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The UV cutoff on a quantum field theory (QFT) can explicitly break or conserve the Poincaré
(translation) symmetry. And the very same cutoff can explicitly break or conserve the gauge symmetry. In
the present work, we perform a systematic study of the UV cutoff in regard to its gauge and Poincaré
properties and construct UV completions restoring the broken gauge symmetry. In the case of the Poincaré-
conserving UV cutoff, we find that the gauge symmetry gets restored via the Higgs mechanism. In the case
of Poincaré-breaking UV cutoff, however, we find that the flat spacetime affine curvature takes the place of
the Higgs field and, when taken to curved spacetime, gauge symmetry gets restored at the extremum of the
metric-affine action. We also find that gravity emerges at the extremum if the QFT under concern consists
of new particles beyond the known ones. The resulting emergent gravity plus renormalized QFT setup has
the potential to reveal itself in various astrophysical, cosmological, and collider phenomena.
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I. INTRODUCTION

In general, quantum field theories (QFTs) can possess
momentum cutoffs in the IR (like the confinement scale
Aqgcp) or in the UV (like the gravitational scale Mp).
Fundamentally, QFTs rest on a classical action and a certain
form of UV cutoff. Low-energy effective QFTs develop
power-law and logarithmic sensitivities to the UV cutoff
[1]. In general, the stronger the sensitivity to the cutoff is,
the stronger the destabilization of the QFT from its natural
scale at the IR is. In this sense, it is the strength of the
sensitivity to the cutoff that decides if the QFT remains
natural or not under quantum fluctuations. In the pre-Higgs
era, alleviation of the UV sensitivity was the reason for and
requirement from all models of new physics beyond the
standard model (SM). One such model, softly broken
weak-scale supersymmetry [2], was introduced to alleviate
UV sensitivity via the spin-statistics theorem [3]. In the
post-Higgs era, alleviation of the UV sensitivity has
become a much more perplexing problem [4-7] because
experiments at the LHC have detected no new particles at
the weak scale [8,9]. In spite of various interesting
mechanisms proposed so far [10], alleviation of the UV
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sensitivity is a thorny open problem and calls for a
resolution.

The goal in the present work is to complete the effective
QFT in the UV insofar as the symmetry structure of the UV
cutoff permits. If the UV cutoff is the mass of a heavy field,
then it preserves the Poincaré symmetry, and we call it the
Poincaré-conserving UV cutoff. It will in general generate
quadratic divergent corrections to scalar masses. If the
heavy field is a vector field, then divergences can be
absorbed by adding massive scalars restoring the gauge
symmetry in the massive vector field as in the usual Higgs
mechanism. In this case, as will be analyzed in Sec. II, the
UV divergent terms get transmuted into logarithms and
powers of the masses of the added heavy scalars.

On the other hand, if the UV cutoff is not the mass of a
field (a hard momentum cutoff like the gravitational scale),
then it breaks the Poincaré symmetry. It will generate via
loops divergent corrections to scalar, fermion and gauge
boson masses. This effect of the cutoff breaks gauge
symmetry. Conventionally, this effect is dealt with using
the dimensional regularization, which preserves the gauge
symmetry since loop-induced gauge boson mass terms
cancel automatically. Here, in this work, we seek a more
physical UV completion of the effective QFT. In this
regard, our proposal is to absorb the vector boson mass
divergences by coupling the vector bosons to a possible
affine curvature. This structure naturally restores the gauge
symmetry broken by the UV cutoff, but at the price of
coupling the gauge theory to space-time curvature.
Following this route to its logical conclusion, in Sec. III,
we find that the UV completion generates a pure gravity
action, that is, emergent gravity.
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This UV completion mechanism does not solve the
various hierarchy or fine-tuning problems of the SM plus
gravity, but it allows us to tackle these problems in a new
way. It also has implications that we find interesting for the
physics beyond the SM. It requires the presence of beyond-
the-SM (BSM) particles to generate a proper gravitational
action. The SM Higgs sector is not necessarily destabilized
by the heavy BSM particles since SM-BSM interaction is
not a necessity. As discussed in Sec. III, these BSM
particles can have observable effects in, for instance, black
holes, the early Universe, and high-luminosity colliders.

The UV completion is constructed in accordance with
the gauge and Poincaré properties of the UV cutoff. The
details of the construction, section by section, can be
summarized as follows. As already mentioned, Poincaré-
conserving UV cutoff (denoted as M, from now on) is the
mass of a field; namely, it is the Casimir invariant of the
Poincaré group [11]. The Poincaré-breaking UV cutoff
(denoted as Ap from now on), on the other hand, is like the
confinement scale or the gravitational scale; namely, it is
not the mass of a particle. These two kinds of UV cutoffs
imply different UV sensitivities, different alleviation mech-
anisms, and different UV completions. And all these
properties will be studied in detail in Sec. II for the
Poincaré-conserving UV cutoff M, and in Sec. III for
the Poincaré-breaking UV cutoff A,. The resulting UV
completions will be contrasted in Sec. IV.

In principle, both the Poincaré-conserving and Poincaré-
breaking UV cutoffs can break gauge symmetries. Indeed,
the Poincaré-conserving UV cutoff M, conserves gauge
symmetries if it is the mass of a scalar or a suitable fermion
(as will be discussed in Sec. I A in the dimensional
regularization [12—14]). But the same Poincaré-conserving
UV cutoff M, breaks gauge symmetries if it is the mass of a
vector field (as will be discussed in Sec. II B with the
examples of weak bosons [15,16] and Pauli-Villars fields
[17-19]). The Poincaré-breaking UV cutoff A, [20,21], on
the other hand, breaks all the gauge symmetries [22-24].
In general, gauge symmetry breaking is caused by the
cutoff-induced gauge boson masses, and in the philosophy
of the Higgs mechanism, gauge symmetries could be
restored by promoting the UV cutoff to suitable dynamical
fields [25-28]. For the Poincaré-conserving UV cutoff M,
in Sec. II B, the said dynamical field turns out to be a Higgs
scalar so that the massive vector gets completed into a
gauge field via the Higgs mechanism. For the Poincaré-
breaking UV cutoff A, in Sec. III B I, on the other hand,
the said dynamical field turns out to be the affine curvature
(not the metrical curvature) [29-32]. In Sec. III A, detached
regularization is introduced as a new regularization frame-
work in which, while the logarithmic divergences involve
the usual renormalization scale y, the power-law divergen-
ces go with the UV cutoff A, [33]. In Sec. III B, flat
spacetime effective QFT is formed in the detached

regularization. In Sec. IIIB 1, it is shown that the UV
cutoff can be consistently promoted to flat spacetime affine
curvature in the same philosophy as the promotion of the
UV cutoff to Higgs scalar in Sec. II B. In Sec. III B 2, flat
spacetime effective QFT is carried into spacetime of a
curved metric such that it is found that, in an effective QFT,
curvature terms can arise only in the gauge sector. In
Sec. III B 3, affine curvature is integrated out, and it is
found that at the extremum of the affine action all gauge
symmetries get restored and general relativity (with quad-
ratic curvature terms) emerge. The physics implications of
the emergent gravity is discussed in Sec. III C.

