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We consider the spatially nonlocal response functions of graphene obtained on the basis of first
principles of quantum field theory using the polarization tensor in the areas of both the on- and off-the-
mass-shell waves. We show that at zero temperature the longitudinal permittivity of graphene is the regular
function, whereas the transverse one possesses a double pole for any nonzero wave vector. According to our
results, both the longitudinal and transverse permittivities satisfy the dispersion (Kramers-Kronig) relations
connecting their real and imaginary parts, as well as expressing each of these permittivities along the
imaginary frequency axis via its imaginary part. For the transverse permittivity, we find the form of an
additional term arising in the dispersion relations due to the presence of a double pole. The form of
dispersion relations is unaffected by the branch points that arise on the real frequency axis in the presence of
spatial nonlocality. We discuss the obtained results in connection with the well-known problem of the
Lifshitz theory, which has long been found in conflict with the measurement data when using the much
studied response function of metals. A possible way of attack on this problem based on the case of graphene
is suggested.
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I. INTRODUCTION

The 2D sheet of carbon atoms known as graphene [1–3]
has attracted considerable interest not only in condensed
matter physics, but in quantum field theory as well. This is
because at energies below approximately 3 eV [4] graphene
is described by the relativistic Dirac equation in (2þ 1)
dimensions, where the role of the speed of light c is played
by a factor of 300 smaller Fermi velocity vF. As a result,
graphene makes it possible to test the effects of relativistic
quantum field theory, like the Klein paradox [5] or pair
production from vacuum by strong external fields [6–11],
on a laboratory table.
Graphene is unique in that its response functions to the

electromagnetic fluctuations can be expressed via the
polarization tensor and found starting from the first
principles of quantum field theory. There is considerable
literature devoted to this subject (see the list of references in
Ref. [12] where some partial results where obtained).
Finally, the polarization tensor of both pristine and gapped
and doped graphene at any temperature was calculated
in Refs. [13,14]. At nonzero temperature, the results of
Ref. [14] where obtained only at the pure imaginary
Matsubara frequencies. Later on, they were analytically
continued to the entire complex frequency plane for the
cases of gapped [15] and doped [16] graphene.
One of the predictions of quantum field theory, which

has received widespread attention during the last years, is

the Casimir effect [17]. It is the attractive force acting
between two parallel uncharged material plates in vacuum,
which is caused by the zero-point and thermal fluctuations
of quantum fields. In the framework of the Lifshitz theory
[18,19], the Casimir force is expressed through the reflec-
tion coefficients of electromagnetic fluctuations on the
plates. In so doing, both the on- and off-the-mass-shell
fluctuations contribute to the result. For graphene, the exact
reflection coefficients were written in terms of the polari-
zation tensor [13,14], and the theoretical predictions of the
Lifshitz theory were found to be in very good agreement
with measurements of the Casimir interaction [20–23].
Quite to the contrary, many measurements of the Casimir

force between metallic and dielectric bodies performed
during the last 20 years were found in disagreement with
theoretical predictions of the Lifshitz theory if the reflection
coefficients are expressed via the universally accepted and
well-studied frequency-dependent dielectric permittivities
of the plate materials (see Refs. [24–28] for a review). The
key formal feature of these permittivity functions is that
they possess a simple pole at zero frequency associated
either with the role of conduction electrons in metals or the
dc conductivity of dielectrics (the Drude-like behavior). It
was shown also that an agreement between experiment and
theory is restored if the dielectric permittivity of metallic
plates at low frequency is described by the plasma model
possessing a double pole at zero frequency [24–28]. As to
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dielectrics, the theoretical predictions are brought in agree-
ment with the measurement data if the dc conductivity is
omitted in computations, i.e., the regular at zero frequency
dielectric permittivity is used [24–28].
The surprising thing is that the plasmamodel does not take

into account the dissipation properties of conduction elec-
trons and it is not applicable at low frequencies. In a similar
way, the dc conductivity of dielectrics is really an existing
effect, and the theoretical description should not become
more precise if we omit it. Moreover, the Lifshitz theory was
found in disagreement with the third law of thermodynamics
(the Nernst heat theorem) for the basic model of metals with
perfect crystal lattices and for all dielectrics if the Drude-like
response functions are used in calculations of the Casimir
force. For the regular response functions or those possessing
a double pole at zero frequency, itwas proven that theLifshitz
theory meets the requirements of thermodynamics (see
Refs. [24–28] for a review).
An important distinction between the response func-

