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This study examines on-shell supersymmetry breaking in the Abelian N ¼ 1 Chern-Simons-matter
model within a three-dimensional spacetime. The classical Lagrangian is scale invariant, but two-loop
radiative corrections to the effective potential break this symmetry, along with gauge and on-shell
supersymmetry. To investigate this issue, the renormalization group equation is used to calculate the
two-loop effective potential.
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I. INTRODUCTION

Supersymmetric Chern-Simons theories have been an
area of study for some time now, with various works [1–10]
dedicated to understanding them. Recently, these theories
have gained significant attention due to their relationship
with M2-branes [11]. The superconformal field theory that
describes multiple M2-branes is dual to D ¼ 11 super-
gravity on AdS4 × S7, and has N ¼ 8 supersymmetry.
However, the on-shell degrees of freedom of this theory
are only bosons and physical fermions, leading to a gauge
sector with no on-shell degrees of freedom. These con-
straints are met by a Chern-Simons-matter theory named
BLG theory [12–17], which explains the behavior of
two M2-branes. By relaxing the prerequisite of manifest
N ¼ 8 supersymmetry, this approach can be generalized to
aN ¼ 6 Chern-Simons-matter theory with the gauge group
UkðNÞ ×U−kðNÞ, where k and −k denote the Chern-
Simons levels [18,19]. It is expected that this theory will
attainN ¼ 8 supersymmetry when the values of k are either
1 or 2 [20–22]. The quantization of such a model has
been extensively investigated in several studies [23–31].
Furthermore, comprehensive computations of the effective
superpotential within N ¼ 2 superfield theories in three
dimensions have been presented in [32–34].
The one-loop approximation is often sufficient to grasp

the key aspects of a field theory. One notable example is
the scalar quantum electrodynamics, where Coleman and
Weinberg demonstrated that spontaneous gauge symmetry

breaking occurs at the one-loop level in four-dimensional
spacetime [35]. The Coleman-Weinberg mechanism is a
valuable tool for understanding how spontaneous sym-
metry breaking occurs, leading to the generation of masses
for Higgs, gauge, and matter fields through radiative
corrections in perturbation theory. The method starts with
a scale invariant model, and the primary objective is to
determine the effective potential for a constant background
field and to examine its vacuum properties. Specifically,
the goal is to identify conditions under which the effective
potential exhibits a minimum. When perturbative correc-
tions to the effective potential produce a nontrivial mini-
mum, accompanied by the spontaneous generation of
mass, a dimensional transmutation of one of the model’s
coupling constants takes place.
The phenomenon of spontaneous symmetry breaking

induced by radiative corrections in three-dimensional
spacetime is found to occur only after two-loop correc-
tions to the effective potential, as reported in [36–38]. It is
a well-known fact that perturbative calculations become
increasingly complex from the two-loop stage. However,
the renormalization group improvement method [39] has
proven to be a useful tool to incorporate high-order
perturbative effects and has been extensively applied to
calculations beyond one-loop approximation [34,40–48].
This method works by organizing the effective potential as
a power series of logarithms and solving the renormaliza-
tion group equation (RGE) using perturbative techniques.
As a result, insights into the higher-loop effective potential
can be gained by utilizing only the one-loop renormaliza-
tion group functions or, in the case of three-dimensional
spacetime, the two-loop renormalization group functions.
The presence of nontrivial β and γ functions at the two-

loop level offers the opportunity to enhance the accuracy
of the Veff calculation by utilizing the RGE. The RGE is
expressed as
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�
μ
∂

