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We consider quantum field theory with self-interactions in various patches of Minkowski and de Sitter
spacetimes. Namely, in Minkowski spacetime we consider separately the right (left) Rindler wedge, past
wedge, and future wedge. In de Sitter spacetime we consider expanding the Poincaré patch, the static patch,
the contracting Poincaré patch, and the global de Sitter itself. In all cases we restrict our considerations to
the isometry invariant states leading to maximally analytic propagators. We prove that loop corrections
in the right (left) Rindler wedge, in the past wedge (of Minkowski spacetime), in the static patch and in the
expanding Poincaré patch (of de Sitter spacetime) respect the isometries of the corresponding symmetric
spacetimes. All these facts are related to the causality and analyticity properties of the propagators for the
states that we consider. At the same time in the future wedge, in the contracting Poincaré patch and in the
global de Sitter spacetime infrared effects violate the isometries.
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I. INTRODUCTION

In the study of various phenomena in strong background
gravitational fields one frequently has to consider quantum
field theory within patches (aka regions or wedges, or
charts) of entire spacetimes rather than within whole
spacetimes themselves. For example, in the study of the
Unruh effect [1] one considers the right Rindler wedge,
which is a quarter of the entire Minkowski spacetime. At
the same time, in the study of inflation [2–5] one restricts
the consideration to the expanding Poincaré patch, which is
half of the entire de Sitter spacetime [2–5].
The Unruh effect originates from the fact that the

Poincaré invariant state (so-called Minkowski vacuum) is
seen as the thermal state (i.e., with the Planckian distribu-
tion for the exact modes) from the point of view of the
Rindler (eternally accelerated) observer. In the study of the
inflation one also frequently restricts the consideration
to the de Sitter isometry invariant states or to such
states which inevitably rapidly approach the invariant states
[6–8]. See, however, Ref. [9] for an alternative proposition:
to check the destiny of generic Hadamard states under the
time evolution and see whether equilibration happens first

or the backreaction leads to a strong deformation of the
geometry, and only then does the equilibration happen.
For the isometry invariant states the tree-level propa-

gators are functions of the invariants (geodesic distances
and signs of the time differences) rather than functions of
each of their arguments separately. However, in the loops, if
one restricts the integration over vertices to a patch of entire
spacetime, the correction naively seems to violate the
isometry invariance. In fact, the measure of integration
associated with vertices violates the invariance, because
there are generators of the symmetry group of the entire
spacetime which move the patch.
Our goal here is to address the question of the isometry

invariance of the loop corrections to correlation functions in
various patches ofMinkowski and de Sitter spacetimes. Such
a question was already addressed by several authors in the
right Rindler wedge and in the expanding Poincaré patch
[10–12]. We extend those considerations to the future (or
upper) and past (or lower) wedges of Minkowski spacetime,
to the contracting Poincaré patch of the global de Sitter
spacetime and to the global de Sitter itself. We also use a
different way of reasoning and by-product to prove several
statements concerning the Schwinger-Keldysh and Feynman
techniques in the patches and in general situations.
The deeper reason why we consider quantum field

theory in such unusual circumstances is as follows. We
still do not really know what was the initial state of our
Universe at the start of the inflation (if the inflationary
epoch did really take place). Namely we do not know the
geometry of the initial Cauchy surface, the basis of modes,
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and even whether one should use for the quantization the
basis in the entire spacetime or on the initial Cauchy surface
only. It is very hard to address such a problem in full
generality. To keep task small it is meaningful to consider
various initial Hadamard states (including initial Cauchy
surfaces of different geometry) and start from simple
symmetric situations. In this article we show that even
for such a situation the quantum field theory dynamics
strongly depends on the geometry of the initial Cauchy
surface, and infrared effects play the key role. At the same
time we study the dynamics in various patches of
Minkowski spacetime just as a simple training example.
In the standard cases (right Rindler wedge and expand-

ing Poincaré patch) we confirm the previously made
observations. Namely, we show that for the maximally
analytic invariant propagators loop corrections respect the
isometry. However, in some of the new cases (in the future
wedge, in the contracting Poincaré patch and in the global
de Sitter spacetime) we find that loop corrections violate
the corresponding isometry symmetry due to infrared
effects. We summarize our results and clarify their physical
meaning in the concluding section.

II. RIGHT RINDLER WEDGE

In this section we consider interacting massive real
scalar field theory in the d-dimensional Rindler wedge
of Minkowski spacetime:

S ¼
Z

ddX
ffiffiffiffiffi
jgj

p �
1

2
ð∂μϕÞ2 −

m2

2
ϕ2 −

λ

n!
ϕn

�
: ð2:1Þ

Here n ≥ 3 and in our study the possible nonrenormaliz-
ability or stability of this theory is not important. We are
interested in the properties of the loop corrected correlation
functions under the action of the Poincaré symmetry. While
a similar question was addressed in [12], we will present a
different analysis which does not use the momentum space
and, hence, can be generalized to curved spaces. Besides
that, using the same method we will also consider other
charts of the Minkowski spacetime and of the de Sitter
spacetime as well.
The relation between Minkowskian, Xμ, μ¼0;…;d−1,

and the Rindler right wedge, X1 ≥ jX0j, coordinates is as
follows:

X0 ¼ eξ sinh τ; X1 ¼ eξ cosh τ; ð2:2Þ

and the other d − 2 coordinates Xa, a ¼ 2;…; d − 1 are
unchanged. We use the standard Euclidean metric for them.
The corresponding Rindler metric induced from the
Minkowskian one is

ds2 ¼ e2ξðdτ2 − dξ2Þ − ðdXaÞ2: ð2:3Þ

We consider the Rindler thermal state with the inverse
temperature β ¼ 2π in units of acceleration [1,13–17].
Namely in the Feymnan and Wightman propagators,

FðX;X0Þ¼ hTϕðXÞϕðX0Þi0; WðX;X0Þ¼ hϕðXÞϕðX0Þi0;
ð2:4Þ

and correspondingly, the expectation value is taken over
the state that respects the Poincaré isometry of the flat
spacetime. As a result, for such a state F and W are
functions of the geodesic distance between X and X0 and of
the sign of the time difference rather than of each of their
arguments separately. This is the standard state to consider
in high energy particle physics.
The correlator with the reverse time ordering, as well as

the Wightman function with swapped points, can be
expressed via (2.4) by the complex conjugation:

F̄ðX;X0Þ¼ hT̄ϕðXÞϕðX0Þi0; WðX0;XÞ¼ W̄ðX;X0Þ: ð2:5Þ

For the Poincaré invariant state these propagators are also
functions of the geodesic distance and of the sign of the
time difference.

A. The Feynman perturbation theory
does not work

Let us consider for the beginning the standard
Feynman’s diagrammatic technique in the right Rindler
wedge, X1 ≥ jX0j, with the propagator given by (2.4).
Our goal is to show that it gives an incorrect result in the
circumstances under consideration. In the next subsection
we will show that the Schwinger-Keldysh technique
provides the correct result.
Consider a Feynman diagram and an internal vertex Y in

it connected with n external points X1;…; Xn. In x-space
the contribution of this vertex to the diagram is given by the
following integral:

IðX1;…;XnÞ ¼
Z

ddYθðY1 − Y0ÞθðY1 þ Y0Þ
Yn
j¼1

FðY;XjÞ:

ð2:6Þ

The θ-functions restrict the integration region to the right
wedge, and we also assume that Xi belong to the wedge
as well.
We wish to check whether I is Poincaré-invariant or not;

i.e., does the result of the integration over the internal
vertex Y in the last equation depend only on invariant
quantities such as geodesic distances and signs of the time
differences or not?
To do the check one can calculate the variation of I under

an infinitesimal coordinate transformation. For instance,
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consider the following translation, which moves the
right wedge:

Y1 → Y1 þ a: ð2:7Þ
The coordinates Xi, i ¼ 1;…; n are changed as well
accordingly, such that the Feynman propagators under
the integral do not change. The whole integral then changes
as follows:

δaIðX1;…; XnÞ ¼ a
Z

ddY½δðY1 − Y0ÞθðY1 þ Y0Þ

þ δðY1 þ Y0ÞθðY1 − Y0Þ�
Yn
j¼1

FðY; XjÞ:

ð2:8Þ
To proceed, we need to take into account that FðY; XjÞ are
functions of the intervals ðY − XjÞ2 and are defined as the
lower boundary value of an analytic function in the lower
half-plane:

FðY; XjÞ ¼ F½ðY − XjÞ2 − iϵ�: ð2:9Þ

The explicit form of this function is not relevant for our
considerations, but it is not hard to find out that in

flat spacetime it is proportional to one of the Hankell
functions.
It is also important to note that strictly speaking FðY; XjÞ

is a distribution rather than a function, and the limit ϵ → 0
should be taken in a distributional sense (see [18] for a
review). Besides that, this limit is defined in the complex
plane of the time coordinate, which we will discuss in
more detail in Sec. II C (see, e.g., Fig. 3). Hence, in all
subsequent expressions terms with iϵ-prescriptions should
be understood as such distributional limits. Note that
outside of singular points at the light cone they nevertheless
admit representations in terms of ordinary functions.
Furthermore, the Pauli-Villars regularization, which we
discuss in Appendix B, removes all the singularities, and
the propagator becomes well-defined everywhere on the
real line.
The interval itself can be expressed as follows:

ðY − XjÞ2 ¼ ðY0 − Y1ÞðY0 þ Y1Þ − ðY0 − Y1ÞðX0
j þ X1

jÞ
− ðY0 þ Y1ÞðX0

j − X1
jÞ − ðYaÞ2

þ 2Xa
jY

a þ ðXjÞ2: ð2:10Þ

Taking the integral over Y1 in (2.8) we find:

δaIðX1;…; XnÞ ¼ a
Z

dd−1YθðY0Þ
�Yn
j¼1

F½ðX1
j − X0

jÞð2Y0 − X1
j − X0

j − iϵÞ − ðYa − Xa
j Þ2�

þ
Yn
j¼1

F½ðX1
j þ X0

jÞð2Y0 − X1
j þ X0

j − iϵÞ − ðYa − Xa
j Þ2�

�
; ð2:11Þ

where dd−1Y ¼ dY0dY2 � � � dYd−1 and we used that
X1
j þ X0

j > 0, X1
j − X0

j > 0, because all points that we
consider here are in the right wedge. Also, we have
changed −Y0 → Y0 in the second term under the integral.
The integrand is a lower boundary value of an analytic
function of Y0, but due to the presence of θðY0Þ the contour
of integration cannot be closed (unlike, e.g., the case
considered in [19] for the Feynman technique in the
Poincaré region of the anti–de Sitter spacetime). Also note
that the two terms in the brackets cannot cancel each other,
as the first one is a function of X1

j − X0
j , while the second

one is a function of X1
j þ X0

j .
In all, IðX1;…; XnÞ is not Poincaré invariant, because it

changes under the action of the generators of the corre-
sponding group. This is just a revelation of the fact, as we
discuss in the next subsection, that the standard stationary
perturbation theory (Feynman diagrammatic technique) is
not applicable in the case under consideration. One has to
apply the Schwinger-Keldysh perturbation theory.

B. The Schwinger-Keldysh time contour

As was mentioned above, we consider a thermal state in
the Rindler wedge of the Minkowski spacetime. Hence, it is
appropriate to use the Schwinger-Keldysh diagrammatic
technique rather than the Feynman one. That is the reason
why we have found problems with loop corrections in the
previous subsection. Similar observations for de Sitter
space were made in, e.g., [20,21].
In the Schwinger-Keldysh technique one has to use the

double time contour going from the past infinity (in the case
of an equilibrium state) to the future infinity and then
backwards [22–24]. As the result, one should assign to each
internal vertex either ⟪þ ⟫ or ⟪ − ⟫, depending on which
part of the contour it belongs to, and use the following
propagators to compute diagrams:

G−−ðX; YÞ ¼ FðX; YÞ; Gþ− ¼ WðX; YÞ;
G−þ ¼ WðY; XÞ; GþþðX; YÞ ¼ F̄ðX; YÞ; ð2:12Þ
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where F and W are the two-point functions which were
defined at the beginning of this section.
To calculate the contribution of a diagram one has to take

the sum over the signs of internal vertices. Also, each ⟪ − ⟫
vertex has an additional −1 multiplier. Let us consider a
part of a diagram in which the external vertices X1;…; Xk

are of the ⟪ − ⟫ type, while the rest of them (Xkþ1;…; Xn)
are of the ⟪þ ⟫ type. Let all these vertices be connected to
an internal vertex Y. Then the contribution of the part of the
diagram under consideration corresponds to the integral
over the vertex Y with the summation over its signs and has
the following form [up to a common factor ð−1Þk]:

IKðX1;…; XnÞ ¼
Z

ddYθðY1 − Y0ÞθðY1 þ Y0Þ
"Yk
j¼1

FðY; XjÞ
Yn

j¼kþ1

W̄ðY; XjÞ −
Yk
j¼1

WðY; XjÞ
Yn

j¼kþ1

F̄ðY; XjÞ
#
: ð2:13Þ

The loop integrals of course contain standard UV diver-
gences which have to be regularized. We assume the
Pauli-Villars regularization scheme, in which from the
propagators defined in (2.4) and (2.5) one subtracts a
sufficient number of propagators of massive fields to get a
finite expression for the diagram. For our further consid-
erations it is important that the expressions we use in the
diagrams instead of F andW have exactly the same analytic
properties as functions of geodesic distances. Thus, below
we assume the Pauli-Villars regularization scheme, but use
the same notations F and W for the subtracted two-point
functions. More details are provided in Appendix B for the
case of the de Sitter spacetime.
Also note that the expression for IK does not include

tadpoles. However, they will not change any of our
considerations. Namely, the contribution of a tadpole
connecting Y with itself to the integrand of (2.13) consists
of an additional factor FðY; YÞ in the first summand and
F̄ðY; YÞ in the second one. These functions are constants
due to Lorentz symmetry, which become finite after the
regularization. To ensure the cancellation of vacuum
bubbles the constants FðY; YÞ and F̄ðY; YÞ should
coincide,1 i.e., ImFðY; YÞ ¼ 0. It means that the contribu-
tion of tadpoles to the whole diagram is just a constant
factor, which is irrelevant for our considerations.
Let us consider now the transformation of IKðX1;…; XnÞ

under the action of the same translation (2.7) as in theprevious
subsection. We will show now that δϵIKðX1;…; XnÞ ¼ 0.
The same can be shown for other generators of the Poincaré
group. That is, by showing that IKðX1;…; XnÞ is invariant,
we prove that it is a function of such isometry invariants as
geodesic distances and signs of time differences.
To start the proof we should express the Wightman

function in terms of the boundary value of a complex
function F of a complex variable as follows:

WðY; XÞ ¼ F½ðY − XÞ2 − iϵsignðY0 − X0Þ�: ð2:14Þ

Here we use the same function as the one that we used
to express the Feynman in (2.9). An explicit form of this
function is not relevant for our considerations. It is
important that it is an analytic function on the cut
complex plane of the geodesic distance. The cut is going
along such values of the geodesic distance, which
corresponds to timelike separations between X and Y
and starts with the light-cone separation. As a result,
ImF ≠ 0 on the cut and the commutator of the field
operators ϕðXÞ and ϕðYÞ is not zero for timelike sepa-
rations, as it should be on the physical grounds. In fact,
this way one obtains a nonzero classical retarded propa-
gator in the field theory under consideration. At the same
time the function F is real for spacelike separations. That
is necessary to fulfill the condition of causality and to
have the commutator of the field operators zero for spatial
separations. Finally the written above iϵ prescriptions in
the expressions forW and F just specify which side of the
cut should be taken to define the propagator for timelike
separations.
To proceed with the proof it is convenient to introduce

the following notations for the squares of geodesic dis-
tances if Y is on the boundary of the wedge:

d1ðY; XjÞ ¼ ðX1
j − X0

jÞð2Y0 − X1
j − X0

jÞ − ðYa − Xa
j Þ2;

d2ðY; XjÞ ¼ ðX1
j þ X0

jÞð2Y0 − X1
j þ X0

jÞ − ðYa − Xa
j Þ2:
ð2:15Þ

In the first expression we assume that Y0 ¼ Y1 and in
the second one that Y0 ¼ −Y1. We also changed Y0 → −Y0

in d2 for future convenience. Then we find that the
transformation of Ik under the translation (2.7) can be
written as

δaIKðX1;…; XnÞ ¼ aðδð1ÞIK þ δð2ÞIKÞ; ð2:16Þ

1Note that this condition can be violated only in a nonsta-
tionary situation for the in-out Feynman propagator. But we
consider here in-in Feynman propagators only (see, e.g., [25,26]
for a related discussion in de Sitter spacetime).
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where

δð1ÞIK ¼
Z

dd−1YθðY0Þ
�Yk

j¼1

F½d1ðXj; YÞ − iϵ�
Yn

j¼kþ1

F½d1ðXj; YÞ þ iϵsignðY0 − X0
jÞ�

−
Yk
j¼1

F½d1ðXj; YÞ − iϵsignðY0 − X0
jÞ�

Yn
j¼kþ1

F½d1ðXj; YÞ þ iϵ�
�
; and

δð2ÞIK ¼
Z

dd−1YθðY0Þ
�Yk

j¼1

F½d2ðXj; YÞ − iϵ�
Yn

j¼kþ1

F½d2ðXj; YÞ − iϵsignðY0 þ X0
jÞ�

−
Yk
j¼1

F½d2ðXj; YÞ þ iϵsignðY0 þ X0
jÞ�

Yn
j¼kþ1

F½d2ðXj; YÞ þ iϵ�
�
: ð2:17Þ

Let us start with the consideration of δð1ÞIK . Note that the
integrand in the corresponding expression vanishes, when
Y0 is larger than all X0

j . In fact, in such a case the iϵ
prescriptions in the first and second terms under the integral
coincide, because signðY0 − X0

jÞ ¼ 1. Hence, when Y0 is

larger than all X0
j we find that δð1ÞIK ¼ 0.

Now assume that Y0 < X0
j for some j, then we have2

X0
j > Y0 > 0; ð2:18Þ

where the restriction Y0 > 0 appears due to the theta
function under the integral in (2.17). From (2.15) we see
that then d1ðY; XjÞ < 0, because inside the Rindler wedge
X1
j > X0

j . Therefore the interval between Xj and Y is
spacelike, so the iϵ prescription does not matter, because
the function F is real for such an argument: for spacelike
separations all four propagators from (2.12) with X ¼ Xj

coincide. Hence, the integrand in δð1ÞIK vanishes, and again
we find that δð1ÞIK ¼ 0. This essentially completes the
proof that for the transformation in question δð1ÞIK
is always zero due to the analytic properties of the
propagators.
The case of δð2ÞIK is slightly more complicated. The

signs of the iϵ prescriptions in two terms in V coincide if
signðY0 þ X0

jÞ ¼ −1, i.e., when

X0
j < −Y0 < 0: ð2:19Þ

(The second inequality again appears due to the presence of
the step function under the corresponding integral for
δð2ÞIK.) In such a case the integrand of δð2ÞIk obviously
vanishes.
From (2.19) it also follows that d2ðY; XjÞ < 0; i.e., the

interval is spacelike if signðX0 þ X0
jÞ ¼ −1. It means that if

the interval is timelike, signðY0 þ X0
jÞ ¼ 1 and the iϵ

prescriptions in two terms in δð2ÞIK are different—it is
the opposite situation to what we have observed for the
case of δð1ÞIK . As the iϵ prescription is irrelevant when the
interval is spacelike, we can replace signðY0 þ X0

jÞ with 1
for all X0

j and obtain that

δð2ÞIk ¼
Z

dd−1YθðY0Þ
�Yn

j¼1

F½d2ðXj; YÞ − iϵ�

−
Yn
j¼1

F½d2ðXj; YÞ þ iϵ�
�
: ð2:20Þ

Now let us consider the properties of the productQ
n
j¼1F ½d2ðXj; YÞ� as the function on the complex plane

of Y0. It is straightforward to see from (2.15) that
d2ðXj; YÞ < 0 if Y0 ≤ 0 (assuming that Xj belongs to
the right Rindler wedge). The interval first becomes
lightlike for some Y0

t > 0, which is the lowest value of
Y0 such that d2ðY; XjÞ ¼ 0 for some of the j’s. Hence,Q

n
j¼1F ½d2ðXj; YÞ� has a cut along the half line ðY0

t ;þ∞Þ,
where Y0

t is the smallest solution of the equations
d2ðY; XjÞ ¼ 0.
Now, similar to (2.11) we can attribute the iϵ prescription

in (2.20) to the complex plane of Y0 itself rather that to the
complex plane of d2ðXj; YÞ. It means that the right-hand
side (RHS) of (2.20) is nothing but the integral around the
cut, as is shown in Fig. 1. We can close this contour by a
circle of the infinitely large radius going clockwise, on
which the propagator vanishes. As a result,3 we obtain that
δð2ÞIk ¼ 0, because the integrand in (2.20) is analytical
inside the closed contour.

2We can use strict inequalities as the sets of zero measure
obviously do not contribute to the integrals.

3It is worth stressing that for such manipulations with the
contour we need only the convergence of Y0 integrals, which is a
much weaker condition than the complete convergence.
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In all, we have shown that IKðX1;…; XnÞ is invariant
with respect to the translations along X1. In the same way
one can show that IKðX1;…; XnÞ remains intact under all
other transformations of the Poincaré group.
Furthermore, note that by the translations along X1 we

can move the hyperplane X1 ¼ X0 ¼ 0, which is the
edge of the right Rindler wedge, to −∞. The loop integral
does not change under such a move. It means that extending
the integration region outside the Rindler wedge does not
change the integral. Hence, the integration over the Rindler
wedge inside the loop integrals in the Schwinger-Keldysh
technique is equivalent to the integration over the entire
Minkowski spacetime. At the same time, the Schwinger-
Keldysh technique in the whole Minkowski spacetime for
the Poincaré invariant state provides the same answer for
the loop integrals as the Feynman technique: the contri-
bution of the backward going part of the time contour just
cancels the vacuum bubble diagrams. We explain these
points in greater details in the next subsections.

C. Analytical continuation
to the Euclidean time contour

There is another way to show that the Schwinger-
Keldysh technique provides isometry-invariant expressions
for the loop corrected correlation functions over the
Poincaré invariant state. Furthermore, this way directly
shows that for the Poincaré invariant state in the right
Rindler wedge the Schwinger-Keldysh technique provides
the same answer for the loop corrections as the Feynman
technique in the entire Minkowski spacetime.
This way is based on the analytical continuation to the

Euclidean signature directly from the Rindler wedge.
Namely, note that the coordinate change τ ¼ −iκ connects
the right wedge (2.3) with the Euclidean space Rd with
polar coordinates in the ðκ; ξÞ-plane, i.e., with the coor-
dinate κ being 2π-periodic. In other words, this leads to the
same result as the standard Wick rotation X0 ¼ −iXd of the
whole Minkowski spacetime. Furthermore, as we pointed
out above, the Minkowski vacuum (Poincaré invariant

state) is a thermal state, when expressed via exact
modes in Rindler coordinates. Hence, the analytically
continued Feynman propagator F (or Matsubara propaga-
tor) is 2π-periodic in imaginary time.
To perform the analytical continuation from the Rindler

wedge to the Euclidean space in the loop integrals, we need
to understand the analytic properties of the propagator F in
the complex plane of the time τ. For simplicity let us
consider the function F½ðX − YÞ2� when X0 ¼ 0, i.e., when
τX ¼ 0, while τ ¼ τY . Also note that F depends only on
the difference τX − τY as the metric (2.3) is τ-independent,
i.e., static.
The analytic structure of F is shown in Fig. 2. We

assume that ξ (the corresponding spatial Rindler coordinate
of Y) and Ya are fixed, and τT is the time coordinate when
the interval is lightlike (with τT > 0). The propagator has
the usual cuts along the lines ðτT;∞Þ and ð−∞;−τTÞ,
which correspond to the timelike separations between Y
and 0. The 2πi periodicity means that F also has additional
branching points at �τT þ 2πik, k ∈ Z with the corre-
sponding cuts, as it is illustrated in Fig. 2. Hence,
Feynman’s integration contour over the τ (polar) coordinate
in the loop integrals cannot be simply rotated to the
imaginary axis as it is usually done in Cartesian coordi-
nates.4 Thus, again we see that in the Rindler wedge loop
corrections in the Feynman diagrammatic technique in
x-space representation cannot be mapped to the integrals in
the Euclidean space.
Let us consider the situation in the case of the

Schwinger-Keldysh time contour and of the corresponding
diagrammatic technique. Our analysis will be more or less
similar to the one presented in [11] for the static patch of the
de Sitter spacetime. Let us consider the same vertex integral
IK as in (2.13) with τ being the Rindler time of the Y
coordinate. We need to represent it as a contour integral in
the complex plane of τ rather than of Y0. The propagators
can be represented as boundary values of the analytic

FIG. 2. The analytic structure of the thermal propagator in the
Rindler wedge. Red lines are the cuts in the complex τ-plane.

FIG. 1. The integration contour for δð2ÞIK (blue), and the branch
cut is shown in red.

4Such a simple rotation is performed when one does the
analytical continuation in Feynman’s technique from the entire
Minkowski spacetime to the Euclidean space in the Cartesian
coordinates.
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functions F½ðY − XjÞ2� as in (2.9) and (2.14). The cuts and
contours are depicted in Fig. 3 for the case when τj ¼ 0.
Extra cuts coming from the periodicity in τ are omitted to
simplify the picture. Note that the case with τj ≠ 0 can be
simply obtained via the translation τ → τ þ τj (τj is a
Rindler time of Xj) in Fig. 3. In such a case the center of the
line segment whose end points are branching points is
shifted to τj from 0.
The representation of Eq. (2.13) in terms of a contour

integral can be achieved if we represent its integrand as a
boundary value of some analytic function similar to the
case of (2.20). It is convenient to split IK and its integrand
into two parts:

F̂−
n ¼

Yk
j¼1

FðY; XjÞ
Yn

j¼kþ1

W̄ðY; XjÞ;

F̂þ
n ¼

Yk
j¼1

WðY; XjÞ
Yn

j¼kþ1

F̄ðY; XjÞ;

IþK ¼
Z

ddy
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðyÞ

p
F̂þ
n ;

I−K ¼
Z

ddy
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðyÞ

p
F̂−
n ; ð2:21Þ

where yμ are the Rindler coordinates of Y with y0 ¼ τ and
gμν is the Rindler metric defined in (2.3). Note that the
determinant of the metric gðyÞ is independent of τ.
Next, one can define the following function FnðYjX1;

…; XnÞ on the complex τ-plane:

FnðYjX1;…; XnÞ ¼
Yn
j¼1

F½ðY − XjÞ2�: ð2:22Þ

Evidently the cuts of this function are defined as the union
of the cuts of the functions in the product on the RHS,
which were described above. Of course, the cuts associated
with different Xj overlap if all of τj are real. To avoid such
an overlapping we can assign infinitesimal imaginary parts
to τj: Imτj ¼ ϵj, where ϵj are pairwise distinct. Then F̂þ

n

and F̂−
n can be represented as their boundary values using

the way of defining propagators viaF½ðXj − YÞ2� presented
in Fig. 3. Namely, according to (2.21) we find that in the
case of F̂− we should take the lower value for the cuts
associated with the ⟪ − ⟫ vertices Xj (e.g., j ≤ k) such that
τ ≥ τj and the upper value for the rest of the cuts. Similarly,
for F̂þ

n we should take the upper value for the cuts
associated with ⟪þ ⟫ vertices Xj (e.g., j > k) such that
τ ≥ τj and the lower value for the rest of the cuts.
The integrals I−K and IþK from (2.21) are contour integrals

if the sides of the cuts where F̂−
n and F̂þ

n are defined can be
connected by a single curve which does not cross the cuts.
The definition of such a contour leads to a condition on ϵj:
ϵi > ϵj if one of the following conditions is satisfied:

(i) τi < τj and Xi, Xj are ⟪ − ⟫ vertices;
(ii) τi > τj and Xi, XJ are ⟪þ ⟫ vertices;
(iii) Xi is a ⟪ − ⟫ vertex and Xj is a ⟪þ ⟫ vertex.