tions of the 3D materials and graphene is that the former are
more or less of the phenomenological character, whereas
the latter are found from the first principles of quantum
field theory. Up to now, precise computations of the
Casimir interaction in graphene systems were based
directly on the polarization tensor, and the closely related
to it spatially nonlocal dielectric permittivities of graphene
did not receive due attention. Keeping in mind, however,
that for graphene described by the polarization tensor, the
Lifshitz theory is in perfect agreement with the measure-
ment data [20–23], a comparison between the exact
dielectric permittivities of graphene and the phenomeno-
logical permittivities of ordinary materials may be helpful
in understanding the roots of the problems arising for them.
In this paper, we consider the spatially nonlocal dielectric

permittivities of graphene obtained from the polarization
tensor in the areas of both the on- and off-the-mass-shell
waves. To keep calculations from becoming too involved
and to make the results most transparent, we restrict our
attention to the case of a pristine graphene at zero temper-
ature described by the standard Dirac model. Both the
longitudinal and transverse dielectric permittivities of gra-
phene are obtained. It is shown that the longitudinal
permittivity is the regular function at zero frequency,
whereas the transverse one possesses at zero frequency a
double pole for any nonzero wave vector.
We compare the forms of dispersion (Kramers-Kronig)

relations for the response functions that are regular at zero
frequency or possess either a simple or a double pole and
present several examples from condensed matter physics
and quantum field theory. The dispersion relations in the
forms appropriate for the longitudinal and transverse
permittivities of graphene are proven with an account of
the spatially nonlocal effects. (Previously the Kramers-
Kronig relations for the conductivities of graphene
expressed via the polarization tensor were proven only
in the area of propagating waves on the mass shell, where

the effects of nonlocality are negligibly small and can be
neglected [29].) The dispersion relations expressing the
permittivities of graphene along the imaginary frequency
axis are also obtained with an account of spatial non-
locality. It is shown that the form of dispersion relations is
not affected by the branch points that are present on the real
frequency axis for any nonzero wave vector. A comparison
between computations of the Casimir force for graphene
sheets and metallic plates allows us to conclude that the
commonly used dielectric permittivities of metals may be
inapplicable in the area of off-the-mass-shell electromag-
netic fluctuations.
The paper is organized as follows. In Sec. II, we compare

the dispersion relations valid for the response functions that
are regular or have a simple or a double pole at zero
frequency. Section III presents the explicit expressions for
the polarization tensor and for the spatially nonlocal
longitudinal and transverse dielectric permittivities of a
pristine graphene. The dispersion relations for the real and
imaginary parts of the dielectric permittivities of graphene
with due regard to the off-the-mass-shell waves are proven
in Sec. IV. Section V is devoted to the dispersion relations
for the permittivities along the imaginary frequency axis.
Section VI contains our conclusions and a discussion of
implications of the obtained results to the Casimir effect. In
Appendices A and B, several integrals used in Secs. IVand
V are calculated.

II. DISPERSION RELATIONS FOR THE REGULAR
AND HAVING SIMPLE OR DOUBLE POLES

RESPONSE FUNCTIONS

It is well known that the response functions should be
analytic in the upper half-plane of complex frequencies.
This demand is equivalent to the condition of causality
[30]. The response function of a dielectric body to the
electromagnetic field is usually called the electric suscep-
tibility,

χðωÞ ¼ εðωÞ − 1; ð1Þ

where εðωÞ is the frequency-dependent dielectric permit-
tivity. According to the Cauchy theorem, any function χðωÞ
analytic in the upper half-plane of complex ω satisfies the
dispersion relations, which are also called the Kramers-
Kronig relations. The form of these relations, however,
depends on the properties of χðωÞ at the point ω ¼ 0.
If χIðωÞ and the corresponding permittivity εIðωÞ are
regular at ω ¼ 0, the dispersion relations take the simplest
form [30],

Re εIðωÞ − 1 ¼ 1

π

Z
�

∞

−∞

Im εIðxÞ
x − ω

dx;

