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The problem of ordering operators has afflicted quantum mechanics since its foundation. Several
orderings have been devised, but a systematic procedure to move from one ordering to another is still
missing. The importance of establishing relations among different orderings is demonstrated by Wick’s
theorem (which relates time ordering to normal ordering), which played a crucial role in the development of
quantum field theory. We prove the general ordering theorem (GOT), which establishes a relation among any
pair of orderings, that act on operators satisfying generic (i.e., operatorial) commutation relations. We expose
the working principles of the GOT by simple examples, and we demonstrate its potential by recovering two
famous algebraic theorems as special instances: the Magnus expansion and the Baker-Campbell-Hausdorff
formula. Remarkably, the GOT establishes a formal relation between these two theorems, and it provides
compact expressions for them, unlike the notoriously complicated ones currently known.
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I. INTRODUCTION

Quantum theory is founded on the mathematical machi-
nery of the Hilbert spaces, which come along with states,
operators, etc. Since operators are noncommuting objects,
one needs to be careful to their order when a product acts
on a state. This fact lead to the conception of different
ordering (super)operators (henceforth, simply named
“orderings”) like Dyson’s time (or path) ordering [1],
normal ordering [2], Weyl ordering [3,4], and Cahill-
Glauber s-orderings [5] to name a few. Orderings are
rooted so deeply in the quantum theory, that they are
involved in several fields of research like e.g., quantum
field theory [1,2,6–12], statistical physics [13,14], quan-
tum optics [5], phase-space representation [4,15–18], spin
systems [19,20], quantum chemistry [21,22], and Yang-
Mills theories [23]. Nonetheless, to date only few theorems
are known that establish connections among different
orderings. The most famous is undoubtedly Wick’s theo-
rem [2,24], which had a tremendous impact in the develop-
ment of quantum field theory. Wick’s theorem indeed,
besides being a theorem that allows to express higher-order
moments of normal distributions in terms of their covari-
ance matrix, can be understood as a theorem that relates
time ordering to normal ordering of bosonic and fermionic
operators. Similar theorems, involving different orderings,
were developed in diverse contexts [9–11,15–22,25], but
only recently Wick’s theorem was generalized to any pair
of orderings [26]. A common feature shared by these
theorems is the they hold only for operators that (anti)
commute to a complex number. A theorem relating general

orderings of operators satisfying arbitrary (i.e., operatorial)
commutation relations was missing, before the publication
of this paper containing the general ordering theorem.
Before moving on, we remark that the importance of the

general ordering theorem goes far beyond the scopes of
quantum physics, as ordering issues arise in any math-
ematical problem involving noncommutative algebras, like
e.g., group theory [27–29], analysis of partial differential
equations [30–32], Lie algebras [33–35], etc. In these
contexts two important theorems are known; the Magnus
expansion (ME) [36,37] which allows to express the
solution of an operatorial linear differential equation as a
pure exponential, and the Baker-Campbel-Hausdorff for-
mula (BCH) [38–42], which allows us to rewrite the product
of two operatorial exponentials as a single exponential.
Although the ME and the BCH are not usually referred to as
ordering theorems, we will next show that they can be
understood in this way, thus representing the only two
examples (to the author’s knowledge) of theorems among
orderings of generic (i.e., not c-number-commuting) oper-
ators. As such, they also share the merit of giving a clear
understanding of the level of complexity that one has to face
when dealing with operators having generic commutation
relations, instead of c-number-commuting operators. For
example, the BCH can be expressed as eX̂eŶ ¼ eẐ with

Ẑ ¼ X̂þ Ŷ þ 1

2
½X̂; Ŷ� þ 1

12
½X̂; ½X̂; Ŷ��− 1

12
½Ŷ; ½X̂; Ŷ�� þ…;

ð1Þ

where the dots hide an infinite number of nested commu-
tators of growing (eventually infinite) order. It is thus clear*luca.ferialdi@gmail.com
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that when X̂ and Ŷ commute to a c-number, only the first
three terms of the right-hand side survive; otherwise the
whole infinite series must be retained.
The general ordering theorem (GOT) proven in this paper

establishes a connection between any pair of orderings that
act on operators satisfying any commutation relation. As
such, the GOT should be considered an ultimate result, as it
is the most general ordering theorem that can be proven,
both in terms of orderings and of operators.

II. SETUP

Let ϕ̂ ¼ fϕ̂αg be a set of operators with α ∈ Ω, the
index set. Let O be an ordering, which rearranges any
product of operators ϕ̂1…ϕ̂n according to the ordering rule
p1≻…≻pn,

O½ϕ̂1…ϕ̂n� ¼ ϕ̂p1
…ϕ̂pn

; ð2Þ

where p1…pn is a permutation of the input string 1…n.
Orderings of this type are called monomials because the
ordered output is a single permutation of the input string.
Typical examples of monomial orderings are the time
ordering (T ), which orders the integers increasingly from
right to left, and the normal ordering (N ), which pushes
all creation operators to the left of all annihilation
operators. The orderings where the output is a weighted
sum of permutations are called nonmonomials [43],

O½ϕ̂1…ϕ̂n� ¼
X
P

wP½ϕ̂p1
…ϕ̂pn

�P; ð3Þ

where P denotes a specific permutation. Since the idea
underlying orderings is that they simply rearrange the
input string without changing the multiplicity of the input
operators, the weights wP must sum to one. A notorious
example of nonmonomial ordering is the Weyl ordering
(W), which outputs the fully symmetrized version of the
input product, or which can be equivalently defined as the
identity on exponentials with linear arguments,

W½eaϕ̂1þbϕ̂2 � ¼ eaϕ̂1þbϕ̂2 ; ð4Þ

(because these are inherently symmetric). The GOT
applies to all monomial orderings, and to those non-
monomial orderings that can be expressed in terms of a
monomial one. In [43] it was shown thatW belongs to the
latter class, as it can be expressed in terms of T .
We assume that the operators ϕ̂α are linear combinations

of operators in φ̂ ¼ fφ̂kg, k ∈ Ω0,

ϕ̂α ¼ Lαkφ̂k; ð5Þ

where the Einstein sum convention for repeated indexes is
assumed, with the condition that sums run on the elements
of the index set respective to the repeated index. We thus

introduce a different ordering O0, which orders the oper-
ators φ̂k according to the rule k1 Y… Y kn, but may not order
the operators ϕ̂α. Similarly, the operators φ̂k may not be
ordered by O. The decomposition (5) allows us to define
indirectly the O0-ordering of operators ϕ̂α as follows:

O0
"Yn
i¼1

ϕ̂αi

#
≡O0

"Yn
i¼1

Lαiki φ̂ki

#
: ð6Þ

In the following we assumeΩ andΩ0 to be discrete sets, but
the results obtained hold invariably for continuous indexes,
provided that sums are upgraded to intergrals, and partial
derivatives become functional derivatives.
There are two key ingredients in the GOT. The first is the

concept of contraction, that is the difference of how O and
O0 order a pair of operators of ϕ̂,

Ĉαβ ≡ ðO −O0Þϕ̂αϕ̂β ¼ ðθl Y k − θβ≻αÞLαkLβl½φ̂k; φ̂l�; ð7Þ

where θβ≻α ¼ 1 if β≻α, and θl Y k ¼ 1 if l Y k, both zero
otherwise. We remark that, here and in the forthcoming,
such unit step functions θ are excluded from the Einstein
notation; it is thus understood that in Eq. (7) only the sums
over k, l are performed (see Appendix A). Similarly, we can
define the contraction for the operators in φ̂,

∁̂klαβ ≡ ðO −O0Þφ̂kφ̂l ¼ ðθl Y k − θβ≻αÞ½φ̂k; φ̂l�; ð8Þ

which satisfies Ĉαβ ¼ LαkLβl∁̂klαβ. We remark that Ĉ is a

symmetric matrix (Ĉαβ ¼ Ĉβα), while the elements of ∁̂
satisfy ∁̂klαβ ¼ ∁̂lkβα and ∁̂kkαβ ¼ 0.
The second ingredient is a differential operator which

has the peculiarity of replacing the differentiated operator
by another one,

�
X̂·

∂

∂B̂

�
Â B̂ Ĉ ¼ Â X̂ Ĉ : ð9Þ

In modern jargon, such a mathematical object is called a
tensor (or operator) directional derivative (with respect to B̂,
in the direction X̂) [44,45], and it belongs to the family of
Gâteaux derivatives [46]. We should nonetheless mention
that this differential operator dates back at least to the early
proofs of the BCH by Baker [39] and Hausdorff [40], who
respectively called it “substitutional” and “polar” derivative.
This is a linear operator that satisfies suitable Leibniz and
chain rules, and that behaves like a standard partial
derivative when X is a c-number (see Appendix A for
further details). In order to keep the notation contained, we
will use the following shorthand notation; ∂̂α ≡ ∂=∂ϕ̂α and
δ̂k ≡ ∂=∂φ̂k. We are now ready to state the theorem.
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III. GENERAL ORDERING THEOREM

Theorem.—Let Fðϕ̂Þ be a functional of operators in the
set ϕ̂ ¼ fϕ̂αg, α ∈ Ω, and let O be an ordering on ϕ̂. Let
Eq. (5) hold for a set of operators φ̂ ¼ fφ̂kg, k ∈ Ω0, and let
O0 be an ordering on this set. Let ≻ and Y denote the
ordering rules of O and O0, respectively. Then,

O½Fðϕ̂Þ� ¼ O0½Fðϕ̂0Þ�; ð10Þ

with ϕ̂0 ¼ fϕ̂0
αg, α ∈ Ω, and

ϕ̂0
α ≡ ϕ̂α þ Ĉαβ · ∂̂β: ð11Þ

Proof.—In order to keep the treatment as simple as
possible, we report here the proof for the special case where
Lαk ¼ δαk (Kronecker delta), which implies fϕ̂αg ¼ fφ̂kg
and Ω ¼ Ω0, i.e., O and O0 order the same operators but
according to different rules (like e.g., normal and anti-
normal orderings). In such a case Eq. (7) simplifies to

Ĉαβ ¼ ðθβ Y α − θβ≻αÞ½ϕ̂α; ϕ̂β�: ð12Þ

Some technical details of this proof are left to Appendix B,
while the general proof for O andO0 ordering different sets
of operators is reported in Appendix C. We rely on the
power series expansion that any functional admits, and we
prove the theorem by induction: we assume that the identity

O

"Yn
i¼1

ϕ̂αi

#
¼ O0

"Yn
i¼1

ϕ̂0
αi

#
ð13Þ

holds up to an arbitrary n, and we prove that

O

"
ϕ̂α

Yn
i¼1

ϕ̂αi

#
¼ O0

"
ϕ̂0
α

Yn
i¼1

ϕ̂0
αi

#
: ð14Þ

We implicitly assume thatO0 orders the operators ϕ̂0
α before

Eq. (11) is replaced. In other words, if we define the
“priming operator” P as P½ϕ̂α�≡ ϕ̂0

α, then

O0
"Yn
i¼1

ϕ̂0
αi

#
≡ P

(
O0

"Yn
i¼1

ϕ̂αi

#)
: ð15Þ

Accordingly, whether Ĉαβ belongs or not in Ω0 is irrel-
evant. We also remark that the product of n operators of ϕ̂0

always contains n operators of ϕ̂, and its rightmost
operator is not primed because its derivatives have nothing
to act upon on their right. Without loss of generality, we
assume that O orders the operators of ϕ̂ according to the
rule αn≻…≻αjþ1≻α≻αj≻…≻α1, which implies that

O

"
ϕ̂α

Yn
i¼1

ϕ̂αi

#
¼ ϕ̂αn…ϕ̂αjþ1

ϕ̂αϕ̂αj…ϕ̂α1 : ð16Þ

This equation can be rewritten in terms of the left-hand
side of the hypothesis (13) as follows:

O

"
ϕ̂α

Yn
i¼1

ϕ̂αi

#
¼ ðϕ̂α − θβ≻α½ϕ̂α; ϕ̂β� · ∂̂βÞO

"Yn
i¼1

ϕ̂αi

#
; ð17Þ

(see the Appendix B for the proof), which in turn reads

O

"
ϕ̂α

Yn
i¼1

ϕ̂αi

#
¼ ðϕ̂0

α − θβ Yα½ϕ̂α; ϕ̂β� · ∂̂βÞO0
"Yn
i¼1

ϕ̂0
αi

#
; ð18Þ

after Eqs. (11)–(13) are used. The first term on the right-
hand side can be rewritten by exploiting an identity similar
to Eq. (17) (with ϕ̂ replaced by ϕ̂0, and O by O0; see
Appendix B), which finally gives

