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We investigate how dark energy affects atom-field interaction. To this end, we consider acceleration
radiation of a freely falling atom close to a Schwarzschild black hole (BH) in the presence of dark energy
characterized by a positive cosmological constant Λ. The resulting spacetime is endowed with a BH and a
cosmological (or de Sitter) horizon. Our consideration is a nonextremal (1þ 1)-dimensional geometry with
horizons far apart, giving rise to a flat Minkowski-like region in between the two horizons. Assuming a
scalar (spin-0) field in a Boulware-like vacuum state, and by using a basic quantum optics approach, we
numerically achieve excitation probabilities for the atom to detect a photon as it falls toward the BH
horizon. It turns out that the nature of the emitted radiation deeply drives its origin from the magnitude ofΛ.
In particular, radiation emission is enhanced due to dilation of the BH horizon by dark energy. Also, we
report an oscillatory nonthermal spectrum in the presence of Λ, and these oscillations, in a varying degree,
also depend on BH mass and atomic excitation frequency. We conjecture that such a hoedown may be a
natural consequence of a constrained motion due to the bifurcate Killing horizon of the given spacetime.
The situation is akin to the Parikh-Wilzcek tunneling approach to Hawking radiation where the presence of
extra contributions to the Boltzmann factor deforms the thermality of flux. It apparently hints at field
satisfying a modified energy-momentum dispersion relation within classical regime of general relativity
arising as an effective low energy consequence of an underlying quantum gravity theory. Our findings may
signal new ways of conceiving the subtleties surrounding the physics of dark energy.

DOI: 10.1103/PhysRevD.107.105017

I. INTRODUCTION

Quantum vacuum, unlike its classical counterpart, is full
of surreal activities and its structure is modified in presence
of external influences [1]. Parker’s [2] realization of
cosmological particle creation as a result of expansion of
Universe and Hawking’s [3] astonishing discovery that
black holes (BHs) emit radiation, both fundamentally stem
from the behavior of vacuum in presence of gravitational
fields. Similar physics is manifested in Unruh effect [4], the
flat spacetime analog of Hawking radiation, which posits
that a detector accelerating uniformly in Minkowski vac-
uum thermalizes with a temperature proportional to its
proper acceleration [5], and stands as an important signpost
for a not-yet accomplished full theory of quantum gravity
[6]. These phenomena bear close correspondence to the
observation by Moore [7] and others [8–11] that moving

boundaries (mirrors) create particles out of vacuum in
Minkowski spacetime in the well-known process of
dynamical Casimir effect (DCE), first observed in super-
conducting circuits few years ago [12]. These huge
endeavors have led to a remarkable realization about the
correspondence between moving mirrors and black holes
[13–15]. This is a major paradigm in the theory of quantum
fields on curved geometries [16], a blend of quantum
field theory, general relativity and thermodynamics. It has
been highly successful in explaining the large scale
structure formation and origin of cosmic background
radiation (CMB) anisotropies in the earliest epochs of
our Universe [2]. These ideas have also been instrumental
in paving way for the rapidly developing field of relativistic
quantum information, where the acceleration has been
shown to have significant bearing on quantum informa-
tional and communication processes [17].
Though the problem of accelerated mirrors and the

particle creation has been pursued for a long time shortly*lgwang@zju.edu.cn

PHYSICAL REVIEW D 107, 105017 (2023)

2470-0010=2023=107(10)=105017(14) 105017-1 © 2023 American Physical Society

https://orcid.org/0000-0003-3054-7317
https://orcid.org/0000-0002-2695-9709
https://orcid.org/0000-0003-3293-9189
https://orcid.org/0000-0001-5211-2707
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.105017&domain=pdf&date_stamp=2023-05-19
https://doi.org/10.1103/PhysRevD.107.105017
https://doi.org/10.1103/PhysRevD.107.105017
https://doi.org/10.1103/PhysRevD.107.105017
https://doi.org/10.1103/PhysRevD.107.105017


after discovery of DCE, recent interest in the subject has
opened windows for new directions with intriguing con-
sequences [18,19]. In particular, connections of moving
mirror solutions to strong gravitational systems have been
found through the accelerated boundary correspondences
along with particle creation for various BH spacetimes (see,
e.g., [20] and the references therein) including de Sitter
space [21], and the discussions related to equivalence
principle of general relativity [22,23].
Recent activities in this direction have kindled an

insightful way of perceiving Hawking-like acceleration
radiation in BHs [24–26]. The idea generally runs as
follows. A two-level atom falling freely in a BH, under
specific conditions, may get excited and emit acceleration
radiation with a typical thermal character. This is named as
horizon brightened acceleration radiation (HBAR), and its
thermal character has contributions purely from the relative
acceleration between the atom and a boundary (mirror) held
fixed near a BH horizon. This boundary is Casimir-like,
and can be envisioned in two ways: it can either be a plane
reflecting surface for which mirror edge effects are not a
problem, or a spherical surface shrouding the entire BH
[24]. Making use of this boundary also eliminates any
possible contribution from Hawking radiation.
Among several factors that impart thermal character to

HBAR radiation, the notable one includes the presence of a
pure vacuum exterior to BH (the so-called isolated BHs).
However, on general grounds, astrophysical BHs could be
surrounded by some kind of matter-energy distribution
[27], then this raises a genuine question as to what would be
the impact on the radiation character if a BH is surrounded
by a certain kind of matter-energy distribution? One of the
most plausible cases is that a BH is immersed in the
surroundings of dark energy characterized by a positive
cosmological constant (Λ). This in fact is based on
introduction of an additional term ð∝ ΛgμνÞ into Einstein
gravitational field equations [28]. The resulting spacetime
geometry is the famous Schwarzschild-de Sitter (SdS)
spacetime, the simplest generalization of Kerr-Newman
family to incorporate Λ. The positive cosmological con-
stant Λ is in agreement with the current observations
ð∼10−52 m−2Þ [29]. The motivations for considering de
Sitter black hole lies in the following. As our Universe is
undergoing accelerated expansion, a positive cosmological
constant is the simplest candidate model for dark energy
and this makes de Sitter black holes as toy models for
deciphering global structure of isolated black holes in our
Universe. Another crucial relevance is their aptness in
modeling black hole formation during inflationary era of
our Universe [30,31]. With a much richer geometry than the
pure Schwarzschild one, SdS spacetime is endowed with
two Killing horizons, which produces myriad of phenom-
ena associated with a BH horizon due to gravity ðrgÞ and
the cosmological or de Sitter horizon due to dark energy
ðrΛÞ. The particle creation due to these horizons, including