In Sec. IV, a comparative discussion is given of the UV
completion mechanisms for the Poincaré-conserving and
Poincaré-breaking UV cutoffs.

The work is concluded in Sec. V.

II. POINCARE-CONSERVING UV CUTOFF

The UV cutoff M, conserves the Poincaré symmetry if it
is the mass of a particle. It conserves because the cutoff
itself is a Casimir invariant of the Poincaré group and it can
give cause therefore to no Poincaré breaking [11]. Field
theoretically, all one has is a heavy field of mass M = M,
setting the UV boundary of the QFT. This heavy field can
be a physical field or an unphysical (regulator) field. In the
former, the heavy field is just one of the fields in the QFT,
and dimensional regularization is the natural regularization
scheme. In the latter, the heavy field is originally not a part
of the QFT as it is added as a regulator for UV divergences,
and Pauli-Villars regulators [17] set a good example
of such unphysical fields. These fields soften the UV
divergences via their wrong-sign propagators coming from
their wrong-sign kinetic and mass terms (negative-norm
Lagrangian) [18,19]. In Secs. Il A and II B, our analysis
will focus on solely the heavy physical fields in view of the
naturalness problem in the SM. However, as will be seen in
Sec. II B, our methodology can be directly extended to
Pauli-Villars fields.

A. Gauge-conserving UV cutoff

One example of Poincaré- and gauge-conserving UV
cutoff is the mass my = M, of a heavy physical scalar .
(One other example would be the Pauli-Villars scalar
regulators [17-19].) Keeping all the terms not forbidden

by symmetries, inclusion of ¢ extends the QFT action
S[n, F] as

S, ] — Sin.F] + / dxy=i{(D,§) (D)
— M2 P —25(' ) + Lin(n. Fi )} (1)

in which 7,, is the flat Minkowski metric; F = {¢, .V, }
is a collective label for scalars ¢, fermions y and gauge
bosons V, in the QFT; D”J) is the gauge-covariant
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derivative of ¢; and L;,(n.F;¢) encodes interactions
between the QFT fields F and the heavy scalar ¢. By
construction, this extended action conserves both the
Poincaré and gauge symmetries.

The extended QFT in (1) has no UV boundary; that is,
there is no finite cutoff scale on the loop momenta #,. A
typical loop amplitude,

d*¢ 1
Iw) = / (27)* (£* — m?* + i0)"” @

can therefore be computed using the dimensional regulari-
zation scheme [12-14]

¢ 1
In — 4—D/
2 =K | P @ w0y
(14 1og £5) n=1.D=4

= 3)
n=2,D=4

after subtracting away 1/(D — 4) poles at the scale u in the
modified minimal subtraction (MS) scheme [34,35]. In this

framework, integration of ¢ out of the spectrum modifies
the QFT action Sy, F] by the correction [21,22]

2
M2,
12

5S[n, F; M3, log p) = / d“x\/—n{crp&/}M%lOg P

M2
+ ¢, Amy, log ﬂ—zg‘)y‘/y/ +0x tr[VMV”]}

4)

corresponding to renormalizable interactions 4, (¢ ) (')
and [/11,,55 wy +H.c] in the interaction Lagrangian

Li(n.F;). This correction action reveals that 5m§5 x
2 2

m; log % for scalars ¢, om,, « m,, log % for fermions

w,and 6M\, = O for gauge fields V,, (with tr[...] standing for

color trace). With these mass corrections, the loop-induced

QFT action (4) possesses two important properties:

(1) The action (4) involves no corrections like M g%nﬂy in
the gauge sector. This means that massless gauge
fields remain massless; namely, gauge symmetries
are strictly conserved.

(2) Loop corrections can destabilize the scalar field
sector. Indeed, gauge boson masses remain un-
shifted, fermion masses shift only logarithmically
with M, and yet scalar masses shift quadratically
with M ,. This means that larger the UV cutoff M, is
(or, equivalently, mass M, of the heavy scalar $), the
larger the corrections M?, log A:—; to mass-squareds
of light scalars are.

In practice, naturalness of QFTs is measured by their
sensitivity to the Poincaré- and gauge-conserving UV cutoff
M,,. 1t is with this type of UV cutoff that unnaturalness of
light scalars like the Higgs boson was perceived [1,36,37],
and natural UV completions like softly broken supersym-
metry were introduced [2]. And it is with this type of UV
cutoff that the null results from the LHC experiments [8,9]
have been interpreted as defying naturalness as a physical
criterion [4,7] in regard to the hierarchy problem caused by
the 5m§S o« M? correction [38,39].

B. Gauge-breaking UV cutoff

One example of a Poincaré-conserving but gauge-
breaking UV cutoff is the mass My = M, of a heavy
physical vector V.. This field can be incorporated into the
QFT action S[n, F| via the change

1. 3
S, F] = S[n, F] + / d“x\/—n{—Ztr[VM"“n”ﬂVaﬂ}

1 . . .
+ EM?atr[VHr//‘”Vp] + Lin(n.F; V) } (5)

in which Vuv is the field strength tensor of the vector Vﬂ and
Linc(n, F; ‘7”) is the interaction Lagrangian between the
QFT fields F and the vector \7”. One example of f/ﬂ
concerns physical massive vectors like, for example, the
intermediate vector boson in Fermi theory (weak gauge
bosons) [15,16]. (One other example would be Pauli-Villars
vector regulators [17-19] introduced to cancel the UV
divergences caused by the QFT fields F.) In general,
independent of the circumstances in which they arise,
massive vector fields cause problems especially with the
renormalizability and gauge invariance. Restoration of
gauge symmetry is therefore a necessity. The fundamental
restoration method is the Stueckelberg method [40,41]
according to which the mass term M g)f/ﬂ V# is made gauge
invariant by forming the gauge-invariant vector Vﬂ — a0
with the introduction of a scalar field 7 such that d,7
transforms in the same way as \7”. This method runs into
problems with renormalizability for non-Abelian vectors. It
gives nevertheless hints of the Higgs mechanism as a
renormalizable linear sigma model. In fact, the Higgs
mechanism generates the mass My = M, of the vector
field from the vacuum expectation value (VEV) of the
Higgs field. And it will be utilized below for restoring the
gauge symmetry.

