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We present an operator solution of the Thirring-Wess model, formulated and quantized in terms of light-
front (LF) variables. The model describes a system of massless fermions interacting with massive vector
bosons in two space-time dimensions. An important ingredient of the solution is a consistent quantization
of the two-dimensional massless LF fermion field. The field equations are solved exactly on an operator
level and the quantum LF Hamiltonian is derived in terms of independent field variables. The axial anomaly
and the interacting correlation functions are computed nonperturbatively from the operator solution. An
analogous operator solution in the conventional field theory is briefly described for comparison. While in
the LF case the “empty” Fock vacuum is the lowest-energy eigenstate of the full Hamiltonian, the
corresponding Hamiltonian in the conventional theory has to be diagonalized in order to find the true
physical ground state, which is a dynamical state with a complicated structure. A comment concerning a
recently discussed equivalence between the LF and conventional form of field theory concludes the paper.
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I. INTRODUCTION

Quantum field theory (QFT) was originally formulated
in the operator “language” using the ”natural” parametri-
zation of the space-time in terms of xμ ¼ ðt; x; y; zÞ. The
path integral formalism was later developed based on the
canonical formulation. A new branch of the operator
(Hamiltonian) version of QFT was founded by Dirac
who realized that, in the relativistic theory, there are
actually three classes of initial (quantization) hypersurfaces
with corresponding choices of the space-time variables [1].
The conventional field theory implies quantization on a
spacelike (SL) hypersurface (t ¼ 0 being the simplest
choice) while the front form implies quantization on a
lightlike surface (typically at xþ ¼ tþ z ¼ 0). An imme-
diate question of the equivalence between the two versions
of QFT emerges. While the notion of equivalence can have
a few interpretations, the most relevant meaning appears to
us as “predicting the same physical results.” This does not
imply that the theoretical mechanisms in the two schemes
need to be the same. Actually the different mathematical
structure of the two forms of the relativistic dynamics
suggests different mechanisms. For example, even the
structure of field variables [dynamical vs nondynamical
(dependent) ones] does not always coincide in the two
schemes.
The equivalence issue has been studied since the early

days of light-front (LF) quantization. A formal equivalence
of the two formulations at the perturbative S-matrix level
was established in [2]. A perturbative analysis of the
Yukawa model [3] leads to an explicit relation between

the physical states in the two forms of the relativistic
Hamiltonian dynamics: what appears as an empty Fock
vacuum in the interacting LF case is actually a complicated
mixture of many-particle states of the SL theory.
The equivalence problem has been analyzed recently in a

series of papers by Mannheim, Brodsky, and Lowdon [4–6].
They found a possibility to rewrite quantities like Pauli-
Jordan commutator functions (including their equal-time
limits) from one form to another, among other things. They
argued that because of a general coordinate transformation
between the two frameworks they are unitarily equivalent.
Their conclusion was that LF and equal-time quantizations
are not fundamentally different but essentially represent the
same scheme [5].
Some time ago, the area of exactly solvable models was

proposed as a suitable testing ground for comparison of the
two schemes by the present author [7]. Here we develop this
approach further within a concrete dynamics, namely the
Thirring-Wess model [8], which describes the interaction of
massless fermionswithmassive vector bosons inD ¼ 1þ 1.
The model has been proposed independently by Brown [9]
and studied also in [10–12]. Thirring and Wess used the
method of auxiliary fields (“Ansätze”) to find the operator
solution. Lowenstein and Swieca gave an operator solution
of the model [11] as a generalization of their solution of
the Schwinger model and computed the corresponding
Wightman functions. Brown used a “gauge-invariant” def-
inition of a few operators to arrive at a complicated
formulation of the model having no operator solution. The
recent study [13] exploits functional and renormalization
group methods and correctly predicts the chiral anomaly.
In the present paper, we demonstrate efficiency of the

operator methods. We use a Hamiltonian LF formulation*fyziluma@savba.sk
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[14], which is straightforward and transparent. Our
approach is based on the original field variables present
in the Lagrangian. The key element is an explicit solution
of the field equations at the quantum level, which is
possible due to the very simple mathematical structure
of this two-dimensional dynamics. The axial-vector
anomaly and correlation functions of the interacting fields
are computed from the operator solution in a straightfor-
ward way. A similar operator solution of the model in the
conventional SL version of the theory will also be sketched,
pointing out a necessity to diagonalize the corresponding
SL Hamiltonian, unlike the LF treatment. The full SL
treatment of the model is however postponed to a separate
paper [15].

