
Extraction of entanglement from quantum fields
with entangled particle detectors

Dyuman Bhattacharya,1,* Kensuke Gallock-Yoshimura ,1,† Laura J. Henderson,2,1,‡ and Robert B. Mann 1,§

1Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
2Centre for Engineered Quantum Systems, School of Mathematics and Physics,

The University of Queensland, St. Lucia, Queensland 4072, Australia

(Received 3 January 2023; accepted 13 April 2023; published 11 May 2023)

We consider two initially entangled Unruh-DeWitt particle detectors and examine how the initial
entanglement changes after interacting with a quantum scalar field. Just as initially separable detectors can
extract entanglement from the field, entangled detectors also can gain more entanglement so long as they
are weakly correlated at the beginning. For initially sufficiently entangled detectors, only degradation takes
place. We then apply our analysis to a gravitational shock wave spacetime and show that a shock wave can
enhance the initial entanglement of weakly entangled detectors. Moreover, we find that this enhancement
can occur for greater detector separations than in Minkowski spacetime.
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I. INTRODUCTION

It is well known by now that a vacuum state of a quantum
field is an entangled state [1,2]. One can examine such
entanglement by making use of a particle detector, which is a
nonrelativistic first-quantized system locally coupled to the
field.A commonly usedmodel is a two-level quantumsystem
known as an Unruh-DeWitt (UDW) detector [3,4], which is
known to capture the essence of light-matter interactions
when no angular momentum is exchanged [5–7]. For
example, two initially uncorrelated UDW detectors (e.g.,
both in their ground states) can become entangled after
interacting with a quantum scalar field even when they are
causally disconnected. In other words, the detectors extract
entanglement from the field without directly exchanging
quanta. Such a protocol is known as entanglement harvesting
[8–13], and the amount of harvested entanglement is sensitive
to the state of motion of the detectors and the geometry of
underlying spacetime [14–22].
One can also think of initially entangled detectors and ask

howmuch their initial entanglement changes as a function of
their motion and the structure of spacetime. If their initial
entanglement is maximal (e.g., a Bell state) then their
entanglement will necessarily decrease since after the inter-
action the detectors will be correlated with the field, and the
monogamy of entanglement tells us that the detectors must
lose their initial correlation. In general, the phenomenon
of losing initial entanglement is known as entanglement

degradation. This phenomenon has been known for quite
some time for accelerating observers [23–25], with a number
of subsequent studies [26–36] carried out for entangled
UDW-type detectors.
Entanglement harvesting and degradation suggest that

two initially entangled detectors can either gain or lose
entanglement after interacting with the field. One then can
ask what the conditions are for enhancement and degra-
dation of entanglement. Such a question was considered for
two inertial harmonic-oscillator type UDW detectors in
Minkowski spacetime [27], in which the time dependence
of the initial entanglement was analyzed by using the
quantum Langevin equation with an assumption that the
detectors interact with the field for an infinitely long time
after being suddenly switched on. The initial entanglement
was found to decrease with time, vanishing at the end.
Here we instead consider how much the initial entangle-

ment of a pair of UDW detectors changes after interacting
with a field for a finite duration of time, working pertur-
batively in the field coupling. It is known that such a
method has a technical difficulty: in a perturbative analysis,
the density matrix of entangled pointlike UDW detectors
contains divergent elements [32]. One way to circumvent
this issue is to use finite-sized detectors. Although one must
face tedious calculations in a generic curved spacetime,
inertial detectors in Minkowski spacetime are tractable and
yet the fate of entanglement in such a simple setting has not
been examined. Another route is to apply an approximation
to a measure of entanglement [35]: the divergent elements
in the density matrix only appear in the higher order terms
in the coupling constant. Quantifying the amount of
entanglement between the detectors via negativity, we
can ignore such a divergent term for sufficiently small
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coupling. However, this approximation is valid only for
initially sufficiently entangled detectors, and cannot be
applied to initially weakly entangled ones.
We investigate in this paper the extraction of vacuum

entanglement by two entangled inertial detectors in
Minkowski spacetime, considering situations in which
the detectors are initially nearly maximally entangled
and initially weakly entangled, complementing previous
work in this subject [12] for initially separable detectors.
Introducing finite-sized UDW detectors to make their
density matrix well defined, we employ concurrence as a
measure of entanglement. We examine the effects of the
divergent terms on this quantity, and provide an approxi-
mation that consistently allows us to neglect such terms.
We show that these approximations are valid even for
pointlike detectors, and utilize them to show that weakly
entangled detectors can extract more entanglement from
the field even when they are causally disconnected.
We then extend our analysis to consider a gravitational

shock wave spacetime [20] and explore the effect of a
shock wave on the initial entanglement between pointlike
detectors. We have chosen the shock wave spacetime since
it provides the simplest nontrivial comparison with
Minkowski spacetime: the Wightman function is every-
where the same as that in Minkowski spacetime except
along the null trajectory of the shock. This allows us to
make a clear comparison with the case of entanglement
harvesting for initially entangled UDW detectors in pure
Minkowski spacetime. We find that a shock wave can
enhance entanglement compared to the Minkowski space-
time case: the detectors are able to gain entanglement
with smaller energy gaps and larger amounts of initial
entanglement.
Our paper is organized as follows. We begin with

providing a density matrix of initially entangled detectors
after interacting with a quantum scalar field in Sec. II A.
The divergence in the density matrix does not show up
in the concurrence after performing approximations in
Sec. II B. We then examine the fate of initial entanglement
in (3þ 1)-dimensional Minkowski (Sec. III) and shock
wave spacetimes (Sec. IV), followed by conclusions in
Sec. V. We will use natural units, ℏ ¼ c ¼ 1, and denote
spacetime points by x ¼ ðt; xÞ.