∂μ
þ βx

∂

∂x
þ γφφ

∂

∂φ

�
Veffðφ; μ; x; LÞ ¼ 0; ð1Þ

where x denotes the coupling constants of the theory, μ is
the mass scale introduced by the regularization, γφ repre-
sents the anomalous dimension of scalar field φ, L is

defined as L ¼ lnðφ2

μ Þ, and ϕ is the vacuum expectation
value of φ. The use of the RGE has been applied to
calculate the improved effective potential for a nonsuper-
symmetric Chern-Simons-matter model in [49]. The results
showed significant changes in the model’s vacuum proper-
ties, highlighting the importance of considering the RGE in
a proper analysis of the phase structure. The objective of
this study is to employ the RGE to investigate whether the
supersymmetric version of the Chern-Simons-matter model
also presents a rich phase structure, including spontaneous
gauge and supersymmetry breaking.
The structure of this paper is as follows: Section II

introduces the model and describes how a background
field can lead to spontaneous symmetry breaking. It also
identifies the relevant physical degrees of freedom.
Section III presents the calculation of the two-loop
effective action using the RGE method, and shows that
the conditions for minimizing the effective potential are
consistent with both spontaneous gauge and on-shell
supersymmetry breaking. Finally, in Sec. IV, we provide
concluding remarks.

II. SUPERSYMMETRIC
CHERN-SIMONS-MATTER MODEL

In the present section, the classical action of the super-
symmetric Chern-Simons-matter model in the N ¼ 1
superspace is defined, which allows expressing the action
in terms of the physical fields, where the on-shell super-
symmetry is realized. The classical action in the N ¼ 1
superspace is given by

S ¼
Z

d3xd2θ

�
−
1

4
ΓαDβDαΓβ −

1

2
∇αΦ∇αΦþ λ

4
ðΦ̄ΦÞ2

þ LGF þ LFP

�
; ð2Þ

where the Γβ ¼ Γβðx; θÞ is the Chern-Simons superfield
coupled to the massless complex scalar superfield
Φ ¼ Φðx; θÞ, with a quartic self-interaction. ∇α ¼
ðDα − ieΓαÞ is the gauge supercovariant derivative. LGF
and LFP are the gauge fixing and Faddeev-Popov
Lagrangians, respectively. The author uses natural units
(ℏ ¼ c ¼ 1), ð−;þ;þÞ as the spacetime signature, and the
notations and conventions for three-dimensional super-
symmetry as found in [50].
Alternatively, the action can be written in terms of the

component fields. These fields can be defined by the θ
projections given by

Γαjθ¼0 ¼ χα;
1

2
DαΓαjθ¼0 ¼ B; DαΓβjθ¼0 ¼

iffiffiffi
2

p ðγμÞαβAμ − δβαB;

1

2
DβDαΓβjθ¼0 ¼ λα; D2Γαjθ¼0 ¼ λα − i∂αβχβ;

Φjθ¼0 ¼ ϕ; DαΦjθ¼0 ¼ ψα; D2Φjθ¼0 ¼ F: ð3Þ

By integrating over the Grassmann variables and applying the Wess-Zumino gauge (χα ¼ B ¼ 0), the following
expression is obtained:

S ¼
Z

d3x

�
1

2
ϵμνρAμ∂νAρ −

1

4
λαλα þ ψ̄βðγμÞβαð∂μ − ieAμÞψα þ F�F þ ϕ�

□ϕ

− e2ϕ�ϕAμAμ þ ieAμðϕ�
∂μϕ − ϕ∂μϕ

�Þ − ie
2
ðϕ�λαψα − ψ̄αλαϕÞ

þ λ

2
ϕ�ϕψ̄αψα þ

λ

4
ðψ̄αψ̄αϕ

2 þ ψαψαϕ
�2Þ þ λ

2
ðF�ϕþ ϕ�FÞϕ�ϕþ LGF þ LFP

�
: ð4Þ

The focus of the study is on the Coleman-Weinberg
mechanism. To calculate the effective potential, a shift in
the fields ϕ, ϕ�, F and F� is considered, given by

