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We consider a quantum real massive scalar field in the de Sitter–Schwarzschild spacetime background.
To have an analytic headway we study in detail the two-dimensional case, assuming that the situation in
four dimensions will not be much different conceptually. It is assumed that the quantum field is in a thermal
state, i.e., described by the Planckian distribution for the exact modes in the geometry under consideration.
We calculate approximately the expectation value of the stress-energy tensor near the cosmological and
black hole horizons. It is shown that for a generic temperature backreaction from quantum fields, the
geometry cannot be neglected. Thus, de Sitter–Schwarzschild spacetime geometry inevitably is strongly
modified by the quantum fluctuations of the matter fields.
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I. INTRODUCTION

There is an indirect experimental evidence that our
Universe has undergone a stage of rapid inflationary
expansion [1–8]. It is believed that the curvature of the
Universe at that stage was of the order of the grand unified
theory scale. Although formation of black holes at that stage
is believed to be highly unlikely, due to the rapid expansion,
we think that the possibility of such a formation strongly
depends on the initial quantum state of the fields at the
beginning of the inflation, which is not known to us so far.
Furthermore, there are suggestions about the hypothetical
type of black holes that formed in the early Universe [9,10];
these so-called primordial black holes, their stability and
evaporation are of interest because they are candidates for
the components of the dark matter [11,12].
So, wewould like to consider the situation when there is a

black hole present during that expansion stage. This situation
is modeled by the following the two-dimensional part of the
four-dimensional metric [13,14] (see also [15–18]):

ds2 ¼ fðrÞdt2 − dr2

fðrÞ ; fðrÞ ¼ 1 −
2M
r

−H2r2: ð1Þ

Here M is the mass of the black hole, H is the Hubble
constant, and dΩ2 is the line element of the unit sphere.

The main feature of this metric, which is relevant for
further discussion, is the presence of two horizons simul-
taneously—there is the cosmological and black hole
horizon. In this article we consider two-dimensional space-
time since it allows us to find the key properties of the QFT
on the metric (1) without unnecessary technical compli-
cations. However, the cost of this simplification is the
absence of the dynamical gravity in two dimensions. But,
we expect that the main conclusions remain true in higher
dimensions, as it was in other spacetimes (see [19,20] to
compare results in two and four dimensions).
In [21] it was shown that quantum field theory in such a

background has certain peculiarities, which are due to the
presence of two horizons. Indeed, the function fðrÞ in (1) has
two separated first order roots, which correspond to the
presence of two horizons. But, after the Wick rotation to
the Euclidian signature one encounters two different conical
singularities [18,22–28]. Therefore, it is believed that this
system cannot be in thermodynamic equilibrium and space-
time (1) is unstable [29–34]. See also [19,20,35–37] for the
discussion of the physical consequences of the presence of
such singularities. See also the discussion of the multihorizon
thermodynamics in, e.g., Ref. [38], where the massless field
was studiedwith an alternative approach to the problem. In the
latterpaper analyticcontinuationof themetric to theEuclidean
signaturewas used and it was claimed that conical singularity
can be avoided for specific relations between deficit angles of
the two horizons. However, we work in the Lorentzian
signature and study the backreaction due to the quantum
expectation value of the stress energy tensor. In general, the
two approaches are not the same and the connection between
them should be carefully examined in each given case.
We find it hard to judge the destiny of quantum field

theory on such a background as (1) without addressing the
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backreaction issue based on the explicit calculation of the
expectation value of the stress-energy tensor (SET) and its
effect on the background metric in the Lorentzian signature.
The goal of the present paper is to calculate the SET. We
will do the calculation for a class of states that are similar to
the Hartle-Hawking state, which are believed to be
stationary.
In Secs. II and III we discuss the key ideas of the

technical part of the work and take a closer look at the
geometry of the space (1) correspondingly. In Sec. IV we
quantize the field, and in Sec. V we find the approximate
value of the SET near the horizons and discuss its proper-
ties. In Sec. VI we propose a state, which may nullify the
SET on both horizons. However such a state does not obey
the fluctuation-dissipation theorem.