II. INITIALLY ENTANGLED DETECTORS

A. Density matrix

We shall consider two UDW detectors A and B, linearly
coupled to a quantum scalar field. Let τj (j ∈ fA;Bg) be
the proper time of detector j and t a common time (i.e., a
time parameter that describes both detectors). The inter-
action Hamiltonian in the interaction picture is given by

ĤIðtÞ ¼
dτA
dt

ĤAðτAðtÞÞ þ
dτB
dt

ĤBðτBðtÞÞ; ð1Þ

where ĤjðτjÞ is

ĤjðτjÞ¼ λjχjðτjÞμ̂jðτjÞ⊗
Z

d3xFjðx−xjÞϕ̂ðxjðτjÞÞ: ð2Þ

Here, λj is the coupling constant between detector j and the
field ϕ̂, χjðτjÞ is a switching function that specifies how a
detector interacts, and μ̂jðτjÞ is a monopole moment
given by

μ̂jðτjÞ ≔ eiΩjτj jejihgjj þ e−iΩjτj jgjihejj ð3Þ

with Ωj being the energy gap between the ground jgji and
excited jeji states. Fjðx − xjÞ is the so-called smearing
function, which specifies the spatial profile and the center
of mass position xj of detector j. As an example, one can
choose the Dirac delta distribution to make the detector
pointlike.
The time-evolution operator, ÛI, can be written by using

a time-ordering symbol, T t, with respect to the common
time t:

ÛI ¼ T t exp

�
−i

Z
R
dt ĤIðtÞ

�
ð4Þ

¼ Ûð0Þ
I þ Ûð1Þ

I þ Ûð2Þ
I þOðλ3Þ; ð5Þ

where ÛðjÞ
I is the jth power of the coupling constant λ:

Ûð0Þ
I ≔ 1; ð6Þ

Ûð1Þ
I ≔ −i

Z
R
dt ĤIðtÞ; ð7Þ

Ûð2Þ
I ≔ −

Z
R
dt1

Z
t1

−∞
dt2 T t½ĤIðt1ÞĤIðt2Þ�: ð8Þ

Let us assume that the field is in the vacuum state, j0i,
and the detectors A and B are initially entangled,

jΨ0i ¼ ðαjgAijgBi þ βeiθjeAijeBiÞj0i; ð9Þ

where α; β ∈ ½0; 1� with α2 þ β2 ¼ 1 and θ ∈ ½0; 2πÞ is the
relative phase. For example, α ¼ 0, 1 correspond to
separable states while α ¼ 1=

ffiffiffi
2

p
gives a Bell state. We

will refer to α ¼ 1 as the entanglement harvesting scenario.
Unless otherwise stated, we let β ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
throughout

this paper. Note that we could also consider initial states of
the form

jΨ0i ¼ ðαjgAijeBi þ βeiθjgBijeAiÞj0i; ð10Þ

by applying a bit-flip gate 1A ⊗ σ̂x and settingΩB → −ΩB;
the resultant behavior in this case is qualitatively similar to
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what we present below, as was the case for an earlier
nonperturbative analysis of harvesting of mutual informa-
tion [34].
One can obtain the state of the detectors, ρAB, after the

interaction by tracing out the field degree of freedom.
Writing ρ0 ≔ jΨ0ihΨ0j, we obtain

ρAB ¼ Trϕ½ÛIρ0Û
†
I � ð11Þ

¼ Trϕ½ρ0� þ Trϕ½Ûð1Þ
I ρ0Û

ð1Þ†
I �

þ Trϕ½Ûð2Þ
I ρ0� þ Trϕ½ρ0Ûð2Þ†� þOðλ4Þ: ð12Þ

In the basis fjgAgBi; jgAeBi; jeAgBi; jeAeBig, the density
matrix ρAB can be obtained as follows [32]:

ρAB ¼

2
6664
r11 0 0 r14
0 r22 r23 0

0 r�23 r33 0

r�14 0 0 r44

3
7775þOðλ4Þ; ð13aÞ

r11 ¼ α2 þ 2α2Re½Jð−þÞ
AA þ Jð−þÞ

BB �
þ 2α

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
Re½eiθðJð−−ÞAB þ Jð−−ÞBA Þ� ð13bÞ

r14 ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
e−iθð1þ Jð−þÞ

AA þ Jðþ−Þ�
AA þ Jð−þÞ

BB þ Jðþ−Þ�
BB Þ

þ α2ðJðþþÞ�
AB þ JðþþÞ�

BA Þ þ ð1 − α2ÞðJð−−ÞAB þ Jð−−ÞBA Þ
ð13cÞ

r22 ¼ ð1 − α2ÞIðþ−Þ
AA þ 2α

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
Re½e−iθIðþþÞ

AB �
þ α2Ið−þÞ

BB ð13dÞ

r23 ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
eiθIð−−ÞAA þ ð1 − α2ÞIðþ−Þ

BA þ α2Ið−þÞ
AB

þ α
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
e−iθIðþþÞ

BB ð13eÞ

r33 ¼ α2Ið−þÞ
AA þ 2α

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
Re½eiθIð−−ÞAB �

þ ð1 − α2ÞIðþ−Þ
BB ð13fÞ

r44 ¼ ð1 − α2Þ þ 2ð1 − α2ÞRe½Jðþ−Þ
AA þ Jðþ−Þ

BB �
þ 2α

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
Re½e−iθðJðþþÞ

AB þ JðþþÞ
BA Þ�; ð13gÞ

where

IðpqÞjk ≔ λjλk

Z
R
dτj

Z
R
dτk χjðτjÞχkðτkÞ

× eiðpΩjτjþqΩkτkÞWðxjðτjÞ; ykðτkÞÞ; ð14Þ

JðpqÞjk ≔ −λjλk
Z
R
dτj

Z
t1ðτjÞ

−∞
dτkχjðτjÞχkðτkÞ

× eiðpΩjτjþqΩkτkÞWðxjðτjÞ; ykðτkÞÞ; ð15Þ

and we have used the fact that Ið��Þ
AB ¼ Ið∓∓Þ�

BA ∈ C in r22
and r33, respectively. The elements Ið��Þ

AB and Jð�∓Þ
kk appear

in the density matrix (13a) only for initially entangled
detectors.
The quantity

Wðxj; ykÞ ≔
Z

d3x
Z

d3yFjðx − xjÞFkðy − yjÞWðx; yÞ;

ð16Þ

whereWðx; yÞ ≔ h0jϕ̂ðxÞϕ̂ðyÞj0i is the Wightman function
(two-point vacuum correlation function). In the above
equations, the Wightman functions, WðxjðτjÞ; ykðτkÞÞ,
are pulled back along the trajectories of detectors j and k.