1. Promoting Poincaré-conserving UV cutoff
to Higgs field

The goal is to restore the gauge symmetry associated
with the massive vector V, in the extended QFT in (5). The

gauge boson mass My = M, is a Poincaré-conserving
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mass scale, and the starting point is to promote it to a
Poincaré-conserving field. In this regard, it is sufficient to
introduce a scalar field @ transforming in the fundamental
of the gauge group and transfigure the vector field mass
term in (5) as a scalar-vector interaction

M?)tr[f/”n"”f/b] — OF \7”77’”’ qu) (6)

under which the Poincaré-conserving cutoff M, gets
promoted to the scalar field ®. The gauge symmetry is
still broken. The scalar @ here is actually no more than a
spurion [42,43]. In fact, extremization of the action (5) with
respect to @ gives @ = 0, which comes to mean that gauge
symmetry is restored by just setting gauge boson mass to
zero. This is not a UV completion. In fact, it is necessary to
make @ a dynamical field, and to this end, generalization of
the scalar-vector interaction in (6) to the ®-Kinetic term

of Vﬂn””f/yd) — (ﬁﬂd))Tr]””(qu)) (7)

generates the requisite dynamical structure. For a renor-
malizable @ potential of the form

s A
V(®TD) = p2d'd + 3 (OTD)2, (8)

gauge symmetry gets spontaneously broken by the Higgs
VEV (®'®) = —u3 /Aif 3 < 0. This spontaneous break-
ing leads to the QFT action S[n,F] in (5) provided that
—pg/A = M, which leads to M7 ~Mg. Tt is via this
spontaneous breaking that the intermediate massive vector
bosons [15,16] were realized as the gauge bosons of the
electroweak gauge symmetry [25-28].

In an alternative take, the gauge symmetry may not be
broken at all. Indeed, if A > 0 and yﬁ, > (), then the scalar ®
develops a vanishing VEV,

(@'@) =0, ©)

at which \7” remains strictly massless (M%/ = 0). This state
corresponds to restoration of the gauge symmetry associ-
ated with the massive vector 17”. In general, this symmetric
phase could be relevant if the goal is to kill the gauge boson
mass M, and the Pauli-Villars vector [18,19] could be one
such field. In this gauge-conserving minimum, the
extended QFT action in (5) undergoes a further extension
to take the form

- 1 - -
S F;V,®] = Sy, F] + / d“x\/—n{—Ztr[VM"”‘n”ﬂVaﬂ]
+ (D, ®)"'n(D,®) — V(®'®)

+ Lin(n. F; Vﬂ,Cb)} (10)

as a result of the maps (6) and (7). The potential energy
V(®'®) and the interaction Lagrangian Liy(n.F;V,, @)
are all gauge invariant. Now, integration of the heavy scalar
@ out of the spectrum induces the action correction [21,22]

2
U
68[n. Fi . log ] = / dixy —ﬂ{ctﬁﬂaﬁﬂé log —M‘; P

2
o
+ ¢, A m,, log M—‘;y/l// +0

x tr[V, V¥ 40 x tr[f/,,f/ﬂ]} (11)

after computing loop amplitudes as in (3) using the
dimensional regularization [12-14] and MS subtraction
[34,35]. The mass corrections from ® loops correspond to
the renormalizable interactions A4(¢"¢)(®*®) and 4, Py
contained in L, (n, F; \7”, ®) in (10). It is clear that mass
shifts are 5my, o pg log ’;—‘;’ for scalars ¢, 6m,, « m,, log ’;—%
for fermions y, and My = O for gauge fields. Then, the
loop-induced QFT action (11) possesses two important
properties:

(1) Massless gauge fields [V, in QFT and \7” after the
map (6)] remain massless. This means that gauge
symmetries in QFT are conserved. This also means
that the gauge symmetry associated with the massive
vector Vﬂ in (5) is restored in the gauge-conserving
vacuum in (9).

(2) In the gauge-conserving vacuum in (9), all that is
needed is u3, > 0 and A > 0. There is thus nothing
that forbids the low ugq regime (ugp < M ). In this
regime, @ loops do not have to destabilize the light
scalars ¢ in QFT since the shift in their masses

2
dmy, o pig log ’;—%’ < my, remains small.
In summary, the UV physics [the Higgs scalar @ in the
action (10)] introduced to restore the gauge symmetry
associated with the massive vector \7” leads to a UV

completion of the QFT in which the little hierarchy problem
[38,39] does not have to be a problem.

IIL. POINCARE-BREAKING UV CUTOFF

There are scales in nature that are not particle masses.
The confinement scale in QCD (an IR scale) and funda-
mental scale of gravity (a UV scale) are such scales. This
kind of UV cutoff breaks the Poincaré symmetry since it is
not the mass of an elementary particle, namely, not a
Casimir invariant of the Poincaré group [11]. One familiar
example is the Lorentz-invariant but translation-breaking
cut A, on the loop momenta #,: —A?, < #,¢* < A}, Under
this cut, the effective QFT remains Lorentz invariant but
breaks explicitly all the gauge symmetries since each gauge
boson acquires a mass proportional to A, [20,22-24].
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Besides this, mass-squareds of scalars develop quadratic
sensitivity to the UV cutoff A, [1,21]. And vacuum energy
develops both quartic and quadratic sensitivities to the
cutoff scale [44,45].

In this section, a detailed study will be performed of the
question of how gauge symmetries can be restored in the
presence of a Poincaré-breaking UV cutoff.

A. Detached regularization

Detached regularization is a new regularization method
proposed in Ref. [33]. It extends the dimensional regulari-
zation [12-14] to QFTs with a UV cutoff such that the
power-law and logarithmic divergences can be treated
separately and independently. In this scheme, the generic
loop amplitude in (2) is restructured in a way that gathers
contributions of D = 0 (quartic), D = 2 (quadratic), and
D = 4 (logarithmic) dimensions [33]

(Sipj0 + 0p2) 4 _ _
In,D(AgJ? ,Ll) = [%A?J 2nﬂ2n b + 5[D]4/’£4 b
dPp 1
X 12
(27)P (p* — m? +i0)" (12)
_i(=1)" 1 T(n-DJ2)
 (4m)P/2 (87)*™" T(n)
i u 2n—D
G+ o () (13
(1) T =D/2) .y (12D
S 4-"2n |
+ (471')D/2 T(n) [D]aH m

(14)

in which [D] designates the integer part of D so that
[0—¢]=0,[2—¢] =2, and [4 —¢] =4 for an infinitesi-
mal e. Needless to say, J;; is the Kronecker delta, which is
equal to 1 (0) if i = j (i # j). The normalization factor
1/(87)*™" is attached to make coefficients of the A}, and A%
remain parallel, respectively, to those of the quartic and
quadratic terms cutoff regularization [21].

The loop integral (13) is power law in A, and loga-
rithmic in p. The loop integral (14), on the other hand, is
independent of A, and logarithmic in . The first reason for
this is that dimensional regularization in D = 0 and D =2
dimensions gives the quartic and quadratic UV divergen-
ces, respectively [46-49]. The second reason is that the
power of A, is independent of D but that of  depends on D
and it gives rise therefore to log(u/m) terms when the
gamma functions are expanded about momentum space
dimensions D =0, 2, 4. It is in this sense that the
regularization method in (12) leads to detached regulari-
zation simply because, while A, arises only in power-law
terms, p appears only in logarithmic terms, and hence the
power-law and logarithmic UV sensitivities get completely

detached. This detachment can be explicitly seen by

evaluating 1, p(A,. u) for the relevant values of D and

n<D/2,
LAY n=0,D=0
_ i A2 w _ _
NP B N
o (1+log 1) n=1.D=4
Ti,rzlog”:l—zz n=2,D=4

after employing the MS subtraction scheme [22,34,35]. It is
not surprising that the last two lines here are the same as the
dimensional regularization results in (3). In general,
detached regularization provides a framework in which
gauge breaking in the Wilsonian renormalization can be
isolated and treated independently of the remaining dimen-
sional regularization type corrections [33,50].