The possible choice is ϵj ¼ �iϵð1 − tanh τjÞ, where the
⟪þ ⟫ sign should be used for ⟪ − ⟫ vertices and vice
versa. The contours C� for I�K which go along the branch
cuts as explained above can be defined via the same
prescription τ → τ � iϵð1 − tanh τÞ, where the sign of
the iϵ term is opposite to the sign of the vertex Y. Note
that the iϵ prescription for each vertex among Y and Xj

depends only on the vertex itself, but not on their relative
configuration. It means that we can apply the prescription
to the whole diagram simultaneously rather than just to the
subdiagram under consideration. This yields a representa-
tion of the whole diagram in terms of a multiple contour
integral.
As IK ¼ I−K − IþK , it can be represented as an integral

over the contour C ¼ C− − Cþ. This contour is depicted in
Fig. 4(a) for the case of two ⟪ − ⟫ points X1, X2 and two
⟪þ ⟫ points X3, X4. For convenience we deformed the
contour in the region Re τ > τj for all j, as the correspond-
ing parts of C− and Cþ do not go around any cuts or poles.
A similar contour for an expanding Poincaré patch of
de Sitter space is shown in [27].
Now we can perform the analytical continuation to the

Euclidean theory using this contour integral representation.
Due to 2π-periodicity in imaginary time, we can assume
that the time coordinates of the Euclidean vertices belong to
the line segment ð−iπ; iπÞ along the imaginary time axis.
To obtain the continuation of IK as a function of Xj,

FIG. 3. The propagators as boundary values; the red lines are
the cuts; the blue lines depict the sides of the cut where the
corresponding propagators are defined. We depict only those
contours and cuts which are laying in the stripe Im τ ∈ ð−π; πÞ.
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we need to move the time coordinates of Xj to this line
segment in such a way that the cuts do not cross each other.
The contour C then can be represented as a union of
oriented line segments ð−∞þ iπ; iπÞ, ðiπ;−iπÞ, and
ð−iπ;−∞ − iπÞ, where ∞ is the real infinity. The resulting
position of the external points of the diagram and of the
contour is depicted in Fig. 4(b). In particular, due to the
2πi-periodicity the contributions from ð−∞þ iπ; iπÞ and
ð−iπ;−∞ − iπÞ cancel each other, and we are left with the
integration over the ðiπ;−iπÞ segment along the imaginary
time axis. This is precisely the correct Euclidean contour
with κ ∈ ð−π; πÞ for the Euclidean or Matsubara diagram-
matic technique.
In all, the Schwinger-Keldysh technique in the Rindler

wedge can be analytically continued to the standard
perturbation theory in Euclidean space Rd. This, once
again, proves the Poincaré invariance of loop corrected
correlation functions for the thermal state with the canoni-
cal temperature (β ¼ 2π in the units of acceleration). All
this is true despite the fact that one integrates in the loop

integrals over the Rindler wedge in the vertices rather
than over the entire Minkowski spacetime. Besides that,
our observations show that loop corrections in the Rindler
wedge coincide with those in the Feynman technique
calculated in the entire Minkowski spacetime for the
Poincaré invariant state. In fact, the latter can be as well
analytically continued to the Euclidean space Rd.
This observation completes our considerations of the

right Rindler wedge.

III. CAUSALITY OF THE SCHWINGER-KELDYSH
TECHNIQUE

Before we proceed with other charts of the Minkowski
and de Sitter spacetimes, let us discuss one important
property of the Schwinger-Keldysh diagrammatic tech-
nique. Namely, consider an arbitrary diagram with external
points E1;…; Em—a contribution to them-point correlator.
A property which we will refer to as causality is as follows:
The integration over the internal vertices in the diagram

FIG. 4. An example of the contour in the loop integral when there are four external points. The contours of τ integration: (a) the points
τj have small imaginary shifts, which we depict for clarity as finite shifts; the forward going part of the contour (along the real axis), C−,
corresponds to the first summand in (2.13), while the backwards going part, Cþ, to the second one (its negative sign is accounted for by
the orientation with respect to Cþ); (b) τj are analytically continued from the complex plane to the imaginary axis in the interval
ðiπ;−iπÞ. The external points X1 and X2 have the ⟪ − ⟫ sign while X3 and X4 have the ⟪þ ⟫ sign.
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can be restricted to the interior of the union of the past light
cones emanating from E1;…; Em, as shown in Fig. 5.
Note that for regularized propagators one obtains that

FðY; YÞ ¼ F̄ðY; YÞ. Hence, the commutator h½ϕðXÞ;ϕðYÞ�i
vanishes not only for spacelike but also for lightlike
separations between X and Y. As in the proof below we
will rely only on causal properties of propagators; it is
convenient to treat lightlike separations similar to spacelike
ones. Also from now on by saying ⟪light cone⟫ we will
actually mean its interior.
To prove the statement in the first paragraph of

this section, let us start from a convenient observation.
Consider a vertex Y connected with n points Xj, similar to
the Sec. II B. Note that we do not specify whether Xj are
internal or external vertices of the entire diagram (they are
external vertices only for the part of the diagram under
consideration). Thus, we deal with the integral of such a
form as (2.13). Consider its integrand:

F̂nðX1;…; Xn; YÞ ¼
Yk
j¼1

FðY; XjÞ
Yn

j¼kþ1

W̄ðY; XjÞ

−
Yk
j¼1

WðY; XjÞ
Yn

j¼kþ1

F̄ðY; XjÞ: ð3:1Þ

First of all, if Y is outside of all the light cones emanating
from Xj (both past and future), this expression vanishes,
because the Feynman and Wightman propagators coincide.
In fact, the propagators are real functions for spacelike
separations between their arguments, and the iϵ prescrip-
tions in F’s and W’s in (3.1) are irrelevant. Hence, the
integration over Y in (2.13) can be restricted to the union of
the light cones with the vertices at Xj, j ¼ 1; n.
Next, assume that Y does not belong to the union of past

light cones. Let S be the set of all such indices that for
j ∈ Swe haveX0

j ≥ Y0 (the set obviously can be empty). It
means that Y0 cannot be in the future light cone of X0

j , and
by our assumption it cannot be in the past light-cone as
well. So for all j ∈ S the vertex Y is outside of the light
cone of Xj. Let us define the following auxiliary objects:

F̂−
n;S ¼

Yk
j¼1;j∈S

FðY; XjÞ
Yn

j¼kþ1;j∈S
W̄ðY; XjÞ;

F̂þ
n;S ¼

Yk
j¼1;j∈S

WðY; XjÞ
Yn

j¼kþ1;j∈S
F̄ðY; XjÞ;

F̂−
n;S̄ ¼

Yk
j¼1;j∉S

FðY; XjÞ
Yn

j¼kþ1;j∉S
W̄ðY; XjÞ;

F̂þ
n;S̄

¼
Yk

j¼1;j∉S
WðY; XjÞ

Yn
j¼kþ1;j∉S

F̄ðY; XjÞ: ð3:2Þ

Then F̂n from (3.1) can be expressed as follows:

F̂nðX1;…; Xn; YÞ ¼ F̂−
n;SF̂

−
n;S̄ − F̂þ

n;SF̂
þ
n;S̄

: ð3:3Þ

If j ∈ S, the interval between Xj and Y is spacelike as we
have just assumed and all of the propagators between these
points coincide, hence F̂−

n;S ¼ F̂þ
n;S. On the other hand, if

j ∉ S, then Y0 > X0
j ; therefore FðY; XjÞ ¼ WðY; XjÞ and

F̄ðY; XjÞ ¼ W̄ðY; XjÞ. It means that F̂−
n;S̄ ¼ F̂þ

n;S̄
. Thus,

from (3.3) we obtain that F̂n ¼ 0, and we conclude that the
integrand of the loop correction can be nonzero only if Y
belongs to the union of past light cones of Xj for all j.
Now consider the integrand of the entire graph whose

vertices are VI, I ¼ 1;…; N. The external ones among
them we denote as Ej, j ¼ 1;…; m just as at the beginning
of this subsection. Wewill use the notation VI ≺ VK if VI is
in the past light cone of VK . Note that the relation ⟪ ≺ ⟫
defines the strict ordering as we consider only the light-
cone interiors: VK ⊀ VK , and if VK ≺ VL and VL ≺ VM,
then obviously VK ≺ VM due to the structure of light cones.
Let VJ1 be an arbitrary internal vertex of the graph. For

the integrand of the graph to be nonzero it can be connected
only with such an other vertex VJ2 that VJ1 ≺ VJ2 , as we
have shown above in this section. If VJ2 is an internal
vertex, the chain of relations can be extended further:
VJ1 ≺ VJ2 ≺ VJ3 . Due to the properties of ⟪ ≺ ⟫, J3 is
distinct from J1 and J2. If VJ3 is internal, we can continue
the extension process: VJ1 ≺VJ2 ≺VJ3 ≺…≺VJl for some l
with pairwise distinct J1;…; Jl. Note that all vertices here
except for VJl are necessarily internal. Assume that VJl is a
terminal vertex; e.g., there is no vertex VJlþ1

such that
VJl ≺ VJlþ1

. If VJl is internal, it implies that the integrand is
zero. Hence, it should be external for the integrand to be
nonzero. Thus, e.g., VJl ¼ Em for some m.
In all, the above defined causality property of the

Schwinger-Keldysh technique is proved. Note that to prove
this statement we have used only analytic properties of the
propagators, which are related to the presence of the cuts
along the timelike separations of their arguments. We did
not use in the proof the fact that the spacetime is flat.

(a) (b)

FIG. 5. The union of past light cones of external points of a
diagram: (a) in Minkowski spacetime; (b) on the Penrose diagram
of the two-dimensional de Sitter spacetime; the blue line shows
the boundary between expanding and contracting Poincaré
patches.
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Hence, the statement formulated at the beginning of this
section is true for any spacetime including the de Sitter one.

IV. OTHER CHARTS OF MINKOWSKI
SPACETIME AND CAUSALITY

The property of the causality that we have discussed in
the previous subsection is very useful for the consideration
of various patches of Minkowski spacetime. To see that let
us prove the Poincaré invariance of the loop integrals in the
case when there is only one theta function in (2.13), which
restricts to a half of the entire Minkowski spacetime rather
than to a quarter (quadrant or wedge). In particular, let it be
θðY0 þ Y1Þ; i.e., we have the restriction Y0 > −Y1 and
consider half of the entire flat spacetime cut off by the
lightlike surface Y0 ¼ −Y1. This region is somewhat
similar to the expanding Poincaré patch of de Sitter
spacetime which we will consider in Sec. VA. At the
same time the right Rindler wedge is similar to the static
patch of the de Sitter spacetime. The de Sitter invariance of
the loop corrections for the Bunch-Davies state in the
Poincaré patch was discussed in, e.g., [28,29] with the use
of the same methods as we apply here.
The variation of the analog of IK , in which there is only

one θðY0þY1Þ rather than two, is simply δð2ÞIK from (2.17)
without θðY0Þ. Of course, we also remove the condition
X1
j > X0

j on the external points as well assuming only that
X1
j > −X0

j . Let us show that the variation can again be
represented as an integral around the cut. First, we can
rewrite d2ðY; XjÞ from (2.15) as follows:

d2ðY; XjÞ ¼ ðX1
j þ X0

jÞ½2ðY0 þ X0
jÞ − ðX1

j þ X0
jÞ�

− ðYa − Xa
j Þ2: ð4:1Þ

Let us analyze the connection between the sign of the
geodesic distance d2 and signs of iϵ prescriptions in (2.17)
as in Sec. II B. Let us start from the region where iϵ
prescriptions in the first and second summands associated
with Xj have the same sign, i.e., signðY0 þ X0

jÞ ¼ −. It is
easy to see that then d2ðY; XjÞ < 0—the interval is space-
like. Furthermore, it follows that if d2ðY; XjÞ > 0, then
signðY0 þ X0

jÞ ¼ þ and the corresponding iϵ prescriptions
in the two terms under the integral in (2.17) are different
from each other.
In all, we have a situation similar to the one at the end of

Sec. II B: the variation can be expressed as in (2.20) but
without θðY0Þ. Hence the first summand of the variation
can be represented as the integral along the real line going
below the cut, and the second one—going above the cut.
Both of these contours can be closed by infinite semicircles,
so both summands in (2.20) [without θðY0Þ] vanish
independently.
Similarly one can prove the Poincaré invariance of the

integral (2.13) when only θðY1 − Y0Þ is present instead of

θðY1 þ Y0Þ. As in Sec. II B one can use the translations
moving the surface Y1 ¼ 0 to Y1 → −∞ to show the
coincidence with the perturbation theory in the whole
Minkowski spacetime.
Having these observations in mind, the Poincaré invari-

ance of the loop integrals in the Rindler wedge can also be
derived from the causality property: the intersection of the
past light cone of any point in the wedge with the wedge
itself is the same as the intersection of the same light cone
with half of the Minkowski spacetime, Y1 > −Y0 contain-
ing the wedge. So, the result of any calculation in the
Schwinger-Keldysh technique in the right wedge coincides
with the result of the similar calculation in the half
containing the wedge. The analysis of Sec. II B is, however,
still instructive, as it will help us to consider the situation
in the future (or upper) wedge, X0 > jX1j, of Minkowski
spacetime.
In the same manner one can show the Poincaré invari-

ance of the loop integrals in the left wedge (Y1 < −jY0j).
Furthermore, note that a past light cone of any point in the
past wedge Y0 < −jY1j is contained in this wedge, so the
Schwinger-Keldysh perturbation theory there also coin-
cides with one in the entire Minkowski spacetime due to the
causality property and, hence, is Poincaré invariant.
The only remaining part is the future wedge X0 > jX1j of

Minkowski spacetime. This case is more complicated: an
intersection of any past light cone with this wedge cannot
be represented as its intersection with any half of the entire
spacetime. Also it can be shown that unlike any other
wedge, intersection of the past light cone of any point in the
future wedge with the wedge itself has a finite volume. It
means that due to causality there should be no infrared
divergences even for massless theories, unlike the situation
in the whole Minkowski spacetime. So one needs to
consider the future wedge separately.

A. Future or upper wedge

In the future wedge, X0 > jX1j, the following local
coordinates can be introduced:

X0 ¼ eτ cosh ξ; X1 ¼ eτ sinh ξ: ð4:2Þ

Then, the corresponding induced metric,

ds2F ¼ e2τðdτ2 − dξ2Þ − ðdXaÞ2; ð4:3Þ

depends on time. Hence, the free Hamiltonian is also time
dependent. This is another reason why one has to use the
Schwinger-Keldysh technique to do loop calculations in
the patch under consideration. The Minkowski (Poincaré
symmetric) propagator corresponds to a specific choice
of the basis of modes in the patch, which was found,
e.g., in [30]. Note that while such a state is not stationary in
the future wedge, as the free Hamiltonian in that region
depends on time, those modes still diagonalize it in the
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infinite past and by definition describe the exact quantum
evolution of the free theory. In Sec. V we will see that the
modes which do not diagonalize the free Hamiltonian in the
past lead to severe IR problems.