both thermal and nonthermal aspects, has been thoroughly
investigated [32–35]. Being sensitive to the background
geometry, such a radiation emission encodes vital infor-
mation about the spacetime background. One thus expects
that the emission from the atom carries the signature of dark
energy with it. As we show this would be more relevant in
the scenario where dark energy has much greater magni-
tude as in the (post-)inflationary cosmology where primor-
dial black hole (PBH) formation is a viable phenomenon
[36,37]. Interestingly, owing to their small masses,
Hawking radiation is more significant for PBHs.
In this work, we demonstrate that this dark energy

signature lies in the deviation produced in the spectrum
and which purely originates from the choice of Λ. The
falling atom has limited freedom to move in the region
rg ≲ r≲ rΛ that has causal connection to a static observer
who decides to detect the radiation emitted by the atom. A
neutral point exists between two horizons at some radial
distance r0 ≡ r ¼ ð3M=ΛÞ1=3 [38] that marks the starting
point of journey toward BH horizon. We observe that
emission probability is enhanced due to Λ. Meanwhile, the
particle spectrum is oscillatory and hence features non-
thermal character, and eventually reproduces a Bose-
Einstein (BE)-type thermal distribution for Λ ¼ 0. We
argue that this transition also alludes to the manifestation
of modified dispersion relations E2 ¼ p2 þ βfðpÞ, where β
characterizes the scale at which the modifications become
relevant. This in turn hints toward an underlying theory of
quantum gravity manifested as a low energy effective field
theory at a classical level.

II. DARK ENERGY EFFECTS ON
RADIATION SPECTRUM

A. Gravitational background and the field modes

We first get the preliminaries right to avoid any ambi-
guity in the forthcoming discussion. We work in natural
units ðc ¼ G ¼ 1Þ throughout. The metric of SdS space-
time reads

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð1Þ

where fðrÞ is given by

fðrÞ ¼ 1 −
2M
r

−
Λr2

3
; ð2Þ

with M the mass of BH and Λ the cosmological constant.
The metric gμν, defined as ds2 ¼ gμνdxμdxν, is a solution of
vacuum Einstein field equations with Λ > 0,

Rμν þ
1

2
Rgμν þ Λgμν ¼ 0; ð3Þ

where Rμν is the Ricci tensor and R the scalar curvature.
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In terms of the BH horizon at r ¼ rg and the cosmo-
logical horizon at r ¼ rΛ, one can express fðrÞ as

fðrÞ ¼ Λ
3r

ðr − rgÞðrΛ − rÞðr − rnÞ; ð4Þ

where rn ¼ −ðrg þ rΛÞ is the third root of Eq. (2) without
any physical significance.
The surface gravities associated with these horizons are

defined by the following relation

κi ¼
���� dfðrÞdr

����
r¼ri

: ð5Þ

Then we have two surface gravities, respectively at rg and
rΛ, expressed as

κg ¼
ΛðrΛ þ 2rgÞðrΛ − rgÞ

6rg
; ð6Þ

κΛ ¼ Λðrg þ 2rΛÞðrΛ − rgÞ
6rΛ

; ð7Þ

and further we obtain the surface gravity at rn

κn ¼
M
r2n

−
Λrn
3

: ð8Þ

It is also possible to compute the roots of fðrÞ in the
following way. Assuming 0 < 9ΛM2 < 1, this gives event
horizon and cosmological horizon, respectively, as [34]

rg ¼
�

2ffiffiffiffi
Λ

p
�
cos

�
1

3
cos−1ð3M

ffiffiffiffi
Λ

p
Þ þ π

3

�
; ð9Þ

and

rΛ ¼
�

2ffiffiffiffi
Λ

p
�
cos

�
1

3
cos−1ð3M

ffiffiffiffi
Λ

p
Þ − π

3

�
: ð10Þ

It shows that if Λ → 1=9M2, rg increases monotonically
and rΛ starts shrinking, and the situation gradually
approaches to an extreme SdS spacetime at 3M

ffiffiffiffi
Λ

p ¼ 1,
which is the so-called Nariai limit. Beyond the Nariai limit,
spacetime is dynamic for all r > 0 such that no BH horizon
exists and one rather obtains a naked singularity at r ¼ 0.
This means that a positiveΛ puts an upper limit on the mass
acquired by a black hole. In our case, we follow the
constraint 0 < 9ΛM2 < 1, which makes the timescales
very separated near cosmological and BH horizons.
Meanwhile from Eq. (10), as Λ → 0, we have rΛ → ∞
and one recovers the Schwarzschild limit,i.e. κg ¼ 1=2rg ¼
1=4M and κΛ ≈ 1=rΛ → 0. Under this assumption, it is
more useful to compute the power series expansion
of trigonometric functions in Eqs. (9) and (10) to yield

rg ≈ 2M and rΛ ≈
ffiffiffi
3
Λ

q
, respectively. The Regge-Wheeler

tortoise coordinate r� can be acquired through the follow-
ing coordinate transformation

r� ¼
Z

dr
fðrÞ ; ð11Þ

which upon substitution of fðrÞ from Eq. (4) becomes

r� ¼
Z

3rdr
Λðr − rgÞðrΛ − rÞðr − rnÞ

¼ 1

2κg
ln

���� rrg − 1

���� − 1

2κΛ
ln

����1 − r
rΛ

����
þ 1

2κn
ln

���� r
rg þ rΛ

þ 1

����: ð12Þ

Equation (12) indicates that by expanding logarithms and
taking the limit Λ → 0 i.e., rΛ → ∞, one recovers the
Schwarzschild limit r� ≈ rþ 2M logðr=2M − 1Þ [34].
We now discuss the behavior of scalar (spin-0) field

mode propagation emitted by an atom in the metric given
by Eq. (1). For a general treatment of the problem, one can
look into the literature (e.g., Refs. [39,40]). In the minimal
coupling scenario, which signifies no coupling between
scalar and gravitational degrees of freedom, the wave
equation for a massless Klein-Gordon field is given by

∇μ∇μΦ ¼ 0: ð13Þ

Owing to the spherical symmetry of the problem and the
existence of a timelike Killing vector field ∂t, the above
equation admits the following general solution

Φ ¼
X
l;m

1

r
ψ lðt; rÞYlmðθ;ϕÞ; ð14Þ

where Ylm are spherical harmonics. This radial part satisfies
a Schrödinger-type wave equation outside the BH event
horizon

�
−

∂
2

∂t2
þ ∂

2

∂r2�

�
ψ lðt; rÞ ¼ VlðrÞψ lðt; rÞ; ð15Þ

where the potential VlðrÞ in this case is

VlðrÞ ¼ fðrÞ
�
1

r
dfðrÞ
dr

þ lðlþ 1Þ
r2

�
: ð16Þ

What follows next is quite crucial for our results and
the situation demands keen attention. Here, by invoking
many assumptions and approximations, we carefully define
vacuum state for our quantum field:
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(i) The primal one is that we are working in (1þ 1)-
dimensional spacetime and have completely ignored
the effective potential VlðrÞ in our case, which
otherwise often serves as a source from which
scattering effects germinate, a phenomenon quite
ubiquitous in BH spacetimes [41].