ϕ → ϕþ φffiffiffi
2

p ¼ 1ffiffiffi
2

p ðϕ1 þ iϕ2Þ þ
φffiffiffi
2

p ; ð5aÞ

ϕ� → ϕ� þ φffiffiffi
2

p ¼ 1ffiffiffi
2

p ðϕ1 − iϕ2Þ þ
φffiffiffi
2

p ; ð5bÞ

F → F þ fffiffiffi
2

p ¼ 1ffiffiffi
2

p ðf1 þ if2Þ þ
fffiffiffi
2

p ; ð5cÞ
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F� → F� þ fffiffiffi
2

p ¼ 1ffiffiffi
2

p ðf1 − if2Þ þ
fffiffiffi
2

p ; ð5dÞ

where φ and f are real background (constant) fields.
In terms of the classical background fields, the action (4) can be cast as

S ¼
Z

d3x

�
1

2
ϵμνρAμ∂νAρ −

1

4
λαλα þ ψ̄ βðγμÞβαð∂μ − ieAμÞψα −

1

2
ðf21 þ f22 þ 2ff1 þ f2Þ þ 1

2
ϕ1□ϕ1 þ

1

2
ϕ2□ϕ2

−
e2

2
ðϕ2

1 þ ϕ2
2 þ 2φϕ1 þ φ2ÞAμAμ −

e
2
Aμðϕ1∂μϕ2 − ϕ2∂μϕ1Þ −

ie
2

�ðϕ1 − iϕ2Þ
2

λαψα − ψ̄αλα
ðϕ1 þ iϕ2Þ

2

�

þ λ

4
ðϕ2

1 þ ϕ2
2 þ 2φϕ1 þ φ2Þψ̄αψα þ

λ

8
ψ̄αψ̄α½ϕ2

1 − ϕ2
2 þ 2φðϕ1 þ iϕ2Þ þ 2iϕ1ϕ2 þ φ2�

þ λ

8
ψαψα½ϕ2

1 − ϕ2
2 þ 2φðϕ1 − iϕ2Þ − 2iϕ1ϕ2 þ φ2� þ λ

4
½ðf1 þ fÞðφþ ϕ1Þ þ f2ϕ2�ðϕ2

1 þ ϕ2
2 þ φ2 þ 2φϕ1Þ

þ ieφ
2

λα
ðψ̄α − ψαÞffiffiffi

2
p − eφAμ

∂μϕ2 þ LGF þ LFP

�
: ð6Þ

In order to eliminate the mixing between Aμ and ϕ2 and between λα and
ðψ̄α−ψαÞffiffi

2
p in the last line of (6), a supersymmetric Rξ

gauge fixing is used, FG ¼ ðDαΓα þ i ξ
2
eφ ðΦ̄−ΦÞffiffi

2
p Þ. This is achieved by including the gauge fixing and Faddeev-Popov

actions,

SGFþFP ¼
Z

d5z

�
1

2ξ

�
DαΓα þ i

ξ

2
eφ

ðΦ̄−ΦÞffiffiffi
2

p
�

2

þ C̄D2Cþ ξe2φ2

4
C̄Cþ ξe2φ

4
C̄
ðΦ̄þΦÞffiffiffi

2
p C

�

¼
Z

d3x

�
1

2ξ
λαλα −

ξ

8
e2φ2

ðψ̄α − ψαÞffiffiffi
2

p ðψ̄α − ψαÞffiffiffi
2

p þ ξ

4
e2φ2ϕ2f2 þ eφAμ

∂μϕ2 − i
eφ
2
λα

ðψ̄α − ψαÞffiffiffi
2

p þLghosts

�
; ð7Þ

where C and C̄ are the ghost superfields and Lghosts is the Lagrangian involving the ghost fields.
Integrating out the auxiliary fields f1 and f2, we can express the action in terms of the physical fields as follows:

S ¼
Z

d3x

�
1

2
ϵμνρAμ∂νAρ −

e2φ2

2
AμAμ −

1

4

�
1 −

2

ξ

�
λαλα þ

1

2

�
j∂μϕ1j2 −

15λ2φ4

16
ϕ2
1

�
þ 1

2

�
j∂μϕ2j2 −

ð3λþ ξλe4Þφ4

16
ϕ2
2

�

þ iψ̄αðγμÞαβ∂μψβ þ
λφ2

4
ψ̄αψα þ

λφ2

8
ðψ̄αψ̄α þ ψαψαÞ −

ξ

8
e2φ2

ðψ̄α − ψαÞffiffiffi
2

p ðψ̄α − ψαÞffiffiffi
2

p þ interactions

�
: ð8Þ

One interesting feature of the calculation is the complete absence of the classical field f after the integration over the
auxiliary fields f1 and f2.
The imaginary part ϕ2 of ϕ becomes the Goldstone boson due to spontaneous gauge symmetry breaking. However, it

should be noted that ϕ2 becomes a nonphysical field after introducing the typical Rξ gauge fixing. This results in a gauge-
dependent mass term for ϕ2, and the degree of freedom corresponding to ϕ2 is absorbed by the Chern-Simons field Aμ in the
process of becoming massive.
The fermion mass matrix can be written as

Lm ¼ λφ2

8
ðψ̄α;ψαÞ

�
1 1

1 1

��
ψ̄α

ψα

�
−
ξ

8
e2φ2

ðψ̄α − ψαÞffiffiffi
2

p ðψ̄α − ψαÞffiffiffi
2

p

¼ mf

2

ðψ̄α þ ψαÞffiffiffi
2

p ðψ̄α þ ψαÞffiffiffi
2

p þ m̃f

2

iðψ̄α − ψαÞffiffiffi
2

p iðψ̄α − ψαÞffiffiffi
2

p

¼ mf

2
ψαþψþα þ

m̃f

2
ψα
−ψ−α: ð9Þ

After diagonalizing the fermion mass matrix, two states are obtained: one massive state with mass mf ¼ λφ2

2
, represented

by ψαþ ¼ 1ffiffi
2

p ðψ̄α þ ψαÞ, and another state with mass m̃f ¼ ξ
4
e2φ2 represented by ψα

− ¼ iffiffi
2

p ðψ̄α − ψαÞ, which is interpreted as
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the Goldstino. Similar to the case of ϕ2, the fermionic state
ψ− will also be a nonphysical field due to the introduction
of the Rξ gauge-fixing, and it will have a gauge-dependent
mass term.
If spontaneous symmetry breaking occurs at some

level, i.e., if the background field φ assumes a non-
vanishing value v at the minimum of the effective
potential, the Chern-Simons field acquires a mass term
proportional to ma ¼ e2v2, while the real part ϕ1 of the
complex field ϕ acquires a squared mass m2

b ¼ ð15λ2v4
16

þ
radiative correctionsÞ. The fermionic matter state ψαþ
acquires a squared mass m2

f ¼ λ2v4
4

due to the tree-level
Higgs mechanism, which is different from its supersym-
metric partner ϕ.
In the case where the Coleman-Weinberg mechanism

takes place, the squared mass ratio between bosonic and
fermionic matter fields is given by

m2
b

m2
f

¼ 15

4
þ ðradiative correctionsÞ; ð10Þ

which indicates the spontaneous on-shell supersymmetry
breaking if v ≠ 0.

III. DETERMINATION OF THE EFFECTIVE
POTENTIAL

Before studying the two-loop effective potential for the
Chern-Simons-matter model, it is useful to discuss some
aspects of the potential at the classical level. For simplicity,
consider an action for a real scalar superfield ΦðzÞ ¼
ðϕðxÞ þ θαψαðxÞ − θ2FðxÞÞ given by

S ¼
Z

d5z

�
1

2
ΦD2Φ −

λ

4
Φ4

�

¼
Z

d3x

�
1

2
ϕ□ϕþ 1

2
F2 þ λFϕ3

�
; ð11Þ

where the terms involving the fermionic field ψ have been
suppressed.
The above action leads to a classical potential given by