B. Entanglement measure

To quantify the entanglement between the detectors we
use the concurrence, CAB. For density matrices of the
form (13a), it is known that the qubits are entangled if and
only if one of the following is satisfied [14]:

jr14j2 > r22r33; jr23j2 > r11r44: ð17Þ

We find that jr23j2 > r11r44 can never be realized; thereby
the concurrence is defined as

CAB ≔ 2maxf0; jr14j −
ffiffiffiffiffiffiffiffiffiffiffiffi
r22r33

p g: ð18Þ

Note that 0 ≤ CAB ≤ 1 and CAB ¼ 0 if and only if two
detectors are not entangled. One can easily verify that the
initial entanglement in (10) is

CAB;0 ≔ 2α
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p �
¼2β

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q �
: ð19Þ

Although evaluating the concurrence (18) may seem
straightforward, inspection of (13c), (13d), and (13f)
indicates that care must be taken in perturbatively approxi-
mating CAB. This is because each of r22 and r33 are of order
λ2 (and so their geometric mean

ffiffiffiffiffiffiffiffiffiffiffiffi
r22r33

p
is of order λ2)

whereas a perturbative expansion of r14

r14 ¼ rð0Þ14 þ λ2rð2Þ14 þ λ4rð4Þ14 þOðλ6Þ; ð20Þ

yields

jr14j2 ¼ jrð0Þ14 j2 þ λ22Re½rð0Þ14 r
ð2Þ�
14 �

þ λ4ðjrð2Þ14 j2 þ 2Re½rð0Þ14 r
ð4Þ�
14 �Þ þOðλ6Þ: ð21Þ
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For initially separable states, (i.e., the standard harvesting

protocol) rð0Þ14 ¼ 0, and so jr14j2 ¼ λ4jrð2Þ14 j2 þOðλ6Þ, indi-
cating that there are values of α, close to 0 and 1, for which
λ4 terms must make a significant contribution to jr14j. In
order to keep the perturbative expansion of jr14j consistent,
we will consider cases where the detectors are nearly
separable and the case where the detectors are sufficiently
entangled separately.
Another issue has to do with the structure of r14, which

from (13c) can be written as

rð0Þ14 ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
e−iθ; ð22Þ

λ2rð2Þ14 ¼ λ2
h
α

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
e−iθðYA þ YBÞ

þ α2X�
ABð−ΩÞ þ ð1 − α2ÞXABðΩÞ

i
; ð23Þ

where

λ2Yk ≡ Jð−þÞ
kk þ Jðþ−Þ�

kk ; ð24aÞ

λ2XABðΩÞ≡ Jð−−ÞAB þ Jð−−ÞBA ; ð24bÞ

λ2X�
ABð−ΩÞ≡ JðþþÞ�

AB þ JðþþÞ�
BA : ð24cÞ

The imaginary part of Yk is divergent and causes problems
in the pointlike limit [32]. Although it can be regularized by
introducing a smearing function, we shall demonstrate that
it does not appear in the concurrence under the approx-
imations we consider.

C. Approximating the concurrence

We consider three scenarios: (i) initial weak entangle-
ment with α ≈ 0; (ii) initial weak entanglement with α ≈ 1;
and (iii) initial sufficient entanglement.

1. Initial weak entanglement: α ≈ 0

Let us assume that α ≪ 1 and perform a series expansion
of Eq. (21) in terms of λnαm:

jr14j2 ¼ α2ð1 − α2Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
initial

þ 2λ2αRe½XABðΩÞeiθ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
neutral

þ λ4jXABðΩÞj2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
harvesting

þ 2λ2α2Re½YA þ YB�|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
degradation

þOðλnαmÞ: ðnþm > 4Þ: ð25Þ

As one can see, rð4Þ14 and the divergent element Im½Yk� do
not exist in the lower-order terms.

2. Initial weak entanglement: α ≈ 1

In the same manner, one can obtain a similar expression
for α ≈ 1. For simplicity, let us use β ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
and

expand Eq. (21) around β ¼ 0:

jr14j2 ¼ β2ð1 − β2Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
initial

þ 2λ2βRe½X�
ABð−ΩÞeiθ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

neutral

þ λ4jXABð−ΩÞj2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
harvesting

þ 2λ2β2Re½YA þ YB�|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
degradation

þOðλnβmÞ: ðnþm > 4Þ: ð26Þ

As before, the elements rð4Þ14 and Im½Yk� are absent. Note
that β ¼ 0 reduces to the entanglement harvesting sce-
nario: jr14j ¼ λ2jXABð−ΩÞj.
In both cases α ≈ 0 and 1, the approximated jr14j2

consists of four parts. The initial entanglement contribution
is α2ð1 − α2Þ in (25) [equivalent to β2ð1 − β2Þ in (26)]. The
third term containing XABðΩÞ is the part contributing to
entanglement harvesting, and so will enhance entanglement.
The last term, containingRe½YA þ YB�, depends only on each
detector and not on their correlations. This term corresponds
to an outcome of local operations and so never enhances
entanglement. Indeed, one can straightforwardly show that

λ2Re½Yj� ¼ −ðIð−þÞ
jj þ Iðþ−Þ

jj Þ=2 ≤ 0 and so degrades entan-
glement. The second term, which we denote as the neutral
contribution, can be either positive or negative. By choosing
the relative phase θ appropriately, we can ensure that
Re½eiθXAB� > 0, which enhances entanglement.
In summary, we see from (18) that the detectors gain

entanglement after the interaction provided the harvesting
part is greater than the other two parts in jr14j and ffiffiffiffiffiffiffiffiffiffiffiffi

r22r33
p

.
Indeed, if the harvesting part does not exceed both the initial
and degradation contributions to jr14j, then entanglement
degradation is inevitable, regardless of the value of

ffiffiffiffiffiffiffiffiffiffiffiffi
r22r33

p
since this term always contributes to entanglement degra-
dation as it is positive and is subtracted from jr14j. This is not
the case for harvesting: even if the harvesting contribution is
greater than the other two in jr14j, entanglement enhance-
ment is not ensured because this depends on

ffiffiffiffiffiffiffiffiffiffiffiffi
r22r33

p
.