(ii) The very omission of VlðrÞ in the Refs. [24–26]
also forms one of essential initial conditions that
lends thermality to the flux emission. It nevertheless
finds a different grounding in there. In their work,
they consider only high frequency solutions, thereby
admitting less impediments to the propagation of
outgoing field mode by overcoming potential barrier
of the geometry. In contrast, our results can be
thought of being generic in the sense of frequency
ranges.

(iii) Our geometry is strictly nonextremal so that both the
BH and de Sitter horizons are very far apart. Awide
region around the neutral point exists which pos-
sesses a relatively Minkowskian character where the
observer is situated. This effectively makes the
spacetime look like a Schwarzschild BH with an
asymptotically flat region. One has to make sure that
the observer is not close to either of the horizons.
This helps us to define a Boulware-like vacuum state
for the field mode.

That being stated, this massively simplifies our analysis,
and hence enforcing these conditions on Eq. (15) gives the
following solution

ψðt; rÞ ¼ eiνðt�r�Þ: ð17Þ

Here � denote the ingoing and outgoing radiation modes.
We take the negative solution

ψðt; rÞ ¼ eiνðt−r�Þ; ð18Þ

which represents the normalized field mode with frequency
ν detected by the observer at the neutral point, and
constitutes the thrust of our work. That is, we only consider
the outgoing radiation modes from the atom as it falls
toward BH, while omitting the ingoing modes which
evidently do not reach the observer. We also ignore the
motion toward de Sitter horizon.
The Boulware-like field mode defined above is an

approximate one inasmuch as it is obtained by making
these assumptions. If any or all of these assumptions are
dropped, we would have a more general situation. Under
those circumstances, the field would be in a non-Boulware
state, which might bear noticeable impact on our results.
For example, if Λ admits very large values, the geometry
would tend to be extremal and would surely be differ-
entiated from nonextremal one considered here. Likewise,
the inclusion of potential term with small and intermediate
frequency ranges, would inevitably involve scattering

effects. The scenario may also change if one works in a
four-dimensional geometry. Although given those configu-
rations, the new results may resonate with our current
results (e.g. the nonthermality could be kept intact, possibly
in a different manner), it is however hard to ascertain their
exact nature without a thorough analysis. Moreover, perti-
nent to the above discussion, the definition of field vacuum
state in SdS spacetime is a loaded topic. Despite the fact
that it is natural to define vacuum state (so-called Unruh
vacuum) with respect to past de-Sitter horizon in Kruskal
coordinates as outlined in Refs. [42–44]; however, the
ambiguity in defining the vacuum state in an SdS spacetime
still persists, and a considerable volume of literature
exists, with a landscape of hypotheses. For an illuminating
discussion surrounding the definition of vacuum state in
SdS spacetime (and the associated α-vacua paradigm), we
would like to refer the reader to Refs. [45–48].

B. Geodesics for the freely falling atom

In this section, we solve the geodesic equation for a
radially infalling atom to compute the coordinate time t and
proper (conformal) time τ. Being a massive particle, the
atom’s trajectory is a radial timelike geodesic. The atom in
the spacetime metric of Eq. (1) has the Lagrangian [49]

L ¼ 1

2

�
fðrÞ _t2 − _r2

fðrÞ − r2 _θ2 − r2sin2θ _ϕ2

�
; ð19Þ

where the dot shows differentiation with respect to τ. The
full geodesic equation reads

d2xμ

dτ2
þ Γμ

ρσ
dxρ

dτ
dxσ

dτ
¼ 0; ð20Þ

where Γμ
ρσ are the Christoffel connections given by

Γμ
ρσ ¼ 1

2
gμνð∂ρgσν þ ∂σgρν − ∂νgρσÞ: ð21Þ

The geodesic equations are also supplemented by the
constraint equations

gμν
dxμ

dτ
dxν

dτ
¼

�
1; for timelike trajectories;

0; for null trajectories:
ð22Þ

The canonical momenta from the Lagrangian in Eq. (19)
are given by

pt ¼
∂L
∂ _t

¼ fðrÞ _t; pr ¼ −
∂L
∂ _r

¼ _r
fðrÞ ;

pθ ¼ −
∂L

∂ _ϕ
¼ r2 sin θ _ϕ; pθ ¼ −

∂L

∂ _θ
¼ r2 _θ: ð23Þ

The resulting Hamiltonian is
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H ¼ pt _t − ðpr _rþ pθ
_θ þ pϕ

_ϕÞ − L: ð24Þ

Since we consider a spherically symmetrical spacetime, we
can restrict the motion of atom to an equatorial plane. Thus,
we take θ ¼ π=2, and have _θ ¼ 0 ¼ _ϕ. The Hamiltonian
from Eq. (24) becomes

H ¼ pt _t − pr _r − L ð25Þ

¼ L; ð26Þ

which indicates that Lagrangian L is a constant of motion.
This gives two constants of motion, E and l as

fðrÞ dt
dτ

¼ E; r2
dϕ
dτ

¼ l; ð27Þ

where E is a constant and represents energy per unit mass of
the atom and l denotes the angular momentum about an
axis normal to the invariant plane. Further, the constancy of
L hints at the following conservation equations

�
dr
dτ

�
2

¼ E2 − fðrÞ; ð28Þ

and

�
dr
dt

�
2

¼
�
fðrÞ
E

�
2

½E2 − fðrÞ�: ð29Þ

If the atom moves from an initial position ri to a final
position rf, then the relations for t and τ in terms of r can be
written as

t ¼ �
Z

rf

ri

Edr

fðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − fðrÞ

p ; ð30Þ

τ ¼ �
Z

rf

ri

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − fðrÞ

p ; ð31Þ

where � sign corresponds to the outgoing and ingoing
trajectories, respectively. The above integrals are generally
difficult to solve analytically, we however note the follow-
ing points to serve our purpose. First, we note the possible
directions of the atomic motion and the value of E that
greatly influences the geodesic trajectory. It can be seen that
a positive Λ tends to pull the atom away from black hole
toward a future timelike infinity at r → ∞, while black hole
pulls in opposite direction toward its singularity at r → 0,
giving rise to a neutral point. This neutral point (r0) in SdS
spacetime corresponds to the maximum of fðrÞ in Eq. (2),
for which

dfðrÞ
dr

¼ 2M
r2

−
2Λr
3

¼ 0; ð32Þ

yielding r0 ¼ ð3M=ΛÞ1=3. As a result, atom starts its
journey at an initial point ri in the region rg ≤ ri ≤ r0
and continues to move toward BH horizon. We first solve
for E in Eq. (28) by assuming that radial velocity of the
atom _r ¼ dr=dτ ¼ 0 when r ¼ ri, yielding