Vcl ¼ −
F2

2
− λFϕ3; ð12Þ

which is depicted in Fig. 1.
Some attempts have been made in the literature to

compute the effective potential while keeping the inter-
mediate steps of the calculation manifestly supersymmet-
ric, without eliminating the auxiliary field F from the
beginning [10,51–55]. However, it has been observed that
the potential (12) is not bounded from below when
expressed in terms of the auxiliary field F. Therefore,
to compute radiative corrections to the classical potential,

it is advisable to eliminate the auxiliary field F by
employing its equation of motion F ¼ −λϕ3 from the
beginning, as suggested by Murphy and O’Raifeartaigh
[56]. This choice leads to a well-defined classical poten-
tial, depicted in Fig. 2, given by

Vcl ¼
λ2

2
ϕ6: ð13Þ

Thus, in order to compute the radiative corrections to
the classical potential of the Chern-Simons-matter model,
we will follow the approach proposed by Murphy and
O’Raifeartaigh and eliminate the auxiliary field F using its
equation of motion from the beginning. Afterwards, wewill
compute the radiative corrections to the classical potential
in order to obtain the two-loop effective potential of the
model.
The effective potential VeffðφÞ can be obtained using the

RGE with the beta function and anomalous dimension from
the literature [3]. The two-loop beta functions and anoma-
lous dimension for the Chern-Simons-matter model are
expressed in terms of the redefined gauge coupling constant
y ¼ e2, and can be written as

FIG. 1. Plot of the classical potential in the presence of the
auxiliary field F. The line in blue corresponds to the classical
path F ¼ −λϕ3.

FIG. 2. Plot of the classical potential after eliminating the
auxiliary field F.
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βλ ¼
1

64π2
ð9λ3 þ λ2y − 6λy2 − 4y3Þ; ð14aÞ

βy ¼ 0; ð14bÞ

γφ ¼ 1

64π2

�
3λ2

4
−
5y2

4

�
þ 1

64π2
ðξ1y2 þ ξ2λyÞ; ð14cÞ

where ξ1 and ξ2 are gauge-dependent calculable coefficients.
The two-loop beta functions and anomalous dimension

for the Chern-Simons-matter model have been computed
in Ref. [3] using the Landau gauge. To address a possible
gauge-dependence issue of the effective potential [57,58],
we have included the possible gauge-dependent part of the
anomalous dimension. However, the actual values of ξ1
and ξ2 are not important, as the two-loop effective potential
is completely gauge invariant, which is a unique feature of
the two-loop approximation (in three dimensions). In
higher-order corrections, gauge-dependent quantities, such
as daisies, can appear, as discussed in [59–61], but this is
not the case in the approximation presented here.
We shall use the following ansatz for VeffðφÞ:

VeffðφÞ ¼
1

32
φ6SðLÞ; ð15Þ

where

SðLÞ ¼ Aðy; λÞ þ Bðy; λÞLþ Cðy; λÞL2 þ � � � ; ð16Þ

with A; B;C;… defined as power series of the coupling
constants y and λ, and L is defined by

L ¼ ln

�
φ2

μ

�
: ð17Þ

In the adopted shorthand notation, any of the two
couplings in the model is denoted by the symbol x. For
instance, ynλm is represented as xmþn. It can be observed

that the two-loop beta function and anomalous dimension
are of order Oðx3Þ and Oðx2Þ, respectively.
In the comparison with the action (6), we can identify

Aðy; λÞ as

Aðy; λÞ ¼ λ2 þOðx3Þ: ð18Þ

Actually, the value of Aðy; λÞ will be fixed by the Coleman-
Weinberg normalization of the effective potential,

1

6!

d6VeffðφÞ
d6φ

				
φ¼ ffiffi

μ
p ¼ λ2

32
; ð19Þ

where we have chosen φ ¼ ffiffiffi
μ

p
as the renormaliza-

tion scale.
In order to compute the effective potential through RGE

given in (1), it is necessary to use the fact that from (17) it
follows that ∂L ¼ 1