Im εIðωÞ ¼ −
1

π

Z
�∞

−∞

Re εIðxÞ
x − ω

dx; ð2Þ
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where the integrals on the right-hand sides should be
understood as the principal values.
The most typical example is the electric susceptibility

of an insulator represented in terms of the set of K
oscillators [31],

εIðωÞ − 1 ¼
XK
j¼1

gj
ω2
j − ω2 − iγjω

; ð3Þ

where gj are oscillator strengths, ωj ≠ 0 are the oscillator
frequencies, and γj are the damping parameters. From
Eq. (3), one obtains the finite static dielectric permittiv-
ity εIð0Þ < ∞.
The commonly accepted Drude model describing the

conduction electrons in metals,

εDðωÞ − 1 ¼ −
ω2
p

ωðωþ iγÞ ; ð4Þ

where ωp is the plasma frequency and γ is the relaxation
parameter, assumes that the imaginary part of the electric
susceptibility has a simple pole at ω ¼ 0. In this case, when
deriving the dispersion relations using the Cauchy theorem,
one should bypass the pole along a semicircle of an infinitely
small radius. As a result, the first equality in Eq. (2) remains
unchanged, whereas the second one is replaced with

Im εDðωÞ ¼ −
1

π

Z
�

∞

−∞

Re εDðxÞ
x − ω

dxþ ω2
p

γ

1

ω
: ð5Þ

The additional term on the right-hand side of Eq. (5) shows
the asymptotic behavior of Im εDðωÞ at ω ¼ 0.
The electric susceptibilities having a double pole at zero

frequency are not as widely used as the previous two.
Moreover, there are some misleading statements in the
literature concerning these susceptibilities and associated
dispersion relations. As mentioned in the Introduction, the
theoretical predictions of the Lifshitz theory are in agree-
ment with experiments on measuring the Casimir inter-
action between metallic test bodies if the low-frequency
behavior of the dielectric permittivity is described by the
plasma model

εpðωÞ − 1 ¼ −
ω2
p

ω2
; ð6Þ

which has a double pole at zero frequency. This equation is
obtained from Eq. (4) by setting γ ¼ 0, i.e., by omitting the
dissipation properties of conduction electrons. These prop-
erties are well studied and play an important role in
numerous physical phenomena, but, surprisingly, when
included in the Lifshitz theory, they are in contradiction
with the measurement data.
Computations using the Lifshitz theory should take

into account both conduction and bound (core) electrons.

This could be made by considering the generalized Drude-
or plasmalike electric susceptibilities where the core
electrons are described by the oscillator term (3). For
example, the generalized plasmalike susceptibility leading
to agreement between the Lifshitz theory and the meas-
urement data is given by

εgpðωÞ − 1 ¼ −
ω2
p

ω2
þ
XK
j¼1

gj
ω2
j − ω2 − iγjω

: ð7Þ

This equation presents an analytic function in the upper
half-plane of complexω. The real part of this equation has a
double pole at ω ¼ 0. Therefore, the standard derivation
using the Cauchy theorem with due attention to passing
around the point ω ¼ 0 results in the dispersion relations
(see Refs. [25,32] for a detailed derivation)

Re εgpðωÞ − 1 ¼ 1

π

Z
�∞

−∞

Im εgpðxÞ
x − ω

dx −
ω2
p

ω2
;

Im εgpðωÞ ¼ −
1

π

Z
�

∞

−∞

dx
x − ω

�
Re εgpðxÞ þ

ω2
p

x2

�
: ð8Þ

For a simple plasma model (6), one has Im εpðωÞ ¼ 0

and, taking into account thatZ
�∞

−∞

dx
x − ω

¼ 0; ð9Þ

Eq. (8) results in the identities

Re εpðωÞ − 1 ¼ εpðωÞ − 1 ¼ −
ω2
p

ω2
;

Im εpðωÞ ¼ 0: ð10Þ

Thus, both functions (6) and (7) satisfy the dispersion
relations in the form valid for the electric susceptibilities
possessing a double pole at zero frequency.
In spite of these facts, there are statements in the

literature that “a material with strictly real εðωÞ, at all
frequencies, is inadmissible. Indeed, such a material would
violate the Kramers-Kronig relations…” [33] and “a loss-
less dispersion is incompatible with the Kramers-Kronig
relations” [34]. It was also stated that “the second order
pole cannot exist in any realistic plasma (even as a
meaningful approximation)” [33] and “the second order
pole in (6) is an artifact due to use of a model which is
inadmissible at low frequencies” [34].
The statements of this kind are based on a confusion. It is

true that the conduction electrons in metals possess
the dissipation properties. It is not true, however, that
the lossless response functions are incompatible with the
Kramers-Kronig relations. It is a matter of fact of math-
ematics that any function analytic in the upper half-plane of
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complex frequency (including the ones that take real values
along the real frequency axis) satisfy these relations.
As to the response functions possessing the double