�
dr
dτ

�
2

¼ E2 − fðrÞ ¼ 0; ð33Þ

which gives

E2 ¼ fðrÞjr¼ri : ð34Þ

As a natural choice and for the sake of simplicity, we
consider that it starts at ri ¼ r0. Henceforth, the neutral
point r0 serves as the lower integration limit for calculating
t, τ and final probability expression Pex. This choice of
initial point greatly helps to calculate E, and we write

E2 ¼ fðrÞjmax; ð35Þ

where fðrÞjmax is maximum of fðrÞ. This leads us to an
important observation. If one excludes the point r ¼ r0,
from Eq. (35), we see that in all situations E2 > fðrÞ. This
helps us to safely expand the term

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − fðrÞ

p
in the

denominator of Eqs. (30) and (31) and obtain approximate
expressions for t and τ. For ingoing trajectory, we thus
write

tðrÞ¼−
Z

E

fðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2−fðrÞ

p dr

¼−
Z

1

fðrÞ
�
1−

fðrÞ
E2

�
−1=2

dr

≈−
Z

1

fðrÞ
�
1þ 1

2E2
fðrÞþ 3

8E4
ffðrÞg2þ�� �

�
dr

≈−
Z

1

fðrÞdr−
Z �

1

2E2
fðrÞþ 3

8E4
ffðrÞg2þ�� �

�
dr:

ð36Þ

We use fðrÞ from Eq. (4) in Eq. (30) and notingR
dr
fðrÞ ¼ r�ðrÞ, the Regge-Wheeler coordinate, we obtain

the following relation for t,

tðrÞ ≈ −r�ðrÞ þ
1

24E4

�
−12E2rþ Λrðr2 − 3r2þÞ

− 3ΛrgrΛrn ln
�
r
rg

��
þ const: ð37Þ
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Likewise, for τðrÞ, we obtain

τðrÞ≈ 1

360E5

�
−360E4rþ20ΛE2rðr2−3r2þÞ

−
Λ2

r
ð3r6−15r3rgrΛrn−15r2gr2Λr

2
n−10r4r2þ

þ15r2r4þÞ−30ΛrgrΛrnð2E2þΛr2þÞ ln
�
r
rg

��

þ const: ð38Þ

In the above equations, r2þ ¼ r2g þ r2Λ þ rgrΛ and const: is
the constant of integration which makes no contribution to
the excitation probability as we will see later. With this, we
get the behavior of t and τ shown in the Fig. 1 for the range
rg ≤ r ≤ r0 by choosing different values of Λ.
From the figure, we observe that t diverges at BH

horizon which means that from the static observer’s
perspective, atom never really crosses the horizon, while

it always takes finite τ from atom’s own frame of reference.
This observation reflects a Schwarzschild-like behavior
and is indicative of typical gravitational time dilation.
Furthermore, the decreasing Λ amounts to smaller rg
and larger rΛ [see Eqs. (9) and (10)] implying an increasing
r0, while the overall nature of plots remains intact. With this
in hand, we next explore the excitation probabilities for the
atom to detect a real particle (here a “scalar photon”).
Furthermore, we showM, δ (deviation from r0), and atomic
transition frequency ω affect excitation probability.

C. Excitation probability

We first identify the model Hamiltonian associated with
this atom-field interaction. We assume that the falling atom
interacts with the field in a Boulware-like vacuum state.
Such interaction is modeled by the following interaction
Hamiltonian [24–26]

V̂ðτÞ ¼ ℏg½anψnðtðτÞ; rðτÞÞ þ H:c:�
× ½σðτÞe−iωτ þ H:c:�; ð39Þ

where g is atom-field coupling constant, ânlm is the
annihilation operator for the field modes that depends on
quantum numbers n≡ n, l, m, σ is atomic lowering
operator, and H.c. the Hermitian conjugate. The
Hamiltonian in Eq. (39) corresponds to the case where
the angular dependence of field modes is neglected. In
what follows, we show that a relative acceleration between
the atom and a mirror held fixed at the event horizon of BH
can lead to excitation of atom with the simultaneous
emission of a real particle received by the static observer
in between the horizons. It is worthwhile to note that atomic
transition to an excited statewhile simultaneously emitting a
real photon originates from the counter-rotating terms â†nσ̂†

in the interaction Hamiltonian and is indicative of a non-
adiabatic quantum transition [50]. Therefore, for the atom
with jbi and jai as ground and excited states respectively,
one can write the excitation probability as follows

Pex ¼
1

ℏ2

����
Z

dτh1ν; ajV̂ðτÞj0; bi
����
2

: ð40Þ

Making use of Eq. (39), Eq. (40) can be recast into the more
explicit form as

Pex ¼ g2
����
Z

dτψ�ðtðτÞ; rðτÞÞeiωτ
����
2

¼ g2
����
Z

dr

�
dτ
dr

�
ψ�ðrÞeiωτ

����
2

: ð41Þ

As atom falls freely toward BH horizon, the relevant free fall
limit is r0 → rg. However, to be consistent with our
approximation, we take the lower limit as ðr0 − δÞ, where
in principle δ → 0. Furthermore, the fact that we consider
mirror to be held fixed at the BH horizon is rather tricky here

FIG. 1. The behavior of (a) coordinate time tðrÞ and (b) proper
time τðrÞ for different values of Λ. As Λ dilates the BH horizon
radius, the greatest effect occurs for the case Λ ¼ 10−2 (red
curve) with rg ¼ 2.02779, whereas a minute effect can be seen on
the rest of them. Radial coordinate r is on log-scale.
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and needs some physical consideration. At the horizon,
proper acceleration diverges, which would translate to
requiring an infinite amount of energy to hold the mirror
static,making it a daunting task. In reality, it is rather slightly
away from the horizon at a point, say rm > rg. So onewould
like to place the atom at rm ≈ rg, which for all practical
purposes would enable one to integrate the probability
distribution up to rg.
Using Eq. (18) and dτ=dr from Eq. (28) and inserting

into Eq. (41), we get

Pex ¼ g2
����limδ→0

Z
rg

r0−δ
dr

eiν½tðrÞ−r�ðrÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − fðrÞ

p eiωτðrÞ
����
2

¼ g2

E2

����limδ→0

Z
r0−δ

rg

dreiν½tðrÞ−r�ðrÞ�eiωτðrÞ

×

�
1þ fðrÞ

2E2
þ 3

8E4
ffðrÞg2

�����
2

; ð42Þ

where the modulus justifies to invert the order of integration
limits. A general analytical solution to the above integral is
challenging, henceforth one can resort to numerical com-
putation. The probability distribution plots are given in
Fig. 2, followed by the discussion in next section.