II. SETUP OF THE PROBLEM

We consider the situation when a quantum field is
existing between two horizons, rc and rb < rc, in two-
dimensional spacetime. Namely, in the spacetime (1) we
consider the free real massive scalar field theory:

S ¼ 1

2

Z
d2x

ffiffiffi
g

p ð∂μφ∂μφ −m2φ2Þ: ð2Þ

This two-dimensional model can be considered as usual as
the radial part of the four dimensional theory. To some
limited extent this two-dimensional theory allows us to
judge the situation in the four-dimensional case. In a similar
situation in four dimensions the presence of the quantum
scalar field leads to the appearance of the expectation value
of the corresponding SET on the right-hand side of the
Einstein equations:

Gμν þ Λgμν ¼ 8πGh∶T̂μν∶ i; ð3Þ

where the expectation value, h∶T̂μν∶i, is taken with respect
to a state of the scalar field theory. Of course, in two-
dimensional spacetime, there is not any dynamics of
gravity, which can be described by anything like
Einstein equations. However, the situation in higher
dimensions is expected to be qualitatively similar. So,
the two-dimensional case allows us to demonstrate the key
features of the theory without unnecessary complicated
calculations. The main goal of our paper is to show that
independently of the choice of the state (within the class of
stationary thermal states) this expectation value of the SET
diverges (infinitely grows) either on cosmological or on the
black hole horizon, or simultaneously on both of them.
Thus, the quantum field changes the background metric,
which signals that there is a strong backreaction.
The metric (1) has the timelike killing vector. Then,

among the simplest possible states there is the class defined
by the “thermal” density matrix:

ρ̂ ¼ e−βĤ: ð4Þ

Here, Ĥ is the Hamiltonian of the scalar field theory under
consideration. Then, the expectation value of an operator Ô
is defined as follows:

hÔi ¼ TrÔ ρ̂

Trρ̂
: ð5Þ

To calculate the expectation value of the SETwe express it
via the Wightman two-point function:

TμνðxÞβ ¼
�

∂

∂xμ1

∂

∂xν2
−
1

2
gμν

�
gαβ

∂

∂xα1

∂

∂xβ2
−m2

��

×Wβðx1jx2Þ
���
x1¼x2¼x

; ð6Þ

here the Wightman function is defined as follows:

Wβðx1jx2Þ ¼ hφ̂ðx1Þφ̂ðx2Þi: ð7Þ

This expectation value has the standard UV divergence that
has to be regularized.
There are different regularization methods. One of the

standard methods is to use covariant point splitting [39–42]
(see also [19,35,43]). In fact, the key feature of the two-
dimensional case is the following: the behavior of the
modes at horizon can be expressed in terms of in-going and
out-going plane waves, which are multiplied by the
transition and the reflection coefficients calculated in the
corresponding effective potential due to the background
metric. We show this explicitly below.
Moreover, for the class of the states of the field under

consideration the leading contribution to the SET near the
horizon does not depend on the transition and the reflection
coefficients separately. Terms which depend on these
coefficients contribute in the special combination, as we
will see in (24). It turns out that this combination is nothing
but the sum of the probability of the transition and
reflection, which always is equal to 1. Hence, in two
dimensions one can calculate the behavior of the SET on
the horizons without knowing expressions of the reflection
and transition coefficients. As a result, in two dimensions
for the states that we consider the expectation value
contains two terms. The first term depends only on the
temperature and does not depend on the geometry. While
the second term, which comes from regularization does
depend only on geometry, but does not depend on the state
of the field.
Also we want to stress here that in such a background as

we consider here the expectation value depends on the
spatial coordinate r and cannot be found exactly for any r.
However, we can calculate the approximate expectation
value of the SET near the horizons, where its behaviour is
the most interesting for the backreaction problem.
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III. THE GEOMETRY