II. LF QUANTIZATION OF THE MASSLESS
FERMION FIELD AND MASSIVE VECTOR-

BOSON FIELD IN TWO DIMENSIONS

First, let us introduce our LF notation. The LF coordinate
is xμ ¼ ðxþ; x−Þ ¼ ðx0 þ x1; x0 − x1Þ, while kμ ¼ ðkþ; k−Þ
(or pμ) denotes the momentum two-vector. We will use the

symbols ∂� ¼ ∂

∂x�, k̂
− ¼ μ2

kþ, k̂ · x ¼ 1
2
kþx− þ 1

2
k̂−xþ. kþ is

the LF momentum and k̂− the on-shell LF energy. There is
no sign ambiguity analogous to Eðk1Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1Þ2 þ μ2

p
of

the SL theory and both kþ, k− can be taken positive. As
for the two-dimensional spinor field ψðxÞ, we shall work
in chiral representation, in which γ5 ¼ γ0γ1 is diagonal.
The upper component of ψðxÞ is then ψ1ðxÞ, and the lower

one ψ2ðxÞ. The two-dimensional gamma matrices are
γ0 ¼ σ1, γ1 ¼ iσ2, with σi being the Pauli matrices.
The two-dimensional massless LF fermion field has the

Fock representation [16,17]

ψ2ðx−Þ ¼
Zþ∞

0

dpþ
ffiffiffiffiffiffi
4π

p
h
bðpþÞe−i

2
pþx− þ d†ðpþÞei

2
pþx−

i
; ð1Þ

fbðpþÞ; b†ðqþÞg ¼ fdðpþÞ; d†ðqþÞg ¼ δðpþ − qþÞ; ð2Þ

ψ1ðxþÞ ¼
Zþ∞

0

dp−
ffiffiffiffiffiffi
4π

p
h
b̃ðp−Þe−i

2
p−xþ − d̃†ðp−Þei

2
p−xþ

i
; ð3Þ

fb̃ðp−Þ; b̃†ðq−Þg ¼ fd̃ðp−Þ; d̃†ðq−Þg ¼ δðp− − q−Þ: ð4Þ

These fields satisfy the two-dimensional massless LF
Dirac equation ∂þψ2 ¼ 0, ∂−ψ1 ¼ 0 following from the

Lagrangian L ¼ i=2ψ̄γμ∂μ
↔
ψ ¼ iψ†

2∂þ
↔
ψ2 þ iψ†

1∂−
↔
ψ1 and

are obtained as massless limits of the corresponding
massive fields [16,17]. The two-point functions calculated
from ψ1ðxþÞ and ψ2ðx−Þ coincide with the massless limits
of the two-point functions of the massive fields ψ1ðxþ; x−Þ
and ψ2ðxþ; x−Þ. This confirms consistency of the proposed
quantization scheme.
To derive the representations (1) and (3), one starts from

the massive fields

ψ2ðxÞ ¼
Zþ∞

0

dpþ
ffiffiffiffiffiffi
4π

p
h
bðpþÞe−i

2
pþx−−i

2
m2

pþx
þ þ d†ðpþÞei

2
pþx−þi

2
m2

pþx
þi
; ð5Þ

ψ1ðxÞ ¼
Zþ∞

0

dpþ
ffiffiffiffiffiffi
4π

p m
pþ

h
bðpþÞe−i

2
pþx−−i

2
m2

pþx
þ
− d†ðpþÞei

2
pþx−þi

2
m2

pþx
þi
; ð6Þ

fbðpþÞ; b†ðqþÞg ¼ fdðpþÞ; d†ðqþÞg ¼ δðpþ − qþÞ; ð7Þ
which are the solution of the two-dimensional massive Dirac equations 2i∂þψ2 ¼ mψ1, 2i∂−ψ1 ¼ mψ2. Them ¼ 0 limit of
the first, dynamical equation, directly yields (1). To obtain (3), one changes the variables as pþ ¼ m2=p−, leading to [18]