O

"
ϕ̂α

Yn
i¼1

ϕ̂αi

#
¼ O0

"
ϕ̂0
α

Yn
i¼1

ϕ̂0
αi

#
þ θβ Y αð½ϕ̂0

α; ϕ̂
0
β� · ∂̂0β

− ½ϕ̂α; ϕ̂β� · ∂̂βÞO0
"Yn
i¼1

ϕ̂0
αi

#
; ð19Þ

where ∂̂
0
β ¼ ∂=∂ϕ̂0

β. The GOT is thus proven if the
operators

Dα ¼ θβ Yαð½ϕ̂0
α; ϕ̂

0
β� · ∂̂0β − ½ϕ̂α; ϕ̂β� · ∂̂βÞ ð20Þ

are identically zero. In order to prove it, we exploit the
definition (11) on the first term of Dα, obtaining

½ϕ̂0
α; ϕ̂

0
β� ¼ ½ϕ̂α; ϕ̂β� þ ½Ĉαγ · ∂̂γ; Ĉβε · ∂̂ε�; ð21Þ

while the second term is rewritten by exploiting the chain
rule for tensorial derivatives [44,45],

θβ Y α½ϕ̂α; ϕ̂β�·∂̂β ¼ θβ Yαð½θγ Y α½ϕ̂α; ϕ̂γ� · ∂̂γ; Ĉβε · ∂̂ε�
þ½ϕ̂α; ϕ̂β�Þ·∂̂0β: ð22Þ

By replacing these equations in Eq. (20) one is left with

Dα ¼ θβ Yα½θγ≻α½ϕ̂α; ϕ̂γ�·∂̂γ; Ĉβε·∂̂ε�·∂̂0β; ð23Þ

which with a simple calculation can be shown to be
identically zero (see Appendix B). Equation (19) thus
reduces to Eq. (14), which completes the induction and,
with it, our proof of the GOT. ▪
We remark that the GOT equally applies when Eq. (5)

is replaced by the more general linear relationship
λαϕ̂α ¼ λkϕ̂k. The price one has to pay is that the functional
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to be ordered must display the dependence Fðλαϕ̂αÞ,
because only in this case a decomposition in terms of
Fðλkφ̂kÞ is allowed.

IV. GOT AT WORK

A first formal check can be done by considering
operators with c-number contraction (free bosonic fields,
canonical operators, etc.). In this case the differential
operator in Eq. (9) reduces to a standard partial derivative,
and the GOT recovers the ordering theorem for bosons
derived in [26]. Needless to say, when one further spe-
cializes to time and normal orderings, Wick’s theorem is
also recovered. We now elucidate how the GOTworks with
operators that possess operatorial commutation relations,
by considering few simple examples.
As a warmup we consider O ¼ T , the time ordering

defined in the introduction (n≻…≻1), while O0 is the
respective antiordering T̄ (1 Y… Y n). Assume that we want
to rewrite the time ordered version of the product ϕ̂1ϕ̂2ϕ̂3

as an antitime ordered product. According to Eq (12)
the entries of the contraction matrix are given by Ĉ12 ¼
ðθ2 Y 1 − θ2≻1Þ½ϕ̂1; ϕ̂2� ¼ −½ϕ̂1; ϕ̂2�, Ĉ13 ¼ −½ϕ̂1; ϕ̂3�, and
Ĉ23 ¼ −½ϕ̂2; ϕ̂3�. The GOT prescribes that

T ½ϕ̂1ϕ̂2ϕ̂3� ¼ ϕ̂3ϕ̂2ϕ̂1 ¼ T̄ ½ϕ̂0
1ϕ̂

0
2ϕ̂

0
3� ¼ ϕ̂0

1ϕ̂
0
2ϕ̂3; ð24Þ

where

ϕ̂0
1 ¼ ϕ̂1 − ½ϕ̂1; ϕ̂2� · ∂̂2 − ½ϕ̂1; ϕ̂3� · ∂̂3; ð25Þ

ϕ̂0
2 ¼ ϕ̂2 þ ½ϕ̂2; ϕ̂1� · ∂̂1 − ½ϕ̂2; ϕ̂3� · ∂̂3; ð26Þ

and ϕ̂3 is not primed because, as previously mentioned, the
derivatives of rightmost term in any product have nothing to
act upon. By replacing these two equations in the rightmost
term of Eq. (24) we find

ϕ̂0
1ϕ̂

0
2ϕ̂3 ¼ ðϕ̂1 − ½ϕ̂1; ϕ̂2�·∂̂2 − ½ϕ̂1; ϕ̂3�·∂̂3Þ

× ðϕ̂2ϕ̂3 − ½ϕ̂2; ϕ̂3�Þ
¼ ϕ̂1ϕ̂3ϕ̂2 − ϕ̂3½ϕ̂1; ϕ̂2� − ½ϕ̂1; ϕ̂3�ϕ̂2 ¼ ϕ̂3ϕ̂2ϕ̂1;

ð27Þ
which confirms the correctness of the GOT.
We now upgrade to an example where O and O0 order

different sets of operators. Let O ¼ A, which orders the
indexes in alphabetical order from right to left (Z≻…≻A),
and O0 ¼ T (n Y… Y 1). Moreover, let Eq. (5) hold, with
Ω ¼ fA; Bg and Ω0 ¼ f1; 2g,

ϕ̂A ¼ LA1φ̂1 þ LA2φ̂2; ð28Þ

ϕ̂B ¼ LB1φ̂1 þ LB2φ̂2: ð29Þ

We aim at expressing the alphabetically-ordered product of
the operators ϕ̂A, ϕ̂B as a time-ordered product. According
to the GOT, the following identity holds,

A½ϕ̂Aϕ̂B� ¼ T ½ϕ̂0
Aϕ̂

0
B�

¼ T ½ðLA1φ̂
0
1 þ LA2φ̂

0
2ÞðLB1φ̂

0
1 þ LB2φ̂

0
2Þ�; ð30Þ

where in the second line we have decomposed the oper-
ators of ϕ̂0 in terms of φ̂0 in order to be able to apply T
(see Appendix C). By making explicit the orderings one
finds