D. Discussion

In the foregoing computation, the atom is in free fall and
not accelerated as guaranteed by general relativity, so at
first sight, it seems counter-intuitive for emitting acceler-
ation radiation. We however note an insightful clarification
from Ref. [24] as follows: “Gravitational acceleration of
atoms is also a source of confusion. The equivalence
principle tells us that the atom essentially falls “force-
free” into the BH. How can it then be radiating? Indeed,
the atomic evolution in the atom frame is described by the
eiωτ term in the Hamiltonian V̂ðτÞ. From the Hamiltonian
we clearly see that it is the photon time (and space)

FIG. 2. Excitation probability vs radiation frequency ν, under the influence of different values of (a) cosmological constant Λ, (b) BH
mass M, and (c) transition frequency ω. Note that the sole factor that numerically normalizes Pex in our case is ω. (d) The deviation δ
modifies the spectrum provided it stays extremely small to ensure the validity of our approximation. The smallest ones in our case with
δ ¼ 10−4 (purple curve) and δ ¼ 10−5 (blue curve) coincide. We chose g ¼ 1 throughout.
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evolution which contains effective acceleration. The radi-
ation modes are fixed relative to the distant stars, and the
photons (not the atoms) carry the seed of the acceleration
effects in V̂ðτÞ”. What really makes up an oscillatory and
hence a deformed Planckian spectrum in the Eq. (42) is
what we aim to validate qualitatively.

1. Nonthermal radiation

Fig. 2 captures the overall situation of photon emission
under the influence of Λ, BH mass M, δ, and lastly ω. Our
main focus here is to quantify the role ofΛ. As evident from
Fig. 2, the spectrumhas oscillatory behavior at the low ν end,
which smooths out yielding a typical thermal tail toward the
high end of spectrum. Consider, for example, the casewhere
M ¼ 1;Λ ¼ 10−2 in whichΛ is close to themaximum value
allowed by the constraint 0 < 9ΛM2 < 1. The resulting
distribution, as shown by red curve in Fig. 2(a), does not
follow the thermal distribution as one would have expected,
though it definitely ends up like a thermal tail. All
other values of Λ up to Λ < 10−5 provide similar but very
oscillatory behavior before settling down to the tail. More
specifically, we observe that, as Λ reduces, the peak of
distribution also lowers. Now an interesting question is what
could possibly be responsible for that behavior? The
question probably could allude to numerous underlying
facts of dark energy physics. We however attempt to piece
together many ideas and offer a heuristic explanation.
The general perception about the thermal behavior of

black holes with a typical blackbody spectrum rests on the
pioneering work by Bekenstein and Hawking [3,51], who
established the idea that BHs are very much like blackbody
objects. With no surprise, this beautiful concordance
necessitates the BHs to be associated with thermodynamic
parameters like temperature, entropy etc., and this under-
standing constitutes the bedrock of BH thermodynamics.
The idea that radiation spectrum should always be thermal,
however, ignores many underlying elements. For example,
scattering of flux and backreaction from the underlying
geometry, encoded in famous graybody factors in Hawking
radiation [52,53] is a noted phenomenon that accounts for
this deviation from thermality. In this regard, we note the
following points.

(i) We base our arguments on what one may term as
geometric considerations. At the outset, regarding
enhancement of probability Pex due to Λ, one can
think of this in the following way. The radiation flux
emitted especially near BH horizon experiences a
backreaction from tidal forces and tidal forces have
deeper connection to surface gravity of BH. For a
BH, surface gravity varies inversely with horizon
area, i.e. ∝ 1=r2g. As we know dark energy dilates the
horizon radius rg [see Eq. (9)], surface gravity
becomes weaker and this in turn reduces the
backreaction of radiation flux, thereby allowing

more particles to escape. This trend can be seen
from Fig. 2(a) where the peak of the flux is lowest
for Λ ¼ 10−5 (blue curve).

(ii) Freely falling detector interacting with accelerated
field modes has freedom to move from asymptotic
infinity to BH horizon [24], so the summing up of all
contributions from r ¼ rg to r ¼ ∞ effectively
yields a BE-type distribution as shown for Λ ¼ 0
case (see Fig. 3). Not only this, even the detector
falling freely from a finite distance to the BH
horizon can register thermal distribution as is the
case with near-horizon approximation [25,26], in-
cluding negative cosmological constant (anti-de
Sitter BHs) [54]. This near-horizon analysis approx-
imates the metric coefficient fðrÞ using Taylor
expansion with the condition ðr=rg − 1Þ ≪ 1 such
that fðrÞ ≈ f0ðrgÞðr − rgÞ. Contrary to this, the
presence of dark energy, giving rise to a BH
spacetime with bifurcate Killing horizons at rg
and rΛ, enforces a constrained motion in such a
way that it is not possible to carry out near-horizon
analysis and hence will inevitably yield a non-
thermal radiation. In this connection, it is interesting
to mention the analogous situation in Hawking
radiation. Parikh and Wilzcek [52] have demon-
strated Hawking radiation to be like a quantum
tunneling mechanism where particles tunnel out of
BH with its horizon playing role of a potential
barrier. Their formulation asserts that the emission
probability of a particle with energy ϵ is [52]

Pðϵ;MÞ ¼ exp

�
−8πϵ

�
M −

ϵ

2

��
; ð43Þ

FIG. 3. The Λ → 0 limit. Pex in our approach approximately
reproduces a thermal spectrum for Λ ¼ 0 with ν plotted on log
scale, which pertains to a Schwarzschild BH. Inset figure has ν on
a linear scale and its close resemblance to typical BE-type
distribution can be easily appreciated. We again chose ω ¼ 15.
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where M is BH mass. The presence of ϵ2 term in
the exponential term modifies the Boltzmann factor
and hence this yields a nonthermal spectrum. A hint
lies here. Though short of an analytical expression
for probability distribution in terms of Boltzmann
factor as in Parikh-Wilzcek approach given above
[Eq. (43)], a plausible extrapolation would be to
consider what our Eq. (42) offers. It would not be
wrong to conclude that the oscillatory spectrum
surely marks deviation from Boltzmann factor and
hence would appropriately be counted as nonther-
mal flux.