3. Initial sufficient entanglement

In this approximation we assume jrð0Þ14 j2 ≫ Oðλ4Þ and
write Eq. (21) explicitly as [35]

jrð0Þ14 j2 ¼ α2ð1 − α2Þ; ð27aÞ

Re½rð0Þ14 r
ð2Þ�
14 � ¼ α

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p h
α

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
Re½YA þ YB�

þ
�
α2Re½X�

ABð−ΩÞeiθ�

þ ð1 − α2ÞRe½XABðΩÞeiθ�
�i

; ð27bÞ
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jrð2Þ14 j2 ¼ jα2X�
ABð−ΩÞ þ ð1 − α2ÞXABðΩÞj2

þ α2ð1 − α2ÞjYA þ YBj2

þ 2α
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p �
α2Re½X�

ABð−ΩÞðYA þ YBÞ�eiθ�

þ ð1 − α2ÞRe½XABðΩÞðYA þ YBÞ�eiθ�
�
: ð27cÞ

Omitting the λ4 terms, we obtain

jr14j2 ≈ jrð0Þ14 j2 þ λ22Re½rð0Þ14 r
ð2Þ�
14 � ð28Þ

which is also independent of rð4Þ14 and Im½Yk�. Obviously
this approximation does not work for α ¼ 0 and 1 since it
cannot recover the entanglement harvesting results. In fact,
as in the previous approximations, Eq. (28) consists of three
components: the initial entanglement, the harvesting con-
tribution, and the degradation contribution. However now
the harvesting contribution does not contain jXABðΩÞj2 or
jX�

ABð−ΩÞj2. Note that for α ≪ 1 the leading term in (27c)
yields the harvesting contribution in (25) [and likewise for
β ≪ 1 the harvesting contribution in (26) is recovered].

Henceforth we shall consider these approximations
(which are applicable even to pointlike detectors) in
evaluating the concurrence in the scenarios we consider.

D. Smeared detectors in a flat spacetime

We now compute the elements in the density matrix
(13a) in (3þ 1)-dimensional Minkowski spacetime. We
assume that the detectors are identical (have the same shape
and internal structure) and are both at rest in a single frame
of reference. We choose the switching function, χjðτjÞ, and
smearing function, Fjðx − xjÞ, to be Gaussian functions:

χjðτjÞ ¼ e−ðτj−τj;0Þ2=T2

; ð29Þ

Fjðx − xjÞ ¼
1

ð ffiffiffi
π

p
σÞ3 e

−ðx−xjÞ2=σ2 ; ð30Þ

where τj;0 and xj are their respective centers and T and σ
are their respective temporal and spatial widths.
As we show in the Appendix, the quantities

Jð−þÞ
kk þ Jðþ−Þ�

kk ; JðþþÞ�
AB , and Jð−−ÞAB in r14, and Ið��Þ

jk in r22
and r33 are then given by

λ2kYk ≡ Jð−þÞ
kk þ Jðþ−Þ�

kk

¼ −
λ2ke

−T2Ω2=2

8πð1þ σ2=T2Þ3=2
�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2=T2

q
þ eT

2Ω2=2ð1þσ2=T2Þ ffiffiffiffiffiffi
2π

p
TΩerf

�
TΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ σ2=T2Þ
p

�	

− i
λ2kT

2

8π

Z
∞

0

djkjjkje−jkj2σ2=2
�
e−T

2ðjkj−ΩÞ2=2erfi
�
Tðjkj − ΩÞffiffiffi

2
p

�
− e−T

2ðjkjþΩÞ2=2erfi
�
Tðjkj þ ΩÞffiffiffi

2
p

�	
; ð31aÞ

Jð−−ÞAB ¼ −
λAλBT2

8πL
e−iΩðtA;0þtB;0Þe−T2Ω2=2

Z
∞

0

djkje−jkj2ðσ2þT2Þ=2eiΔtjkjerfc
�
Δtþ iT2jkjffiffiffi

2
p

T

�
sinðjkjLÞ; ð31bÞ

Ið−þÞ
kk ¼ λ2ke

−T2Ω2=2

8πð1þ σ2=T2Þ3=2
�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2=T2

q
−

ffiffiffiffiffiffi
2π

p
TΩeT2Ω2=2ð1þσ2=T2Þerfc

�
TΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ σ2=T2Þ
p

�	
; ð31cÞ

IðþþÞ
AB ¼ iλAλBTeiΩðtA;0þtB;0Þe−T2Ω2=2

8πL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2=T2

p
ffiffiffi
π

2

r
½e−Γ2

−erfcðiΓ−Þ − e−Γ
2
þerfcð−iΓþÞ�; ð31dÞ

where L ≔ jxB − xAj and Δt ≔ tB;0 − tA;0 are spatial and
temporal separation of the detectors’ Gaussian peaks [see
Fig. 1(a)], and

Γ� ≔
L� Δt

T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ σ2=T2Þ

p : ð32Þ

We remark that JðþþÞ�
AB can be obtained from Jð−−ÞAB by Ω →

−Ω and then taking a complex conjugate. In the same

manner, one finds Ið−−ÞBA ¼ IðþþÞ�
AB . Note that the real part of

(31a) is always nonpositive, which means that Re½YA þ YB�
in jr14j acts as noise that inhibits the detectors from gaining
entanglement. In fact, in units of Ω, one can verify from
(31a) that Re½Yk� ∼ −TΩ when TΩ ≫ 1 for σ ≥ 0. This
suggests that the longer the interaction, the greater the
leakage of entanglement, and thereby entanglement extrac-
tion becomes more difficult as the interaction duration
increases.
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Thanks to the smearing function, all the elements in the
density matrix are finite and well defined. One can then
perform the approximations in Sec. II B and take a limit
σ → 0 if pointlike detectors are chosen. In the following
sections, we will adopt pointlike detectors. The qualitative
behavior for smeared detectors is not so different from the
pointlike ones. If we were to first take the limit of σ → 0
and then perform the approximations employed in Sec. II B
the density matrix would be ill defined due to the presence
of divergent matrix elements. Note that realistically, all
UDW detectors will have some finite size. However, we can
consider σ to be smaller than all other relevant length scales
in the system, without taking the σ → 0 limit.

III. THE FATE OF ENTANGLEMENT
BETWEEN INERTIAL DETECTORS

In this section, we consider pointlike (σ → 0) detectors
in (3þ 1)-dimensional Minkowski spacetime and see how
the initial entanglement changes after the interaction.
As shown in Fig. 1(a), suppose the center of mass

of detector A is located at the origin and the peak of
Gaussian switching is at t ¼ 0, with the position of detector
B in a spacetime, ðtB;0; xBÞ fixed but variable. In (3þ 1)-
dimensional Minkowski spacetime, the detectors can
potentially communicate when they are lightlike separated.
This is depicted as an orange strip in the figure; detector A
can send quanta to detector B once the support of detector
B has overlap with this region.