In this section we discuss the geometry of the spacetime
with the metric (1). The function fðrÞ has two zeros for
r ≥ 0: one, rc, is corresponding to the cosmological
horizon, while the other, rb ≤ rc, to the black hole horizon.
In (1) the range of r is as follows: rb ≤ r ≤ rc. In the
situation under consideration fðrÞ can be written as

fðrÞ ¼ H2
ðr − rbÞðrc − rÞðrþ rc þ rbÞ

r
: ð8Þ

If we were considering the 4D case the positions of the
horizons, rc and rb, could be related to the Hubble constant
and black hole mass as follows:

H2 ¼ 1

r2c þ rbrc þ r2b
;

M ¼ rbrcðrb þ rcÞ
2ðr2c þ rbrc þ r2bÞ

¼ H2
rbrcðrb þ rcÞ

2
:

The condition rb ≤ rc requires the following restriction on
the black hole mass:

M ≤
1

3
ffiffiffi
3

p
H
;

where the equality corresponds to the extremal case
rb ¼ rc.
Note that the case rc → ∞ corresponds to the asymp-

totically flat Schwarzschild solution. At the same time
rb ¼ 0 corresponds to the empty de Sitter spacetime
rc ¼ H−1. However, one needs to be careful in taking
such limits. In fact, for example, the spacetime with
nonzero M (but even very small) is topologically different
from the space with M ¼ 0.
To quantize a field theory in such a spacetime, it is

necessary to impose boundary conditions on the horizons.
For these purposes it is more convenient to use a conformal
variant of the metric (1). Namely, one can define [44]

ds2 ¼ fðr�Þðdt2 − dr�2Þ; where r� ¼
Z

dr
fðrÞ : ð9Þ

As usual to express r via r� one has to solve the following
transcendental equation:

r� ¼ −
rb logðr − rbÞ

H2ðrb − rcÞð2rb þ rcÞ
þ rc logðrc − rÞ
H2ðrb − rcÞðrb þ 2rcÞ

þ ðrb þ rcÞ logðrþ rb þ rcÞ
H2ð2rb þ rcÞðrb þ 2rcÞ

: ð10Þ

It is curious that for a specific values of rb;c,

rb ¼
ffiffiffi
3

p
− 1

2
; rc ¼ 1; ð11Þ

one can solve the transcendental equation (10) explicitly

r¼ rb
ð1þ ffiffiffi

3
p Þð2e2r� þ1Þ− ð3þ ffiffiffi

3
p Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2r

� þ1
p

2ðe2r� −1Þ : ð12Þ

For generic values of rb;c the equation can be solved only
approximately in the near horizon limits:

r ≈ rb þ e
H2r�ðrc−rbÞð2rbþrcÞ

rb as r → rb; r� → −∞;

and

r ≈ rc − e−
H2r�ðrc−rbÞðrbþ2rcÞ

rc as r → rc; r� → þ∞:

Correspondingly,

fðr�Þ≈H2ð2rbþ rcÞðrc− rbÞ
rb

e
H2r�ðrc−rbÞð2rbþrcÞ

rb as r� →−∞;

ð13Þ

and

fðr�Þ≈H2ðrbþ2rcÞðrc− rbÞ
rc

e−
H2r�ðrc−rbÞðrbþ2rcÞ

rc as r�→þ∞:

ð14Þ

Thus, one can define the canonical (inverse) temperatures
due to the black hole and cosmological horizons:

βb ¼
4πrb

H2ðrc − rbÞð2rb þ rcÞ
¼ 2π

κb
;

βc ¼
4πrc

H2ðrc − rbÞðrb þ 2rcÞ
¼ 2π

κc
: ð15Þ

Here κb and κc are the surface gravities on the event and
cosmological horizons, correspondingly. One of the impor-
tant properties of the geometry under consideration is that
these temperatures are not equal for any values of rb, rc:

βc − βb ¼
2πðrb þ rcÞ

H2ð2rb þ rcÞðrc þ 2rbÞ
> 0: ð16Þ

Furthermore, note that if rb → rc, then both βb;c → ∞, but
their difference remains finite.
Below we will show that in the two-dimensional case, to

calculate the SET in the vicinity of the horizons we need to
know only the behavior of fðrÞ and of the modes near the
horizons.
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IV. QUANTIZATION

The equations of motion for the scalar field with the
action equation (2) in such a background gravitational field
as (9) are as follows:

½−∂2r� þm2fðr�Þ�φωðr�Þ ¼ ω2φωðr�Þ;

where φðt; r�Þ ¼ 1ffiffiffiffiffiffi
2ω

p eiωtφωðr�Þ: ð17Þ

Thus, in the radial direction one obtains a quantummechani-
cal scattering problem. As a result, the full basis of solutions
consists of out-going φ⃗ωðr�Þ and in-going φ⃖ωðr�Þ modes
with the following behaviour near horizons [45]:

r� → −∞ r� → þ∞

φ⃗ωðr�Þ eiωr
� þ Rωe−iωr

�
Tωeiωr

�

φ⃖ωðr�Þ Tωe−iωr
�

e−iωr
� þ Rωeiωr

�

There are the following obvious conditions for the reflec-
tion and transition coefficients:

jTωj2 þ jRωj2 ¼ 1; ð18Þ
which follows from the normalization conditions that can
be related to the canonical commutation relations between
the field operator and its conjugate momentum and between
creation and annihilation operators. The field operator has
the following form:

φ̂ðt; r�Þ ¼
Z

∞

0

dωffiffiffiffiffiffi
2π

p 1ffiffiffiffiffiffi
2ω

p

× ½eiωtðâ†ωφ⃗ωðr�Þ þ b̂†ωφ⃖ωðr�ÞÞ þ H:c:�; ð19Þ
where the creation and annihilation operators obey the
standard commutation relations:

½b̂ω;b̂†ω0 �¼δðω−ω0Þ; ½âω;â†ω0 �¼δðω−ω0Þ; ½âω;b̂†ω0 �¼0:

ð20Þ
Then the thermal state corresponds to the following
expectation values:

ρ̂ ¼ e−βĤ; then hâ†ω; âω0 i ¼ 1

eβω − 1
δðω − ω0Þ;

hb̂†ω; b̂ω0 i ¼ 1

eβω − 1
δðω − ω0Þ: ð21Þ

So one obtains the Wightman function as follows:

Wðt2;r�2jt1;r�1Þ¼
Z

∞

−∞

dω
2π

eiωðt2−t1Þ

eβω−1

×
1

2ω
½φ⃗ωðr�1Þφ⃗�

ωðr�2Þþ φ⃖ωðr�1Þφ⃖�
ωðr�2Þ�;

ð22Þ
which we will use to calculate the SET expectation value.
Please note the integration limits in (22) and in (19).

The same quantization procedure was discussed, for
example, in [46–49].

V. STRESS-ENERGY TENSOR

Let us start with the calculation of the energy density
near say the black hole horizon (see also [50]). The relevant
behavior of the Wightman function near the corresponding
horizon is

Wðt2; r�2jt1; r�1Þ ≈
Z

∞

−∞

dω
2π

eiωðt2−t1Þ

eβω − 1

×
1

2ω
½eiωðr�2−r�1Þ þ jRωj2e−iωðr�2−r�1Þ

þ Rωeiωðr
�
1
þr�

2
Þ þ R�

ωe−iωðr
�
1
þr�

2
Þ

þ jTωj2e−iωðr�2−r�1Þ�: ð23Þ

The approximate form of the Wightman function near the
cosmological horizon is very similar. Note, that near the
horizon the Wightman function contains two types of terms
under the integral on the rhs of (23). The first type depends
on r�2 − r�1 while the second type depends on r�1 þ r�2. By
definition (6) the energy density can be expressed via the
Wightman function as