B. Gauge symmetry restoration and emergent gravity

The effective action capturing physics of the full QFT at
low energies can be structured as [33]

Seff[r]’ F; A?J, IOg ﬂ] = Stree ['7’ F} + 5Slog [7]’ IOg H, F}
+ 5Spow ["l, F; Agjﬂ log /"] (16)

under the detached regularization scheme in (12). The first
term Sy [n7, F] is the tree-level action. It sets symmetries,
the field spectrum, and interactions in the QFT. The second
term 6S)o, [17, log ., F] collects the logarithmic loop correc-
tions like correction actions (4) and (11) in the previous
section. It maintains symmetries and the spectrum of
Siee[n, F] and involves only the renormalization scale y
(not the UV cutoff A). The third term

88 pow[n. F; A2, log p] = /d“x, /=n{—coA}
— MPAL = cy N3P
+ ey A2u[V,VH} (17)

is the power-law correction obtained via the loop integrals
in (15). The loop factors characterizing it are given
by [33]

one loop (I’lb - nf)

= cp(l , 18
Co CO( 0og ﬂ) 6472 ( )
one loop 1 ]W2
M? = M?(log u) e str |:M2 log F] ,
(19)
one loop A b
¢y = cy(log p) . (20)

167%°
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one loop

9Vc< n)"(21)

in which n,(n,) is the total number of bosons (fermions);
C.and (n, —n f)(’) are, respectively, the quadratic Casimir
and boson-fermion number difference in the representation
r of the gauge group; M? is the mass-squared matrix of the
QFT fields; and 4, is a model-dependent coupling constant.
At one loop, ¢ o nj, — ny, and this means that in QFTs
with boson-fermion balance (like supersymmetry) quartic
contribution to vacuum energy vanishes identically. All the
couplings cgp, ..., cy have been calculated explicitly in
Ref. [33] for both the scalar and spinor electrodynamics.

1. Promoting Poincaré-breaking UV cutoff
to affine curvature

The loop-induced gauge boson mass cVA?J in (17) breaks
the gauge symmetry. It breaks also the Poincaré (trans-
lation) symmetry since A, itself breaks the Poincaré
symmetry. The goal is to defuse this anomalous mass to
restore the gauge symmetries. The Poincaré-conserving
vector boson mass M, as was already investigated in
Sec. II B 1, can be promoted as in (6) to a Higgs field ® to
restore the gauge symmetries. For a Poincaré-breaking
gauge boson mass ché, however, scalar fields like ®
cannot serve the purpose [25-28]. The reason is that they
are Poincaré-conserving fields. It is necessary to find a
“Poincaré-breaking field” such that the gauge- and
Poincaré-breaking gauge boson mass cVAf) can be
promoted to that particular field to restore the gauge
symmetries. On physical grounds, the sought-for
Poincaré-breaking field is expected to be the spacetime
curvature itself. In fact, in a general second-quantized field
theory with no presumed symmetries, Poincaré (trans-
lation) invariance is known to emerge if the Poincaré-
breaking terms are identified with the spacetime curvature
[51]. It sounds consistent, but there is a problem here. The
problem is that the Poincaré-breaking gauge boson mass
cVAgJ arises in the flat spacetime effective QFT and it must
therefore be promoted to curvature already in the flat
spacetime. (QFTs are intrinsic to flat spacetime [52,53].)
This means that the flat spacetime must somehow be
endowed with the notion of curvature. This curvature
cannot certainly be a metrical curvature since that would
identically vanish in the flat metric limit. It can nevertheless
be a metric-independent affine curvature as that would not
vanish in the flat spacetime [54]. Under a general coor-
dinate transformation x* — (x')* = x*, any connection I';,
(metrical or affine) transforms as [55]

ox? Pxt
ox* oxt ax¥’

- v
F/{,Hzax ox* ox i

— I, 22
KV oxt oxt oxY (22)

and while it transforms like this, its Ricci curvature [29-31]

R, (1) = 9,17, —,}, + T I, —T4I",  (23)

z)x“ ox*
7 R, (). Flat

spacetime is characterized by the linear coordinate trans-
formations x* = a%x* + b* and under these transforma-

transforms as a tensor field R,/ (") =

tions —2*— = 0 in (22) and, as a result, I“’1 turns to a tensor

If I, is a
metrical connection, then its flat spacet1me value l;/l/w
vanishes identically: 21_“,1”,, = 0,11 + Oy
If Fﬁy
clearly no reason for its flat spacetime value l_“,’ﬁy to vanish.
And, as a result, there remains a nonzero affine curvature
R,,(I") in flat spacetime. This flat spacetime affine curva-
ture, obtained from (23) for I'i, =T%, enables the
Poincaré-breaking gauge boson mass term in (17) to be
transformed into an affine curvature-gauge field interaction

02
o o g
field I, transforming as [, , = af aya LI,

W

=0, =0.
is a nonmetrical affine connection, then there is

ALV, V] — tr[VﬂR"”(l:) v,] (24)

in close similarity to the transformation in (6) of the
Poincaré-conserving gauge boson mass term to a scalar-
vector interaction. This transformation promotes the
UV cutoff A, to affine curvature as A2n,, — R*(T),
and this way takes the power-law correction action
88 powl1, F3 A%, log ] in (17) to a new form,

7

88 pow[n. F: R, log 4] =/d4XW{ 2 (R(y.1))>

2
TR0 - g gm0, T)
+ cytr[V,R#(I) Vl,]}, (25)

in which R(n,T') = n**R,,(I') is the scalar affine curvature
in flat spacetime. This action becomes extremum under
variations in I'2, provided that §(5S o)/l = 0, and this
motion equation leads to a determination of R#/(I") as a
function of the scalars ¢ and gauge fields V. This
functional relation eliminates I, and leaves behind an
effective field theory involving only the QFT fields. This is
not a UV completion. Besides, gauge symmetries remain
broken. In essence, I_“,’E,, is a spurion at a similar level as the
scalar @ in (6), and it needs be given appropriate dynamical
content to make room for UV completion and gauge
symmetry restoration.