We first ask if initially entangled detectors can gain more
entanglement after interacting with their local fields. The
answer is yes, though we find that the condition is very
limited; only initially weakly entangled detectors can gain
entanglement.
Consider weakly entangled detectors with β ≈ 0 (i.e.,

α ≈ 1). Using (26) to calculate the concurrence CAB after
the interaction, we illustrate in Fig. 1(b) the difference
between the initial and final concurrences of the detectors
for β ¼ 10−15, λ ¼ 1=10, ΩT ¼ 5, σ=T ¼ 0, and θ ¼ 0. In
particular, we take maxf0; CAB − CAB;0g so that we can
see the region of entanglement enhancement. We depict
with green dots values of the concurrence that are less
than its initial value CAB;0 after the interaction. We first
note that communication between the detectors greatly
assists entanglement extraction, as one can see from
Fig. 1(b) that two detectors gain entanglement when they
are in causal contact (within the dashed lines). This
phenomenon can be explained from the entanglement
harvesting viewpoint: communication enhances the
value of jXABð−ΩÞj in the entanglement harvesting
scenario (β ¼ 0) [37], and this also happens in jr14j in
(26). Nevertheless, as described in the previous section,
the degradation term Re½YA þ YB� will suppress this
communication assistance if the interaction duration is
too long.
One can also ask if noncommunicating detectors can

gain entanglement from the field. The answer is also yes.

FIG. 1. (a) Finite-sized detectors in Minkowski spacetime. The center of mass of detector B is located at ðtB;0; xBÞ; each detector has
the respective spatial and temporal Gaussian widths σ and T. The diagonal orange-shaded strip represents the null trajectories from
detector A; detector A can directly signal to B by exchanging field quanta once the support of detector B crosses this region. (b) A plot of
the positive part of difference CAB − CAB;0 between the concurrence before and after the interaction, with β ¼ 10−15, λ ¼ 1=10,ΩT ¼ 5,
σ=T ¼ 0, and θ ¼ 0. The green dots represent CAB − CAB;0 ≤ 0, which means the initial entanglement is degraded, and the dashed lines
indicate the null trajectory corresponding to the one in (a).
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To see this, we plot concurrence for pointlike detectors
(σ=T ¼ 0) when they are effectively1 causally disconnected
(L=T ¼ 7, Δt=T ¼ 0) in Fig. 2. Figure 2(a) shows the
values of ΩT and log10 β that enhance entanglement
without communication. The parameters are set to be
λ ¼ 1=10, L=T ¼ 7, Δt=T ¼ 0, σ=T ¼ 0, and θ ¼ 0.
Again, the detectors experience degradation when
ðΩT; log10βÞ is chosen to be a point in the green dots in
Fig. 2(a). We find that a pair of causally disconnected

detectors can enhance their initial entanglement as long as
they are weakly entangled at the beginning. In addition, one
must choose ΩT from a suitable range: if the initial
entanglement is, for example, log10 β ¼ −30 with the given
parameters, then the energy gap must be ΩT ∈ ½6.8; 11� to
gain more correlation. This energy gap range increases as
β → 0, namely, the upper bound of Ω to extract entangle-
ment gets pushed to infinity in the limit β → 0. We also
note that there is a maximum value of β for fixed L=T
beyond which entanglement cannot be extracted for
any ΩT.
The blue curve in Fig. 2(b) represents a slice atΩT ¼ 7 in

(a), and each factor CAB and CAB;0 in maxf0; CAB − CAB;0g is
shown in 2(c) as blue and green curves, respectively.
It is interesting to note from 2(c) that for sufficiently
large β, entanglement is completely extinguished after the
interaction. There is also a dependence on the relative initial

FIG. 2. (a) The positive part of CAB − CAB;0 as a function of ΩT and log10 β when λ ¼ 1=10, L=T ¼ 7, Δt=T ¼ 0, σ=T ¼ 0,
and θ ¼ 0. The green dots represent degradation. The detectors can gain entanglement when β is small enough. The range of ΩT
that enables the detectors to gain entanglement enlarges as β → 0. (b) maxf0; CAB − CAB;0g as a function of log10 β for
λ ¼ 1=10; L=T ¼ 7;Δt=T ¼ 0; σ=T ¼ 0, and ΩT ¼ 7. The blue curve shows a slice in (a) at ΩT ¼ 7, whereas the orange dashed
curve represents the case when θ ¼ π. (c) Each component CAB and CAB;0 in (b) with the same parameters.

1Since we are using a Gaussian switching, the interaction is
not compactly supported in the spacetime. In other words,
the detectors are always communicating. However, due to a
Gaussian function’s exponential suppression, it can be thought
of as an effectively compactly supported interaction in
τ ∈ ½−3.5T þ τj;0; 3.5T þ τj;0�, where τ is a proper time and
τj;0 is the center of Gaussian of detector j [37].
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phase θ; for θ ¼ π [the orange curve in 2(b) and 2(c)], the
positive difference CAB − CAB;0 persists for larger values of
β, allowing for a wider range of entanglement extraction.
This dependence on the relative phase θ arises from the term
Re½X�

ABð−ΩÞe−iθ� in (26) and elements in r22r33.
For the case of initially sufficiently entangled detectors,

no entanglement extraction can occur—only degradation
takes place. One of the reasons comes from the fact that the
degradation part Re½YA þ YB� is no longer suppressed in
(26) as β grows. Extracting entanglement with α ≈ 0 is also

difficult since Iðþ−Þ
kk in

ffiffiffiffiffiffiffiffiffiffiffiffi
r22r33

p
dominates with large Ω.