(iii) Dark energy influences the backreaction effects and
is known to produce leading corrections to Beken-
stein-Hawking temperature [55,56]. An interesting
observation in this context is the modifications of
energy-momentum dispersion relation (MDR) in
ultraviolet regime of general relativity

E2 ¼ p2 þ βfðpÞ; ð44Þ

where β is the parameter associated with the energy
scale at which the departure becomes relevant.
Though the above modifications become essentially
important near Planck scale regime in quantum
gravity and string theories [57], their low-energy
consequences that prevail in a fairly classical regime
however cannot be ruled out [57,58]. The possible
role of dark energy in MDR models has highlighted
the idea that late time de Sitter expansion of our
Universe is greatly connected to spontaneous
Lorentz symmetry breaking in so-called “bumblebee
gravity” [59]. In other words, Lorentz symmetry
violation occurs in presence of a nonzero vacuum
expectation value for an axial vector field known as
bumblebee field [60]. It is possible that these
Lorentz violating effects possess low energy conse-
quences and could serve as an important signpost for
a deeper mechanism involving a quantum gravity
theory [61]. We encounter an intriguing possibility
relevant to our results here when the field satisfies
MDR relations. For example, in the case of Unruh
radiation, the presence of MDR potentially yields
the frequency dependent corrections to the spectrum
of the form [62]

jg�j2 ¼
8π

αΩ½expð2πΩα Þ − 1� cos
2

�
θ −

Ω
2α

ln ðξηÞ
�
;

ð45Þ

where g� corresponds to particle creation corre-
sponding to the right and left Rindler wedges
respectively, θ is the argument of gamma function,
α is the proper acceleration of the detector, and Ω is
the emitted radiation frequency. The parameters ξ

and η are related to both the radiation frequency and
wave vector. The oscillatory term averages out to
one for large accelerations and frequencies, thereby
producing typical Unruh thermal tail. Based on these
observations, one may argue that the large values
of dark energy essentially hint at MDR relations
which affects the radiation spectrum emitted by the
falling atom to become nonthermal. When Λ ¼ 0, it
corresponds to complete elimination of effects
associated with dark energy and we recover typical
thermal spectrum which happens to be the case in
Refs. [24,54], discussed separately in the forthcom-
ing section.

Some further comments are in order. As revealed by
Fig. 2(a), the number of oscillations per ν interval increases
with decreasing Λ while simultaneously, the peak of
probability distribution is lowered. This is rooted in a
geometric effect. The small Λ separates the two horizons
and increases the integration limits, and this yields more
oscillations. It can be inferred that, from a numerical point
of view, the number of oscillations that almost becomes
continuous can be approximated by an average, which
could well be treated as a thermal distribution (i.e., the
case with Λ ¼ 0). Furthermore, one can also appreciate
the role played by Λ and M here. Bearing a quite
dissimilarity to Λ, M tries to minimize the number of
oscillations as seen from Fig. 2(b), and this can be seen as
a hallmark of antagonism between BH gravity due to M
and antigravity of Λ. Clearly, as M increases, the thermal
radiation feature becomes dominated. Nevertheless, the
underlying reasons may be much deeper than what it
appears to be. The impact of atomic transition frequency ω
is to hinder the excitation phenomenon as more energy is
required to excite an atom with a greater ω on energy
conservation grounds [see Fig. 2(c)]. This falls well in line
with the predictions of standard acceleration radiation [24]
or Unruh effect [4].
It is noteworthy that our results may be sensitive to the

choice of the parameter δ-the deviation from neutral point
r0-which is a prime condition on the consistency of our
approximation. In principle, one should take δ → 0.
However to appreciate its role, we plotted the results for
different values of δ. As soon as it becomes smaller, the
results do not differ much for a suitable choice of Λ andM,
as seen by the overlap of purple (δ ¼ 10−4) and blue
(δ ¼ 10−5) plots [see Fig. 2(d)]. In our calculations, we
chose a sufficiently small value of δð¼ 10−10Þ for obtaining
these convergence curves in Figs. 2(a)–2(c).

2. Retrieving the Λ → 0 limit

The above results were based on numerical approxima-
tion, we now substantiate our method by asking what
happens if one removes Λ. For this case, we first observe
what immediately happens to different parameters involved
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in probability computation in Eq. (42) (see Appendix A).
With this, the equation for probability becomes

Pex ¼
g2

ω2

����
Z

∞

0

dx exp

�
−ix

�
9

4
þ 23ν

8ω

�	

×

�
1þ x

rgω

�
ið3ν

8
þ5ω

4
Þ�

1þ x
2rgω

�����
2

: ð46Þ

This can now easily be solved with numerical techniques.
Choosing M ¼ 1 such that rg ¼ 2, the probability plot is
shown in Fig. 3 which clearly manifests thermal BE-type
behavior as expected for the Schwarzschild case [24,54].
To keep things on record, the thermal and nonthermal

attributes associated with de Sitter black holes vis-à-vis
Hawking radiation have been reported elsewhere in the
literature [33–35]. In the previous cases, the radiation
behavior is contingent on the choice of coordinate systems
and field vacuum state, whereas the present study differs in
the sense that the radiation spectrum manifests an explicit
dependence on Λ and with no contributions from Hawking
flux. In view of this ad hoc explanation, wewant to state that
we do not claim our explanation to be the final word on
the matter, though the numerical estimation is very fair to
encourage us for stating the above. To keep track of
numerical precision in our analysis, we have used numerical
integration package Cuba [63]. We explicitly demonstrated
(see Appendix A) how one can get back the Schwarzschild
limit from our approximation, which somehow lends con-
fidence to what we showed for these Λ ≠ 0 cases.