2
φ∂φ ¼ −μ∂μ. By using (15) to compute

(1) an alternative form for the RGE can be found, which is

½−ð1þ 2γφÞ∂L þ βλ∂λ þ 6γφ�SðLÞ ¼ 0; ð20Þ

and will be used hereafter.
By inserting the ansatz given by (16) into (20), a series of

equations can be obtained by collecting the resulting
expression by orders of L. The first two of these equations
is quoted below:

−ð1þ 2γφÞBðy; λÞ þ βλ∂λAðy; λÞ þ 6γφAðy; λÞ ¼ 0; ð21Þ

and

−2ð1þ 2γφÞCðy; λÞ þ βλ∂λBðy; λÞ þ 6γφBðy; λÞ ¼ 0: ð22Þ

Given that all functions that appear in these equations are
defined as power series of the couplings x, the equation (21)
can be written as

− ðBð2Þ þ Bð3Þ þ Bð4Þ þ � � �Þ − 2ðγð2Þφ þ γð3Þφ þ � � �ÞðBð2Þ þ Bð3Þ þ Bð4Þ þ � � �Þ

þ ðβð3Þλ þ βð4Þλ þ � � �Þ ∂

∂λ
ðAð2Þ þ Að3Þ þ Að4Þ þ � � �Þ þ 6ðγð2Þφ þ γð3Þφ þ � � �ÞðAð2Þ þ Að3Þ þ Að4Þ þ � � �Þ ¼ 0; ð23Þ

where the numbers in the superscripts represent the power
of x for each term.
Organizing the above equation in order of x, we find

− Bð2Þ − Bð3Þ þ
�
−Bð4Þ − 2γð2Þφ Bð2Þ þ βð3Þλ

∂Að2Þ

∂λ

þ 6γð2Þφ Að2Þ
�
þ � � � ¼ 0; ð24Þ

where it is easy to see that Bð2Þ ¼ Bð3Þ ¼ 0. By the use
of (18), the above equation in Oðx4Þ can be cast as

Bð4Þ ¼ 2λβð3Þλ þ 6λ2γð2Þφ

¼ λ

128π2
ð42λ3 − 16y3 þ 3λð4ξ1 − 13Þy2

þ 4λ2ð3ξ2 þ 1ÞyÞ: ð25Þ
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The corrections of order x4L in Seff can be obtained
through a two-loop calculation of the effective potential.

However, the coefficients of βð4Þλ and γð3Þφ are unknown,
which would appear from higher loop corrections.
Therefore, it is not possible to use (21) to calculate further
coefficients of B or A. As a result, this equation does not
provide information on higher-order loop contributions
to Seff .
The effective potential can be computed up to order x4L,

which corresponds to two-loop order in perturbation theory.

The ansatz in (15), combined with (18) and (25), allows us
to express the effective potential as

VeffðφÞ ¼
φ6

32

�
Að2Þ þ Bð4Þ ln

�
φ2

μ

�
þ δλ

�
; ð26Þ

where δλ is the counterterm that satisfies the renormaliza-
tion condition (19).
Imposing the Coleman-Weinberg condition (19), and

choosing the renormalization scale φ ¼ ffiffiffi
μ

p
, finally we find

VeffðφÞ ¼
λ2

32
φ6 þ λ½42λ3 − 16y3 þ 3λð4ξ1 − 13Þy2 þ 4λ2ð3ξ2 þ 1Þy�

40960π2
φ6

�
−49þ 10 ln

�
φ2

μ

��
: ð27Þ

As a result, we find that the effective potential is apparently
gauge dependent. But, as we will see, the gauge depend-
ence is removed after imposition of the conditions that
minimize the effective potential.
The conditions to minimize the effective potential are

given by

dVeffðφÞ
dφ

				
φ¼ ffiffi

μ
p ¼ 0; ð28aÞ

d2VeffðφÞ
dφ2

				
φ¼ ffiffi

μ
p > 0; ð28bÞ

where, because of arbitrariness of the renormalization
scale, we set the scale of renormalization φ ¼ ffiffiffi