hT00i ¼
1

2

�
∂

∂t1

∂

∂t2

þ ∂

∂r�
1

∂

∂r�
2

�
Wðt2; r�2jt1; r�1Þ

���
1→2

: ð24Þ

Due to the structure of derivatives in Eq. (24) the terms,
which depend on r�1 þ r�2 in (23), do not contribute to the
T00 near the horizon, and we obtain that

hT00i ≈
Z

∞

−∞

ωdω
4π

1

eβω − 1
½1þ jRωj2 þ jTωj2�

¼
Z

∞

−∞

ωdω
2π

1

eβω − 1
; ð25Þ

where we have used the properties of the reflection and
transition coefficients (18). In (25) there is the standard UV
divergence due to the zero-point fluctuations. As we agreed
above we use the covariant point splitting method to obtain
that (see the similar calculations in [19,35,43])

h∶T00∶ i ≈ π

6

1

β2
−

1

6π
fðr�Þ1=2 ∂

2

∂
2r�

fðr�Þ−1=2: ð26Þ

Here we presented only the T00 component and omitted
details of regularization. For more details and all other
components of SET see Appendix A. Concerning fðr�Þ,
note that it has different approximate behavior near the two
horizons: Eqs. (13) and (14) correspondingly. Hence, the
energy density near the black hole horizon r� → −∞ and
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near the cosmological horizon r� → ∞ has different
asymptotics, respectively,

Black hole horizon h∶T00∶ i ≈ π

6

�
1

β2
−

1

β2b

�
;

Cosmological horizon h∶T00∶i ≈
π

6

�
1

β2
−

1

β2c

�
: ð27Þ

Absolutely similarly one can obtain h∶T11∶i near both
horizons. Recall that βc ≠ βb according to (15). For this
reason, we cannot choose any thermal state that nullifies the
SET near the both horizons simultaneously. The finite
expectation value of the SET at least on one of the horizons
signals the presence of strong backreaction. Since the
metric tensor degenerates near the horizon it is very
sensitive even to small perturbations. For more details
see Appendix B.
On the one hand, this reasoning does not make much

sense in two dimensions, because the gravitational field is
not dynamical. On the other hand, in two dimensions, we
obtained the SET by a much simpler calculations than in
four dimensions. In the last section we conclude with the
physical predictions for the backreaction problem in four
dimensions.

VI. POSSIBLE CANDIDATES FOR THE STATE
WITH THE ZERO SET EXPECTATION VALUE

NEAR THE HORIZONS

In the previous section, we have considered only thermal
states. It was shown that for any β the expectation value of
the SET is not zero at least on one of the two horizons.
However, if we go beyond the class of thermal states, we
can find the state which corresponds to the zero SET near
both horizons. In fact, consider the following state:

hâ†ω; âω0 i ¼ noutðωÞδðω − ω0Þ;
hb̂†ω; b̂ω0 i ¼ ninðωÞδðω − ω0Þ;
hb̂†ω; âω0 i ¼ 0: ð28Þ

Here noutðωÞ and ninðωÞ are the distributions of the out-
going and in-going modes, which are generic functions of
ω, not necessarily equal to the Planckian distribution. Let
us take them in the following form:

noutðωÞ¼
1

eβ0ω−1
þδnðωÞ;

ninðωÞ¼
1

eβ0ω−1
−δnðωÞ; where

2

β20
¼ 1

β2b
þ 1

β2c
; ð29Þ

where δn satisfies the following condition δnð−ωÞ ¼
−δnðωÞ. Note also that β0 does not coincide with the effec-
tive temperature of the Schwarzshild–de Sitter space [18].
We propose to consider a class of states that are close to the

thermal one, and δn plays the role of the difference in the
number of the out-going and the in-going particles,
noutðωÞ − ninðωÞ ¼ 2δnðωÞ.
Because, noutðωÞ ≠ ninðωÞ, in general there should be

present a nonzero energy flux T01. To avoid such apparent
nonstationary situation, we obtain two restricting equations
on δnðωÞ. The first one comes from the conditions that
h∶T00∶ i ¼ 0 and h∶T11∶i ¼ 0, while the second one
comes from the condition h∶T01∶i ¼ 0. Using expressions
similar to (25), but with noutðωÞ ≠ ninðωÞ, one can find the
following restrictions on δnðωÞ:

Z
∞

0

dωωδnðωÞjRωj2 ¼
π2

12

�
1

β2b
−

1

β2c

�
;

Z
∞

0

dωωδnðωÞjTωj2 ¼ 0: ð30Þ

The question is whether there is such a solution of these
equations which corresponds to a stationary state—which
obeys the fluctuation-dissipation theorem. In two dimen-
sions, due to the specifics of the scattering processes there, it
is quite plausible to find such a state. But in four dimensions
we do not think that any of the states is stationary.

VII. CONCLUSIONS

It is stated in many papers [29,30,33,34] that it is
impossible to achieve the thermal equilibrium in
Schwarzshild–de Sitter spacetime. To understand the latter
statement deeper, we study quantum field theory on such a
background.Our conclusions are opposite—we think there is
an equilibrium state, but it strongly affects the background.
We show that there is no thermal state for which the

expectation value of the SET vanishes on both horizons. On
the contrary, the expectation value either blows up on one
of the horizons or on both of them simultaneously, depend-
ing on the choice of temperature.
Let us present here a few more comments. Despite the

fact that Tμν is finite on the horizon in the coordinate
system under consideration, the Tν

μ tensor blows up there.
Essentially in this article we consider the two-dimensional
situation as the radial part of the four-dimensional one
(see [20], e.g., for a similar discussion). Hence, in the four-
dimensional case with such a SET one would encounter the
situation that the left-hand side of the Einstein equations (3)
will be finite, while the right-hand side will diverge.
This signals the strong backreaction on the gravitational
background under consideration. The situation is similar to
the quantum field theory in black hole background in the
Boulware state. We adopt here the point of view that
quantum field theory can exist in any background in
any Hadamard state. Just in the Boulware state the back-
reaction is so strong that it eliminates the black hole
horizon [51–53]. Meanwhile in the black hole de Sitter
background for any state, at least within the class of thermal
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ones, we see that the backreaction is strong on either the
black hole or cosmological horizon. For example, if we
consider the state with the temperature of the cosmological
horizon, then the expectation value of the SET on the black
hole horizon blows up and eliminates it; i.e., for such a state
one will obtain a geometry without a black hole horizon,
which is similar to [51–53].
Furthermore, we expect that a collapse of matter into the

black hole in the de Sitter space may follow a completely
different scenario than in the case of the absence of the
cosmological horizon, if one takes into account quantum
fluctuations.

ACKNOWLEDGMENTS

Wewould like to acknowledge valuable discussions with
D. V. Diakonov and P. A. Anempodistov. This work was
supported by a grant from the Foundation for the
Advancement of Theoretical Physics and Mathematics
“BASIS” and by the Russian Ministry of Education and
Science.

APPENDIX A: REGULARIZATION

In the calculation of the expectation value of the SETone
has to regularize it. In our work we used the point splitting
method [40,54]. More recently similar calculations were
performed, e.g., in [19,35,43]. To make the paper self-
contained and to set up the notations, in this Appendix we
summarize the standard point splitting regularization pro-
cedure of the expectation value of the stress-energy tensor
in curved spacetime with the metric of the form

ds2 ¼ Cðu; vÞdudv: ðA1Þ

The SET is given by the following expression:

hT̂μνðxÞi ¼ Dμνhφ̂ðxþÞφ̂ðx−Þijxþ¼x−¼x:

Here Dμν is a differential operator; x� are points which are
separated from x along a geodesic with tangent vector tμ. A
point close enough to xμ can be represented as follows:

xμðτÞ ¼ xμ þ τtμ þ 1

2
τ2aμ þ 1

6
τ3bμ þ � � � ; ðA2Þ

where τ is the proper length, and aμ and bμ can be found
from the geodesic equation. Straightforward calculation
gives for the thermal state the following result:

hTμνi ¼ −
�

1

4πϵ2ðtαtαÞ
þ R
24π

��
tμtν
tαtα

−
1

2
gμν

�
þ Θμν: ðA3Þ

Thus the regularized SET reads

h∶Tμν∶ i ¼ Θμν þ
R
48π

gμν; ðA4Þ

with

Θuu ¼ −
1

12π
C1=2

∂
2
uC−1=2 þ state dependent terms; ðA5Þ

Θvv ¼ −
1

12π
C1=2

∂
2
vC−1=2 þ state dependent terms; ðA6Þ

Θuv ¼ Θvu ¼ 0: ðA7Þ

The second term in (A4) is the same as in the conformal
anomaly. We do not include this term in our results because
it can be absorbed into the renormalization of the cosmo-
logical constant. We are interested in the first term in (A4).
It has two contributions: the first comes from the geometry
and is independent of the state and mass of the field (and
therefore does not depend on the reflection and trans-
mission coefficients). The second one depends on the state
and, in general, can depend on the reflection and trans-
mission coefficients. But as we show by the explicit
calculation, these coefficients are included into the SET
within a special combination in such a way that the final
result for SET does not depend on them separately.

APPENDIX B: FREE FALLING
REFERENCE SYSTEM

In this Appendix we show that the SETwhich is found in
the main body of the paper leads to the singularity in the
free falling reference frame.
To begin with, let us define the free falling reference

system, which is similar to the Lemaître coordinates in the
Schwarzschild black hole spacetime. Let us define the
timelike τ and spacelike ρ coordinates as follows:

dτ ¼ dtþ ½1 − fðr�Þ�12dr�;
dτ ¼ dtþ ½1 − fðr�Þ�−1

2dr�: ðB1Þ

In these coordinates the 2D Schwarzschild–de Sitter metric
takes the following form:

ds2 ¼ fðr�Þðdt2 − dr�2Þ ¼ dτ2 − ½1 − fðr�Þ�dρ2: ðB2Þ

The coordinate transformation from the coordinates xμ ¼
ðt; r�Þ to the coordinates x̃μ ¼ ðτ; ρÞ can be described by
the following matrix:

∂x̃μ̃

∂xν
¼ Λμ̃

ν ¼
�
1 ½1 − fðr�Þ�12
1 ½1 − fðr�Þ�−1

2

�
: ðB3Þ

From Eq. (26), the stress-energy tensor near the horizons in
ðt; r�Þ coordinates is given by
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Tμν ≈
A

fðr�Þ2
�
1 0

0 1

�
; ðB4Þ

where

Near black hole horizon A ¼ π

6

�
1

β2
−

1

β2b

�
;

near cosmological horizon A ¼ π

6

�
1

β2
−

1

β2c

�
: ðB5Þ

The most important point here is that A is not zero at least
on one of the horizons. It cannot be made zero on both of

them simultaneously. Hence, (B4) has the following form
in the ðτ; ρÞ coordinates:
T μ̃ν̃¼gμ̃ ĩgν̃ j̃T

ĩj̃¼gμ̃ ĩgν̃ j̃Λĩ
iΛj̃

jTij

¼ A
fðr�Þ2

�
2−fðr�Þ 2ðfðr�Þ−1Þ

2ðfðr�Þ−1Þ ð2−fðr�ÞÞð1−fðr�ÞÞ

�
: ðB6Þ

Near the horizons fðr�Þ tends to zero, so T μ̃ ν̃ is singular.
The four-dimensional counterpart of this situation would
lead to the case that the geometrical part of the Einstein
equations is constant while the stress-energy tensor part is
divergent. Now we see this is true at least for the radial part
of the problem, i.e., if the angles can be ignored.
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