III. SUMMARY AND OUTLOOK

We have investigated acceleration radiation emitted by a
freely falling atom in Boulware vacuum near a de Sitter
black hole using a simple quantum optical setup. It shows
that, in presence of dark energy embodied in a positive
cosmological constant Λ, the emitted radiation spectrum
peak is enhanced and manifests oscillatory nonthermal
signatures. Thereupon, we attempted to qualitatively
expound the results. The enhancement of probability can
be attributed to the dilation of BH horizon which, owing to a
lesser surface gravity, allows more flux to escape compared
to the Schwarzschild case. In other words, dark energy, due
to its anti-gravity effect, pulls more particles away fromBH.
Furthermore, we argue that oscillatory nonthermal spectrum
might be because of a constrained motion of the atom in
presence of double Killing horizons. This in turn can
somehow also hint at possibility of dark energy being
potentially able to disturb the usual energy-momentum
dispersion relationswith intimate connections to low-energy
consequences of an underlying theory of quantumgravity. In
addition to this, we observe that the nature of large BHmass
M is to reduce the number of oscillations in the probability
distribution, depicting its rivalry with Λ. It is also seen that
the large transition frequency (ω) of the atom inhibits the

atomic excitation as in the conventional Unruh effect. This
result may help reshape our understanding of dark energy
via the celebrated cosmological constant problem.
Given the set of assumptions and approximations made,

the results presented in this work pertain to a specific
situation with regard to the quantum field state and the
underlying geometry. However, if one relaxes one or all of
these restrictions, the situation would be more general. For
example, one could include the effective potential of the
spacetime to quantify scattering effects, or that one would
have the freedom to work in four dimensions. A special
study of extremal geometry (corresponding to large Λ
values) would also be worth looking into. Furthermore, as
massless scalar field case is the simplest test field for
studying field propagation in BH spacetimes, nonzero
mass and spin considerations for the field may be another
interesting directions that could be probed. Since we
considered here the simplest candidate model for dark
energy-the cosmological constant, it is however possible to
analyze the results for other models [64]. That the general
relativity is an effective theory emerging from much deeper
quantum gravity or string theories, invoking quantum
spacetime for the above problem would surely produce
intriguing results. The results could also be extended to
higher-dimensional spacetimes, and the theories beyond
Einstein gravity. Doing this would perhaps bring us a little
closer to bridging the gap between quantum gravity/string
theories and their testable predictions. All these aspects
constitute a volume of future explorations.
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APPENDIX A: EXCITATION PROBABILITY

From Eq. (42), we have

Pex ¼
g2

E2

����limδ→0

Z
rg

r0−δ
dreiν½tðrÞ−r�ðrÞ�eiωτðrÞ

×

�
1þ fðrÞ

2E2
þ 3

8E4
ffðrÞg2

�����
2

: ðA1Þ

In the limit Λ → 0, our parameters in the Eq. (A1) become
as follows. r� reduces to that of Schwarzschild case [34],

r� ¼ rþ rg ln

�
r
rg

− 1

�
; ðA2Þ

where rg ¼ 2M. We also have fðrÞ ¼ 1 − rg=r. Maximum
of fðrÞ occurs at r → ∞ [see Eq. (2)] such that E ¼ 1.
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rΛ for Λ → 0 as mentioned in the previous discussion can
be approximated by

rΛ ≈
ffiffiffiffi
3

Λ

r
: ðA3Þ

From Eq. (37), we write

tðrÞ ≈ −r�ðrÞ þ
1

24E4

�
−12E2rþ Λrðr2 − 3r2þÞ

− 3ΛrgrΛrn ln
�
r
rg

��
þ const: ðA4Þ

We note that with Λ → 0, rΛ ≫ rg such that r2þ ¼ r2gþ
r2Λ þ rgrΛ ≈ r2Λ ¼ 3=Λ. Also note rn ¼ −ðrg þ rΛÞ ≈ −rΛ.
Thus by virtue of Eqs. (A2) and (A3), Eq. (A4) yields

tðrÞ ¼ −r − rg ln

�
r
rg

− 1

�
þ 1

24

�
−12r

þ 0 − 3Λr
�
3

Λ

�
þ 3Λrg

�
3

Λ

�
ln

�
r
rg

��

¼ −
15

8
rþ 3

8
rg ln

�
r
rg

�
− rg ln

�
r
rg

− 1

�
; ðA5Þ

and likewise, τðrÞ from Eq. (38) is

τðrÞ¼ 1

360

�
−360r−180rþ15r2g

�
9

Λ2

�

−15r2
�
Λ2

r

��
9

Λ2

�
þ30Λrg

�
3

Λ

��
2þ3Λ

Λ

�
ln

�
r
rg

��

¼−
15

8
rþ3

8

r2g
r
þ5

4
rg ln

�
r
rg

�
: ðA6Þ

Hence the excitation probability is given by

Pex ¼ g2
����
Z

∞

rg

drexp

�
iν

�
−
23

8
rþ3

8
rg ln

�
r
rg

�

−2rg ln

�
r
rg
−1

�	�
exp

�
iω

�
−
15

8
rþ3r2g

8r

þ5rg
4

ln

�
r
rg

����
1þ1

2

�
1−

rg
r

�
þ3

8

�
1−

rg
r

�
2
�����

2

:

ðA7Þ

To solve this integral, we make the substitution r
rg
¼ z such

that dr ¼ rgdz, we get

Pex ¼ g2r2g

����
Z

∞

1

dz exp

�
iν

�
−
23rg
8

zþ 3

8
rg ln z − 2rg ln ðz − 1Þ

	�
exp

�
iω

�
−
15rg
8

zþ 3rg
8z

þ 5rg
4

lnðzÞ
��

×

�
1þ 1

2

�
1 −

1

z

�
þ 3

8

�
1 −

1

z

�
2
�����

2

: ðA8Þ

We further make the substitution rgωðz − 1Þ ¼ x such that z ¼ 1þ x=ðrgωÞ and discuss the situation in the limit ω ≫ 1

(the large ω limit). This is in line with the assumptions made in Ref. [24].

Pex ¼
g2

ω2

����
Z

∞

0

dx exp

�
iν

�
−
23rg
8

�
1þ x

rgω

�
þ 3

8
rg ln

�
1þ x

rgω

�
− 2rg ln

�
x

rgω

�	�

× exp

�
iω

�
−
15rg
8

�
1þ x

rgω

�
þ 3rg

8

�
1þ x

rgω

�
−1

þ 5rg
4

ln

�
1þ x

rgω

�	��
1þ 1

2

�
1 −

�
1þ x

rgω

�
−1
	

þ 3

8

�
1 −

�
1þ x

rgω

�
−1
	

2
�����

2

: ðA9Þ

Now in the large ω approximation, we retain the terms in the expansion only up to first order in x
rgω

and take out constant
factors, which yields

Pex ¼
g2

ω2

����
Z

∞

0

dx exp

�
−iν

�
23rg
8

��
x

rgω

��
exp

�
−iν

�
3rg
8

�
ln

�
1þ x

rgω

��

× exp

�
−2iνrg ln

�
x
rgω

��
exp

�
−iω

�
15rg
8

��
x
rgω

��
exp

�
−iω

�
3rg
8

��
x
rgω

��

× exp

�
−iω

�
5rg
4

�
ln

�
1þ x

rgω

���
1þ 1

2

�
1 − 1þ x

rgω

������
2

: ðA10Þ
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Upon further simplification, above expression becomes

Pex ¼
g2

ω2

����
Z

∞

0

dxx−2iνrg exp

�
−ix

�
9

4
þ 23ν

8ω

�	

×

�
1þ x

rgω

�
irgð3ν8þ5ω

4
Þ�

1þ x
2rgω

�����
2

; ðA11Þ

which has been numerically solved to yield the plot
in Fig. 3.

