom from both layers is expressed through Lerch tran-
scendent functions and polylogarithms in formulas (84)–
(90). All these results for the Casimir-Polder potentials
are novel.
The knowledge of formulas for the Casimir-Polder

potential of an anisotropic atom between Chern-Simons
layers in vacuum and on dielectrics is important for precise
comparison of the theory and experiments discussed in
Sec. V. The quantization of parameters a1 and a2 in
topological insulators, Chern insulators, and quantum
Hall layers leads to precise knowledge of the Casimir-
Polder potential of the atom at large separations from the
boundaries of a cavity with Chern-Simons boundary
layers, which is relevant for planning the experiments
and conducting a precise comparison of the theory and
experiments.
Novel P-odd effects for the Casimir-Polder potential

between two Chern-Simons plane parallel layers in vacuum
due to a substitution a2 → −a2 are predicted and analyzed
in Sec. V. P-odd effects arise due to a three-body interaction
between a neutral atom in its ground state and two Chern-
Simons layers. Our results demonstrate that a neutral atom
with QED dipole interaction may become an effective tool
for the measurement of P-odd vacuum effects due to

180 degree rotation of one of the Chern-Simons layers.
Predicted dependence of the Casimir-Polder potential of a
neutral atom on 180 degree rotation of one of the Chern-
Simons layers in a cavity suggests an intriguing funda-
mental experimental check of quantum vacuum properties
based on rotation of the topological material.
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APPENDIX A: PERFECTLY CONDUCTING
PARALLEL PLANES

In the limit a1; a2 → ∞ we find from (30) and (62)–(65)

M1 ¼ M3 ¼ −M2 ¼ −M4 ¼ 1

1 − e−2kzd

�
1 0

0 1

�
: ðA1Þ

For a1; a2 → ∞ the Casimir-Polder potential of a neutral
atom with a frequency dispersion of the polarizability is
derived from (3), (66), (67), and (A1):

U2ðz0; dÞ ¼ −
Z∞
0

dω
2π

Z∞
0

dkrkr
2π

expð−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ k2r

p
z0Þ þ expð−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ k2r

p
ðd − z0ÞÞ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ k2r

p
ð1 − expð−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ k2r

p
dÞÞ

× ½ð2ω2 þ k2rÞðαxxðiωÞ þ αyyðiωÞÞ þ 2k2rαzzðiωÞ�

þ
Z∞
0

dω
2π

Z∞
0

dkrkr
2π

expð−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ k2r

p
dÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ k2r

p
ð1 − expð−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ k2r

p
dÞÞ

× ½ð2ω2 þ k2rÞðαxxðiωÞ þ αyyðiωÞÞ − 2k2rαzzðiωÞ�: ðA2Þ

The potential U2ðz0; dÞ (A2) coincides with the Casimir-Polder potential of a neutral anisotropic atom between two
perfectly conducting parallel planes [12].

APPENDIX B: ASYMPTOTICS

At large distances of the atom from the Chern-Simons layers the Casimir-Polder potential is derived in (84). Now we
consider the asymptotics of Us1ðz0; dÞ at large a1 and a2.
One can use equality γ1 þ γ2 ¼ 1=ðð1þ a21Þð1þ a22ÞÞ and expansions y−11 ∼ y−12 ∼ 1 − 1=a21 − 1=a22 − 1=ða1a2Þ to write

X
i¼1;2

γiΦðy−1i ; s; αÞ ¼ Φðy−12 ; s; αÞ
ð1þ a21Þð1þ a22Þ

þ γ1ðΦðy−11 ; s; αÞ −Φðy−12 ; s;αÞÞ

≈
Φðy−12 ; s; αÞ þΦ0ðy−12 ; s; αÞy−11

ð1þ a21Þð1þ a22Þ
≈

1

ð1þ a21Þð1þ a22Þ
�
Φð1; s; αÞ þΦ0ð1; s;αÞ

−
�
1

a21
þ 1

a22
þ 1

a1a2

�
ð2Φ0ð1; s; αÞ þΦ00ð1; s; αÞÞ

�
; ðB1Þ
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and derivatives in Lerch transcendent functions are taken by the first argument. It is convenient to use integral representation
of the Lerch transcendent function

Φðz; s; αÞ ¼ 1

ΓðsÞ
Z∞
0

ts−1e−αt

1 − ze−t
dt ðB2Þ

and expansion (B1) to express asymptotics of Us1ðz0; dÞ in (84) for large a1 and a2 in terms of Hurwitz zeta function
ζðs;αÞ ¼ Φð1; s; αÞ due to integral

Z∞
0

ts−1e−αt

ðet − 1Þ2 dt ¼ ΓðsÞ½ζðs − 1; αþ 2Þ − ðαþ 1Þζðs; αþ 2Þ� ðB3Þ

as follows (ρ ¼ z0=d):

Us1ðz0; dÞ ∼ −
αxxð0Þ þ αyyð0Þ þ αzzð0Þ

32π2d4

��
1 −

1

a21
−

1

a22
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ðζð4; ρÞ þ ζð4; 1 − ρÞÞ

þ 1
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ðζð3; ρÞ þ ð1 − ρÞζð4; ρÞÞ þ 1

a22
ðζð3; 1 − ρÞ þ ρζð4; 1 − ρÞÞ

− 2

�
1

a21
þ 1
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þ 1

a1a2

�
ðζð3;−ρþ 2Þ þ ζð3; ρþ 1Þ þ ðρ − 1Þζð4; 2 − ρÞ − ρζð4; ρþ 1ÞÞ

�
: ðB4Þ

Note that the asymptotics (B4) contains the term proportional to 1=ða1a2Þwhich changes its sign during 180 degree rotation
of one of the Chern-Simons layers (a1 → −a1 or a2 → −a2). Note also that

ζð4; ρÞ þ ζð4; 1 − ρÞ ¼ π4

3

3 − 2sin2ðπρÞ
sin4ðπρÞ ; ðB5Þ

so that in the limit a1 → ∞, a2 → ∞ one gets (91).
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