ψ1ðxÞ ¼
Zþ∞

0

dp−
ffiffiffiffiffiffi
4π

p m
p−

�
b

�
m2

p−

�
e−

i
2
m2

p−x
−−i

2
p−xþ − d†

�
m2

p−

�
e

i
2
m2

p−x
−þi

2
p−xþ

�
: ð8Þ

The same change of variables in the Fock anticommutation relation (7) gives
�
b
�
m2

p−

�
; b†

�
m2

q−

��
¼ δ

�
m2

p− −
m2

q−

�
¼ p−q−

m2
δðp− − q−Þ: ð9Þ

This implies that the operators m
p− bðm2

p−Þ and m
p− dðm2

p−Þ in (8) satisfy the anticommutation relation with mass-independent right-
hand side equal to δðp− − q−Þ. In other words, in analogy to the ψ2ðxÞ field, we can take the massless limit in these
operators with the result
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fb̃ðp−Þ; b̃†ðq−Þg ¼ fd̃ðp−Þ; d̃†ðq−Þg ¼ δðp− − q−Þ;

b̃ðp−Þ≡ lim
m→0

m
p− b

�
m2

p−

�
; d̃ðp−Þ≡ lim

m→0

m
p− d

�
m2

p−

�
: ð10Þ

Performing the above change of variables in the free massive LF Hamiltonian

P− ¼ m
Zþ∞

−∞
dx−

h
ψ†
2ψ1 þ ψ†

1ψ2

i
;

P− ¼
Zþ∞

0

dpþ m2

pþ
h
b†ðpþÞbðpþÞ þ d†ðpþÞdðpþÞ

i
; ð11Þ

one finds

P− ¼
Zþ∞

0

dp−p−
��

m
p−

�
2

b†
�
m2

p−

�
b

�
m2

p−

�
þ
�
m
p−

�
2

d†
�
m2

p−

�
d

�
m2

p−

��
;

leading to the massless limit

P−
0 ¼

Zþ∞

0

dp−p−
h
b̃†ðp−Þb̃ðp−Þ þ d̃†ðp−Þd̃ðp−Þ

i
: ð12Þ

In analogy to the SL massless relation k0 ¼ jk1j we have
here k− ¼ kþ. Based on the above Fock anticommutation
relations, the massless field anticommutators acquire the
form

fψ1ðxþÞ;ψ†
1ðyþÞg ¼ δðxþ − yþÞ; ð13Þ

fψ2ðx−Þ;ψ†
2ðy−Þg ¼ δðx− − y−Þ: ð14Þ

The free current jμðxÞ built from the fields (1) and (3)

jþðx−Þ ¼ 2∶ψ2
†ðx−Þψ2ðx−Þ∶; ð15Þ

j−ðxþÞ ¼ 2∶ψ1
†ðxþÞψ1ðxþÞ∶ ð16Þ

can be bosonized by a Fourier transformation:

jþðx−Þ ¼ −
i
ffiffiffi
π

p
Z∞

0

dkþkþ
ffiffiffiffiffiffiffiffiffiffiffi
4πkþ

p ½cðkþÞe−i
2
kþx− − H:c:�; ð17Þ

½cðkþÞ; c†ðlþÞ� ¼ δðkþ − lþÞ;

j−ðxþÞ ¼ −
i
ffiffiffi
π

p
Z∞

0

dk−k−
ffiffiffiffiffiffiffiffiffiffi
4πk−

p ½c̃ðk−Þe−i
2
k−xþ − H:c:�; ð18Þ

½c̃ðk−Þ; c̃†ðl−Þ� ¼ δðk− − l−Þ:

The boson operators cðkþÞ, c̃ðk−Þ are bilinear in the
fermion Fock operators present in (1) and (3) [16,17]:

cðkþÞ ¼ i
Z∞

0

dqþ

2
ffiffiffiffiffiffi
qþ

p
h
b†ðqþÞbðkþ þ qþÞ − d†ðqþÞdðkþ þ qþÞ þ dðqþÞbðkþ − qþÞθðkþ − qþÞ

i
; ð19Þ

c̃ðk−Þ ¼ i
Z∞

0

dq−

2
ffiffiffiffiffiffi
q−

p
h
b̃†ðq−Þb̃ðk− þ q−Þ − d̃†ðq−Þd̃ðk− þ q−Þ þ d̃ðq−Þb̃ðk− − q−Þθðk− − q−Þ

i
: ð20Þ

The commutators of the current components contain the Schwinger terms,

½jþðx−Þ; jþðy−Þ� ¼ 2i
π
∂x−δðx− − y−Þ; ½j−ðxþÞ; j−ðyþÞ� ¼ 2i

π
∂xþδðxþ − yþÞ:
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The free LF vector-meson field is expanded as

BþðxÞ ¼
Z∞

0

dkþ
ffiffiffiffiffiffiffiffiffiffiffi
4πkþ

p kþ

μ0

h
aðkþÞe−ik̂·x þ a†ðkþÞeik̂·x

i
; ð21Þ

B−ðxÞ ¼ −
Z∞

0

dkþ
ffiffiffiffiffiffiffiffiffiffiffi
4πkþ

p k̂−

μ0

h
aðkþÞe−ik̂·x þ a†ðkþÞeik̂·x

i
:

The two components satisfy the condition

∂μBμðxÞ ¼ ∂þBþðxÞ þ ∂−B−ðxÞ ¼ 0 ð22Þ

following from the antisymmetry of the Gμν tensor in the
free field equation

∂μGμν þ μ20B
ν ¼ 0; Gμν ¼ ∂

μBν − ∂
νBμ; ð23Þ

which follow from the Lagrangian

LB ¼ −
1

4
GμνGμν þ 1

2
μ20BμBμ;

¼ 1

2
ð∂þBþ − ∂−B−Þ2 þ 1

2
μ20B

þB−: ð24Þ

The equal-LF time commutation relations are

h
Bþðxþ; x−Þ;Π−ðxþ; y−Þ

i
¼ igþ−δðx− − y−Þ; ð25Þ

h
Bþðxþ; x−Þ; 2∂þBþðxþ; y−Þ

i
¼ iδðx− − y−Þ; ð26Þ

Π− ¼ 2ð∂þBþ − ∂−B−Þ ¼ 4∂þBþ; ð27Þ

where gμν is the metric tensor with gþ− ¼ 2. The expansion
(21) leads to the correct form of the energy and momentum
operators

P−
B ¼

Z∞

0

dkþ
μ20
kþ

a†ðkþÞaðkþÞ; ð28Þ

Pþ
B ¼

Z∞

0

dkþkþa†ðkþÞaðkþÞ: ð29Þ

III. THE LF THIRRING-WESS MODEL

The dynamics of the model is characterized by the
covariant-form Lagrangian

L ¼ i
2
Ψ̄γμ∂μ

↔
Ψ −

1

4
G̃μνG̃

μν þ 1

2
μ2B̃μB̃μ − eB̃μJμ; ð30Þ

where

G̃μν ¼ ∂μB̃ν − ∂νB̃μ; JμðxÞ ¼ Ψ̄ðxÞγμΨðxÞ: ð31Þ

ΨðxÞ and B̃μðxÞ are the interacting massless fermion and
massive vector fields, respectively. The solvability of the
theory means that one can find an operator solution of the
coupled system of the Dirac and Proca equations:

iγμ∂μΨ ¼ eγμB̃μΨ; ∂μG̃
μν þ μ2B̃ν ¼ eJν: ð32Þ

For the conserved current JμðxÞ the vector field satisfies the
operator relation

∂μB̃μðxÞ ¼ ∂þB̃þðxþ; x−Þ þ ∂−B̃−ðxþ; x−Þ ¼ 0: ð33Þ

The LF form of the Lagrangian is

L ¼ iΨ†
2∂þ
↔
Ψ2 þ iΨ†

1∂−
↔
Ψ1 þ

1

2
ð∂þB̃þ − ∂−B̃−Þ2

þ 1

2
μ2B̃þB̃− −

e
2
B̃þJ− −

e
2
B̃−Jþ; ð34Þ

with the corresponding coupled LF field equations

2i∂þΨ2ðxÞ ¼ eB̃−ðxÞΨ2ðxÞ; ð35Þ

2i∂−Ψ1ðxÞ ¼ eB̃þðxÞΨ1ðxÞ; ð36Þ

ð4∂þ∂− þ μ2ÞB̃þðxÞ ¼ eJþðxÞ; ð37Þ

ð4∂þ∂− þ μ2ÞB̃−ðxÞ ¼ eJ−ðxÞ: ð38Þ

The solution of the Dirac equation involves the free
massless LF fermion field components ψ1ðxþÞ and ψ2ðx−Þ:

Ψ1ðxÞ ¼ e−
ie
2

R þ∞
−∞

dy−1
2
ϵðx−−y−ÞB̃þðxþ;y−Þψ1ðxþÞ; ð39Þ

Ψ2ðxÞ ¼ e−
ie
2

R þ∞
−∞

dyþ1
2
ϵðxþ−yþÞB̃−ðyþ;x−Þψ2ðx−Þ: ð40Þ

ϵðx�Þ is the sign function, ∂�ϵðx�Þ ¼ 2δðx�Þ. The non-
trivial property of the set of coupled field equations (35)–
(38) is that the Proca equation (37) for B̃þ contains the
current Jþ which is constructed from the interacting field
Ψ2 depending on B̃−, and analogously for the second Proca
equation (38). This mixing complicates the solution, which
however is still possible due to the relation (33). The
interacting currents appearing in the Proca equations can be
determined from the solutions (39), (40) (or rather their
quantum version, see below) by means of the point-split
regularized definition

JþðxÞ ¼ lim
ϵ→0

�
Ψ†

2

�
xþ ϵ

2

�
Ψ2

�
x − ϵ

2

�
þ H:c:

�
; ð41Þ

J−ðxÞ ¼ lim
ϵ→0

�
Ψ†

1

�
xþ ϵ

2

�
Ψ1

�
x − ϵ

2

�
þ H:c:

�
; ð42Þ
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Using the free-field relations

ψ2
†
�
x−þϵ−

2

�
ψ2

�
x−−

ϵ−

2

�
¼∶ψ2

†ðx−Þψ2ðx−Þ∶−Vðϵ−Þ;

ψ1
†
�
xþþϵþ

2

�
ψ1

�
xþ−

ϵþ

2

�
¼∶ψ1

†ðxþÞψ1ðxþÞ∶−VðϵþÞ;

Vðϵ�Þ¼ i
2π

1

ϵ�− iη
; ð43Þ

one arrives at

JþðxÞ ¼ jþðx−Þ − e
2π

Zþ∞

−∞

dyþϵðxþ − yþÞ∂−B̃−ðyþ; x−Þ;

ð44Þ

J−ðxÞ ¼ j−ðxþÞ − e
2π

Zþ∞

−∞

dy−ϵðx− − y−Þ∂þB̃þðxþ; y−Þ;

ð45Þ

where the free current j� is given in (15), (16). Taking into
account the relation (33) and performing partial integration,
the current J� is seen to be equal to the (normal-ordered)
free current plus a quantum correction,

JþðxÞ ¼ jþðx−Þ − e
π
B̃þðxþ; x−Þ; ð46Þ

J−ðxÞ ¼ j−ðxþÞ − e
π
B̃−ðxþ; x−Þ: ð47Þ

The remarkable fact is that now the B̃� part of the current
matches the structure of the Proca equations (37), (38),
which as a consequence can also be solved exactly (see
below). Conservation of the interacting quantum current is
tantamount to the condition ∂μB̃μ ¼ 0 as one anticipated on
the classical level:

∂þJþðxÞ þ ∂−J−ðxÞ ¼ −
e
π
ð∂þB̃þ þ ∂−B̃−Þ ¼ 0; ð48Þ

while the divergence of the axial-vector current

Jμ5ðxÞ ¼ Ψ̄ðxÞγμγ5ΨðxÞ ¼ ðJþðxÞ;−J−ðxÞÞ ð49Þ

is nonzero (“anomalous”),

∂μJ
μ
5 ¼ −

e
π
ð∂þB̃þ − ∂−B̃−Þ ¼ e

2π
ϵμνG̃

μν: ð50Þ

ϵμν is the antisymmetric tensor. One can see that the axial
anomaly is a purely quantum effect, obtained here non-
perturbatively from the operator solution of the field
equations.