ϕ̂Bϕ̂A ¼ LA1LB1φ̂1φ̂1 þ LA2LB2φ̂2φ̂2

þ LA1LB2φ̂
0
2φ̂1 þ LA2LB1φ̂

0
2φ̂1; ð31Þ

with

φ̂0
2 ¼ φ̂2 þ ðθ1 Y 2 − θβ≻αÞ½φ̂2; φ̂1�·δ̂1: ð32Þ

In the first line of Eq. (31) the primes of the leftmost
operators disappeared because ∁̂kkαβ ¼ 0, while the primes
of the rightmost operators of both lines dropped because
their derivatives have nothing to act upon. We observe that
the differential part of Eq. (32) depends on the values that α
and β take in Ω (see Appendix C). In the term LA1LB2φ̂

0
2φ̂1

of Eq. (31), the indexes 1 and 2 are associated respectively to
A and B (as recalled by the coefficients L) because the
operator φ̂1 comes from the decomposition of ϕ̂A, while the
operator φ̂2 comes from the decomposition of ϕ̂B. This
implies that in the contraction displayed by Eq. (32) one has
β ¼ A and α ¼ B. In the term LA2LB1φ̂

0
2φ̂1 the association

is the opposite, which implies β ¼ B and α ¼ A. Since
θ1 Y 2 ¼ 0, θA≻B ¼ 0 and θB≻A ¼ 1, one easily finds that

LA1LB2φ̂
0
2φ̂1 ¼ LA1LB2φ̂2φ̂1; ð33Þ

LA2LB1φ̂
0
2φ̂1 ¼ LA2LB1ðφ̂2 − ½φ̂2; φ̂1�·δ̂1Þφ̂1

¼ LA2LB1φ̂1φ̂2; ð34Þ

which once replaced in Eq. (31) make it trivial to check that
the identity holds. Now that the basic working principles of
the GOT are clear, we move to more complicated applica-
tions which disclose its vast potential.

A. Baker-Campbell-Hausdorff formula

This formula originated in the context of Lie groups,
where it is a natural question to ask if the products of two
group transformations eX̂eŶ can be expressed as a single
exponential [47,48]. What physicists typically learn about
the BCH is the following: if X̂ and Ŷ commute to a
c-number the BCH is a very helpful tool because it displays
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a nice and compact structure; otherwise it is a disaster. In
mathematical terms this is translated as follows:

eX̂eŶ ¼ eẐ ð35Þ

with

Ẑ ¼
X∞
n¼0

1

n!
½WðX̂; ŶÞ·∂̂Y �nŶ; ð36Þ

WðX̂; ŶÞ ¼
X∞
n¼0

Bn

n!
adn

Ŷ
X̂; ð37Þ

where Bn are the Bernoulli numbers, adŶ X̂ ¼ ½Ŷ; X̂� and
adn

Ŷ
X̂ ¼ ½Ŷ; adn−1

Ŷ
X̂�. This is an infinite series involving

nested commutators of growing (eventually infinite) order,
whose terms up to order three are displayed by Eq. (1). We
now show that the GOTallows to express the BCH in a very
elegant way. We introduce the ordering N XY , which is a
sort of normal ordering that pushes all operators X̂ to the
left of the operators Ŷ. It is a trivial task to show that [43]

N XY ½eX̂þŶ � ¼ eX̂eŶ : ð38Þ

By recalling that the Weyl ordering acts as the identity on
the exponential function [see Eq. (4)], we understand the
BCH (35) as relation between N XY and W,

N XY ½eX̂þŶ � ¼ W½eẐ�: ð39Þ

Remarkably, a relation between these orderings can be
established also via the GOT, which states

N XY ½eX̂þŶ � ¼ W½eX̂0þŶ 0 �; ð40Þ

with

X̂0 ¼ X̂; Ŷ 0 ¼ Ŷ þ ½X̂; Ŷ�·∂̂X; ð41Þ

that is

eX̂eŶ ¼ eX̂þŶþ½X̂;Ŷ�·∂̂X : ð42Þ

The expressions for the primed operators in Eq. (41) are
dictated by the GOT, and they are derived in Appendix D.
We thus see that the GOT provides a very compact
expression of the BCH, though being completely equivalent
to it. Some comments are at the order. First, one may notice
that the contraction in Eq. (41) is not symmetric
(ĈXY ≠ ĈYX). This is due to the nonmonomial nature of
W, as explained in Appendix D. Second, one may be
puzzled by the fact that although Eqs. (35)–(37) and
Eq. (42) use the same mathematical ingredients, the latter

displays such a simpler structure. The reason is that Baker
and Hausdorff were looking for a closed expression
explicitly displaying the elements of the Lie algebra (i.e.,
nested commutators) [39,40,42]. The GOT instead provides
an “open” expression, in the sense that the nested commu-
tators are obtained by applying it iteratively the directional
derivative. We further observe that, by expanding in Taylor
series the right-hand side of Eq. (42), the nth order of
expansion ẑnðX̂; ŶÞ can be determined recursively via the
simple formula

ẑnðX̂; ŶÞ ¼
1

n
ðX̂ þ Ŷ þ ½X̂; Ŷ�·∂̂XÞẑn−1ðX̂; ŶÞ: ð43Þ

As a check of the correctness of the GOT, let us compute the
third-order term 3!ẑ3ðX̂; ŶÞ, which amounts to

ðX̂ þ Ŷ þ ½X̂; Ŷ�·∂̂XÞðX̂ þ Ŷ þ ½X̂; Ŷ�·∂̂XÞðX̂ þ ŶÞ
¼ ðX̂ þ Ŷ þ ½X̂; Ŷ�·∂̂XÞ½ðX̂ þ ŶÞðX̂ þ ŶÞ þ ½X̂; Ŷ��
¼ ðX̂ þ ŶÞ3 þ ½X̂; Ŷ�ðX̂ þ ŶÞ þ 2ðX̂ þ ŶÞ½X̂; Ŷ�
þ ½½X̂; Ŷ�; Ŷ�: ð44Þ

It is again an elementary operation to check that this
equation coincides with the third-order expansion (i.e.,
involving products of three operators) of eẐ, with Ẑ given
in Eq. (1).