One notable difference from entanglement harvesting
(β ¼ 0) is the energy gap dependence. In the harvesting
scenario, detectors with Gaussian switching2 can extract
entanglement even when they are far apart (L=T ≫ 1) if Ω
is large enough [12]. That is, once the detector separation L
is fixed, there exists a minimum energy gap Ωmin such that
the detectors can harvest entanglement for all Ω ≥ Ωmin. In
our case, however, this is no longer true. Figure 3 shows
maxf0; CAB − CAB;0g as a function of L=T and ΩT for
pointlike detectors with Δt ¼ 0, β ¼ 10−15, and θ ¼ 0.
That is, we are exploring the region of entanglement
extraction in the ðL=T;ΩTÞ plane when the centers of
Gaussian switching in Fig. 1(a) are on the same time slice.
We see that there exist minimum and maximum values ofΩ
for some L that allow detectors to extract entanglement;
once Ω gets large enough, only degradation takes place.
This is due to a competition between the harvesting part
and the degradation part of jr14j. When Ω is sufficiently
large, the latter quantity is larger than the former, ensuring

entanglement degradation. This leads to a maximal value of
Ω for which entanglement harvesting is possible. There is
also a minimum value of Ω below which harvesting is not
possible due to “detector noise”—the positive

ffiffiffiffiffiffiffiffiffiffiffiffi
r22r33

p
term

will be larger than the jr14j term since excitation proba-
bilities increase as the energy gap decreases. The maximum
energy gap Ωmax allowing harvesting is pushed to infinity
as β → 0, recovering the usual harvesting scenario [12].

IV. ENTANGLEMENT IN THE PRESENCE
OF A SHOCK WAVE

We now extend our results in Minkowski spacetime to a
nontrivial spacetime. We consider in particular a gravita-
tional shock wave spacetime, since it has been shown that a
weak gravitational field can enhance entanglement harvest-
ing from the vacuum [38]. Furthermore, for the type of
gravitational shock wave that we consider in this paper, the
Wightman function for a massless scalar field has a
nontrivial, but closed form expression [20].
This latter study considered initially separable detectors

in their ground states; we consider here initially entangled
detectors with the aim of understanding if the shock wave
mitigates or enhances entanglement degradation. We find
that a shock wave admits for greater entanglement harvest-
ing relative to the flat space setting, and extends the region
in Fig. 2(a) dramatically.

A. Shock wave spacetime

As in [20] we shall be working with the Dray and ’t
Hooft generalization [39] of the Aichelburg-Sexl shock
wave spacetime [40]. Consider a planar shock wave
propagating in the z direction in D-dimensional
Minkowski spacetime. The metric describing such a
spacetime in the so-called Brinkmann coordinates [41] is

ds2 ¼ −dudvþ fðx⃗Þδðu − u0Þdu2 þ δijdxidxj; ð33Þ

where u ¼ t − z and v ¼ tþ z are null coordinates, and x⃗
or xi, i ∈ f1;…; D − 2g are the transverse coordinates (i.e.,
the remaining spatial coordinates). The wavefront of the
shock wave is located at u ¼ u0. We consider an idealized
scenario in which the spacetime is exactly Minkowski on
either side of u0.
The term fðx⃗Þ is the shock wave profile, which is directly

related to the energy density ϱðx⃗Þ through the Einstein field
equations:

Δfðx⃗Þ ¼ −16πGNϱðx⃗Þ; ð34Þ

where Δ ¼ δij∂i∂j is the flat Laplacian in the transverse
direction. We use a quadratic profile given by

0

0.001

0.002

0.003

0.004

FIG. 3. The positive part of difference CAB − CAB;0 as a function
of L=T and ΩT. Here, Δt=T ¼ 0, β ¼ 10−15, and θ ¼ 0.
Entanglement degradation occurs in the region with green dots.

2This is not the case for sudden switching [12].
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fðx⃗Þ ¼ −x⃗ · A · x⃗ ¼ −
XD−2

i¼1

aiðxiÞ2; ð35Þ

where A is a symmetric constant matrix, whose eigenvalues
are ai. Such a profile represents an ultrarelativistic domain

wall in the transverse plane [42],as one can see from (34)
that the energy density is constant everywhere: ϱðx⃗Þ ¼
Tr½A�=8πGN.
Using the notation x ¼ ðu; v; x⃗Þ and y ¼ ðU;V; X⃗Þ the

exact form of the Wightman function is [20]

Wðx; yÞ ¼ ð−iÞD−2ΓðD=2 − 1Þ
4πD=2

YD−2

i¼1

�
1þ aiΔΘ

ðu − u0 − iϵÞðU − u0 þ iϵÞ
Δu − iϵ

�
−1=2

×

�
ðΔv − iϵÞðΔu − iϵÞ − Δx⃗2 þ

XD−2

i¼1

aiΔΘð½U − u0 þ iϵ�xi − ½u − u0 − iϵ�XiÞ2
Δu − iϵþ aiΔΘðu − u0 − iϵÞðU − u0 þ iϵÞ

�ð2−DÞ=2
; ð36Þ

where Δv≡ v − V, Δu≡ u −U, Θu ≡ Θðu − u0Þ,
and ΔΘ ¼ Θu − ΘU with the Heaviside step function
ΘðuÞ. ΓðxÞ is the gamma function and by choosing
D ¼ 4 it gives Γð1Þ ¼ 1. The Wightman function reduces
to the standard Minkowski space form if fðx⃗Þ ¼ 0 (in
which case there is no shock wave at all) or ΔΘ ¼ 0 (so the
events u and U are localized at the same side of the shock
wave).

B. Results

We restrict to D ¼ 4 and consider two inertial UDW
detectors:

xAðτAÞ¼ ðtðτAÞ;xðτAÞ;yðτAÞ;zðτAÞÞ¼ ðτA;0;0;zAÞ;
xBðτBÞ¼ ðtðτBÞ;xðτBÞ;yðτBÞ;zðτBÞÞ¼ ðτB;0;0;zBÞ: ð37Þ

We further assume that ax ¼ ay ≡ að> 0Þ and u0 ¼ 0 as in

Fig. 4 and x⃗ ¼ X⃗ ¼ 0⃗. The Wightman function then
reduces to

Wðx; yÞ

¼ −
1

4π2
1

1þ aΔΘ ðu−iϵÞðUþiϵÞ
Δu−iϵ

1

ðΔv − iϵÞðΔu − iϵÞ : ð38Þ

It is worth noting that in this setup, the proper spatial
distance between the two detectors, L ¼ jzA − zBj, is the
same as in Minkowski space, and that the two detectors are
placed in the longitudinal direction of the shock wave.
In Fig. 5(a), we plot the initial (CAB;0) and final (CAB)

concurrences in the shock wave spacetime with aT ¼ 1. In
all figures, detector B is fixed at the position zB=T ¼ 7
which is located on the u < u0 part of shock wave
spacetime (see Fig. 4) and the energy gap is ΩT ¼ 2.
Note that in Minkowski space, the noncommunicating
detectors cannot extract entanglement with ΩT ¼ 2, as
shown in Figs. 2(a) and 3.