We want to check whether loop corrections respect the
Poincaré isometry or not. Similar to Sec. II B we need to
consider construction (a part of a loop integral) of the
following form:

IFKðX1;…; XnÞ ¼
Z

ddYθðY0 − Y1ÞθðY0 þ Y1Þ
"Yk
j¼1

FðY; XjÞ
Yn

j¼kþ1

W̄ðY; XjÞ −
Yk
j¼1

WðY; XjÞ
Yn

j¼kþ1

F̄ðY; XjÞ
#
: ð4:4Þ

The step functions now restrict the integration region to the future wedge, and we should assume that all Xi’s, i ¼ 1;…; n,
are in the same wedge as well.
The variation of IFK under the time translation Y0 → Y0 þ ϵ can be represented as δϵIFK ¼ ϵðδð1ÞIFK þ δð2ÞIFKÞ similar

to (2.16). Consider, for instance, δð1ÞIFk . It coincides with δð1ÞIK from (2.17):

δð1ÞIFK ¼
Z

dd−1YθðY0Þ
(Yk

j¼1

F½d1ðXj; YÞ − iϵ�
Yn

j¼kþ1

F½d1ðXj; YÞ þ iϵsignðY0 − X0
jÞ�

−
Yk
j¼1

F½d1ðXj; YÞ − iϵsignðY0 − X0
jÞ�

Yn
j¼kþ1

F½d1ðXj; YÞ þ iϵ�
)
: ð4:5Þ

Note that d1ðXj; YÞ from (2.15) can be rewritten as follows:

d1ðY; XjÞ ¼ ðX1
j − X0

jÞ½2ðY0 − X0
jÞ þ X0

j − X1
j �

− ðYa − Xa
j Þ2: ð4:6Þ

Let us repeat the analysis of iϵ prescriptions once again.
As before, we will start with the region where the iϵ
prescriptions of two terms of the integrand of (4.5) have
the same signs, e.g., signðY0 − X0

jÞ ¼ þ. It follows from
the definition of the upper wedge and from (4.6) that
d1ðY; XjÞ < 0. So just as in the case considered above we
can write

δð1ÞIFK ¼
Z

dd−1YθðY0Þ
(Yn

j¼1

F½d1ðXj; YÞ − iϵ�

−
Yn
j¼1

F½d1ðXj; YÞ þ iϵ�
)
: ð4:7Þ

However, the key difference from the cases considered
above in this section and in the subsection II B is a position
of the cut. From (4.6) it is clear that d1ðY; XjÞ > 0 if Y0 is
negative and jY0j ≫ 1, meaning that the cut is going along
ð−∞; Ỹ0

t Þ. Here Ỹ0
t is the highest value of Y0 such that

d1ðY; XjÞ ¼ 0 for some j. Note that d1ðY; XjÞ ¼ ðX0
jÞ2 −

ðX1
jÞ2 − ðY2 − Xa

j Þ2 if Y0 ¼ 0. It can be positive for some
values of Xμ

j and Ya, and in such cases Ỹ0
t > 0. This

situation is shown in Fig. 6. Note that the integration goes
around only a part of the cut ð0; Ỹ0

t Þ. Hence it cannot be

properly closed by an infinite circle and is not zero in
generic situations.
In the same way one can show that δð2ÞIFK ≠ 0 in generic

situations. So the Schwinger-Keldysh technique in the
future wedge does not provide the isometry invariant
expressions. The reason why we encounter the differences
between loop calculations in the entire Minkowski space-
time and in the future wedge, although we use the same
tree-level propagators, is as follows: Cauchy surfaces in the
entire Minkowski spacetime and in the future wedge have
different geometry. That results in different infrared effects
in these different charts, as these effects are sensitive to the
boundary and initial conditions. Wewill encounter a similar
situation in various patches in de Sitter spacetime below.
Let us demonstrate the violation of the isometry invari-

ance in the future wedge on a simple example. Note that if

FIG. 6. The integration contour for δð1ÞIFK (blue), and the branch
cut is shown in red.
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the correlation functions in the theory are Poincaré-
invariant, they should coincide with those in the theory
in the entire Minkowski spacetime as we can move the
surface Y0 ¼ 0 to −∞ via time translations (part of the
Poincaré group). So it is enough to show that the result of
some calculations is different in entire Minkowski space-
time and in the future wedge. Consider the massless scalar
field theory in d ¼ 4. Its Wightman function is as follows:

WðX; YÞ ¼ 1

ðX − YÞ2 − iϵsignðX0 − Y0Þ : ð4:8Þ

We can add the mass term m2ϕ2

2
to the Lagrangian as a

perturbation and consider the first-order correction
Fð1Þð0; XÞ to the Feynman propagator Fð0; XÞ, where
Xμ ¼ ðt; 0; 0; 0Þ. Of course, the point 0 is on the boundary
of the right wedge, but it can be considered as a limit of
some sequence of points inside the wedge. In the entire
Minkowski spacetime we can use the standard Feynman
perturbation theory to express the correction:

Fð1Þ
M ð0;XÞ¼−im2

Z
d4Y

1

ðY2− iϵÞððY−XÞ2− iϵÞ: ð4:9Þ

The Schwinger-Keldysh technique in the entire Minkowski
spacetime for the static state that we consider here will give
the same result.
In the future wedge we have to use the Schwinger-

Keldysh technique, as was explained above. First, note that
for the points under consideration FðY; 0Þ ¼ WðY; 0Þ as in
the future wedge Y0 > 0. Then, note that

FðY; XÞ −WðY; XÞ

¼ 1

ðY − XÞ2 − iϵ
−

1

ðY − XÞ2 − iϵsignðY0 − tÞ
¼ 2iπθðt − Y0Þδ½ðY − XÞ2�: ð4:10Þ

As a result, in the future wedge the correction to the
propagator for the two points under consideration is as
follows:

Fð1Þ
F ð0; XÞ ¼ 2πm2

Z
jY1j<Y0<t

d4Y
δ½ðY − XÞ2�
ðY2 − iϵÞ : ð4:11Þ

The integrals (4.9) and (4.11) are calculated in
Appendix A. The results are

Fð1Þ
M ð0;XÞ¼−π2m2 log

Λ2

−t2
; Fð1Þ

F ð0;XÞ¼ iπ3m2; ð4:12Þ

where Λ is an IR cutoff. The results are clearly different
(but their imaginary parts, however, do coincide). In the
entire Minkowski spacetime for the massless theory there is
an IR divergence which becomes stronger with the increase
of the order of perturbation theory. So one has to sum the

whole series to obtain the correct result, which is diver-
gence-free and nonanalytic in m2.
On the other hand, the intersection of the future wedge

with the past light cone of an arbitrary point in it has a finite
volume as we pointed out above. Hence, due to the
causality property even the massless theory in this chart
is free from the IR divergences. This is definitely the case

for Fð1Þ
F , as one can see from the result. Hence, the theory in

the future wedge cannot be Poincaré invariant.
It is also worth stressing that the consideration above

also works in the case of the massive theory with mass μ
such that t ≪ 1

μ, as
1
μ is a natural cutoff scale in this case.

The characteristic size of the past light cone of X is ∼t, so
the theory is effectively massless and the expression for

Fð1Þ
F ð0; XÞ from (4.12) is still valid. On the other hand, we

can consider Fð1Þ
F ðX1; X2Þ, where Xμ

1 ¼ ðT; 0; 0; 0Þ and
Xμ
2 ¼ ðT þ t; 0; 0; 0Þ with T ≫ 1

μ. The principal contribu-
tion to the integral in the perturbation theory comes from
the region around X1 and X2 of the size ∼ 1

μ, which is
entirely contained in the intersection of the past light cone
of X2 with the future wedge. Hence one can use the
Minkowski spacetime calculation and the first-order cor-

rection is given by Fð1Þ
M from (4.12) where Λ is replaced

with 1
μ. Now we explicitly see the violation of the isometry.

In particular, it follows that an adiabatic change of the mass
in the past moves the system from the isometry-invariant
state to some other state. Similar effects in the case of the
global de Sitter spacetime were observed in [31].
Another interesting consideration is that one can modify

the Schwinger-Keldysh technique to make the corrections
under consideration to be isometry invariant. Namely, the
arguments about analytic continuation from Sec. II C work
in the whole Minkowski spacetime as well, but one can
move the horizontal parts of the contour C from Fig. 4 to
positive and negative imaginary infinities. This is possible
as there is no periodicity in imaginary time and therefore no
additional cuts from Fig. 2, and we simply obtain the
perturbation theory in the Euclidean Rd. However, while in
Sec. II C the Euclidean contour is closed in the left half
plane, one can close it in the right half plane as well. This
allows us to redefine the calculations in such a way that
future and past infinities are effectively interchanged. The
contour now starts at future infinity above all cuts and
returns to it below them.
Thus, in this modification of the Schwinger-Keldysh

technique one exchanges the future and past infinities in
the calculations, effectively mapping the calculation from
the future wedge to the one in the past wedge. Namely the
⟪ − ⟫ and ⟪þ ⟫ parts of the contour change their direc-
tions (the ⟪ − ⟫ part goes from the future to the past and the
⟪þ ⟫ part goes from the past to the future). It means that
we should assign −1 multipliers to ⟪þ ⟫ vertices instead
of ⟪ − ⟫ ones. Besides that, G−−ðY; XjÞ is now below the

AKHMEDOV, KOCHERGIN, and MILOVANOVA PHYS. REV. D 107, 105015 (2023)

105015-12



cut if Y0 < X0
j and above it if Y0 > X0

j—the ⟪ − ⟫ part is
above cuts in the future as we discussed. Hence, we need to
conjugate it and define G−−ðY; XjÞ ¼ F̄ðY; XjÞ. In the
same way GþþðY;XjÞ¼FðY;XjÞ. Functions G−þðY; XjÞ
and Gþ−ðY; XjÞ are still above and below the cut, respec-
tively, so they are unchanged.
Using the argument similar to the one in Sec. III one can

show that the integration regions for internal vertices can be
restricted to the union of future light cones emanating from
the external points. Hence, this technique in the upper
wedge is the same as in the entire Minkowski spacetime
(with the reversed time) and is Poincaré invariant as a
result. However, unlike the case with the usual Schwinger-
Keldysh formalism it is questionable whether such a
technique has some sensible physical interpretation.
It is also instructive to note that one might choose

different modes than in [30]. However, as we will discuss in
Sec. V, another choice of the basis of modes might lead to
additional UV problems or the corresponding Fock space
ground state will violate the isometry. Besides that, the
proof of causality property above is based on the fact that
the commutator of the field operators vanishes outside the
light cone. The commutator is the c-numbers in the free
theory, so it does not depend on the choice of the basis of
modes. Hence, the causality always holds, so the argument
regarding the finite volume of the past light cone always
holds and we will never get IR divergences in the future
wedge. Therefore, any choice of modes cannot lead to the
same one-loop result as in the entire Minkowski spacetime,
which has IR divergences in the massless theory.
Finally, one can consider the following Euclidean

version of the metric (4.3):

ds2F;E ¼ e−2iκðdκ2 þ dξ2Þ þ ðdXaÞ2: ð4:13Þ

It is 2π-periodic in κ just as the usual static Rindler metric,
but also it is complex valued. The question whether a space
with a complex Euclidean metric admits a sensible quan-
tum field theory in a static sense was addressed in [32,33].
The criterion formulated by Kontsevich and Segal is as
follows: if the metric has a form

ds2 ¼
Xd
i¼1

λidx2i ; ð4:14Þ

then the inequality
P

d
i¼1 jArgλij < π where arguments are

defined in ð−π; πÞ should be satisfied in each point of the
manifold. This is clearly not the case for (4.13) if, e.g.,
κ ¼ π

2
, so the QFT in the upper wedge does not have a

Euclidean version.

V. CHARTS OF THE DE SITTER SPACETIME

In this section we will consider various patches of the
d-dimensional de Sitter (dS) spacetime. Our presentation in

the expanding Poincaré patch in many respects repeats
that of [11,15].
The dS spacetime is defined as a hypersurface embedded

in the (dþ 1)-dimensional Minkowski spacetime with
coordinates XI, I ¼ 0;…; d whose metric has signature
ðþ;−; � � � ;−Þ. The equation defining the hypersurface of
unit curvature is as follows:

XIXI ¼ −1: ð5:1Þ

It admits the following global coordinates:

X0 ¼ sinh t; Xσ ¼ ψσ cosh t; σ ¼ 1;…; d; ð5:2Þ

where ψσ are components of a vector on a (d − 1)-
dimensional sphere: ðψσÞ2 ¼ 1. The corresponding metric
is as follows:

ds2 ¼ dt2 − cosh2 tdΩ2
d−1; ð5:3Þ

where dΩ2
d−1 is a metric on a (d − 1)-dimensional unit

sphere. It is also convenient to introduce the geodesic
parameter ζðX; YÞ ¼ −XIYI which is invariant with respect
to the dS spacetime isometries—the Lorentz group of the
embedding Minkowski spacetime. The sign is chosen

in such a way that ζðX; YÞ ¼ ðX−YÞ2
2

þ 1. So the interval
between X and Y is spacelike if ζ < 1 and timelike if ζ > 1.
In global coordinates we have that

ζðX;X0Þ ¼ coshðt − t0Þ − ð1 − ψσψ 0σÞ cosh t cosh t0: ð5:4Þ

Hence, the standard iϵ prescription t − t0 − iϵ for the
Wightman function translates into ζðX;X0Þ− iϵsignðt− t0Þ,
which is similar to the iϵ prescription in the Minkowski
spacetime of the interval squared. Also note that
signðt − t0Þ ¼ signðX0 − X00Þ.
As before, we consider the scalar QFT in different

patches of dS spacetime and check whether it is isometry
invariant on the loop level if one chooses invariant states
(and, correspondingly, propagators) at tree level. The
isometries in this case are given by the connected compo-
nent of unity of the Lorentz group SOðd − 1; 1Þ of the
embedding Minkowski spacetime. As the metric (5.3) is
time dependent, there is no canonical choice of positive
energy modes. However, there is one particular choice that
corresponds to a state in which isometry-invariant corre-
lators are related to similar correlators in the Euclidean
theory on Sd via analytic continuation. In such a state
correlation functions obey the Hadamard conditions, i.e.,
behave as in flat spacetime for short separations.
This maximally analytic state is usually referred to as

the Bunch-Davies (BD) vacuum [6]. To simplify notations
we will denote the corresponding Wightman function by
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WðX;X0Þ as before in the case of Minkowski spacetime.
It is as follows [7,8,26,29,34]:

WðX;X0Þ ¼ Γðd−1
2
þ iμÞΓðd−1

2
− iμÞ

ð4πÞd2Γðd
2
Þ 2F1

�
d − 1

2
þ iμ;

d − 1

2

− iμ;
d
2
;
1þ ζ − iϵsignðt − t0Þ

2

�
; ð5:5Þ

where

μ2 ¼ m2 −
ðd − 1Þ2

4
ð5:6Þ

and 2F1ða; b; c; xÞ is a standard hypergeometric function
with the branch cut along ð1;þ∞Þ. For more details about
analytic properties of this propagator see, e.g., [34–36].
Here m is the mass of the scalar field measured in units
of dS curvature, which we set to be one. Such a Wightman
function is clearly isometry invariant. As ζðX;X0Þ ¼
ðX−X0Þ2

2
þ 1, the expression in terms of the analytic function

of the embedding Minkowski spacetime interval (2.14) can
be used as well.
This is not the only choice of modes which leads to

the isometry-invariant propagators in the dS spacetime.
In fact, there is a continuous family of so-called alpha
states respecting the symmetry [7,8]. The corresponding
Wightman functions can be expressed in terms of the BD
one (5.5) [37]:

WðαÞðX;X0Þ ¼ cosh2 αWðX;X0Þ þ sinh2 αWðX0; XÞ
þ sinh α cosh α½WðX;−X0Þ þWð−X;X0Þ�:

ð5:7Þ

In the case α ¼ 0 it coincides with the BD Wightman
function, but for generic values of α it has different analytic
properties and does not obey the Hadamard conditions.
For instance, unlike WðX;X0Þ it does not admit the
representation of the form (2.14): WðX;X0Þ and
WðX0; XÞ have opposite iϵ prescriptions. As we will discuss
in Sec. VA, this fact has drastic consequences in perturba-
tion theory.
In loop integrals we need to use the dS-invariant volume

form, dVoldS, defined by the metric (5.3). It is, however,
more convenient for our purposes to write all integrals in
terms of the embedding Minkowski spacetime coordinates
YI inserting δðY2 þ 1Þ into the integrand. More precisely,
we can use the following expression for the volume form:

dVoldS ¼ 2δðY2 þ 1Þddþ1Y: ð5:8Þ

In these notations all of the integrals are manifestly
isometry invariant if we integrate over the whole dS

spacetime, but contain IR divergences, as we will discuss
below. Besides that, the Schwinger-Keldysh integrals have
a form similar to (2.13) with the measure defined above
(the step functions should, of course, be used only if we
wish to restrict the integration domain to some region of the
entire spacetime).

A. Loop corrections in the expanding Poincaré
and static patches

The expanding Poincaré patch (EPP) is half of the entire
dS spacetime defined, e.g., by the condition X0 > −Xd.
It admits the following local coordinates:

X0 ¼ sinh τ þ ðxiÞ2
2

eτ; Xi ¼ xieτ;

Xd ¼ cosh τ −
ðxiÞ2
2

eτ; i ¼ 1;…; d − 1; ð5:9Þ

the metric for xi is δij. The induced metric on EPP from the
ambient one is as follows:

ds2 ¼ dτ2 − e2τðdxiÞ2: ð5:10Þ

Usually the conformal time η ¼ e−τ is used instead of the
proper one τ as then the metric becomes conformally flat:

ds2 ¼ dη2 − ðdxiÞ2
η2

: ð5:11Þ

For explicit expressions of modes corresponding to BD and
alpha states in the EPP see, e.g., [26].
We want to check whether the Schwiger-Keldysh

technique for the BD state in the EPP is isometry-
invariant. In Sec. IV we have considered the half of the
Minkowski spacetime defined by the similar condition
X0 > −X1. As we noted above, the BD propagators have
the same analytic representations (2.14) as in the
Minkowski spacetime, so the only modification to the
analysis from Sec. IV is the use of the measure (5.8)
instead of ddþ1X. We also need to consider the Lorentz
transformations of the ambient spacetime instead of
translations, but the variation of θðY0 þ YdÞ defining
the EPP is still proportional to δðY0 þ YdÞ. Note that this
δ-function turns δðY2 þ 1Þ into δ½1 − ðYiÞ2�, which does
not affect the Y0 integration domain and analytic proper-
ties of the integrand with respect to Y0. Therefore one can
perform the same contour manipulations as in Secs. II B
and IV and find that the Schwinger-Keldysh perturbation
theory in EPP is isometry invariant.
Another interesting region is the static patch (SP)

Xd > jX0j—it is defined in a similar way as the right
Rindler wedge of the Minkowski spacetime considered in
Sec. II. The SP is half of EPP and, hence, is a quarter of the
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whole dS spacetime. The local coordinates in the patch are
as follows:

X0 ¼ sin θ sinh t; Xi ¼ cos θψ i; Xd ¼ sin θ cosh t;

θ ∈ ½0; π=2�; ðψ iÞ2 ¼ 1: ð5:12Þ

The main advantage of these coordinates is that the
corresponding metric

ds2 ¼ sin2 θdt2 − dθ2 − cos2 θdΩ2
d−2 ð5:13Þ

is time independent, so we can define positive energy
modes and thermal states. Besides that, the change t ¼ −iκ
with κ ∈ ð−π; πÞ transforms (5.13) into the metric on the
Euclidean Sd of the unit radius. It is somewhat similar to
the Rindler space being an analytic continuation of the
Euclidean space Rd.
It turns out that the BD propagator corresponds to the

thermal state in the static patch with the inverse temperature
β ¼ 2π [34,38–40]—another similarity with the Rindler
space. So as the metric is time independent one can use
exactly the same method as in Sec. II C to show that the
Schwinger-Keldysh technique for BD propagators in the
SP is the analytic continuation of the Euclidean perturba-
tion theory on Sd. Hence, the diagrammatic technique for
the BD state in the SP is manifestly isometry invariant.
Moreover, light cones in dS spacetime are just inter-

sections of ambient spacetime light cones with the dS
manifold itself. It means that the causality argument,
regarding the wedges Y1 > jY0j and Y1 > −Y0 of the
Minkowski spacetime from Sec. IV, also works in the
dS spacetime. Namely, the past light cone of a point in SP
coincides with the past light cone of the same point in EPP,
so the Schwinger-Keldysh perturbation theories for BD
states in these charts of dS spacetime exactly coincide. In
particular, we can use the analytic continuation to Sd for the
BD state in the EPP as well. Some concrete computations
of loop corrections in the Euclidean signature with sub-
sequent analytic continuation can be found in [41–43].
Finally, we can consider the Schwinger-Keldysh tech-

nique for the alpha states5 with α ≠ 0. But as we discussed,
the propagator (5.7) cannot be represented as the boundary
value of an analytic function of ζ, so the arguments with
contour deformations from Secs. II B and IV do not work.
In particular, let us look at δð2ÞIK from (2.17). In Sec. II B
we argued that it can be represented as the integral around
the cut as the iϵ prescriptions of all propagators in each
summand were the same (but different for each of the two

summands). On the other hand, if we use the propagator
(5.7) instead of the BD one, additional terms appear where
some of the functions F have reversed iϵ prescriptions.
Hence, e.g., in the first summand some of the propagators
are above the cut and not below it. It means that we cannot
close the contour at all and δð2ÞIK is not zero.
Besides that, it was crucial for our argument that all of

the external points belong to the same patch, but (5.7) also
contains terms of the form WðX;−X0Þ and −X0 is in a
different patch. Hence, the perturbation theory for alpha
states in patches of the dS spacetime is not isometry-
invariant and an adiabatic change of the mass term or
turning on the interaction moves the system away from the
invariant state.
Another problem of alpha states is the possible appear-

ance of terms such as WðX;X0ÞWðX0; XÞ as integrands in
the perturbation theory. As it was shown in [19], such terms
can lead to sever nonlocal UV divergences in the effective
action which span along the whole light cone of the point Y.
This is another revelation of the fact that alpha states have
problems with the UV renormalization.

B. One-loop correction
in the contracting Poincaré patch

The contracting Poincaré patch (CPP) is just the time
reversal of EPP and its complement within the global dS
spacetime: it is defined by the condition that X0 < −Xd.
The local coordinates are very similar to (5.9):

X0 ¼ sinh τ −
ðxiÞ2
2

e−τ; Xi ¼ xieτ;

Xd ¼ − cosh τ þ ðxiÞ2
2

e−τ; i ¼ 1;…; d − 1: ð5:14Þ

The conformal time is now η ¼ eτ, so it flows from η ¼ 0 to
η ¼ þ∞ (in the reverse direction with respect to the EPP
time), and the metric in the conformal time is the same
as (5.11).
In principle, the Schwinger-Keldysh technique for the

BD state in the CPP should be manifestly isometry
invariant: due to causality the integration domains in
vertices can be extended to the whole dS spacetime.
However, as it was demonstrated in [28,29,44,45] infrared
divergences at η → 0 appear even if we use the BD
propagator for massive theories.
In this subsection we will show that even the first loop

correction in the CPP breaks the dS isometry due to explicit
IR divergences. As we will see, they are present for all
values of the mass. Note that if the mass is sufficiently
small, IR divergences of a different kind appear even in
EPP. They are, however, similar to the usual IR divergences
in massless theories in Minkowski space and admit a
systematic treatment [46–50]. To regularize the standard
UV divergences just as before we assume to work with

5Here we ignore the fact that for alpha states the leading UV
renormalization in dS spacetime is different from the one in
Minkowski spacetime. This means that alpha states are not
physically meaningful in the bare UV theory, because otherwise
by just measuring the running of coupling constants in local
experiments one can sense that one lives in the huge dS spacetime.
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Pauli-Villars regularization defined in Appendix B, which
respects the analytic properties of the propagators.
The version of the Schwinger-Keldysh perturbation

theory with ⟪þ ⟫ and ⟪ − ⟫ vertices is rather inconvenient
for practical computations, so let us perform the Keldysh
rotation as in [22,29]:

ϕcl ¼
ϕ− þ ϕþ

2
; ϕq ¼ ϕ− − ϕþ: ð5:15Þ

After such a rotation the one loop correction to the Keldysh
propagator in the ϕ3 theory is as follows (see [29,51,52], for
the details):

DK
1 ðpjη1; η2Þ ¼ λ2

Z
dd−1q1

!dd−1q2
!

ð2πÞ2ðd−1Þ
Z

∞

η0

dη3dη4
ðη3η4Þd

δðp⃗þ q1
!þ q2

!Þ½DR
0 ðpjη1; η3ÞDK

0 ðq1jη3; η4ÞDK
0 ðq2jη3; η4ÞDA

0 ðpjη4; η2Þ

þ 2DR
0 ðpjη1; η3ÞDR

0 ðq1jη3; η4ÞDK
0 ðq2jη3; η4ÞDK

0 ðpjη4; η2Þ
þ 2DK

0 ðpjη1; η3ÞDK
0 ðq1jη3; η4ÞDA

0 ðq2jη3; η4ÞDA
0 ðpjη4; η2Þ

−
1

4
DR

0 ðpjη1; η3ÞDR
0 ðq1jη3; η4ÞDR

0 ðq2jη3; η4ÞDA
0 ðpjη4; η2Þ

−
1

4
DR

0 ðpjη1; η3ÞDA
0 ðq1jη3; η4ÞDA

0 ðq2jη3; η4ÞDA
0 ðpjη4; η2Þ�; ð5:16Þ

where η0 is the moment after which the self-interactions are adiabatically turned on, 0 < η0 < η1; η2 < þ∞; i.e., η0 is the
position of the initial Cauchy surface. In the above expression we use spatially Fourier transformed Keldysh, retarded, and
advanced propagators, which have the following form:

DK
0 ðpjη1; η2Þ ¼ ðη1η2Þd−12 Re½hðpη1Þhðpη2Þ�;

DR
0 ðpjη1; η2Þ ¼ 2θðη1 − η2Þðη1η2Þd−12 Im½hðpη1Þh̄ðpη2Þ�;

DA
0 ðpjη1; η2Þ ¼ −2θðη2 − η1Þðη1η2Þd−12 Im½hðpη1Þh̄ðpη2Þ�; ð5:17Þ

where hðpηÞ ¼
ffiffi
π

p
2
e
πμ
2Hð2Þ

iμ ðpηÞ is the Hankell function, which defines the BD modes.
In the limit η0 → 0 and

ffiffiffiffiffiffiffiffiffi
η1η2

p ≡ η ≫ η1=η2 the leading one-loop contribution to DK
1 ðpjη1; η2Þ can be expressed as

DK
1 ðpjη1; η2Þ ≈ ðη1η2Þd−12 ½hðpη1Þh̄ðpη2ÞnpðηÞ þ hðpη1Þhðpη2ÞκpðηÞ þ c:c:�; ð5:18Þ

where c.c. means complex conjugated terms; meanwhile

npðηÞ ≈
8λ2

ð2πÞ2ðd−1Þ
Z

dd−1q1
!dd−1q2

!
Z

η

η0

dη3dη4ðη3η4Þd−32 δðp⃗þ q1
!þ q2

!Þhðpη3Þhðpη4Þh̄ðq1η3Þhðq1η4Þh̄ðq2η3Þhðq2η4Þ

ð5:19Þ

and

κpðηÞ≈−
16λ2

ð2πÞ2ðd−1Þ
Z

dd−1q1
!dd−1q2

!
Z

η

η0

dη3

Z
η3

η0

dη4ðη3η4Þd−32 δðp⃗þ q⃗1þ q⃗2Þhðpη3Þh̄ðpη4Þh̄ðq1η3Þhðq1η4Þh̄ðq2η3Þhðq2η4Þ:

ð5:20Þ

For the scalar field with such a mass that m > ðd − 1Þ=2 in
the limit pη3;4 ≪ μ we can use the following asymptotic
expansion of the Hankel function:

hðpη3;4Þ ≈ Aþðpη3;4Þiμ þ A−ðpη3;4Þ−iμ; ð5:21Þ

where A� are some known complex constants whose
explicit form is not important for our consideration at this

point. We will see now that even for the heavy fields in the
CPP and global dS one encounters infrared divergences.
Then the largest contribution to npðηÞ and κpðηÞ in the

limit under consideration comes from the region where
q1;2 ≫ p, because for q1;2 ≲ p the integrals are finite.
Hence, we neglect p⃗ in δ-functions under the integrals
on the RHS of (5.19) and (5.20). Then we make the
following change of variables under the integrals:
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u ¼ η3η4, v ¼ η3
η4
, x⃗1 ¼ η3q⃗1, x⃗2 ¼ η3q⃗2, and take the

integrals over q⃗2. As the result we obtain

npðηÞ ≈
8λ2Sd−2
ð2πÞ2ðd−1Þ

Z
min½η2;μ2=p2�

η2
0

du
u

Z
dx1

×
Z

dv

v
dþ1
2

½jAþj2v−iμ þ jA−j2viμ�½hðx1Þhðx1v−1Þ�2

ð5:22Þ

and

κpðηÞ ≈ −
16λ2Sd−2
ð2πÞ2ðd−1Þ ĀþĀ−

Z
min½η2;μ2=p2�

η2
0

du
u

Z
dx1

×
Z

dv

v
dþ1
2

½v−iμ þ viμ�½h̄ðx1Þhðx1v−1Þ�2; ð5:23Þ

where Sd−2 is the volume of the (d − 2)-dimensional sphere
and min½η2; μ2=p2� means the smallest value among η2

and μ2=p2.
There are two possible limits for the integration over du:

for pη < μ the contributions to np and κp are proportional
to ln ðη=η0Þ, while for pη > μ they are proportional to
ln ðμ=pη0Þ. In both situations we cannot take η0 to the past
infinity due to the explicit infrared divergence in np and κp.
It is not very hard to trace that one encounters such
divergences in CPP for the same reason as loop corrections
in EPP do grow with time (see, e.g., [29] for a review). To
cut the divergence in the loop integrals one has to keep
the initial Cauchy surface at η0, which explicitly breaks the
dS isometry. In the EPP the initial Cauchy surface can be
safely taken to the past infinity (η0 → ∞ in the EPP)
because due to such a shift of the surface every physical
momentum on it experiences a blueshift. Meanwhile the
highly blueshifted BD modes behave as in flat spacetime
and do not sense the background geometry, as it should be
expected on general physical grounds. But in the CPP the
movement toward the past infinity results in the infrared
shift of the physical momentum. Hence, for the same
reason that one gets secular growth in the EPP, one obtains
the secular infrared divergence in the CPP. Note that this
divergence is present for any value of mass.
At the same time, the situation in the global dS is similar

to the one in the CPP if one restricts attention to the infrared
divergences. In fact, the global dS contains simultaneously
the CPP and EPP. An approach to this IR problem typically
employed in literature is just to calculate all loop correc-
tions in Euclidean dS space with subsequent analytic
continuation to Lorentzian signature [41–43]. One can
think of this as preparing the interacting theory in a
maximally analytic state akin to the BD one. However,
we cannot use Euclidean theory at all for nonequilibrium
processes for a generic initial state, so the study of the
Lorentzian situation is also very important. The IR

divergences we encountered then mean that the theory is
unstable under small time-dependent perturbations happen-
ing in the past.

C. Adiabatic switching vs iϵ prescription

So far we have performed the Keldysh rotation (5.15)
without thinking about the iϵ prescription which was
relevant in the previous sections. We did not need it as
we imposed a hard cutoff at some finite time and calculated
only the most divergent part. This is possible to do in the
Schwinger-Keldysh approach. However, as it was pointed
out in, e.g., [53], and as we discuss in Appendix C, there is
a different softer regularization scheme. Instead, one can
modify the modes as

h → hϵ ¼ eϵτh ð5:24Þ

and integrate along the entire timeline without any past
cutoff. Note that it is only necessary to regularize in the
τ → −∞ region as in Schwinger-Keldysh formalism; we
always have a natural upper cutoff for time integration. Two
approaches, with the sharp and soft cutoffs are possible in
nonstationary situations with the use of the Schwinger-
Keldysh technique. They describe two different physical
situations and have different consequences. We do our best
to consider both situations separately.
In [53] it was shown that in EPP regularization (5.24) is

equivalent to using the standard iϵ prescription such as the
one shown on Fig. 3. However, the situation is different in
CPP. The free Wightman function in terms of the modes is
expressed as follows:

W0ðpjη1; η2Þ ¼ ðη1η2Þd−12 hðpη1Þh̄ðpη2Þ: ð5:25Þ

For regularization of the time integrals we only care about
regions in the past, so we assume τj < 0 with ηj ¼ eτj as
usual. Then the standard prescription τ1 − τ2 − iϵ can be
achieved if we shift τ1 → τ1 þ iϵτ1, τ2 → τ2 − iϵτ2. If the
modes have only positive energy exponentials, h ∼ e−iατ

with α > 0, then such shifts are clearly equivalent to
(5.24). However, from (5.21) we see that this is not the
case in CPP as h → Aþeiμτe−ϵτ þ A−e−iμτeϵτ. The first
term has ill-defined behavior at past infinity, so the
regularization based on analytic properties is not suitable.
This is to be expected: in EPP the BD modes diagonalize
the Hamiltonian H at past infinity and have positive
energy [29], so we can use the standard Minkowski space
trick with shifting τ → τ þ iϵτ in the expression e−iHτ in
the past to select the interacting vacuum [54]. In CPP,
however, the free Hamiltonian is not diagonalized by the
BD modes, so such a shift does not have a clear physical
meaning.
Nevertheless, the regularization (5.24) still admits a

physical interpretation. Namely, instead of assigning the
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eϵτ factor to the modes we can assign it to the interaction
term Lint in the Lagrangian:

Lint → Linteϵτ: ð5:26Þ

It simply means that the interaction is slowly turned on
starting from the time τ ∼ − 1

ϵ. It is a well-known fact that
for the usual stationary QFT this adiabatic approach yields
the same results as the analytic iϵ prescription [22,23]. As
in our case the latter is inapplicable, so we will stick to this
approach. Besides, it will allow us to practically resum all
loops in the next subsection by computing the exact modes.
Next, while the analysis of [53] used the ⟪þ ⟫ and

⟪ − ⟫ representations of the diagrams, the Keldysh rotation
described in the above subsection is just its linear trans-
formation. Hence it should yield the same results as long as
we use the regularization (5.26)—note that then we always
integrate over real τ without any imaginary shift. Such a
prescription makes integrals of oscillating exponentials
convergent at −∞ and well-defined in the limit ϵ → 0
(we will return to this in the next subsection). However,
if there is no oscillating part the limit is still divergent:R
0
−∞eϵτ¼ 1

ϵ. This is exactly what we get in (5.22) and (5.23)
if we use this prescription instead of the hard cutoff
and change u ¼ eτ. Hence the divergent part was computed
correctly in the previous subsection. There were also
oscillating exponentials of the form u�2iμ which we did
not include in (5.22) and (5.23). The corresponding
integrals are technically cutoff dependent but bounded in
the case of the hard cutoff, but there are no problems in the
adiabatic regularization scheme.
Finally, as this regularization is not connected with

analytic properties, we cannot expect any resemblance with
the Euclidean theory. This is precisely what we observed: in
Euclidean signature there are no IR divergences.

D. Tree-level infrared divergences
in the contracting Poincaré patch

The infrared divergences for the BD state discussed in
the previous subsection are, in fact, not a property just
of loop corrections. In this subsection we will show that
somewhat similar problems for the BD state are present
even on the tree level, but they can be solved by choosing a
different Hadamard initial state, which, however, violates
the dS isometry on the tree level.
To show the origin of the tree-level divergence, let us

consider the scalar theory with the following Lagrangian:

L ¼ 1

2
½gμν∂μϕ∂νϕ −m2ϕ2 − afðτÞϕ2�; ð5:27Þ

where fðτÞ ≥ 0 is a function which slowly changes from
fðτ → −∞Þ → 0 at past infinity to fðτÞ → 1 at τ ≈ −Λ,
where Λ ≫ 1 has a meaning of the infrared cutoff. It is
responsible for the adiabatic switching described in the

previous subsection. It is convenient to define this Λ as
follows:

Λ ¼
Z

0

−∞
fðτÞdτ: ð5:28Þ

For instance, we can use fðτÞ ¼ eγτ if we wish to consider
the evolution till the point τ0 such that jτ0jγ ≪ 1 so
eγτ0 ≈ 1. In this case Λ ¼ 1

γ.
Note that within the Schwinger-Keldysh technique there

is no particular physical restriction to change the mass
adiabatically. Namely, in Minkowski space we use adia-
baticity to keep the system in the stationary Poincaré-
invariant ground state, while the dS states that we consider
are not stationary in the usual sense. However, we can think
of the maximally analytic BD state as an analog of
Minkowski vacuum in the sense that in it all correlation
functions depend only on the geodesic distances rather than
on each of their arguments separately and have well-
defined analytic properties. So it is natural to check whether
the maximal analyticity is preserved under the adiabatic
change of the mass term. Besides that, in Appendix C we
discuss that the instant change of the mass term causes even
more sever peculiarities.
Let us first consider the perturbation theory in a. After

the Keldysh rotation of the fields (5.15) the Lagrangian
takes the following form:

L ¼ gμν∂μϕcl∂νϕq −m2ϕclϕq − afðτÞϕclϕq: ð5:29Þ

Treating the last term as the vertex, we can compute the
first-order correction to the Keldysh propagator:

DK
1 ðpjη1; η2Þ ¼ a

Z þ∞

0

dξ
ξD

fðlog ξÞ½DR
0 ðpjη1; ξÞDK

0 ðpjξ; η2Þ

þDK
0 ðpjη1; ξÞDA

0 ðpjξ; η2Þ�: ð5:30Þ

Here we assume that j log η1;2j ≪ Λ. Due to the presence of
θ-functions inDR=A

0 the upper limit of integration is actually
η1 for the first summand and η2 for the second one. Note
that a finite change of the upper limit shifts the integral by a
finite value when Λ → ∞. As we are only interested in the
most divergent contribution DK

1;IR, we can for simplicity fix
it at, say, ξ ¼ 1 and forget about θ-functions. Using the
expressions for the propagators via the modes (5.17),
we find that the leading infrared contribution to DK

1 is
contained in the expression

DK
1 ðpjη1;η2Þ

≈ aðη1η2ÞD−1
2

Z
0

−∞
dτfðτÞ

�
hðpη1Þh̄2ðpeτÞhðpη2Þ

i
þ c:c:

�
;

ð5:31Þ
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where we have made the change of variables as follows:
ξ ¼ eτ.
As the divergence may occur at τ → −∞, we can use the

asymptotic expansion for hðpξÞ from (5.21). Note that in
the discussion of this subsection so far we did not explicitly
used the fact that hðpξÞ are BD modes: Eq. (5.21) can be
used for any choice of modes. The only nontrivial condition
comes from the canonical commutation relations [26]:

jA−j2 − jAþj2 ¼
1

2μ
: ð5:32Þ

For instance, in the case of BD modes these coefficients are
as follows:

ABD
− ¼

ffiffiffi
π

p
e
πμ
2

21þiμΓð1þ iμÞ sinh πμ ;

ABDþ ¼ −
ffiffiffi
π

p
e−

πμ
2

21−iμΓð1 − iμÞ sinh πμ : ð5:33Þ

Returning to our situation, not all contributions from
the expansion (5.21) produce divergent terms in (5.31).
Namely, the integral of fðτÞeiατ is finite and well-defined
when Λ → ∞ for α ≠ 0 due to the properties of fðτÞ. For
example,

lim
γ→0

Z
0

−∞
dτeγτeiατ ¼ 1

iα
: ð5:34Þ

(This property is definitely not the case if f changes rapidly,
e.g., if fðτÞ ¼ 0 for τ < −Λ and fðτÞ ¼ 1 for τ > −Λ.)
Therefore, to pick up the leading divergence we only need
to consider the terms without oscillating exponentials.
Using (5.28) we find

DK
1 ≈ 2aΛðη1η2ÞD−1

2

"
hðpη1Þhðpη2ÞĀþĀ−

i
þ c:c:

#
: ð5:35Þ

It is evidently divergent when Λ → ∞. In the last expres-
sion we simply picked out the most singular term of (5.31)
and (5.30).
It is interesting that according to (5.18) this correction

corresponds to the generation of a nontrivial anomalous

average κp ¼ 2ϵΛĀþĀ−
i with respect to the initial state. Of

course, the mass of the state is changed by a when τ > −Λ,
but we can take a → 0, Λ → ∞ in such a way that
aΛ ¼ const. Effectively it means that in the CPP the BD
state acquires a finite anomalous average and, hence, is
destroyed by an infinitesimal change of the mass if the
cutoff is taken to infinity.
The only alpha state which has the immunity to this

effect is the one with Aþ ¼ 0. The modes then are given by

hðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi

π
sinh πμ

q
J−iμðxÞ which corresponds to the In-state in

CPP [26]. However, it is an alpha state with α ≠ 0 and
therefore has UV problems in perturbation theory, which
were discussed in Sec. VA.
It is worth noting that our consideration is not always

applicable if the cutoff is finite. Namely, it can be used if
the expansion of hðpξÞ from (5.21) is valid near the cutoff
scale, i.e., when ξ ∼ e−Λ. It means that p ≪ μeΛ. On the
other hand, when p ≫ μeΛ, we need to use a different
asymptotic expansion:

hðxÞ ¼ Bþ
eixffiffiffi
x

p þ B−
e−ixffiffiffi
x

p ; x ≫ μ: ð5:36Þ

For the BD state Bþ ¼ 0 and, hence, h̄2ðpξÞ contains only
oscillating terms.
In all, the modes with high enough momentum do not

feel the correction (5.35) if the cutoff is finite. It means that
if one chooses such modes that behave as In-modes in the
CPP when p ≪ μeΛ and as the BD modes when p ≫ μeΛ,
then correlation functions have the same UV behavior
as the BD state and at the same time are not sensitive to
a small change of the mass term that we are discussing in
this subsection. It is possible to choose such modes by
considering a linear combination of the BD modes with
momentum-dependent coefficients. Namely, one can
choose as the mode functions the following canonically
transformed expressions:

gpðη; x⃗Þ ¼ η
D−1
2

Z
dD−1q½αpqhðqηÞeiq⃗ x⃗ þ βpqh̄ðqηÞe−iq⃗ x⃗�;