μ
p

to be
the minimum of the effective potential. The extremum
condition (28),

λμ5=2ð6λð640π2 − 959λ2Þ þ 2192y3 − 411λð4ξ1 − 13Þy2 − 548λ2ð3ξ2 þ 1ÞyÞ
20480π2

¼ 0; ð29Þ

yields a nontrivial perturbative solution for λ, given by

λ ≈ −
137y3

240π2
þOðy6Þ: ð30Þ

Upon substituting the expression for λ given in (30)
into (27), it follows that

Veff ¼
137y6φ6

184320π4

�
−1þ 3 ln

�
φ2

μ

��
; ð31Þ

with

dVeffðφÞ
dφ

				
φ¼ ffiffi

μ
p ¼ 0; ð32Þ

m2
φ ¼ d2VeffðφÞ

dφ2

				
φ¼ ffiffi

μ
p

¼ 15λ2μ2

16
þ 125λy3μ2

256π2
¼ 137y6

5120π4
μ2 > 0: ð33Þ

In the present model, the Coleman-Weinberg mechanism
dislocated the classical global minimum φ ¼ 0 into a local
maximum, thus relocating the minimum of the effective
potential to φ ¼ v ¼ ffiffiffi

μ
p

as expected. It is worth noting that
the two-loop effective potential (31) is invariant under
gauge transformations. However, higher-order corrections
can generate gauge-dependent quantities, such as daisies
[59–61], and therefore require more thorough analysis.
As discussed previously, the occurrence of the

Coleman-Weinberg mechanism results in simultaneous
spontaneous gauge and off-shell supersymmetry breaking.
This is indeed the case in this model, where the Chern-
Simons field becomes massive with m2

a ¼ e4v4 ¼ y2μ2,
and the real part ϕ1 of the complex field ϕ acquires a

squared massm2
b¼ð15λ2v4

16
þradiative correctionsÞ¼ 137y6

5120π4
μ2.
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Additionally, the massive fermionic state 1ffiffi
2

p ðψ̄α þ ψαÞ
acquires a squared mass m2

f ¼ λ2v4
4

¼ 18769y6

230400π4
μ2, indicating

a spontaneous on-shell supersymmetry breaking.
In regards to supersymmetry breaking, a crucial aspect

is the positivity of the potential. It has been noted that
the effective potential Veff , given in (31), is negative at

φ ¼ ffiffiffi
μ

p
, with VeffðμÞ ¼ − 137y6μ3

184320π4
. This result appears to

contradict our understanding of supersymmetry breaking.
However, it should be emphasized that the effective
potential obtained from the RGE (1) is the effective
potential up to a constant term. This constant of integra-
tion was not taken into consideration when the ansatz (15)
was used. In the Appendix, some arguments are presented
to justify that the effective potential evaluated at its
minimum is indeed positive, on the order of Vmin ¼
ec=y

2

μ3 þOðy6Þ, where y is perturbative with y ≪ 1,
and c ∼ 400 is a constant.

IV. FINAL REMARKS

In this work, the on-shell supersymmetry breaking in the
Abelian N ¼ 1 Chern-Simons-matter model is investi-
gated. The classical Lagrangian is scale invariant, which
is broken by two-loop radiative corrections to the effective
potential. To conclude this, the author computed the two-
loop effective potential by the use of the renormalization
group equation showing that gauge symmetry and on-shell
supersymmetry is spontaneously broken induced by radi-
ative corrections, i.e., through Coleman-Weinberg mecha-
nism. The Coleman-Weinberg mechanism turned the
classical global minimum φ ¼ 0 into a local maximum,
dislocating the minimum of the effective potential to
φ ¼ ffiffiffi