2. Taking effective QFT to curved spacetime

One way to give dynamical content to l_“fw is to depart from
flat spacetime. An indication of this is the transformation
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property of the affine connection in (22) according to which
or

dx(i/;jv”/
indication is the spurion action (25) whose extremization
against variations in Ff,,, would lead to a determination of
R#(T") as a function not only of the scalars ¢ and gauge
fields V', but also of the metrical curvature if the spacetime is
curved. Under these indications, it becomes a necessity to
carry the flat spacetime effective QFT

# 0 leads inherently to curved spacetime. Another

Sere[n. F R, log pt] = Syee[11. F] + 8Siog[1. 10g p1, F]
+ 8Spow [, F; R, log ] (26)

into spacetime of a curved metric g,,. This carriage is
realized by general covariance through the map [56,57]

77;41/ - g;wv aﬂ - vﬂ (27)
in which the covariant derivative V, is that of the Levi-Civita
connection

1

gr;};u = Egip(aygvp + aug/m - a/1g;w) (28)
so that Vg, = 0. But for the metric g,, to be curved, the
effective QFT in curved spacetime must involve curvature of
9 like, for example, the metrical Ricci curvature R,,, (T°). In
parallel with additions of the kinetic and potential energies
for the scalar @ in the action (10), one may consider adding
curvature terms to the action (26) like, for example, the
Einstein-Hilbert term M§g*“R,, (). This, however, does
not work. The reason is that in Sec. Il B 1 the Poincaré-
conserving vector boson mass M, and the added scalar ®
were all at the tree level. In the action (25), however, all
interactions involve loop-induced parameters, and the addi-
tion of curvature terms becomes simply inconsistent since
new parameters like M, act as bare quantities. In fact, such
added bare terms would mean that the curvature sector of the
original QFT was left unrenormalized while the QFT sector
was being renormalized. The same is valid for curvature
terms constructed with the bare parameters in Sy [n, F]. It
therefore is clear that curvature terms must arise multiplied
with appropriate loop factors ¢;. Itis also clear that curvature
can arise only in the gauge sector because definition of the
Ricci curvature [V,, V,]V4 = R, (') V¥ involves the gauge
fields V. In this regard, gauge kinetic invariant tr[V,, V**]
turns out to be a potential source of the metrical curva-
ture R, (T°).

One way to make curvature arise is to utilize the bulk and
boundary properties of the gauge kinetic invariant. Under
the general covariance map in (27), gauge field strength
remains unchanged D,V,-D,V,=V, =D,V ,-DJV,,
with the gauge-covariant derivative D, =9, + iV,
in flat spacetime and D, = V, + iV, in curved spacetime.
This metric independence enables curvature to arise

once the bulk and boundary parts of the gauge kinetic
invariant are isolated. For instance, in flat spacetime,
vV, V¥ = V¥(-D*n,, + D,D, + iV, )V* + 0,(V,V*),
where 9,(V,V*) is the aforementioned boundary term.
This equality ensures that the integrated gauge Kkinetic
invariant [58-60]

W= [ dvmipeva e @)

is equal to

Tyl = / dx /T [VH (=D, + DD, + iV, )V
+0,(V, V)] (30)

under by-parts integration. Needless to say, their difference
vanishes identically,

8ly[n] = =Iy[n] + Iyn] =0, (31)

as a trivial identity. And, with this, the flat spacetime
effective action (26) can be formally put in a new form,

Sere[n. Fi R, log pt] = Syee[11. F] + 8810 [, 10g 11, F]
+ 8Spow[1 F3 R, log p] + cyély[n].
(32)

again as a trivial identity since the addition of cyély (]
changes nothing: S[n, F; R, log ] = Seg[n, F; R, log ul.
In a sense, this new effective action is a trivial regulari-
zation of the effective action S.¢[n, F; R, log u]. The reason
for multiplication by cy is to make curvature arise
eventually in the form of a gauge boson mass term. In
fact, under the general covariance map in (27), the effective
action S.g[n7, F; R, log u] above takes the form

Seit[9, Fs R, 10g pt] = Siree[9, F] + 68169, log p, F]
+ 8Spowl9: F3 R, log p] + cydly[g]
(33)
in which 61y[g], obtained from (29) and (30) under the

general covariance map in (27), takes a curvature-
dependent nonzero value

dtylg] = ~1vlg) + Tylg) = = [ dry/=gulV R, (T)V
(34)

in manifest contrast to (31). The reason for this contrast is that

the gauge kinetic invariant in curved spacetime V,, V¥ =

Vﬂ(_ngﬂlI + DuDv + iV/w + Rﬂy(gr))vl/ + VM(VDVIW>
differs from the gauge kinetic invariant in flat spacetime

105014-7
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TABLE 1.

Contrasting the metrical and affine quantities in the flat and curved spacetimes.

Metric tensor Metrical connection

Metrical curvature Affine connection Affine curvature

Flat spacetime Muw 0
Curved spacetime G 9T,

0 l:ﬁy [RW(I:)
R, (9T) l"fw R,, (I

vV, V¥ = V¥(-D*n,, + D,D, + iV, )V* + 9,(V,V*)
not only by the covariant derivative V, but also by the
Ricci curvature R, (") generated by the commutator
[D;.D,]V* = (R, (T) + iV, )V*. This difference between
the invariants leads to the relation Iy[g] = Iy[g] +
[ d*x\/=gtr[V¥R,,(T)V*], and from this follows the
6ly|g] in (34). Effectively, as far as the gauge boson mass
term is concerned, transfer of the flat spacetime effective
action in (26) to curved spacetime implies the map

tr[VﬂlR"”(l_“) V] = ]V, (R¥() = R™(T))V,] (35)

as succession of the promotion in (24) of the Poincaré-
breaking UV cutoff A, to flat spacetime affine curvature
|

16

R(I"), where different connections and curvatures used in
this map and earlier definitions are contrasted in Table I
for clarity.

With regard to the new map in (35), the curved
spacetime effective action in (33) can be recast in the
same form as (26)

Seir[9- Fs R, 10g pt] = Syee[g. F] 4 8S)[g. log p, F]
+ 88 pow[ F3 R, log ] (36)

such that 58,0y [17, Fi R, log p] = 8 ,0w[g. F: R, log log u] +
cy6ly|[g] has the explicit form

Syl i log K] = [ /75 { - MR (5.0) =S (R - L BR(T) + eV (R () - R TV

in which R(g,T") = ¢*’R,, (') is the curved spacetime
analog of the flat spacetime affine curvature R(5,T) in
(25). The parameters in this action deserve a detailed
discussion. First, as follows from Eq. (19), the fundamental
scale of gravity (the Planck scale) can be defined as

1 [, (i
sstr|M*log | —
287w Mg,

(38)

one loop

1
M1231 = EMQ(M = MPl) - -

in which M? = M?(u = Myp,). This definition comes to
mean that the gravitational scale is equal to M?/2
evaluated at the gravitational scale. It is clear that Mp,
remains set to its value in (38) since curvature is classical
and matter loops have already been used up in forming the
flat spacetime effective action in (16). It is also clear that
gravity remains attractive if the bosonic sector is heavier
(str[M?] > 0) and if all the matter fields weigh below the
gravitational scale (str[M?] < Mj). In general, scalars,
singlet fermions, and vectorlike fermions can weigh heavy
without breaking gauge symmetries, and such heavy fields
can dominate Mp, through str[M?].

In the same sense as the gravitational scale in (38),
quadratic curvature coefficient ¢ in (37) can be defined as

(37)

one loop (11, — N

¢o = colu = Mp *p%’ (39)
and this definition means that n,(n;) is the number of
bosons (fermions) having masses from zero way up to the
gravitational scale. In other words, n,(n;) comprises the
entirety of the bosons (fermions) since particles heavier
than Mp, are disfavored by the attractive nature of gravity. It
is clear that ¢, remains set at its value in (39).