ð5:37Þ

where the complex η-independent coefficients α and β
should obey certain conditions to fulfill canonical commu-
tation relations for the field operator and the corresponding
conjugate momentum and for the ladder operators. Also
one can impose such conditions on α and β that the
corresponding correlation functions for the Fock space
ground state will obey the Hadamard conditions. For
example, one can take αpq ¼ αpδðp⃗ − q⃗Þ and βpq ¼
βpδðp⃗ − q⃗Þ so the modes gp are still given in a Fourier
basis and interpolate between ones with Aþ ¼ 0 for small p
and BD modes for large p. However, the corresponding
correlation functions, which are build with the use of the
Fock space ground state for these modes, will explicitly
violate the dS isometry already at the tree level.
A similar calculation for the global dS space was

performed in [55] in one- and two-loop orders. However,
the two propagators in each product in the integrand of the
first-order similar to (5.30) had different mass parameters
μ1 and μ2. Hence, the terms with oscillating exponentials
of either μ1 þ μ2 or μ1 − μ2 were always present, so IR
divergences did not appear. Besides that, wewill now show a
rather simple way to resum all of the loops.
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For the Lagrangian (5.27) the straightforward resumma-
tion of the infrared divergences is possible. Let us perform
it to conclude this subsection. Instead of dealing with
diagrammatic series, it is much easier to explicitly solve the
quadratic theory defined by (5.27) in the semiclassical
approximation (WKB). The equation for exact modes ĥaðτÞ
is as follows:

½∂2τ þ p2e2τ þ μ2 þ afðτÞ�ĥaðτÞ ¼ 0: ð5:38Þ

Due to the properties of fðτÞ solutions of this equation
are modes for the theory with the mass parameter μ when
τ → −∞ and with the mass parameter

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ a

p
when

jτj ≪ Λ or τ > 0. Let us for simplicity perform the
computation in the following limit:

a → 0; Λ → ∞; aΛ ¼ const: ð5:39Þ

Then the modes when τ < 0, jτj ≪ Λ or when τ > 0
correspond to the theory with the mass parameter μ as well:

ĥaðτÞ ¼
�
hðpeτÞ; τ → −∞;

h̃ðpeτÞ; jτj ≪ Λ or τ > 0:
ð5:40Þ

We assume that the modes hðxÞ are given (i.e., we know Aþ
and A− in the expansion of h) and we need to find h̃.
It is more convenient to work in the region where

peτ ≪ 1, so (5.21) can be used. We can then neglect the
term p2e2τ in (5.38). As f changes slowly, the solution
of the resulting equation can be found in the WKB
approximation:

ĥaðτÞ ¼ C1 exp

�
i
Z

τ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ afðτ0Þ

q
dτ0

�
þ C2 exp

�
−i

Z
τ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ afðτ0Þ

q
dτ0

�
: ð5:41Þ

Here we preserved a-terms only in the exponents, where
the aΛ combination may arise, neglecting them in the
preexponential factor 1

ðμ2þafðτÞÞ1=4 which also appears in

WKB solutions. Let us also expand the square roots in the
exponents to the first order in a. When τ < 0 and jτj ≫ Λ,
we find

ĥaðτÞ ¼ C1e−iδeiμτ þ C2eiδe−iμτ; δ ¼ aΛ
2μ

: ð5:42Þ

Here we used that fðτÞ ¼ 0 for τ < 0 and jτj ≪ Λ, soR
τ
0 fðτ0Þdτ0 ¼

R
−∞
0 fðτ0Þdτ0 ¼ −Λ. The second-order terms

in the square root expansion lead to the correction to the
phase δ of the order a2Λ, which is zero in our limit. Using
(5.21) and (5.40) we find

C1 ¼ Aþpiμeiδ; C2 ¼ A−p−iμe−iδ: ð5:43Þ

On the other hand, when τ < 0, jτj ≪ Λ (it intersects
with the region peτ ≪ 1 for sufficiently large Λ), we have

ĥaðτÞ ¼ C1eiμτ þ C2e−iμτ; ð5:44Þ

as a
R
τ
0 fðτ0Þdτ0 can be neglected after (5.39). Assuming

that Ãþ and Ã− are coefficients in the expansion (5.21) of h̃
and using (5.43) we obtain

Ãþ ¼ Aþeiδ; Ã− ¼ A−e−iδ: ð5:45Þ

In particular, it means that

h̃ðxÞ ≈ jAþj2eiδ − jA−j2e−iδ
jAþj2 − jA−j2

hðxÞ þ 2iAþA− sin δ
jA−j2 − jAþj2

h̄ðxÞ;

ð5:46Þ

as this holds for asymptotic expansions, and the relation
of h̃ with h̄ and h should be linear. Using (5.32) we can
simplify the last expression to

h̃ðxÞ ≈ ðe−iδ − 4iμjAþj2 sin δÞhðxÞ þ 4iμAþA− sin δh̄ðxÞ:
ð5:47Þ

We can use this relation to express the propagators D̃K=R=A

(5.17) for the modes h̃ in terms of DK=R=A
0 for the modes h.

Retarded and advanced propagators are defined in terms of
the field commutator, so they do not depend on the choice
of the basis of modes and stay the same, while the Keldysh
propagator acquires the form

D̃Kðpjη1; η2Þ ≈DK
0 ðpjη1; η2Þ þ ðη1η2ÞD−1

2 ½8μjAþj2ð1þ 2μjAþj2Þ sin2 δhðpη1Þh̄ðpη2Þ
− 4μĀþĀ− sin δðie−iδ þ 4μjAþj2 sin δÞhðpη1Þhðpη2Þ þ c:c:�: ð5:48Þ

We see that infrared divergence turned into the phase δ,
which is a rather standard phenomenon for such situations.
When δ → 0 one can easily see that the perturbative
answer (5.35) is reproduced.

By finding the exact modes we effectively resummed all
orders of perturbation theory. Hence this computation
shows that IR divergences do not completely disappear
even after such a resummation if Aþ ≠ 0. While the result is
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no longer divergent, there is no well-defined limit Λ → ∞
as the cutoff scale only enters the phase terms. On the other
hand, the limit that makes sense is Λ → ∞, a → 0,
aΛ ¼ const, and the corresponding correction to the
Keldysh propagator does not vanish in this limit. It means
that the initial state acquires a nonvanishing particle density
and anomalous averages under an infinitesimal shift of the
mass term as long as Aþ ≠ 0.
Hence, we once again find that the BD state in the CPP is

unstable, and we need to explicitly break the dS isometry
symmetry by introducing some form of cutoff and chang-
ing low-momentum modes to improve the situation.
Besides that, note that this consideration is somewhat
universal. Namely, if we have a theory with the modes
behaving as (5.21) at past infinity, i.e., satisfying the wave
equation with mass parameter μ, we can reconstruct the
WKB solutions to it in the same way and obtain (5.47).
This is the case in, e.g., global dS space, so just as we noted
in Sec. V B the global dS space also suffers from the IR
divergences.

VI. CONCLUSIONS

We consider loop corrections to tree-level correlation
functions in various patches (regions, wedges, or charts)
of Minkowski and de Sitter spacetimes for the isometry
invariant states. Namely in Minkowski spacetime we
consider the Poincaré invariant state, while in de Sitter
spacetime we mainly consider the Bunch-Davies state. We
essentially use the consideration of various patches of
Minkowski spacetime as model examples for the study of
the patches in de Sitter spacetime.
Our main goal is to find out if the loop corrections

respect the isometries or not and to check if the loop
integrals can be mapped to the Euclidean signature via
analytical continuation of the propagators and rotations of
the integration contours in the loop corrections. By product
we prove that the Feynman technique does not provide
correct answers for the loop integrals, if one integrates in
the vertices over the regions rather than over the entire
spacetimes. That is true even if one restricts the consid-
eration to the static charts. Our consideration was rather
general; in the case of de Sitter space it was pointed out
in [20,21]. Furthermore, we prove that the Schwinger-
Keldysh technique is causal: the integration over the
vertices in the loops can be restricted to the union of the
past light cones of the external vertices of the correlation
functions. The integrals beyond the past light cones provide
vanishing contributions. This fact is mentioned in,
e.g., [11,28] without a formal proof, so we find it instructive
to provide one. We use these observations to prove our
statements.
Using a method similar to one of [11], we prove that

for the Poincaré invariant state the loop corrections in the
left and right Rindler wedges of Minkowski spacetime can
be mapped to the integrals over the Euclidean space.

Hence, loop corrections in such cases respect the
Poincaré isometry. Besides that, we give a simple proof
of isometry invariance which is not related to analytic
continuation. While a similar result was proven in [12], it
used an explicit momentum-space representation. We use a
more general coordinate-space approach which is based
solely on analytic properties and provides a simpler proof.
The same is true for the past or lower wedge. However,
in the future wedge loop corrections do not respect the
isometry.
All these observations are heavily relying on the analytic

properties of the propagators and on the causality of the
Schwinger-Keldysh technique. Thus, obviously although
we consider the same tree-level invariant propagators loop
corrections still depend on the choice of the patch. Namely,
loop corrections strongly depend on the choice of the
geometry of the initial Cauchy surface. In other words, they
depend on the choice of the initial state. That is due to
infrared effects, which are sensitive to the initial and/or
boundary conditions.
We encounter a similar situation in the patches of

de Sitter spacetime. Namely, for the Bunch-Davies state
(for the massive scalar field) we show that loop corrections
in the static patch and in the expanding Poincaré patch
respect the isometry and can be mapped to the calculation
on the sphere. While the analysis of the static patch case is
close to the one of [11], we prove the EPP isometry
invariance independently uses arguments similar to those
in [28,29]. Then we show that for generic alpha states loop
corrections violate the de Sitter isometry. That is related to
the analytic properties of the propagators for generic alpha
states as opposed to those for the Bunch-Davies state.
Furthermore, we show that loop corrections for the

Bunch-Davies state in the contracting Poincaré patch
and in global de Sitter spacetime contain infrared diver-
gences. Namely, even after the subtractions of the UV
divergences loop integrals are infinite, if the initial Cauchy
surface is placed at past infinity. They are also present for
all values of the mass, unlike the usual IR divergences
studied in [46–50]. Our results include one-loop corrections
studied before in [28,55], but we also compute an exact
correction for ϕ2 theory. To remove the divergence one has
to keep the initial Cauchy surface at a finite initial time t0.
But such a cutoff violates the de Sitter isometry, because
there are generators of the latter symmetry that can move
the position, t0, of the initial Cauchy surface. Another way
considered in the literature is based on the analytical
continuation of the Euclidean theory [41–43], but it is
not suitable for generic nonequilibrium initial states. And,
as we see, it does not lead to the same result obtained in the
Lorentzian signature for adiabatic evolution in the future
Minkowski wedge, contracting the Poincaré patch and
global de Sitter spacetime.
Moreover, we show that in the contracting Poincaré

patch and in global de Sitter spacetime one has to consider

ISOMETRY INVARIANCE OF EXACT CORRELATION … PHYS. REV. D 107, 105015 (2023)

105015-21



initial noninvariant Hadamard states to avoid some (but not
all) of the infrared problems at every perturbative order. To
study the destiny of the other infrared contributions one has
to resum at least the leading loop corrections. The physical
reasons for the violation of the isometry in the loops in
the patches of de Sitter spacetime are discussed in [52]
in detail. Briefly speaking, in the simplest situations the
violation of the isometry appears due to the fact that in
nonstationary situations level populations and anomalous
averages are changing in time, while in stationary situations
they remain zero.
The violation of the dS isometry at the loop level

potentially may have strong physical consequences. In
fact, if the isometry is not broken, then the expectation
value of the stress-energy tensor of the quantum field
theory on the background in question is proportional to the
metric tensor with the constant coefficient of proportion-
ality. Then the result of the backreaction of quantum
fluctuations is just a renormalization of the cosmological
constant. However, if the isometry is broken, then in the
renormalization one can potentially obtain a screening in
time of the cosmological constant, which is similar to the

screening of strong electric fields in QED. The latter may
happen due to the generation of nontrivial stress-energy
fluxes caused by the change in time of level populations
and anomalous averages.
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APPENDIX A: THE CORRECTIONS TO THE
PROPAGATOR IN THE FUTURE WEDGE AND

IN THE MINKOWSKI SPACE

Wewish to compute the integrals (4.9) and (4.11). Let us
start from the first one. As the integration goes over the
whole Minkowski spacetime, we can use the analytic
continuation to the Euclidean space R4 with Y0 ¼ −iY4

E
to obtain:

Fð1Þ
E ð0; XEÞ ¼ −m2

Z
d4YE

1

Y2
EðYE − XEÞ2

¼ −m2

Z
1

0

du
Z

d4YE
1

½ð1 − uÞY2
E þ uðYE − XEÞ2�2

¼ −π2m2

Z
1

0

du
Z þ∞

0

vdv
½vþ uð1 − uÞX2

E�2
¼ −π2m2

�
log

Λ2

X2
E
− 1

�
¼ −π2m2 log

Λ2

X2
E
; ðA1Þ

where Λ is an IR cutoff scale. Here we have made the
followingchanges:YE→YE−uXE;Y2

E¼v, andΛ→e−1=2Λ.
As we use in Minkowski spacetime such a signature that
spacelike intervals have negative squares, we find that:

Fð1Þ
M ð0; XÞ ¼ −π2m2 log

Λ2

−X2
¼ −π2m2 log

Λ2

−t2
: ðA2Þ

Now let us move on with the calculation in the future
wedge of the integral (4.11). It is convenient to represent
the δ-function as follows:

δ½ðY − XÞ2� ¼ 1

2jY0 − tj ½δðY
0 − r − tÞ þ δðY0 þ r − tÞ�;

ðA3Þ

where r2 ¼ ðYiÞ2, i ¼ 1;…; 3. Note that the first δ-function
on the RHS is always zero as in the integration region
Y0 < t. It is convenient to switch from Yi to spherical
coordinates with angles θ;ϕ, and Y1 ¼ r cos θ. Then
we have:

Fð1Þ
F ð0; XÞ ¼ 2πm2

Z
jY1j<Y0<t

d4Y
δ½ðY − XÞ2�
ðY2 − iϵÞ ¼ 2π2m2

Z
rj cos θj<t−r

drdðcos θÞ r2

rðt2 − 2tr − iϵÞ

¼ 2π2m2

�
2

Z
t=2

0

dr
r

t2 − 2tr − iϵ
þ
Z

t

t=2
dr

r
t2 − 2tr − iϵ

Z ðt−rÞ=r

−ðt−rÞ=r
dðcos θÞ

�
: ðA4Þ

In the second integral one can change r → t − r to obtain that

Fð1Þ
F ð0; XÞ ¼ 8iπ2m2

Z
t=2

0

dr
rϵ

ϵ2 þ t2ðt − 2rÞ2 ¼ iπ3m2: ðA5Þ
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APPENDIX B: PAULI-VILLARS
REGULARIZATION

In this paper we use the Pauli-Villars regularization to
deal with UV divergences in the loop integrals. That is,
we introduce several massive fields to replace the original
Green function by the regularized one of the form

G̃ðζÞ ¼ Gðζ; mÞ þ
X½D=2�

i¼1

αiGðζ; miÞ; ðB1Þ

where αi are constants, mi are masses of additional fields,
and ζ is the dS or Poincaré invariant, depending on whether
we are dealing with dS or Minkowski spacetime.
For the BD state in dS spacetime the propagatorGðζÞ has

a singularity at ζ ¼ 1, which is the standard UV divergence.
In the limit ζ → 1 the BD propagator can be represented as

Gðζ; miÞ ¼
X½D=2�−1

n¼0

gnðmiÞ
ð1 − ζÞD−2

2
−n

þ gðmiÞ logð1 − ζÞ þ fðζÞ;

ðB2Þ
where gnðmiÞ and gðmiÞ are constants that depend on the
masses and Hubble constant, fðζÞ is a de Sitter invariant
bounded function that has a well-defined finite limit as
ζ → 1 and branch cut from 1 to þ∞. The logarithmic term
in (B2) is present only in even dimensions.
Hence to make G̃ðζÞ a well-defined finite function in the

limit ζ → 1, αi should obey the following relations:

gnðmÞ þ
X½D=2�

i¼1

αignðmiÞ ¼ 0; for n ¼ 0; 1;…; ½D=2� − 1

ðB3Þ
and

gðmÞ þ
X½D=2�

i¼1

αigðmiÞ ¼ 0: ðB4Þ

After this regularization the propagator G̃ is still dS
invariant, since each propagator in (B1) is separately dS
invariant and has the same analytic properties in the
complex ζ-plane as the original propagator. We suppose
that mi ≫ 1 in the units of the dS curvature. In this paper
we assume that all propagators are regularized in the way
described here.