APPENDIX B: ATOMIC DECAY RATES

In this section, we discuss the horizon contributions
to the decay rate of atom in excited state when a
Schwarzschild BH is surrounded by dark energy. We
consider static atom placed at different locations in
Schwarzschild and SdS spacetime and thus compute the
decay rates as a function of radial distance. If one wants to
consider it in the mirror scenario, then atom falls freely and
static mirror is the source of acceleration whose different
locations from BH correspond to different proper accel-
erations. The chosen vacuum state is Boulware vacuum,
which is the vacuum with normal modes to be positive
frequency with respect to the Killing vector ∂=∂t for which
exterior region is static. The detected particle flux contains
contributions which may or may not include Hawking
radiation depending on which of the above scenario is
taken. The deexcitation we discuss here happens in general
to any atom in excited state and leads to spontaneous
emission. In general, an atom with transition frequency ω,
dipole moment d̂ and acceleration α has the following
spontaneous emission rate

Γa ¼
Γ0

1 − expð−2πωα Þ ; ðB1Þ

where Γ0 is the Minkowski space decay rate

Γ0 ¼
ω3d2

3πϵ0ℏc3
; ðB2Þ

with d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhajd̂jbij2

q
as the magnitude of atom’s dipole

moment [4,65]. We now need to compute proper accel-
eration α for the Schwarzschild and SdS spacetime, starting
from a Schwarzschild case which is discussed in Ref. [66]
and later extending to SdS case.
Identifying a Killing vector Kμ and 4-velocity

uμð¼ dxμ=dτÞ, one can write

Kμ ¼ Vuμ: ðB3Þ

Also, the 4-velocity is always normalized in curved
spacetime, hence uμuμ ¼ −1, which hints at

V ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−KμKμ

p
; ðB4Þ

which means V is magnitude of Killing field (0 at Killing
horizon and 1 at asymptotic infinity) and denotes red-shift
factor. We can express the 4-acceleration duμ=dτ in terms
of redshift factor V

aμ ¼ ∇μ lnV: ðB5Þ

For Schwarzschild spacetime,

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ 1

ð1 − 2M
r Þ

dr2 þ r2dΘ2;

where dΘ2 ¼ dθ2 þ sin2 θdϕ. Killing vector and static
4-velocity are,respectively, given by

Kμ ¼ ð1; 0; 0; 0Þ; and uμ ¼

2
64 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M
r

q ; 0; 0; 0

3
75;

while the redshift factor is

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r
: ðB6Þ

We thus get the 4-acceleration as

aμ ¼
M
r2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q ∇μr; ðB7Þ

where ∇μr ¼ δrμ. For pure radial motion μ ¼ r, we write

aμ ¼
M
r2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q ∇μr; ðB8Þ

and proper acceleration is found to be

αS ¼
ffiffiffiffiffiffiffiffiffiffi
aμaμ

p ¼ 1

V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇μV∇μV

q
; ðB9Þ

which obviously diverges at horizon as V ¼ 0. Thus for
Schwarzschild case, the proper acceleration is

αS ¼
M
r2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q : ðB10Þ

Equation (B10) shows that acceleration αS diverges at
horizon (r ¼ 2M) which reflects the fact that one needs
tremendous force to keep the mirror in position near the
horizon by countering the pull of BH gravity. The corre-
sponding decay rate is
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ΓS ¼
Γ0

1 − expð−2πωαS
Þ

¼ Γ0

1 − exp f− 2πωr2
M ð1 − 2M

r Þ1=2g
: ðB11Þ

As seen from Eq. (B11), close to the BH horizon, this decay
rate diverges, and the situation can be physically pictured to
be like a heavy bombardment of particles on the atom.
However, we note here an interesting point. The patho-
logical behavior of Boulware vacuum at the horizon is very
well-known, i.e. in a freely-falling frame, the expectation
value of renormalized stress-energy tensor diverges [67]. In
our case, we report similar behavior for the static (accel-
erated) case, and in an intuitive way, reflects the absence of
black-body radiation. Far from the black hole when r ≫ rg,
decay rate approaches the Minkowski regime (ΓS → Γ0),
which is well in agreement with the fact that Schwarzschild
geometry asymptotically approaches Minkowskian.
Similar procedure can be followed for SdS spacetime.
For SdS spacetime with a global future-directed Killing
vector ξμ ¼ ð∂=∂tÞμ, static atom has the static four-velocity

uμ ¼ 1ffiffiffiffiffiffiffiffi
ξνξν

p ξμ ¼

2
64 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M
r − Λr2

3

q ; 0; 0; 0

3
75ξμ; ðB12Þ

and hence the 4-acceleration is

aμ ¼ uν∇νuμ ¼
�
M
r2

−
Λr
3

�
∇μr: ðB13Þ

This gives the proper acceleration

αSdS ¼
ffiffiffiffiffiffiffiffiffiffi
aμaμ

p ¼
����Λr3 −

M
r2

���� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r − Λr2
3

q : ðB14Þ

Thus the decay rate of the atom is

ΓSdS ¼
Γ0

1 − expð−2πωαSdS
Þ

¼ Γ0

1 − exp
n
− 2πω

jΛr
3
−2M

r2
j ð1 − 2M

r − Λr2
3
Þ1=2

o : ðB15Þ

This shows that the decay rate diverges near the BH
horizon, i.e., as fðrÞ → 0 and has a pure Schwarzschild
character [see Eq. (B11)]. It again diverges at de Sitter
horizon as r → rΛ, and reflects the fact that the later
dynamics are purely dictated by de Sitter geometry via
Λ and eliminates any contribution from black hole. The
decay rates are plotted in Fig. 4. The kinks in SdS curves
reflect the points where the accelerations due to dark energy
and BH balance each other, and hence the decay rate
corresponds to that of a Minkowskian case. Clearly, Λ
increases BH horizon and decreases de Sitter horizon, and
vice versa. This can also be observed from divergence
points in ΓSdS.
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