In similarity to Mp; in (38) and ¢, in (39), the loop factors
¢y and cy in (37) are set to their values at y = Mp. But
unlike the Mp, and ¢, these two loop factors run with the
renormalization scale y since both the scalars ¢ and gauge
bosons V, vary with the scale as quantum fields (wave
function renormalization). And their variations are governed
by the flat spacetime matter loops as in (20) and (21).

3. Affine dynamics: Gauge symmetry restoration
and emergent gravity

The effective action (36) remains stationary against
variations in the affine connection (8S.;/8I = 0) if

'V,D,, =0 (40)

such that 'V, is the covariant derivative of the affine

connection I}, and
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1 C¢ Z‘O
D, =(—— +-2L¢Tp+ -2 g¥R (T
uv <]671’GN + 4 ¢ ¢+ g g a[)’( ))g;w

—cytr[V,V,] (41)

is the disformal metric of tensor fields, including the affine
curvature R(I") itself. The motion equation (40) implies
that D, is covariantly constant with respect to Fﬁ,,, and this
constancy leads to the exact solution

1
Ify =5 (D7)7(9,D,, +0,D,, — 9,D,.)
1
=Ty +5O7(V,D,, +V,D), = V,Dy),  (42)

where the Levi-Civita connection " ,’ED was defined in (28).
The Planck scale in (38) is the largest scale, and therefore it
is legitimate to make the expansions

I, =T, +—(V Df + V,Di: - V'D,,) + O(M3p')

M3,
(43)
and
1
R/w (F) = R/w (gr‘) + a2 (vavﬂ Dau + vavuIDaﬂ
MP]

so that both I's, and R, (T") contain pure derivative terms at
the next-to-leading order [58,59]. The expansion in (43)
ensures that the affine connection I';,, is solved algebraically
order by order in 1/M3, despite the fact that its motion
equation (40) involves its own curvature R, (I") through D ,,
[29,30]. The expansion (44), on the other hand, ensures that
the affine curvature R, (T") is equal to the metrical curvature
R,,(T") up to a doubly Planck suppressed remainder. In

|

essence, what happened is that the affine dynamics took the
affine curvature R from its UV value A?J in (24) to its IR
value R in (44). Indeed, in the sense of holography [61,62],
the metrical curvature R sets the IR scale [63] above which
QFTs hold as flat spacetime constructs.

(1) Gauge symmetry restoration at the extremum of
affine action. One consequence of the solution of the
affine curvature in (44) is that the problematic loop-
induced gauge boson mass term gets defused as

/faﬂx =Geytr[VA(R,,(T) = Ry, (T))V"

‘M/d“x\/—_g{zero + O(My?)} (45)

after using the solution of the affine curvature in
(44) in the metric-Palatini action (37) [58-60]. The
O(Mp?) remainder here, containing the next-to-
leading order derivative term in (44), involves
derivatives of the scalars ¢ and gauge fields V,
and can produce therefore no mass terms for either
of them. It is worth noting that the gauge sym-
metries broken explicitly by a Poincaré-conserving
(Poincaré-breaking) UV cutoff are restored via the
Higgs field @ (via the affine curvature R) at the
minimum of the @ potential energy (at the ex-
tremum of the metric-affine action). This contrast
shows that Poincaré-conserving and Poincaré-
breaking UV cutoffs are fundamentally different
and lead, respectively, to field-theoretic and gravi-
tational completions of the effective QFT.

(2) Emergence of gravity at the extremum of affine
action. One other consequence of the solution of the
affine curvature in (44) is that the nongauge sector of
the metric-Palatini action (37) reduces to the quad-
ratic curvature gravity

/d4x\/—{ PIR( .T) - T—E(R(g,F))z—%rﬁrﬁR(g,F)}

equation (44)
—)

d*x\/= { 2P1 R -

in which R = ¢*R,, (T") is the usual curvature scalar in the
GR. As in (45), the O(Mp, ) remainder here consists of the
next-to-leading-order and h1gher terms in (44). It involves
derivatives of the long-wavelength fields ¢ and V,,
produces thus no mass terms for these fields, and remains
small for all practical purposes.

The reductions (45) and (46) give rise to the total QFT
plus GR action

0= gtgr+ Oz | (46)

Stot[g’ F] = Stree[g’ F] + 5Slog [gv 10g K, F]

M5 c c
4y /=gl _Pp S0 p2  Th 4iap
J“/dxV g{ 2 RojeR —3 79
(47)

in which the QFT sector
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Sorr[9: F] = Syeelg: F] 4 8S)00[g. log . F]  (48)

is the usual MS-renormalized QFT resting on the matter
loops in flat spacetime and evolving from scale to scale by
renormalization group equations in log u [22,34,35]. Its
gravity sector

Scrlg, ) = /d“x\/—_g{_MT%lR_i_ng_%ﬁ(ﬁqﬁR}
(49)

rests on the flat spacetime loop factors and emerges from
the requirement of restoring gauge symmetries. With these
two unique features, it differs from all the other matter-
induced gravity theories (induced [64-66], emergent
[67,68], analog [69], broken symmetry [70,71], and the
like). It is an R + R¢?> + R? gravity theory [72,73] whose
each and every coupling is a flat spacetime loop factor
[coefficient of AZ or A} in (17)]. It is the gauge symmetry-
restoring emergent gravity or briefly the symmergent
gravity [58-60], which is reformulated in a completely
new setting in the present work. It should not be confused
with the effective action computed in curved spacetime,
which gives M} o A2 along with A -sized scalar and
gauge boson masses and a A‘gﬂ—sized vacuum energy density
[64-66]. Symmergent gravity, as reformulated and eluci-
dated in the present work, stands out as a novel framework
for completing effective QFTs in the UV when the UV
cutoff is a Poincaré-breaking one.

C. Salient implications of the symmergent gravity

Symmergent gravity has a number of physics implica-
tions. It is worth touching on some salient ones here:

(a) Gravitational scale necessitates new physics BSM.
The gravitational scale Mp; in Sgg(g, ¢) is induced
by the flat spacetime matter loops as in (38). In the
SM, it takes the value M3 ~—Gz!, where Gp =~
(293 GeV)~? is the Fermi scale. Its negative sign,
set by the top quark contribution, is obviously unac-
ceptable. It must be turned to positive if gravity is to be
attractive, and this can be done if there exist new
particles beyond the SM spectrum. These BSM
particles are a necessity.