μ
p

, just as it should be. It was found that the two-
loop effective potential is gauge invariant, but it is important
to remark that high order corrections can generate gauge-
dependent quantities such as daisies [59–61], and a more
careful analysis has to be made.
An important aspect of supersymmetry breaking is the

positivity of the effective potential. Even though appa-
rently the value of Veff at the minimum is negative, it
was argued that the effective potential obtained from the
renormalization group equation (1) corresponds to the
effective potential apart from a constant, where this
constant of integration was not taken into account by
the use of the ansatz (15). Some argumentations can be
done to justify that the value of the effective potential
evaluated at its minimum is in fact positive, of order
of Vmin ¼ ec=y

2

μ3 þOðy6Þ, with perturbative y ≪ 1 and

c ∼ 400 being a constant. These argumentations are
presented in the Appendix.
Finally, an extension of this work for higher order

corrections could be instructive to investigate the possible
gauge dependence and stability of the radiatively generated
minimum.

ACKNOWLEDGMENTS

The author is grateful to A. J. da Silva and A. F. Ferrari
for useful discussions.

APPENDIX: POSITIVITY OF THE EFFECTIVE
POTENTIAL

One of the key features of supersymmetric field theory
is the positivity of the effective potential. It is widely
known that the value of the effective potential at its
minimum must be positive in the case of spontaneous
supersymmetry breaking [50]. In this paper, the two-loop
effective potential of the on-shell supersymmetric Chern-
Simons-matter theory in a three-dimensional spacetime is
computed. However, an unexpected result emerged from
the analysis. Specifically, the value of Veff at the minimum,

i.e., ϕ ¼ ffiffiffi
μ

p
, was found to be VeffðμÞ ¼ − 137y6μ3

184320π4
< 0.

Nevertheless, it is important to emphasize that the effective
potential obtained from the RGE (1) corresponds to the
effective potential apart from a constant. This constant of
integration was not considered in the ansatz (15).
In this Appendix, argumentations are presented to justify

the positivity of the effective potential evaluated at its
minimum. The effective potential constant term V0 is
assumed to have the form given by

V0 ¼ fðλ; yÞμ3; ðA1Þ

where V0 depends on the coupling constants but not on the
background field φ. The ansatz (A1) is expected to be of
order μ3 by dimensional analysis.
Plugging (A1) into the RGE (1), we find

�
μ
∂

∂μ
þ βλ

∂

∂λ

�
V0 ¼ μ3

�
3fðλ; yÞ þ βλ

dfðλ; yÞ
dλ

�
¼ 0: ðA2Þ

It is possible to obtain a solution for fðλ; yÞ by solving its
linear first-order differential equation. One such solution is
given by
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V0 ¼ μ3 exp

0
BBB@96π2

ffiffiffiffiffi
11

p
ln ð9λ2 þ 4y2 þ 10λyÞ − ffiffiffiffiffi

11
p

lnðλ − yÞ2 þ 28 tan−1


9λþ5yffiffiffiffi

11
p

y

�
23

ffiffiffiffiffi
11

p
y2

1
CCCA

≈ μ3 exp

0
BB@
192π2

�
11 lnð2Þ þ 14

ffiffiffiffiffi
11

p
tan−1



5ffiffiffiffi
11

p
��

253y2
−
137

5

1
CCA

∼ μ3 exp
�
400

y2

�
> 0; ðA3Þ

where λ was expended around its value in the minimum of
Veff , as given by Eq. (30), and considered a perturbative
regime where y ≪ 1.
By adding V0 to the effective potential (31), the

minimum of the effective potential can be determined.
It can be cast as

Vmin ¼ V0 þ Veff jφ¼ ffiffi
μ

p ¼ μ3 exp

�
400

y2

�
−

137y6μ3

184320π4
> 0;

ðA4Þ

that is evident that Vmin is positive, which guarantees the
positivity of the effective potential.
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