Figure 5(a–i) depicts the concurrences as functions of
detector A’s static positions zA=T when β ¼ 10−5. As
shown in Fig. 4, detector A encounters the shock wave
around zA=T ¼ 0. For zA=T ≲ −1 the plot indicates that
full entanglement degradation from the initial value of
CAB;0 occurs, due to the fact that the geometry is
Minkowski except along the shock wave trajectory. In
other words, the behavior in zA=T ≲ −1 follows from the
results in Minkowski spacetime given in Figs. 2 and 3. This
is also true for zA=T ≳ 0.5. The growth of CAB in zA=T > 3
comes from the communication effect in jXABð−ΩÞj
between the two detectors, which corresponds to the
bottom left corner in Fig. 1(b). The effect of the shock
wave can be seen in the region zA=T ∈ ½−1; 0.5�; not only is
the degradation effect reduced, but we find CAB > CAB;0—
the initial entanglement is enhanced!. Somewhat surpris-
ingly, the shock wave allows causally disconnected

FIG. 4. Diagram for two pointlike inertial detectors in a shock
wave spacetime. Detectors A and B are static at z ¼ zA and zB,
respectively, and the shock wave travels along u ¼ 0 (the green
wiggling line). The red and blue bars indicate the effective
interaction duration of the detectors.
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detectors to gain more entanglement even when it is
impossible to do this in Minkowski spacetime.
Figure 5(a–ii) shows the β dependence of the concur-

rences when zA=T ¼ −0.5 (i.e., L=T ¼ 7.5), where maxi-
mal entanglement enhancement occurs, with ΩT ¼ 2,
λ ¼ 1=10, and θ ¼ 0. We find that entanglement enhance-
ment by the shock wave is possible so long as β ≲ 10−3.
Recall that for any β, only degradation occurs for these
parameters in Minkowski spacetime. Furthermore, even
whenΩT ¼ 7 as in Figs. 2(b) and 2(c), the initial amount of
entanglement needs to be β ≲ 10−17 in order to extract
entanglement. In this sense, a shock wave drastically assists
extraction of entanglement.
However, the shock wave does not always enhance

entanglement. In Fig. 5(b), we plot the final concurrence
when the detectors are initially maximally entangled,
CAB;0 ¼ 1. In both Minkowski (dotted curve) and shock
wave (solid) spacetimes, degradation takes place as
expected. Notice that the shock wave could either reduce
or assist degradation. This is due to the fact that the
concurrence is now determined by (28); the degradation

part Re½YA þ YB� is no longer suppressed by small β2 and
the harvesting part jXABð−ΩÞj is negligible.

V. CONCLUSION

We considered two initially entangled UDW detectors
interacting with a quantum scalar field and examined how
their initial entanglement behaves after the interaction. The
entanglement harvesting protocol allows initially uncorre-
lated detectors to extract entanglement from the field in its
vacuum state without signalling, whereas entanglement
degradation is the process in which initial entanglement
decreases due to the detectors becoming entangled with the
field. We have investigated which phenomenon is dominant
when the detectors are neither uncorrelated nor maximally
entangled.
Such an analysis is known to be difficult when a

perturbative method is employed since there is a UV-
divergent element in the density matrix for the pointlike
detectors (and hence in entanglement measures). One can
circumvent this issue by introducing a smearing function
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FIG. 5. (a–i) Initial and final concurrences when ΩT ¼ 2, β ¼ 10−5, λ ¼ 1=10, and θ ¼ 0. The location of detector B is fixed at
zB=T ¼ 7. Detector A encounters the shock wave near zA=T ¼ 0. (a–ii) The concurrences when ΩT ¼ 2, zA=T ¼ −0.5 and zB=T ¼ 7
with varying initial amount of entanglement. Two curves will cross and degradation takes place after log10 β > −3. (b) Final concurrence
CAB for initially maximally entangled detectors (CAB;0 ¼ 1) with ΩT ¼ 2 and θ ¼ 0. The green dotted curve corresponds to detectors in
Minkowski spacetime. In this case, the shock wave can either reduce or amplify the degradation effect.
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and performing an approximation to an entanglement
measure such as concurrence and negativity. We have dealt
with this by introducing an approximation for weakly
entangled detectors, supplementing the method used for
initially sufficiently entangled detectors [35]. Under any of
these approximations, the divergent element is absent in the
entanglement measure.
With these approximations, we examined the fate of

entanglement in detectors at rest in (3þ 1)-dimensional
Minkowski spacetime. We found that initially weakly
entangled detectors can gain entanglement even when they
are causally disconnected. This can be understood by
looking at the distinct contributions to the concurrence:
one part is from the initial entanglement, another yields
entanglement harvesting, and a third causes entanglement
degradation. The detectors extract entanglement if the
entanglement harvesting contribution to the concurrence
exceeds the other two.Otherwise, entanglement degradation
takes place and the initial amount of entanglement will be
reduced after the interaction.
The fact that only weakly entangled detectors can gain

entanglement is consistent with previous results (Ref. [34])
demonstrating that, nonperturbatively, quantum mutual
information (i.e., total correlations including classical ones)
between entangled detectors can be enhanced only when
their initial entanglement is weak.3 It is important to note,
however, that the detectors can gain mutual information
even when they are causally disconnected. Our results
provide an interesting contrast insofar as we employ a
perturbative analysis with a Gaussian switching function
and near-pointlike detectors.
We have also analyzed the energy gap Ω dependence

for entanglement extraction. In the entanglement harvest-
ing scenario [12], detectors with Gaussian switching
can extract entanglement so long as their energy gap is
above the minimum value: Ω ≥ Ωmin. This feature allows
one to harvest entanglement with detectors arbitrarily far
away from each other once a sufficiently large energy gap
is chosen. This is not the case for entangled detectors.
Instead there is a range Ω ∈ ½Ωmin;Ωmax� within which
the detectors can extract entanglement. This range tends
to zero as the distance between the detectors increases.
This suggests that entanglement extraction is not
allowed for detectors arbitrarily far away from each other.
Nevertheless, the maximum value Ωmax will increase as
the initial state approaches a separable state, recovering
the results of the standard entanglement harvesting
protocol.
We found that the presence of a gravitational shock

wave, in which the metric is identical to that of Minkowski
spacetime except along a single null trajectory, significantly