B. Magnus expansion

W. Magnus looked for the solution of the initial value
problem associated to the following ordinary differential
equation:

dÛt

dt
¼ ÂtÛt; Û0 ¼ Î; ð45Þ

where Ût and Ât are linear operators, and Î is the identity.
Precisely, Magnus was interested in a pure exponential
solution of the type

Ût ¼ eV̂t ; ð46Þ

and he found that V̂t satisfies [36]

dV̂t

dt
¼

X∞
n¼0

Bn

n!
adn

V̂
Â: ð47Þ

Therefore, similarly to the BCH, also the ME consists of an
infinite series of nested commutators of growing order (the
ME is indeed also referred to as “continuous BCH”).
Nonetheless, Eq. (45) is well-known to physicists, as well
as its solution that Dyson first wrote in terms of the time-
ordering operator,
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Ût ¼ T
h
e
R

t

0
Âsds

i
: ð48Þ

By recalling again Eq. (4), we can understand the ME as the
Weyl-ordered version of Eq. (48),

T
h
e
R

t

0
Âsds

i
¼ W½eV̂t �: ð49Þ

The GOToffers another way to relate time ordering to Weyl
ordering, i.e., it provides a different expression for the ME,
which reads

T
h
e
R

t

0
Âsds

i
¼ e

R
t

0
ðÂsþ

R
t

0
θus½Âu;Âs�·∂̂uduÞds; ð50Þ

where θus is the standard Heaviside step function. We
eventually observe that a recursive formula similar to
Eq. (43) holds also for the ME. We leave the check of
the validity of Eq. (50) at third order to Appendix D.

V. CONCLUSIONS

We have proven the general ordering theorem, which
establishes a connection between any pair of orderings
acting on operators that posses generic commutation rela-
tions. After elucidating its working principles, we have
demonstrated the potential of the GOT by establishing
compact expressions both for the BCH and the ME. Besides
being very elegant, these have the merit of providing simple
recursive formulas to calculate efficiently high orders of
expansion. This is not the case for the original versions of
the BCH and ME, where the exponent contains infinite
series, and in order to obtain the nth order of expansion, one
needs to put together and rearrange all lower orders.
Nonetheless, the GOT in some sense extends the range
of applicability of the BCH and the ME, while the latter
concern exponentials, the former applies to any functional.
On the more applied side, we mention few research fields

which will benefit from the GOT. The first are non-
Markovian open dynamics for spin systems (e.g., spin-
boson and Jaynes-Cummings) [49]. Since in the time
evolution of these systems the fermionic operators enter
linearly, one cannot exploit the fermionic Wick’s theorem,
and the GOT is needed [26,50]. Another field of application
is nonlinear optics, whose processes (like e.g., spontaneous
parametric down-conversion and four-wave mixing) involve
photonic operators that do not commute to c-numbers
(because of the nonlinearity), thus preventing the use of
standard ordering theorems and requiring different tech-
niques [51,52]. Concerning quantum field theory, one may
exploit the GOT to express known quantities in terms of the
“preferred ordering” introduced by Dalibard, J. Dupont-
Roc, C. Cohen-Tannoudji [12]. Last, in the context of Yang-
Mills theories, the GOT may be exploited to rewrite
standard amplitudes in terms of color-ordered ones [23].
We conclude by observing that, in general, any research

topic where operator ordering or noncommutative algebra
play a central role will potentially benefit from the GOT.

ACKNOWLEDGMENTS

I wish to thank L. Diósi for endless stimulating dis-
cussions and continuous inspiration. I acknowledge M.
Palma, F. Ciccarello and G. Gasbarri for useful discussions.
Acknowledgement is also due for financial support from
MUR through project PRIN (Project No. 2017SRN-BRK
QUSHIP).

APPENDIX A: MATHEMATICAL
PRELIMINARIES

In this paper we make extensive use of the Einstein
notation for repeated indexes, with the exception of the unit
step functions θα≻β and θl Y k, whose indexes do not
contribute to the repetition, and are only meant to limit
the sums generated by the repetition of other indexes. Two
illustrative examples are the definitions of contraction in
Eq. (7) and Eq. (12). In Eq. (7), indexes k, l are repeated
because they are displayed both by L and by φ̂, while α, β
are not repeated because θα≻β does not contribute to the
repetition. Therefore, one should understand Eq. (7) as

Ĉαβ ¼
X
k;l∈Ω0

ðθl Y k − θβ≻αÞLαkLβl½φ̂k; φ̂l�: ðA1Þ

In Eq. (12) instead there is no sum, because θα≻β does not
contribute to the repetition, thus explaining why the left-
hand side displays two indexes. Excepting those belonging
to unit step functions, all other repeated indexes are
summed.
One of the two main ingredients of the GOT is a tensor

(or operator) derivative, whose properties are here briefly
reviewed; for further (and more formal) details we refer the
reader to [45,46]. We start by recalling that the action of any
differential operator on operator functionals relies on the
Taylor expansion of the latter, making it sufficient to define
the action of the former on a product of operators. An
operator derivative ∂̂α ¼ ∂=∂ϕ̂α can be defined by

∂̂αðϕ̂n…ϕ̂α…ϕ̂1Þ ¼ ϕ̂n…ϕ̂1; ðA2Þ

and satisfies

½∂̂α; ϕ̂β� ¼ δαβ; ½∂̂α; ∂̂β� ¼ 0: ðA3Þ

The associated directional derivative is defined by

ϕ̂β·∂̂αðϕ̂n…ϕ̂α…ϕ̂1Þ ¼ ϕ̂n…ϕ̂β…ϕ̂1; ðA4Þ

of which Eq. (9) is a simplified example. Given two

functionals Fðϕ̂Þ, Gðϕ̂Þ on ϕ̂ ¼ fϕ̂αg, α ∈ Ω, the
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directional derivative defined above is a linear operator
which satisfies product and chain rules:

ϕ̂β·∂̂α½aFðϕ̂Þ þ bGðϕ̂Þ� ¼ aϕ̂β·∂̂αFðϕ̂Þ þ bϕ̂β·∂̂αGðϕ̂Þ
a; b ∈ C ðA5Þ

ϕ̂β·∂̂α½Fðϕ̂ÞGðϕ̂Þ� ¼ ½ϕ̂β·∂̂αFðϕ̂Þ�Gðϕ̂Þ þ Fðϕ̂Þ½ϕ̂β·∂̂αGðϕ̂Þ�
ðA6Þ

ϕ̂β·∂̂αF½Gðϕ̂Þ� ¼ ½ϕ̂β·∂̂αGðϕ̂Þ�·
∂F
∂G

: ðA7Þ

APPENDIX B: DETAILS OF THE PROOF
IN THE MAIN TEXT

In this section we derive those identities that are used
in the main text, but whose proofs were not reported
there in order to keep the proof contained. We start by
multiplying the left-hand side of Eq. (13) by ϕ̂α, and then
we move this operator towards right, with the aim of
bringing it at the position that O assigns to it. After two
switches one finds