There is a subtlety in the above considerations. Partial
integrations in the relations (44) and (45) work only for x−-
dependent or xþ-dependent quantities, respectively. In
other words, the most general form of B̃þðxÞ can be a
combination ofBþðxþ; x−Þ and some xþ-independent quan-
tity bþðx−Þ, and the most general form of B̃−ðxÞ can be
a combination of B−ðxþ; x−Þ and some x−-independent
quantity b−ðxþÞ. This implies that instead of B̃�ðxÞ in
Eqs. (46) and (47) we have to consider only B�ðxÞ, because
bþðx−Þ and b−ðxþÞ got lost in the partial integration.
Therefore, the correct form of the anomaly relation (50)
actually reads

∂μJ
μ
5 ¼ −

e
π
ð∂þBþ − ∂−B−Þ ¼ e

2π
ϵμνGμν: ð51Þ

Now, we can insert the currents

JþðxÞ ¼ jþðx−Þ − e
π
Bþðxþ; x−Þ; ð52Þ

J−ðxÞ ¼ j−ðxþÞ − e
π
B−ðxþ; x−Þ ð53Þ

to the Proca equations to obtain

ð4∂þ∂− þ μ2ÞðBþðxÞ þ bþðx−ÞÞ ¼ ejþðx−Þ − e2

π
BþðxÞ;

ð54Þ

ð4∂þ∂− þ μ2ÞðB−ðxÞ þ b−ðxþÞÞ ¼ ej−ðxþÞ − e2

π
B−ðxÞ:

ð55Þ

Collecting the terms, we get

ð4∂þ∂− þ μ̃2ÞBνðxÞ ¼ 0; μ2 þ e2

π
≡ μ̃2 ð56Þ

and

μ2bþðx−Þ ¼ ejþðx−Þ; μ2b−ðxþÞ ¼ ej−ðxþÞ: ð57Þ

Hence the interacting vector field is given by

B̃þðxÞ ¼ Bþðxþ; x−Þ þ e
μ2

jþðx−Þ; ð58Þ

B̃−ðxÞ ¼ B−ðxþ; x−Þ þ e
μ2

j−ðxþÞ: ð59Þ

The vector-boson mass μ got renormalized to the value
μ̃ ¼ ðμ2 þ e2=πÞ1=2 as given in Eq. (56). In this way, we
have achieved a complete quantum solution of the coupled
field equations of the model. The interacting fields are
expressed solely in terms of the free fields ψ1ðxþÞ,
ψ2ðx−Þ, Bþðxþ; x−Þ, B−ðxþ; x−Þ. Because of this, the
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solutions (39), (40) can be regularized on the quantum level
by normal ordering:

Ψ1ðxÞ ¼ e−
ie
2
Fð−Þ
1

ðxþ;x−Þe−
ie
2
FðþÞ
1

ðxþ;x−Þψ1ðxþÞ; ð60Þ

Ψ2ðxÞ ¼ e−
ie
2
Fð−Þ
2

ðxþ;x−Þe−
ie
2
FðþÞ
2

ðxþ;x−Þψ2ðx−Þ; ð61Þ
where the fields were decomposed into the positive and
negative frequency parts,

Fð�Þ
1 ðxþ; x−Þ ¼

Zþ∞

−∞

dy−
1

2
ϵðx− − y−Þ

h
Bþð�Þðxþ; y−Þ þ e

μ2
jþð�Þðy−Þ

i
; ð62Þ

Fð�Þ
2 ðxþ; x−Þ ¼

Zþ∞

−∞

dyþ
1

2
ϵðxþ − yþÞ

h
B−ð�Þðyþ; x−Þ þ e

μ2
j−ð�ÞðyþÞ

i
: ð63Þ

The fermion field solutions (39), (40) and the vector field solutions (58), (59) can be used to reexpress the starting
Lagrangian (34) in terms of the free fields, which are the true field degrees of freedom of the model:

L0 ¼ iψ†
2∂þ
↔
ψ2 þ iψ†

1∂−
↔
ψ1 þ

1

2
ð∂þBþ − ∂−B−Þ2 þ 1

2
μ̃2
�
Bþ þ e

μ2
jþ
��

B− þ e
μ2

j−
�
: ð64Þ

Calculating the conjugate momenta, one derives the LF Hamiltonian P̂− ¼ P−
free þ P−

int as

P−
free ¼ lim

m→0

1

2

Zþ∞

−∞

dx−
h
mðψ2

†ψ1 þ ψ1
†ψ2Þ − μ̃2BþB−

i
;

P−
int ¼ −

e
2

Zþ∞

−∞

dx−
h
ðBþj− þ B−jþÞ þ e

μ̃2

μ4
jþj−

i
: ð65Þ

P−
free represents the free LF energy of massless fermions and massive bosons. Their Fock form is given by Eqs. (12) and

(28). The first interacting term vanishes because j−ðxþÞ is a constant with respect to the integration variable x− and the zero
mode Bþ

0 ðxþÞ (the integral of Bþðxþ; x−Þ over the infinite interval x−) of the massive Bþ field vanishes [19]. The Fock form
of P−

int is obtained by inserting the expansions (17), (18) and (21) to the formula (65):

P̂− ¼
Z∞

0

dp−p−ðb̃†ðp−Þb̃ðp−Þ þ d̃†ðp−Þd̃ðp−ÞÞ þ
Z∞

0

dkþ
μ̃2

kþ
a†ðkþÞaðkþÞ

þ ieμ̃
ffiffiffiffiffiffi
4π

p
Z∞

0

dkþ

kþ
h
a†ðkþÞc̃ðkþÞ − c̃†ðkþÞaðkþÞ

i
þ i
2π

e2
μ̃2

μ4
Q
Z∞

0

dkþ
ffiffiffiffiffiffi
kþ

p h
c̃ðkþÞ − c̃†ðkþÞ

i
: ð66Þ

The last term is proportional to Q times j−ðxþÞ because only jþ depends on the integration variable leading to the total
charge Q (which commutes with j−). The B−jþ term does not contain the c†ðkþÞa†ðkþÞ terms due to positivity of kþ and
hence the Fock vacuum is the exact eigenstate of the full LF Hamiltonian.
From the operator solution, the correlation functions can be directly computed. For example,

h0jΨ2ðxÞΨ2
†ðyÞj0i ¼ h0je−ie

2
FðþÞ
2

ðxÞψ2ðx−Þψ2
†ðy−Þeie

2
Fð−Þ
2

ðyÞj0i

¼ exp

�
e2

μ2
DðþÞðx − yÞ − i

4π

e4

μ4
εðxþ − yþÞ

�
SðþÞ
22 ðx− − y−Þ: ð67Þ

Here the two-point functions of the free fields are
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DðþÞ
1 ðx − yÞ ¼ h0jBþðxÞBþðyÞj0i

¼
Zþ∞

0

dkþkþ

4πμ2
e−ik̂·ðx−yÞ ¼ −

4

μ2
∂
2
x−DðþÞðx − yÞ; ð68Þ

SðþÞ
22 ðx − yÞ ¼ h0jψ2ðx−Þψ2

†ðy−Þj0i

¼ −
i
2π

1

x− − y− − iϵ
: ð69Þ

DðþÞðxÞ is the two-point function of the massive scalar field, equal to ð2πÞ−1K0ðμ
ffiffiffiffiffiffiffiffi
−x2

p
Þ for x2 < 0, with K0 being the

modified Bessel function. Presence ofDðþÞðxÞ in the final result is a consequence of commuting FðþÞ
2 ðxÞ and Fð−Þ