modifies these effects. Detectors far from the shock wave
exhibit the same behavior as in Minkowski spacetime.
However as they come closer to the shock wave their
behavior markedly changes. The shock wave enhances
entanglement as compared to Minkowski spacetime.
The range Ω ∈ ½Ωmin;Ωmax� of energy gap that enables
entanglement extraction becomes wider, which in turn
allows the detectors to gain entanglement for smaller
values of Ω.
Although the shock wave enhances entanglement, its

extraction is still limited to weakly entangled detectors. If
the initial state of the detectors is sufficiently entangled, the
shock wave weakens the effect of degradation rather than
enhancing extraction of correlations. Nevertheless, our
results show that spacetime geometry can enhance initial
entanglement harvesting, indicating that the quantum
vacuum is indeed a resource (at least in principle) for
carrying out quantum information tasks.
We close by commenting on a recent similar investiga-

tion of the negativity [45] of two initially entangled
detectors in Minkowski spacetime with constant switching.
Using an approximation corresponding to our sufficiently
entangled case, the detectors were found to only experience
entanglement degradation, consistent with our results for
sufficiently entangled detectors with an infinitely long
interaction.
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APPENDIX: SMEARED DETECTORS
IN MINKOWSKI SPACETIME

The imaginary part of λ2Yk ≡ Jð−þÞ
kk þ Jðþ−Þ�

kk in r14 for
pointlike detectors is known to be divergent. We will show
that this term can be regularized by introducing finite-sized
UDW detectors as suggested in [32]. In particular, we
consider initially entangled smeared detectors at rest in
(3þ 1)-dimensional Minkowski spacetime.
Assuming a massless scalar field, the mode decompo-

sition of ϕ̂ðxðtÞÞ is known to be

ϕ̂ðt;xÞ¼
Z

d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32jkj

p ðâke−ijkjtþik·xþ â†ke
ijkjt−ik·xÞ; ðA1Þ

and so the Wightman function becomes

Wðxjðt1Þ; ykðt2ÞÞ ¼
Z

d3k
ð2πÞ32jkj e

−ijkjðt1−t2Þþik·ðx−yÞ: ðA2Þ

Let us first consider λ2YA ≡ Jð−þÞ
AA þ Jðþ−Þ�

AA for detector
A in r14. We find

3The nonperturbative method employed in [34] uses a delta-
switching function, which cannot harvest entanglement at all if
each detector switches only once [43,44].
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Jð−þÞ
AA þ Jðþ−Þ�

AA

¼ −2λ2A

Z
R
dt1

Z
t1

−∞
dt2χAðt1ÞχAðt2Þe−iΩAðt1−t2Þ

Z
d3xFAðx − xAÞ

Z
d3yFAðy − xAÞRe½WðxAðt1Þ; yAðt2ÞÞ� ðA3Þ

¼ −2λ2A

Z
d3k
2jkj F̃AðkÞF̃Að−kÞ

Z
R
dt1

Z
t1

−∞
dt2χAðt1ÞχAðt2Þe−iΩAðt1−t2Þ cos½jkjðt1 − t2Þ�; ðA4Þ

where we have performed the Fourier transform:

F̃jðkÞ ¼
Z

d3xffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p FjðxÞeik·x: ðA5Þ

Note that F̃jð−kÞ ¼ F̃jðkÞ if FjðxÞ ∈ R. With a Gaussian switching centered at t ¼ tA;0, χAðtÞ ¼ e−ðt−tA;0Þ2=T2

,

Z
R
dt1

Z
t1

−∞
dt2e−ðt1−tA;0Þ

2=T2

e−ðt2−tA;0Þ2=T2

e−iΩAðt1−t2Þ cos½jkjðt1 − t2Þ�

¼ T
ffiffiffiffiffiffi
2π

p

2

Z
∞

0

du e−u
2=2T2

e−iΩu cosðjkjuÞ ðA6Þ

¼ πT2

4
e−T

2ðjkjþΩÞ2=2
�
1þ e2jkjT2Ω

�
1þ ierfi

Tðjkj − ΩÞffiffiffi
2

p
�
− ierfi

Tðjkj þΩÞffiffiffi
2

p
	
; ðA7Þ

and therefore, using the smearing function (30) and its Fourier transform, F̃jðkÞ ¼ e−jkj2σ2=4=
ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p
,

Jð−þÞ
AA þ Jðþ−Þ�

AA

¼ −
λ2AπT

2

2

Z
d3k
2jkj F̃

2
AðkÞe−T2ðjkjþΩÞ2=2

�
1þ e2jkjT2Ω

�
1þ ierfi

Tðjkj − ΩÞffiffiffi
2

p
�
− ierfi

Tðjkj þΩÞffiffiffi
2

p
	

ðA8Þ

¼ −
λ2Ae

−T2Ω2=2

8πð1þ σ2=T2Þ3=2
�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2=T2

q
þ eT

2Ω2=2ð1þσ2=T2Þ ffiffiffiffiffiffi
2π

p
TΩerf

TΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ σ2=T2Þ

p
	

− i
λ2AT

2

8π

Z
∞

0

djkjjkje−jkj2σ2=2
�
e−T

2ðjkj−ΩÞ2=2erfi
Tðjkj − ΩÞffiffiffi

2
p − e−T

2ðjkjþΩÞ2=2erfi
Tðjkj þΩÞffiffiffi

2
p

	
; ðA9Þ

where we have used d3k ¼ jkj2 sin θdjkjdθdφ with jkj ∈ ½0;∞Þ; θ ∈ ½0; π�, and φ ∈ ½0; 2πÞ. The real and imaginary parts of

Jð−þÞ
kk þ Jðþ−Þ�

kk for smeared detectors are shown in Fig. 6.
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FIG. 6. Real and imaginary parts of Jð−þÞ
kk þ Jðþ−Þ�

kk with σ=T ¼ 1 and λ ¼ 1=10. The real part converges quickly to 0 with large jΩTj
while the imaginary part is nonzero for a wide range of ΩT.
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Similar calculations yield the remaining terms in r14, r22, and r33. In particular, the expressions for Ið−þÞ
kk in r22 and r33

in (31c) and for JðþþÞ
AB (and its counterparts) in (31b) that contribute to λ2X�

ABð−ΩÞ≡ JðþþÞ�
AB þ JðþþÞ�

BA in r14 can be found
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