ϕ̂αO

"Yn
i¼1

ϕ̂αi

#
¼ ϕ̂αϕ̂αn…ϕ̂α1 ¼ ϕ̂αnϕ̂αϕ̂αn−1…ϕ̂α1 þ ½ϕ̂α; ϕ̂αn �ϕ̂αn−1…ϕ̂α1

¼ ϕ̂αnϕ̂αn−1 ϕ̂αϕ̂αn−2…ϕ̂α1 þ ϕ̂αn ½ϕ̂α; ϕ̂αn−1 �ϕ̂αn−2…ϕ̂α1 þ ½ϕ̂α; ϕ̂αn �ϕ̂αn−1…ϕ̂α1 ; ðB1Þ

where the second line can be rewritten as follows:

ϕ̂αO

"Yn
i¼1

ϕ̂αi

#
¼ ϕ̂αnϕ̂αn−1ϕ̂αϕ̂αn−2…ϕ̂α1 þ ð½ϕ̂α; ϕ̂αn �·∂̂αn þ ½ϕ̂α; ϕ̂αn−1 �·∂̂αn−1ÞO

"Yn
i¼1

ϕ̂αi

#
: ðB2Þ

By iterating this procedure until ϕ̂α has reached the correct position, one finds

ϕ̂αO

"Yn
i¼1

ϕ̂αi

#
¼ O

"
ϕ̂α

Yn
i¼1

ϕ̂αi

#
þ θβ≻α½ϕ̂α; ϕ̂β�·∂̂βO

"Yn
i¼1

ϕ̂αi

#
; ðB3Þ

where θβ≻α allows differentiation only of those terms that O places at the left of ϕ̂α. This is Eq. (17). Trivially, if we repeat
the same calculation with ϕ̂0

α and O0, we find

ϕ̂0
αO0

"Yn
i¼1

ϕ̂0
αi

#
¼ O0

"
ϕ̂0
α

Yn
i¼1

ϕ̂0
αi

#
þ θβ Y α½ϕ̂0

α; ϕ̂
0
β�·∂̂0βO0

"Yn
i¼1

ϕ̂0
αi

#
; ðB4Þ

which is the identity used to pass from Eq. (18) to Eq. (19). The last step needed to complete the proof is to show that the
operators Dα in Eq. (23) are identically zero. We first remark that, according to Eq. (9), the derivative ∂̂0β in Eq. (23) places
the commutator at the position β, therefore the differential operator ∂̂ε inside the commutator can act only on those operators

thatO0 places to the right of ϕ̂0
β (θβ Y ε ¼ 1). Accordingly, the term proportional to θε Y β in Ĉβε vanishes, and one is left with

Dα ¼ −θβ Yαθγ≻αθε≻β½½ϕ̂α; ϕ̂γ�·∂̂γ; ½ϕ̂β; ϕ̂ε�·∂̂ε�·∂̂0β
¼ −θβ Yαðθβ≻αθε≻β½½ϕ̂α; ϕ̂β�; ϕ̂ε�·∂̂ε þ θε≻αθε≻β½ϕ̂β; ½ϕ̂α; ϕ̂ε��·∂̂ε − θγ≻αθα≻β½½ϕ̂β; ϕ̂α�; ϕ̂γ�·∂̂γ − θγ≻αθγ≻β½ϕ̂α; ½ϕ̂β; ϕ̂γ��·∂̂γÞ·∂̂0β
¼ −θβ Yαðθβ≻αθγ≻β − θγ≻αθγ≻β þ θγ≻αθα≻βÞð½½ϕ̂α; ϕ̂β�; ϕ̂γ�·∂̂γÞ·∂̂0β; ðB5Þ

where the second line is obtained by performing the derivatives inside the commutator, and the third line by exploiting
the Jacobi identity. We eventually observe that the product θγ≻αθγ≻β can be decomposed as θγ≻αθγ≻β ¼
θγ≻βθβ≻α þ θγ≻αθα≻β, which replaced in Eq. (B5) gives Dα ¼ 0. The GOT is proven.
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APPENDIX C: GENERAL PROOF

This section is dedicated to the proof of the GOT in the
general case where O and O0 order different sets of
operators, fϕ̂αg and fφ̂kg respectively. In analogy with
the definition (11) of the operators ϕ̂0

α, we introduce the
operators φ̂0

k

φ̂0
k ≡ φ̂k þ ∁̂klαβ·δ̂l; ðC1Þ

where δ̂l ¼ ∂=∂φ̂l, which according to Eq. (5) are such that

ϕ̂0
α ¼ Lαkφ̂

0
k: ðC2Þ

The left-hand side of Eq. (C1) does not display the
subscripts α, β because these do not play any role in the
ordering of φ̂0

k according to O0. α, β can thus be dropped,
provided that they are readily restored when the explicit
expression for φ̂0

k is used [see e.g., Eq. (32)].
The general proof follows the one in the main text up to

Eq. (17) while, because of the general definition of
contraction (7), Eq. (18) is replaced by

O

"
ϕ̂α

Yn
i¼1

ϕ̂αi

#
¼ ðϕ̂0

α − θl Y kLαk½φ̂k; φ̂l�·δ̂lÞO0
"Yn
i¼1

ϕ̂0
αi

#
;

ðC3Þ

where δ̂l ¼ ∂=∂φ̂l, and we used δ̂l ¼ Lβl∂̂β. Before apply-

ing O0 we need to decompose the operators ϕ̂0
α in the first

term of the right-hand side according to Eq. (C2),

ϕ̂0
αO0

"Yn
i¼1

ϕ̂0
αi

#
¼ ðLαkφ̂

0
kÞO0

"Yn
i¼1

ðLαiki φ̂
0
ki
Þ
#
: ðC4Þ

We introduce the identity corresponding to Eq. (B4) for the
operators in φ̂0,

φ̂0
kO

0
"Yn
i¼1

φ̂0
ki

#
¼ O0

"
φ̂0
k

Yn
i¼1

φ̂0
ki

#

þ θl Y k½φ̂0
k; φ̂

0
l�·δ̂0lO0

"Yn
i¼1

φ̂0
ki

#
; ðC5Þ

which we exploit to rewrite the right hand side of Eq. (C4)
obtaining

ϕ̂0
αO0

"Yn
i¼1

ϕ̂0
αi

#
¼ O0

"
ðLαkφ̂

0
kÞ
Yn
i¼1

ðLαiki φ̂
0
ki
Þ
#

þ θl Y kLαk½φ̂0
k; φ̂

0
l�·δ̂0lO0

"Yn
i¼1

ðLαiki φ̂
0
ki
Þ
#
:

ðC6Þ

By replacing this equation into Eq. (C3) one eventually
finds

O

"
ϕ̂α

Yn
i¼1

ϕ̂αi

#
¼ O0

"
ϕ̂0
α

Yn
i¼1

ϕ̂0
αi

#

þ θl Y kLαk

�
½φ̂0

k; φ̂
0
l�·δ̂0l − ½φ̂k; φ̂l�·δ̂l

�

×O0
"Yn
i¼1

ðLαiki φ̂
0
ki
Þ
#
: ðC7Þ

The differential operator in the second term of the right-
hand side has the same structure asDα in Eq. (20), therefore
one can prove that the former is identically zero by
retracing the proof for Dα ¼ 0. This completes our proof.

APPENDIX D: CONTRACTIONS FOR THE BCH
AND THE ME

As discussed in the main text, both the BCH and the ME
can be understood as relation among orderings, one of
which is the Weyl ordering. Accordingly, in order to apply
the GOT, we first need to express the (nonmonomial) Weyl
ordering in terms of a monomial ordering. In [41] it was
shown that this can be done via the time ordering as
follows:

W½eaϕ̂1þbϕ̂2 � ¼ T
h
e
R

1

0
ðaϕ̂1τþbϕ̂2τÞdτ

i
; ðD1Þ

where the time label τ is assigned only formally to the
operators, i.e., ϕ̂1τ ¼ ϕ̂1 and ϕ̂2τ ¼ ϕ̂2, ∀ τ. We start with
the BCH and we rewrite Eq. (40) with the redundant
notation of Eq. (D1),

N XY

h
e
R

1

0
ðX̂τþŶτÞdτ

i
¼ T

h
e
R

1

0
ðX̂0

τþŶ 0
τÞdτ

i
: ðD2Þ

In order to write the explicit expressions for the primed
operators, we need to compute the associated contractions,
which read

ðN XY − T ÞX̂τŶσ ¼ X̂τŶσ − ðθτσX̂τŶσ þ θστŶσX̂τÞ
¼ θστ½X̂τ; Ŷσ�; ðD3Þ
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ðN XY − T ÞŶτX̂σ ¼ X̂σŶτ − ðθτσŶτX̂σ þ θστX̂σŶτÞ
¼ θτσ½X̂σ; Ŷτ�; ðD4Þ

where we dropped the symbol Y because when the time
ordering is involved θτ Y σ coincides with the standard
Heaviside step function θτσ . Accordingly,

X̂0
τ ¼ X̂τ þ θστ½X̂τ; Ŷσ�·∂̂Yσ

; ðD5Þ

Ŷ 0
τ ¼ Ŷτ þ θτσ½X̂σ; Ŷτ�·∂̂Xσ

: ðD6Þ
We remark that these operators are placed by T at the
position τ, which implies that directional derivatives always
act to the right of τ, i.e., θστ ¼ 0 and θτσ ¼ 1. Accordingly,

X̂0
τ ¼ X̂τ ðD7Þ

Ŷ 0
τ ¼ Ŷτ þ ½X̂σ; Ŷτ�·∂̂Xσ

; ðD8Þ
which return Eq. (41) once the original notation is restored.

Something similar occurs with the ME, that establishes
a connection between time ordering and Weyl ordering,
which according to the GOT can be expressed as
follows:

T
h
e
R

t

0
Âsds

i
¼ W

h
e
R

t

0
Â0
sds
i
: ðD9Þ

Since we need to exploit the decomposition (D1), we
rename the time ordering in the left-hand side of Eq. (D9)
as T ≡ T 1, while we call T 2 the time ordering associated
to W by Eq. (D1). We thus rewrite Eq. (D9) as

T 1

h
e
R

1

0
ð
R

t

0
ÂsσdsÞdσ

i
¼ T 2

h
e
R

1

0
ð
R

t

0
Â0
sσdsÞdσ

i
; ðD10Þ

where T 1 orders the first subscript of Â, and T 2 orders the
second. The contraction in Â0

sσ reads

ðT 1 − T 2ÞÂsσÂuυ ¼ θsuÂsσÂuυ þ θusÂuυÂsσ − θσυÂsσÂuυ − θυσÂuυÂsσ ¼ ðθsu − θσυÞ½Âsσ; Âuυ�; ðD11Þ

which leads to

Â0
sσ ¼ Âsσ þ ðθsu − θσυÞ½Âsσ; Âuυ�·∂̂Âuυ

¼ Âsσ þ θus½Âuυ; Âsσ�·∂̂Âuυ
; ðD12Þ

where the second identity is given by the fact that υ always stands to the right of σ (i.e., θσυ ¼ 1). By replacing the result in
Eq. (D10) and restoring the original notation, one eventually recovers Eq. (50). We now check the validity of the GOT by
expanding Eq. (50), whose third order reads,

1

3!

�Z
t

0

�
Âlþ

Z
t

0

θs2l½Âs2 ; Âl�·∂̂s2ds2
�
dl

��Z
t

0

�
Âuþ

Z
t

0

θs1u½Âs1 ; Âu�·∂̂s1ds1
�
du

��Z
t

0

Âsds

�

¼ 1

3!