poles at zero frequency, they are widely used in the
literature. One could mention the Lindhard theory, which
describes the screening of an electric field by the charge
carriers in metals in the random phase approximation
[35]. The transverse dielectric permittivity of a metal that
describes the response to an electric field directed
perpendicular to the wave vector obtained in Ref. [35]
has the double pole at ω ¼ 0. In doing so, the longi-
tudinal permittivity describing the dielectric response to
an electric field parallel to the wave vector remains
regular at zero frequency. An example of the second-
order pole in the transverse response function of an
electron gas in the linear response theory is considered in
Ref. [36]. Mention should be made also of the dispersion
relations for the scattering amplitudes in quantum
mechanics and quantum field theory [37,38]. For a
number of processes, the S matrix and the scattering
amplitudes have double poles (see, for instance,
Refs. [39–42]). These amplitudes satisfy the dispersion
relations with appropriate subtractions.
The phenomenological spatially nonlocal transverse

permittivities, which possess the double pole at zero
frequency for a nonzero wave vector and coincide with
the Drude model (4) for a vanishing wave vector, were
suggested in Refs. [43,44]. It was shown that these
permittivities satisfy the Kramers-Kronig relations and
bring the Lifshitz theory in agreement with the measure-
ment data of all experiments on measuring the Casimir
force [43–45], as well as with the requirements of thermo-
dynamics [46]. Note that Ref. [33] also underlines that at
low frequencies one should take into account the effects of
spatial dispersion. However, the specific spatially nonlocal
dielectric function derived from the kinetic theory consid-
ered in Ref. [33] does not bring the Lifshitz theory in
agreement with the measurement data.
That is why in the next sections we analyze the analytic

properties of response functions and the form of dispersion
relations for graphene, where all the results are obtained on
the solid foundation of quantum field theory and do not use
any phenomenology.

III. THE POLARIZATION TENSOR AND THE
SPATIALLY NONLOCAL DIELECTRIC

PERMITTIVITIES OF GRAPHENE DESCRIBED
BY THE DIRAC MODEL

The polarization tensor of graphene Πμνðω; kÞ, where μ,
ν ¼ 0, 1, 2, ω is the frequency, and k is the magnitude
of the two-dimensional wave vector, was calculated in
Refs. [13,14] at the pure imaginary Matsubara frequencies
in the one-loop approximation and analytically continued
to the entire complex frequency plane in Ref. [15]. This
tensor can be expressed via the two independent quantities,

for instance, Π00ðω; kÞ and Πtrðω; kÞ ¼ Πμ
μðω; kÞ. For our

purposes, it is more convenient to use the combination

Πðω; kÞ ¼ k2Πtrðω; kÞ þ 1

c2
ðω2 − c2k2ÞΠ00ðω; kÞ ð11Þ

instead ofΠtrðω; kÞ. Below we consider the simplest case of
a pristine (undoped and ungapped) graphene at zero
temperature.
The specific expressions for the polarization tensor

depend on the frequency region under consideration.
Thus, for −vFk < ω < vFk (we recall that vF ≈ c=300 is
the Fermi velocity for graphene), it holds [13–15] that

Π00ðω; kÞ ¼
παℏk2cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fk

2 − ω2
p ;

Πðω; kÞ ¼ παℏ
k2

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fk

2 − ω2

q
; ð12Þ

where α ¼ e2=ðℏcÞ ≈ 1=137 is the fine structure constant.
In the frequency regions ω > vFk and ω < −vFk, one

obtains [13–15]

Π00ðω; kÞ ¼ �i
παℏk2cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − v2Fk

2
p ;

Πðω; kÞ ¼ ∓iπαℏ
k2

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − v2Fk

2

q
; ð13Þ

where the upper and lower signs stand for the positive and
negative ω, respectively.
The polarization tensor is directly connected to the

spatially nonlocal electric susceptibilities, density-density
correlation functions, and dielectric permittivities of gra-
phene. Thus, the longitudinal and transverse electric
susceptibilities and permittivities of graphene are expressed
as [47–49]

εLðω; kÞ − 1 ¼ 1

2ℏk
Π00ðω; kÞ;

εTrðω; kÞ − 1 ¼ −
c2

2ℏkω2
Πðω; kÞ: ð14Þ

Substituting the first equalities of Eqs. (12) and (13) in
the first line of Eq. (14), we find expressions for the
longitudinal electric susceptibility and dielectric permittiv-
ity of graphene in different frequency regions,

εLðω; kÞ − 1 ¼
8<
:

παkc
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fk

2−ω2
p ; jωj < vFk;

�i παkc
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−v2Fk

2
p ; jωj > vFk:

ð15Þ

In the second line of this equation, the plus sign stands for
the positive ω (ω > vFk) and the minus sign stands for the
negative ω (ω < −vFk).
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As seen from Eq. (15), the longitudinal dielectric
permittivity of graphene is regular at zero frequency for
any wave vector. Thus, in this respect, it is somewhat
similar to the permittivity of an insulator.
The transverse electric susceptibility and dielectric

permittivity of graphene deserve a closer examination.
Substituting the second equalities of Eqs. (12) and (13)
in the second line of Eq. (14), we obtain expressions for the
transverse electric susceptibility and dielectric permittivity
of graphene,

εTrðω; kÞ− 1¼
8<
:

− παkc
2ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fk

2−ω2
p

; jωj< vFk;

�i παkc
2ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−v2Fk

2
p

; jωj> vFk;
ð16Þ

where again the upper sign in the second line of this
equation stands for the positive ω and the lower sign stands
for the negative ω.
As is seen from Eq. (16), the real part of the transverse

electric susceptibility and dielectric permittivity of gra-
phene for any nonzero wave vector k possesses the double
pole at zero frequency. In this case, the presence of the
double pole in the response function is a direct consequence
of the quantum field theoretical formalism without resort-
ing to any phenomenological approach.
The obtained dielectric permittivities of graphene are the

analytic functions in the upper half-plane of complex
frequency. The real and imaginary parts of these permit-
tivities are the even and odd functions under the change of
the sign of frequency, respectively, with unchanged k,

Re εL;Trðω; kÞ ¼ Re εL;Trð−ω; kÞ;
Im εL;Trðω; kÞ ¼ −Im εL;Trð−ω; kÞ; ð17Þ

as it should be for the nonlocal response functions [30]. For
the positive ω, both Im εLðω; kÞ and Im εTrðω; kÞ are
positive. The branch points that are present in both
εLðω; kÞ and εTrðω; kÞ at ω ¼ �vFk for any nonzero k
are considered in Sec. V. In the next section, we elucidate
the form of dispersion relations satisfied by the real and
imaginary parts of the response functions of graphene.

IV. THE DISPERSION RELATIONS
FOR GRAPHENE WITH REGARD

TO THE OFF-THE-MASS-SHELL WAVES

The response functions of graphene (15) and (16) are
written for both the on- and off-the-mass-shell waves. In
Ref. [29], the Kramers-Kronig relations for the conduc-
tivity of graphene were obtained only for the propagating
waves on the mass shell, which satisfy the condition
ω > kc. In this case,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − v2Fk

2

q
¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
vFk
ω

�
2

s

¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
vF
c

�
2
�
kc
ω

�
2

s
≈ ω; ð18Þ

and one can neglect the effects of spatial nonlocality. Below
we consider the response functions to the on- and off-the-
mass-shell waves on equal terms.
We start with the most interesting case of the transverse

dielectric permittivity, εTrðω; kÞ, which possesses a double
pole at zero frequency. In this case, according to Eq. (16),
for the real part of εTrðω; kÞ one has

Re εTrðω;kÞ¼
�
1− παkc

2ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fk

2−ω2
p

; jωj<vFk;

1; jωj>vFk:
ð19Þ

The imaginary part of εTrðω; kÞ takes the form

Im εTrðω; kÞ ¼

8>>><
>>>:

0; jωj < vFk;
παkc
2ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − v2Fk

2
p

; ω > vFk;

− παkc
2ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − v2Fk

2
p

; ω < −vFk:

ð20Þ

At first we consider the dispersion relation expressing
the real part of εTrðω; kÞ via its imaginary part. Using a
similarity with εgpðωÞ in the dispersion relation (8), which
is valid for the permittivity possessing the double pole at
ω ¼ 0, we consider the function

FTrðω; kÞ − 1 ¼ 1

π

Z
�

∞

−∞

Im εTrðx; kÞ
x − ω

dx −
παk2cvF
2ω2

: ð21Þ

Similar to Eq. (8), the last term on the right-hand side of
Eq. (21) presents the asymptotic behavior of Re εTrðω; kÞ
from Eq. (19) in the limiting case ω → 0.
Now we substitute Eq. (20) in Eq. (21) and obtain