Inclusion of the BSM fields has turned M12>1 to
positive. This, however, is not sufficient because
fundamental scale of gravity must take its physical
value of Mp, ~ 10'® GeV. And gravity can be given this
physical fundamental scale by rescaling the metric as

72
MPl

9w = 75 9w (50)
H M]Z)[ H

since then \/gMER — /gME R [74,75]. This con-
formal transformation affects the entire matter plus

gravity action (47) in accordance with the equivalence
principle [56]. And its effects on coupling constants in
the action become stronger and stronger as the
ratio M3,/ M3, gets larger and larger. In this sense, it
is necessary to keep M3,/ M3, close to unity to maintain
the loop-induced structure of the QFT and the emergent
gravity. Incidentally, an enormous value like M3, ~ M3,
was the main assumption behind the restoration of
gauge symmetries in (45) and emergence of gravity in
(46). Thus, it is consistent to continue with M3, ~ M3,
keeping in mind that a conformal transformation like
(50) can always set the correct gravitational scale Mp,.
In this regard, the BSM sector must have
(1) either a light spectrum containing many more
bosons than fermions (for instance, m; ~ m e~
G'/? with ny — ny ~10%),
(i) or a heavy spectrum with few more bosons
than fermions (for instance, mj ~m; < Moy,
with n, —n; 2 10),

(iii) or a sparse spectrum with net boson dominance,
to satisfy the constraint M3 ~ M3. In general, BSM
particles do not have to couple to the SM particles simply
because all they are required to do is to saturate the
supertrace in (38) at a value M3 ~ M3,. In other words,
there are no symmetries or selection rules requiring the SM
particles to couple to the BSM particles. They can form
therefore a fully decoupled black sector [58,76-78]
or a feebly coupled dark sector [58,79,80], with distinctive
signatures at collider searches [81], dark matter searches
[82], and other possible phenomena [58].

(b) Higgs mechanism remains intact. In constructing the
symmergence, entire analysis has been restricted to
massless gauge fields like the gluon. But, actually, the
methodology summarized by Eq. (45) applies equally
well to massive vector fields like the W/Z bosons in
the SM because all that matters are the power-law
corrections in (17). These massive vectors acquire
their masses from the Higgs mechanism. And the
Higgs potential receives loop corrections from
8S10g[9. l0g p1, F|in (48). These logarithmic corrections
are identical to what one would find by using the
dimensional regularization (thanks to the detached
regularization). In symmergent gravity, therefore, the
Higgs mechanism is expected to work as usual to
generate masses for massive fields [modulo the cor-
rections from the BSM particles inferred in part
(a) above]. Needless to say, symmergence works in
the same way for all the fields in the BSM sector,
including the massless and massive vector fields
therein.

(c) Higgs-curvature coupling can probe the BSM. The
loop factor ¢, in Sgr(g.¢) couples the scalar curva-
ture R(g) to scalar fields ¢. It is about 1.3% in the
SM [58,60]. Its deviation from this SM value indicates
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(d)

(e)

existence of new particles which couple to the SM
Higgs boson. These BSM particles can be probed via
their effects on various gravitational and astrophysical
phenomena [83-85].

BSM symmetries might shed new light on the cosmo-
logical constant problem. The vacuum energy con-
tained in Sqpr(g, F) [33],

one loop

V() "SRy () +#m{w<1 2 og ’Z_j)]

(51)

gathers together field-independent log y corrections
in (48) in the minimum ¢ = (¢) of the scalar
potential V(¢). Its empirical value is V,,,, = (2.57 x
1073 eV)* [86]. The cosmological constant problem
is to shoot this specific value with the prediction
in (51), and such a shooting is tantalizingly difficult
to achieve [87]. Nevertheless, as a way out possible
only in symmergence, it might be possible to achieve
a resolution if the BSM fields (which do not have to
couple to the SM particles) enjoy efficacious sym-
metries and selection rules [80]. For instance, a
supersymmetrylike structure in the BSM sector
would kill the vacuum energy though realizing a
partly supersymmetric QFT may require extra struc-
tures [88].

Quadratic curvature term can probe the BSM. The
loop factor ¢y in Sggr(g,¢) is proportional to the
boson-fermion number difference. It vanishes identi-
cally in a QFT with equal bosonic and fermionic
degrees of freedom (as in the supersymmetric theories
[2,3]), and as a result, the gravitational sector in (49)
reduces to the GR. This normally is not possible given
that, under general covariance, all curvature invariants
can contribute to the gravitational sector, and it simply
is not possible to get the exact GR. But symmergence
is able to generate the GR, exact GR, when the SM +
BSM involves equal bosonic and fermionic degrees of
freedom [58,59]. Conversely speaking, if experiments
and observations reveal that the quadratic curvature
term is absent (namely, ¢, = 0), then it is for sure that
the underlying SM + BSM has equal numbers of
bosons and fermions.

The loop factor ¢, when nonzero, acts as a vestige
of strong curvatures. Indeed, it can probe the BSM
sector in terms of n;, — ny via strong-curvature effects.
One such effect is the Starobinsky inflation and seems
to require n, — n, ~ 10" [89]. In addition, symmer-
gent gravity itself may realize a quantum cosmology
phase [90]. One other effect concerns the black holes,
which put limits [91-94] on ¢, and the vacuum energy
V(u) through the Event Horizon Telescope (EHT)

()
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observations [95]. Effects of ¢, on stellar structure and
wormhole dynamics can also be significant.

Heavy BSM does not necessarily destabilize the light
scalars. The light scalar fields ¢, in Sopr(g. F) qualify
as unnatural due to their oversensitivity to heavy
fields. Indeed, as already revealed in Sec. I A, their
masses mg, get shifted by

2
2 mFH
= C“L)«“LFHmFH log Mz (52)

2
om o

if they couple with loop factor ¢4 and coupling
constant A4, to heavy fields Fyn of masses
mg, > m, . This loop correction reveals that heavier
the Fy is, the larger the shift in the ¢; mass and
stronger the destabilization of the light scalar sector
are. This is the well-known little hierarchy problem
[38,39]. In fact, null LHC results [8,9] have sidelined
supersymmetry and other known completions on the
basis of this problem, namely, on the basis of large
corrections like (52) to the Higgs boson mass.
Symmergence is fundamentally different from the
other UV completions like supersymmetry. It has the
potential to provide a way out from the little hierarchy
problem because the SM-BSM couplings are not
constrained at all. Indeed, its BSM sector is neces-
sitated only for generating the gravitational scale,
namely, saturating the supertrace formula (38), and
hence there is no symmetry principle or selection rule
requiring the SM and BSM fields to interact. Namely,
the coupling 4, f, is not under any constraint since
workings of symmergence do not depend on its
strength. This means that symmergence allows 5méL
to be small enough because 4, is allowed to be
small enough. More precisely, it is possible ensure
émy < mj because Ay, r, can always be taken in the

range [58,59]

2

m
g, | S s —t, (53)
mg,

where Agy ~ O(1) is a typical SM coupling. This
“small-coupling domain” is specific to symmergence.
It is the domain in which the SM and BSM are
sufficiently decoupled and the little hierarchy problem
is naturally avoided [80]. In contrast to supersymmetry
and other completions, therefore, symmergence allows
the SM and BSM to be decoupled as in (53) so that the
light scalars like the Higgs boson remain stable or, in
different words, the scale separation between the SM
and BSM is maintained at the loop level. As a concrete
example, one comes to realize that symmergence
requires neutrinos to be Dirac because neutrino masses
and the Higgs stability bound (53) cannot be satisfied
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at the same time with Majorana neutrinos [58,59,80].
In summary, the BSM of symmergence does not
necessarily destabilize light scalars like the Higgs
boson [58,59]. Its BSM particles can form a fully
decoupled black sector [58,76—78] or a feebly coupled
dark sector [58,79,80]. And, needless to say, this
naturally coupled symmergent BSM agrees with the
bulk of collider [8,9], cosmological [86], and astro-
physical [79,80] data.