�Z
t

0

�
Âlþ

Z
t

0

θs2l½Âs2 ; Âl�·∂̂s2ds2
�
dl

���Z
t

0

Z
t

0

ÂuÂsþ θsu½Âs; Âu�duds
��

¼
Z

t

0

Z
t

0

Z
t

0

�
1

6
ÂlÂuÂsþ

1

3
θsuÂl½Âs; Âu� þ

1

6
θsu½Âs; Âu�Âlþ

1

6
θsuθsl½½Âs; Âl�; Âu� þ

1

6
θsuθul½Âs; ½Âu; Âl��

�
dudsdl: ðD13Þ

By decomposing θsuθsl ¼ θsuθul þ θslθlu and by rearranging the terms, we can rewrite the last identity as follows:

¼
Z

t

0

Z
t

0

Z
t

0

�
1

6
ÂlÂuÂs þ

1

4
θsuÂl½Âs; Âu� þ

1

4
θsu½Âs; Âu�Âl þ

1

6
θslθlu½½Âs; Âl�; Âu� þ

1

6
θsuθul½Âs; ½Âu; Âl��

þ 1

6
θsuθul½½Âs; Âl�; Âu� þ

1

12
θsu½Âl; ½Âs; Âu��

�
du ds dl; ðD14Þ

where the second line can be shown to be identically zero by decomposing θsu ¼ θlsθsu þ θslθlu þ θsuθul, and by exploiting
the Jacobi identity. On the other side, the first three terms of the Magnus series in Eq. (47) read

VðtÞ ¼
Z

t

0

Âsdsþ
1

2

Z
t

0

Z
t

0

θsu½Âs; Âu� þ
1

6

Z
t

0

Z
t

0

Z
t

0

ðθslθlu½½Âs; Âl�; Âu� þ θsuθul½Âs; ½Âu; Âl��Þdu ds dl: ðD15Þ

By expanding the exponential in Eq. (46) and by retaining only the terms with three operators, one can easily check that the
first line of (D14) is recovered.

GENERAL ORDERING THEOREM PHYS. REV. D 107, 105010 (2023)

105010-9



[1] F. J. Dyson, Phys. Rev. 75, 486 (1949).
[2] G. C. Wick, Phys. Rev. 80, 268 (1950).
[3] H. Weyl, Z. Phys. 46, 1 (1927).
[4] E. P. Wigner, Phys. Rev. 40, 749 (1932).
[5] K. E. Cahill and R. J. Glauber, Phys. Rev. 177, 1857 (1969).
[6] A. Hourlet and A. Kind, Helv. Phys. Acta 22, 319 (1949).
[7] J. L. Anderson, Phys. Rev. 94, 703 (1954).
[8] T. Matsubara, Prog. Theor. Phys. 14, 351 (1955).
[9] M. Gaudin, Nucl. Phys. 15, 89 (1990).

[10] A. Vaglica, C. Leonardi, and G. Vetri, J. Mod. Opt. 37, 1487
(1990).

[11] T. S. Evans and D. A. Steer, Nucl. Phys. B474, 481 (1996).
[12] J. Dalibard, J. Dupont-Roc, and C. Cohen-Tannoudji,

J. Phys. 43, 1617 (1982).
[13] L. V. Keldysh, Sov. Phys. JEPT 20, 1018 (1965).
[14] A. G. Hall, J. Phys. A 8, 214 (1975).
[15] G. S. Agarwal and E. Wolf, Lett. Nuovo Cimento 1, 140

(1969).
[16] G. S. Agarwal and E. Wolf, Phys. Rev. D 2, 2206 (1970).
[17] G. S. Agarwal and E. Wolf, Phys. Rev. D 2, 2161 (1970).
[18] G. S. Agarwal and E. Wolf, Phys. Rev. D 2, 2187 (1970).
[19] J. H. H. Perk and H.W. Capel, Physica A (Amsterdam) 89,

265 (1977).
[20] J. H. H. Perk, H. W. Capel, and G. R.W. Quispel, and F. W.

Nijhoff, Physica A (Amsterdam) 123, 1 (1984).
[21] W. Kutzelnigg and D. Mukherjee, J. Chem. Phys. 107, 432

(1997).
[22] L. Kong, M. Nooijen, and D. Mukherjee, J. Chem. Phys.

132, 234107 (2010).
[23] T. Schuster, Phys. Rev. D 89, 105022 (2014).
[24] K. Chou, Zh. Su, B. Hao, and L. Yu, Phys. Rep. 118, 1

(1985).
[25] B. Silvestre-Brac and R. Piepenbring, Phys. Rev. C 26, 2640

(1982).
[26] L. Ferialdi and L. Diósi, Phys. Rev. A 104, 052209 (2021).
[27] W. Magnus, Ann. Math. 52, 111 (1950).
[28] A. Borel, Linear Algebraic Groups, Graduate Texts in

Mathematics Vol. 126 (Springer-Verlag, Berlin, 1991).
[29] P. E. Schupp and R. C. Lyndon, Combinatorial Group

Theory (Springer-Verlag, Berlin, 2001).

[30] G. B. Folland and E. M. Stein, Hardy Spaces on Homo-
geneous Groups. Mathematical Notes Vol. 28 (Princeton
University Press, Princeton, NJ, 1982).

[31] L. Hörmander, Acta Math. 119, 147 (1967).
[32] A. Nagel, E. M. Stein, and S. Wainger, Acta Math. 155, 103

(1985).
[33] N. Bourbaki, Lie Groups and Lie Algebras (Springer-

Verlag, Berlin, 1989).
[34] J.-P. Serre, Lie Algebras and Lie Groups (Springer,

New York, 2006).
[35] M. R. Sepanski, Compact Lie Groups. Graduate Texts in

Mathematics Vol. 235 (Springer, New York, 2007).
[36] W. Magnus, Commun. Pure Appl. Math. 7, 649 (1954).
[37] S. Blanes, F. Casas, J. A. Oteo, and J. Ros, Phys. Rep. 470,

151 (2008).
[38] J. Campbell, Proc. London Math. Soc. 28, 381 (1897).
[39] H. Baker, Proc. London Math. Soc. 3, 24 (1905).
[40] F. Hausdorff, Ber. Verh. Saechs. Akad. Wiss. Leipzig 58, 19

(1906).
[41] E. B. Dynkin, Dokl. Akad. Nauk SSSR 57, 323 (1947).
[42] R. Achilles and A. Bonfiglioli, Arch. Hist. Exact Sci. 66,

295 (2012).
[43] L. Diósi, J. Phys. A 51, 365201 (2018).
[44] M. Itskov, Tensor Algebra and Tensor Analysis for En-

gineers (Springer Verlag, Berlin, 2007).
[45] P. A. Kelly, Mechanics Lecture Notes Part III: Foundations

of Continuum Mechanics (University of Auckland, 2022).
Online book available from https://pkel015.connect.amazon
.auckland.ac.nz/SolidMechanicsBooks/Part_III/index.html.

[46] M. Spivak, Calculus on Manifolds (Taylor & Francis,
London, 1971).

[47] J. E. Campbell, Proc. London Math. Soc. 29, 14 (1898).
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