2 ðyÞ factors
in the exponential, along with the annihilation property FðþÞ

2 ðxÞj0i ¼ 0. Similarly,

h0jΨ1ðxÞΨ1
†ðyÞj0i ¼ h0je−ie

2
FðþÞ
1

ðxÞψ1ðxþÞψ1
†ðyþÞeie

2
Fð−Þ
1

ðyÞj0i

¼ exp

�
e2

μ2
DðþÞðx − yÞ − i

4π

e4

μ4
εðx− − y−Þ

�
SðþÞ
11 ðxþ − yþÞ; ð70Þ

where

DðþÞ
2 ðx − yÞ ¼ h0jB−ðxÞB−ðyÞj0i

¼ μ2

4π

Zþ∞

−∞

dkþ

kþ3
e−ik̂·ðx−yÞ ¼ −

4

μ2
∂
2
xþD

ðþÞðx − yÞ;

ð71Þ

SðþÞ
11 ðx − yÞ ¼ h0jψ1ðxþÞψ1

†ðyþÞj0i

¼ −
i
2π

1

xþ − yþ − iϵ
: ð72Þ

It is instructive to briefly compare the LF solution of the
Thirring-Wess model with the SL solution obtained in the
usual or “instant-form” field theory. The full treatment will
be published separately [15]. The SL analysis proceeds in
analogy to the LF case. The operator solutions of the
coupled field equations are expressed in terms of the SL
free fields B0ðxÞ; B1ðxÞ, and ψðxÞ. The interacting vector
current is found to be conserved while the divergence of
the interacting axial-vector current is “anomalous” in full
agreement with the LF result (51). Expressing the
Lagrangian (30) in terms of the true dynamical variables,
i.e., the free fields, one arrives at the Hamiltonian

H ¼ H0 þHint; ð73Þ

Hint ¼ −γμ2
Z

dx1
�
B0j0 − B1j1 þ 1

2
γðj0j0 − j1j1Þ

�
;

γ ≡ e
μ̃2

; μ̃2 ≡ μ2 þ e2

π
: ð74Þ

H0 is the free Hamiltonian of the massless fermion field and
themassive vector field. The interactingHamiltonianHint has
a structure similar to the LF Hamiltonian (65), but there is an
essential difference: the Hamiltonian (74) of the SL theory
contains terms composed solely from creation or annihila-
tion Fock operators of the type fðk1Þa†ðk1Þc†ð−k1Þ and
gðk1Þc†ðk1Þc†ð−k1Þ, and thus the Fock vacuum is not its
eigenstate. One has to diagonalizeHint (74) to find its lowest-
energy eigenstate. In the present two-dimensionalmodelwith
simple dynamics this is possible by a Bogoliubov-type of
transformation [15]. However, this also shows explicitly the
main difference between the LF and SL forms of quantum
field theories that hardly can be considered identical in the
interacting case (cf. the conclusion of Ref. [5] that “the LF
quantization is the same as the equal-time quantization”). It is
true that the equal-t and equal-xþ commutators can be
obtained as different projections from the same (Lorentz-
invariant) Pauli-Jordan (or Schwinger) commutator function,
but there are other properties that define the “equal-time”
quantization scheme on the one hand and the light-front
frameworkon theother one. Inparticular, statusof thevacuum
state is fundamentally different in the two schemes. Note
also that in the usual canonical treatment the interacting
Hamiltonian would simply be eðj0B0 − j1B1Þ while our
treatment, making use of the knowledge of the operator
solution of the Heisenberg field equations, reveals a more
complex structure.As in theLFcase, this is due to theoperator
mixing induced by the solution of the coupled field equations,
in particular B̃μðxÞ ¼ BμðxÞ − e

μ̃2
jμðxÞ.

IV. SUMMARY AND CONCLUSIONS

We have presented an operator solution of the
Thirring-Wess model in the light-front form of field theory.
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The key ingredient was the possibility to explicitly solve
the coupled Dirac and Proca field equations in the two-
dimensional space-time, a consistent quantization scheme
for two-dimensional massless LF fermion field and a
careful definition of the interacting fermionic currents
regularized by point splitting. The correct value of the
axial-vector “anomaly” as well as the interacting two-point

functions were obtained from the operator solution. The LF
Hamiltonian was derived and compared to the Hamiltonian
of the conventional theory. The main difference between the
two forms of the relativistic dynamics is nicely illustrated in
the studied model: the Fock vacuum is the physical vacuum
in the LF case, while in the SL treatment, the vacuum state
has to be found in some nonperturbative calculation.
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