Iv. POINCARE:CONSERVING UV CUTOFF
VS POINCARE-BREAKING UV CUTOFF:
CONTRASTING THE TWO UV COMPLETIONS

Having constructed the UV completions for Poincaré-
conserving and Poincaré-breaking UV cutoffs each, con-
trasting them proves useful for elucidating their working
principles and physics implications. In Sec. II B, it is shown
that the effective QFTs with Poincaré-conserving and
gauge-breaking UV cutoffs could be completed in the
UV by the Higgs mechanism. In Sec. 111, on the other hand,
it is shown that the effective QFTs with Poincaré- and
gauge-breaking UV cutoffs could be completed in the UV
by the symmergence mechanism. The two mechanisms
have similarities and dissimilarities, and a stimulating way
of contrasting them is the infographics in Fig. 1. It
illustrates the main stages of the construction of the UV
completions comparatively, with schematic drawings for
the @ potential and I" action.

On the left, the Poincaré-conserving vector boson mass
term is first promoted to a quartic interaction of the vector
boson V), and a scalar @ (in spurion status) as in Eq. (6).
Next, this quartic interaction is completed to become a
gauge-invariant @ kinetic term (in Higgs field status) as in
(7). These two stages are described by arrows in Fig. 1 with
reference to their equation numbers in Sec. IIB 1. The
scalar @ comes into being through the promotion of M, to
® as in the map (6). This equivalence between them,
denoted as M, — @ at the point m on the potential energy
curve, evolves to the point A at which the @ potential in (8)
attains its minimum at ® = 0 provided that 3, > 0. It is in
this sense that @ dynamics restores gauge symmetry and
gives meanwhile a UV completion of the effective QFT.

On the right, the Poincaré-breaking gauge boson mass
term is first promoted to an interaction term between the
gauge boson V, and flat spacetime affine curvature R(I)
(in spurion status) as in Eq. (24). Next, this flat spacetime
interaction term is carried into curved spacetime with affine
curvature R(I") and metrical curvature R(') (in field
status) as in Eq. (35). These two stages are shown with
arrows in Fig. 1 with reference to their equation numbers in
Sec. III B. Following the discussion in Sec. III B 2 of why
curvature terms cannot simply be added to the effective
QFT, it is shown that the gauge sector is the place where the
metrical curvature can arise via general covariance (27),
and a trivial regularization of the flat spacetime affine
spurion action (25) in Sec. Il B 1 leads to the particular

Poincare-Conserving UV Cutoff (Higgs mechanism)

Poincare-Breaking UV Cutoff (Symmergence)

MZTr[V,n*' ] otyn*y o

\_/ \/
Eq. (6) Eq. (7)

" (D, ®)* (D, ®)

®-potential [Eq.(8)]

D=0 [}

\ gauge symmetry is restored [Eq. (9)]

ALY 0", VR (DY, V. (R#(I) — R*(9D))V,
~_ 7 \_/’
Eq. (24) Eq. (35)

[-action [Eq. (37)]

A?orl,uv - ]Ruv (r)

~ 9T r
R(T) ~ R(IT)

b gravity emerged [Eq. (46)]
gauge symmetry is restored [Eq. (45)]

FIG. 1.

Gauge symmetry restoration and UV completion in effective QFTs with Poincaré-conserving (left) and Poincaré-breaking

(right) UV cutoffs. The @ potential on the left [minimized as in (9)] and I" action on the right [extremized as in (46)] are schematic

drawings.
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form in (35). The metric-affine action in (36) is extremized
at the affine connection in (43), and this solution leads to
restoration of gauge symmetries as in (45) and emergence
of general relativity as in (46). This action extremization is
equivalent to evolution of the affine curvature from its UV
value at the point  [as in Eq. (24) or (35)] to the point ¢ at
which it attains its IR value of R(I') ~ R(“T"). It is in this
sense that at the extremum of the ['-action gauge sym-
metries gets restored and general relativity emerges as a
quantum effect.

In summary, as evinced by the infographics in Fig. 1, UV
completions of effective QFTs with Poincaré-conserving
and Poincaré-breaking UV cutoffs proceed in parallel with
similar phases. The UV completion is realized by Higgs
scalars in the former and affine curvature in the latter. It
turns out that the gauge and Poincaré properties of the UV
cutoff have an important impact on the beyond-the-QFT
physics needed for UV completion. Characteristic signa-
tures are set of scalar bosons for the Poincaré-conserving
UV cutoff and quadratic curvature gravity plus naturally
coupled new particles for the Poincaré-breaking UV cutoff.

V. CONCLUSION

In the present work, a systematic study has been
performed of the UV cutoff by grounding on its
Poincaré properties. The goal is to complete the QFT in
the UV with guidance from the Poincaré structure of the
UV cutoff. The Poincaré-conserving and Poincaré-breaking
UV cutoffs have been analyzed separately with separate
examinations of the gauge-conserving and gauge-breaking
cases. Section II was devoted to the Poincaré-conserving
UV cutoff. In Sec. IT A, the gauge-conserving UV cutoff,
the main substance of the naturalness criterion, was found
to destabilize the light scalars like the Higgs field. In Sec. II
B 1, on the other hand, gauge symmetries broken explicitly
by the UV cutoff (vector boson mass) were found to get
restored by promoting the UV cutoff to appropriate Higgs
scalars.

Section III was devoted to the Poincaré-breaking UV
cutoff. In Sec. III A, detached regularization was intro-
duced as a new regularization framework in which power-
law and logarithmic divergences could be analyzed and
structured independently. In Sec. III B, flat spacetime
effective QFT was formed in the detached regularization
with classifications of the power-law and logarithmic
divergences. In Sec. IIIB 1, it was shown that the UV

cutoff could be consistently promoted to flat spacetime
affine curvature in the same philosophy as the promotion of
the UV cutoff to the Higgs field in Sec. II B. In Sec. III B 2,
flat spacetime effective QFT was carried into spacetime of a
curved metric, with curvature terms arising only in the
gauge sector. In Sec. I1I B 3, affine curvature was integrated
out the via the affine dynamics, and it was found that at the
extremum of the affine action gauge symmetries got
restored as in (45) and gravity (quadratic curvature gravity)
emerged as in (46). The salient physics implications listed
in Sec. III C revealed important properties ranging from
existence of new particles beyond the known ones to the
stability of the light scalars thanks to the allowance of
naturally weak couplings with the said new particles. In
Sec. IV, a comparative discussion was given of the two
completion mechanisms with guidance from the info-
graphics in Fig. 1.

The main lesson from this study is that the Poincaré and
gauge structures of the UV cutoff have a big say about the
likely UV completions of the effective QFT. It turns out that
gauge symmetry restoration (in the philosophy of the Higgs
mechanism) plays a detrimental role in specifying the
completions. Symmergent gravity, as revealed by its rich
gravitational and field-theoretic structure in Sec. I, has the
potential to affect various observables and processes in
collider, astrophysical, and cosmological settings. These
opportune observables, partly discussed in Sec. III C, serve
as test beds for probing and disentangling the symmergent
effects.
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