APPENDIX C: CHANGE OF THE MASS TERM
IN MINKOWSKI SPACETIME

To illustrate the situation with switching on the mass
term in CPP on a simple example in this appendix we
consider the case when the mass is changed rapidly in
Minkowski spacetime and compare it with the adiabatic

case. The modes in Minkowski spacetime are just the
standard plane waves, but we choose them mixed:

gpðtÞ ¼ Bþ
eiωptffiffiffiffiffiffiffiffi
2ωp

p þ B−
e−iωptffiffiffiffiffiffiffiffi
2ωp

p ;

ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
; jB−j2 − jBþj2 ¼ 1: ðC1Þ

The last condition is needed to satisfy the canonical
commutation relations. Of course, the standard choice of
positive energy modes is Bþ ¼ 0, B− ¼ 1, but the situation
with nonzero Bþ mimics the one we encounter for the BD
modes in the CPP.
The Wightman function for the Fock space ground state

for these modes is as follows:

WgðX;X0Þ ¼ jB−j2WðX;X0Þ þ jBþj2WðXt; X0
tÞ

þ B−B̄þWðX;X0
tÞ þ B̄−BþWðXt; X0Þ: ðC2Þ

Here Xt is X with the reversed time: X0
t ¼ −X0, Xi

t ¼ Xi,
and WðX;X0Þ is the standard Wightman function for the
scalar field theory with mass m. From here it is clear that
such states are not Poincaré invariant6 if Bþ ≠ 0. We will
still consider them, however, to compare with the CPP case.
Now let us assume that at t ¼ −Λ the mass is instanta-

neously changed as follows: m2 → m̃2. It means that the
exact modes ĝp satisfy the following equation:

½∂2t þ p2 þm2 þ ðm̃2 −m2Þθðtþ ΛÞ�ĝpðtÞ ¼ 0: ðC3Þ

Assuming that gðtÞ is defined by (C1) when t < −Λ, one
can easily find the modes when t > −Λ:

ĝpðtÞ¼ B̃þ
eiω̃ptffiffiffiffiffiffiffiffi
2ω̃p

p þB̃−
e−iω̃ptffiffiffiffiffiffiffiffi
2ω̃p

p ;

B̃þ¼
Bþðωpþω̃pÞeiΛðω̃p−ωpÞþB−ðω̃p−ωpÞeiΛðω̃pþωpÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffi
ωpω̃p

p ;

B̃−¼
B−ðωpþω̃pÞe−iΛðω̃p−ωpÞþBþðω̃p−ωpÞe−iΛðω̃pþωpÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffi
ωpω̃p

p ;

ðC4Þ

where ω̃p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̃2 þ p2

p
. Note that the first summands in

the equations defining B̃þ and B̃− are expressions which
appear in the WKB approximation (although with different
preexponential factors), while the second ones do not
appear in the WKB approximation. In particular, even in
the case of invariant vacuum Bþ ¼ 0 we have B̃þ ≠ 0. It is

6Furthermore, these propagators do not obey the proper UV
Hadamard behavior. To obtain the propagator with the proper
Hadamard behavior one should take such B� which depend on p
and BþðpÞ → 0 as jpj → ∞.
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not surprising, because an instant change of the mass term
should move the theory away from the vacuum state.
Now let us find the Keldysh propagator. It is convenient

to express ĝpðtÞ when t > −Λ in terms of the modes g̃p
defined for the mass m̃ with Bþ and B− being the same:

g̃pðtÞ ¼ Bþ
eiω̃ptffiffiffiffiffiffiffiffi
2ω̃p

p þ B−
e−iω̃ptffiffiffiffiffiffiffiffi
2ω̃p

p : ðC5Þ

We find

ĝpðtÞ ¼
g̃pðtÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffi
ωpω̃p

p ½ðωp þ ω̃pÞðjB−j2e−iΛðω̃p−ωpÞ − jBþj2eiΛðω̃p−ωpÞÞ þ ðω̃p − ωpÞðBþB̄−e−iΛðωpþω̃pÞ − B−B̄þeiΛðωpþω̃pÞÞ�

þ
¯̃gpðtÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffi
ωpω̃p

p ½ðω̃p − ωpÞðB2
−eiΛðω̃pþωpÞ − B2þe−iΛðω̃pþωpÞÞ þ ðωp þ ω̃pÞBþB−ðeiΛðω̃p−ωpÞ − e−iΛðω̃p−ωpÞÞ�: ðC6Þ

Now the Keldysh propagator at t > −Λ can be expressed as follows:

D̂Kðpjt1; t2Þ ¼ D̃K
0 ðpjt1; t2Þ þ ½g̃pðt1Þ ¯̃gpðt2Þnp þ g̃pðt1Þg̃pðt2Þκp þ c:c�; ðC7Þ

where D̃K
0 ðpjt1; t2Þ is the Keldysh propagator for the modes g̃p and

np ¼ 1

4ωpω̃p
fðfωp − ωpÞ2½1 − ðB2þB2

−e2iΛðωpþω̃pÞ þ c:c:Þ� þ 2jBþB−j2½2ðω2
p þ ω̃2

pÞ − ðωp þ ω̃pÞ2 cos½2Λðω̃p − ωpÞ��

− ðm̃2 −m2Þ½ðjB−j2 þ jBþj2ÞB̄þB−ðe2iΛω̃p − e2iΛωpÞ þ c:c:�g;

κp ¼ 1

4ωpω̃p
fðωp þ ω̃pÞ2B̄þB̄−ðjB−j2e−2iΛðω̃p−ωpÞ − jBþj2Þð1 − e2iΛðω̃p−ωpÞÞ

þ ðω̃p − ωpÞ2ðBþB̄− − B−B̄þe2iΛðωpþω̃pÞÞðB̄2
−e−2iΛðωpþω̃pÞ − B̄2þÞ

þ ðm̃2 −m2Þ½ðjB−j2 þ jBþj2ÞðB̄2
−e−2iΛω̃p þ B̄2þe2iΛω̃pÞ − 2B̄−B̄þðB̄þB−e2iΛωp þ c:c:Þ�g: ðC8Þ

These expressions define particle density and anomalous
averages with respect to the state with the mass m̃
and modes (C5). Note that they have terms which do
not vanish when m̃ → m and Λðm̃2 −m2Þ ¼ const and the
limit Λ → ∞ is undefined.
For comparison let us also find these coefficients in the

adiabatic case. In the same way as in Sec. V D we find
the relevant modes:

ĝadp ðtÞ ¼ BþeiΛðω̃p−ωpÞ eiω̃ptffiffiffiffiffiffiffiffi
2ω̃p

p þ B−e−iΛðω̃p−ωpÞ e
−iω̃ptffiffiffiffiffiffiffiffi
2ω̃p

p :

ðC9Þ

Then the particle density and anomalous averages are as
follows:

nadp ¼ 4jBþj2jB−j2 sin2½Λðω̃p − ωpÞ�;
κadp ¼ −2iB̄þB̄−ðjB−j2e−iΛðω̃p−ωpÞ − jBþj2eiΛðω̃p−ωpÞÞ

× sin½Λðω̃p − ωpÞ�: ðC10Þ

We see that these expressions are much simpler than those
from (C8). First, all the phases here are proportional to

Λðω̃p − ωpÞ, while in (C8) some of them are proportional
to Λðω̃p þ ωpÞ. From the perturbation theory perspective,
it happens because when we integrate eiαx with a hard
cutoff at −Λ instead of a soft one as in (5.34) there is
a nonzero contribution from the lower limit. Second,
nadp ¼ κadp ¼ 0 for the invariant vacuum Bþ ¼ 0 and
B− ¼ 1, which is not the case for np and κp. Let us denote
the latter by n−p and κ−p . They have the following form:

n−p ¼ ðω̃p − ωpÞ2
4ωpω̃p

; κ−p ¼ m̃2 −m2

4ωpω̃p
e−2iΛω̃p : ðC11Þ

It is something to be expected as an instant change of the
mass term should distort the ground state.
Finally, it is instructive to compare the result with the

case of CPP. The modes in the past are still oscillating
exponential, so the similar analysis is applicable. However,
the crucial difference is that the momentum in Eq. (5.38) is
exponentially suppressed, so the frequencies of the modes
at the past infinity are momentum independent (μ when
τ < −Λ and μ̃ when τ > −Λ) as long as pe−Λ ≪ μ.
Hence the phases in CPP computation are proportional
to Λðμ̃ − μÞ and Λðμ̃þ μÞ (if the mass is rapidly changed).
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When Λ → ∞, the frequencies of all modes become
constant.
On the other hand, the momentum dependence of ωp in

Minkowski space becomes relevant when we do the Fourier
transformation to the coordinate space. Then we can treat
D̂Kðpjt1; t2Þ not as a function of momentum p, but as a
distribution, so the limit Λ → ∞ becomes well-defined in
some cases. Namely, the terms with phases proportional to
Λðωp þ w̃pÞ, Λωp and Λω̃p, are suppressed as Λ → ∞, as
they effectively restrict the momentum integration region to
p≲ ffiffiffi

m
Λ

p
. For instance, κ−p vanishes as a distribution, but n−p

is Λ-independent. Thus, the invariant vacuum state is still
distorted after the rapid change of the mass term even if
we take the limit Λ → ∞ in the generalized sense. The
correction, however, is of the order ðm̃ −mÞ2.
The situation with phases proportional to Λðω̃p − ωpÞ is

more interesting. Let us consider the following integral in
the case d ¼ 4:

Iðx⃗Þ ¼
Z

d3p
eiΛðω̃p−ωpÞþip⃗ x⃗

ω̃p
: ðC12Þ

We will find its asymptotic form when Λ → ∞ using the
steepest descent method. As we will show, the stationary
point is at jp⃗j ≫ m if Λ is sufficiently large (we assume that
m̃ ∼m), so we can use the relevant expansions of ωp and
ω̃p. Assuming that x⃗ ¼ ðx; 0; 0Þ with x > 0 and integrating
over the angular variables we find:

Iðx⃗Þ ¼ 2π

ix

�Z þ∞

0

dpe
iΛâ
p þipx −

Z þ∞

0

dpe
iΛâ
p −ipx

�
;

â ¼ m̃2 −m2

2
; ðC13Þ

where we assume that â > 0. It is now straightforward to

find stationary points: they are �
ffiffiffiffiffi
Λâ
x

q
for the first and

second integrals, correspondingly. The second point,
however, does not belong to the interval ð0;þ∞Þ.

Hence, the second integral is suppressed—we only need

to consider the contribution of p0 ¼
ffiffiffiffiffi
Λâ
x

q
. Just as we

assumed, p0 ≫ m if Λ is sufficiently large, e.g., x ≪ âΛ
m2.

We have

Iðx⃗Þ ≈ 2π

ix
e2i

ffiffiffiffiffiffi
Λâx

p Z
∞

−∞
dqe

iq2 x3=2

ðΛâÞ1=2 ¼ 2π3=2ðâΛÞ1=4
i1=4x7=4

e2i
ffiffiffiffiffiffi
Λâx

p
:

ðC14Þ

Note that this expression is divergent when Λ → ∞—there
is a large region near p0 where the phase is almost constant.
Hence, the corrections to the Keldysh propagator are actually
divergent in coordinate space if Bþ ≠ 0. For instance,
the correction DK;ad

n ðx⃗j0; 0Þ to the Keldysh propagator
with t1 ¼ t2 ¼ 0 in the adiabatic case which comes from
nadp (C10) has the following large Λ asymptotic:

DK;ad
n ðx⃗j0; 0Þ ≈ ð2âΛÞ1=4

2π3=2jx⃗j7=4 jBþ þ B−j2jBþj2jB−j2

× sin

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Λâjx⃗j

p
−
3π

4

�
: ðC15Þ

This expression is evidently divergent in Λ. Besides that,
unlike the usual propagator, it is not exponentially sup-
pressed when jx⃗j ≫ 1

m̃.
As we have noted above, in the CPP the wave frequen-

cies are momentum independent when pe−Λ ≪ 1, and for
large momenta the corrections are suppressed, as we
discussed. Hence, a similar effect does not occur in CPP.
However, it is still interesting to see that in Minkowski
spacetime even after the resummation of the IR divergen-
ces, while they contribute to phases in momentum repre-
sentation, they are still evident in coordinate representation.
Also we see that only the states with Bþ ¼ 0 have the well-
defined behavior when the mass is changed in the past, and
only if the change is adiabatic.
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