FTrðω; kÞ − 1 ¼ αkc
2

�
−
Z
�

−b

−∞

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − b2

p

x2ðx − ωÞ

þ
Z
�

∞

b

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − b2

p

x2ðx − ωÞ
�
−
παk2cvF
2ω2

; ð22Þ

where the notation b≡ vFk is introduced.
By changing the sign of the integration variable in the

first integral on the right-hand side of Eq. (22), after
identical transformations, we find

FTrðω; kÞ − 1 ¼ αkc

�Z
�∞

b

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − b2

p

xðx2 − ω2Þ −
πb
2ω2

�
: ð23Þ
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Here, we introduce the integration variable y ¼ x2 − b2 and
rewrite Eq. (23) as

FTrðω; kÞ − 1 ¼ αkc
2

�Z
�

∞

0

ffiffiffi
y

p
dy

ðyþ b2Þðyþ b2 − ω2Þ −
πb
ω2

�
:

ð24Þ

Under the condition jωj < b, this integral is easily
calculated using the result 3.223(1) in Ref. [50], leading to

FTrðω; kÞ − 1 ¼ −
παkc
2ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − ω2

p
; ð25Þ

which is in agreement with the first line of Eq. (19) giving
the real part of εTr for jωj < b.
If the opposite condition jωj > b is satisfied, one can use

the integral 3.223(2) in Ref. [50] with the result

FTrðω; kÞ − 1 ¼ 0; ð26Þ

in agreement with the second line of Eq. (19).
Thus, the dispersion relation

Re εTrðω;kÞ− 1¼ 1

π

Z
�∞

−∞

Im εTrðx;kÞ
x−ω

dx−
παk2cvF
2ω2

ð27Þ

is finally proven.
We come now to the inverse dispersion relation express-

ing the imaginary part of εTrðω; kÞ via its real part. Taking
again into account the similarity with the dielectric function
εgp in Eq. (8), we consider the quantity

GTrðω; kÞ ¼ −
1

π

Z
�∞

−∞

dx
x − ω

�
Re εTrðx; kÞ þ παk2cvF

2x2

�
:

ð28Þ

Substituting here Eq. (19) with account of Eq. (9), one
obtains

GTrðω; kÞ ¼ αkc
2

�Z
�

b

−b

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − x2

p

x2ðx − ωÞ − b
Z
�

∞

−∞

dx
x2ðx − ωÞ

�
:

ð29Þ

Now we use the identity

1

x2ðx − ωÞ ¼
1

ω2ðx − ωÞ −
1

ω2x
−

1

ωx2
ð30Þ

in the second integral on the right-hand side of Eq. (29).
Taking into consideration Eq. (9) in its immediate form and
with ω ¼ 0, one finds

Z
�∞

−∞

dx
x2ðx − ωÞ ¼ −

1

ω

Z
�∞

−∞

dx
x2

¼ −
1

ω

�Z
�

b

−b

dx
x2

þ 2

b

�
: ð31Þ

Substituting Eq. (30) in the first integral on the right-
hand side of Eq. (29) and using Eq. (31), we arrive at

GTrðω; kÞ ¼ αkc
2

�
1

ω2

Z
�b

−b

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − x2

p

x − ω

þ 1

ω

Z
�b

−b
dx

b −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − x2

p

x2
þ 2

ω

�
; ð32Þ

where it was taken into account that

Z
�

b

−b
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − x2

p

x
¼ 0; ð33Þ

as an integral of the odd function over the symmetric
interval.
The two integrals on the right-hand side of Eq. (32) are

calculated in Appendix A. Substituting Eqs. (A6) and (A9)
in Eq. (32), we finally obtain

GTrðω; kÞ ¼ αkc
2

8>>><
>>>:

0; jωj < b;

π
ffiffiffiffiffiffiffiffiffiffi
ω2−b2

p
ω2 ; ω > b;

− π
ffiffiffiffiffiffiffiffiffiffi
ω2−b2

p
ω2 ; ω < −b:

ð34Þ

These results are in agreement with the imaginary part
of the transverse dielectric permittivity of graphene
Im εTrðω; kÞ in Eq. (20). Thus, the inverse dispersion
relation takes the form

Im εTrðω; kÞ ¼ −
1

π

Z
�

∞

−∞

dx
x − ω

�
Re εTrðx; kÞ þ παk2cvF

2x2

�
:

ð35Þ

We come now to the dispersion relations for the
longitudinal dielectric permittivity of graphene εLðω; kÞ.
According to Eq. (15), for the real part of this permittivity
one has

Re εLðω; kÞ ¼
(
1þ παkc

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fk

2−ω2
p ; jωj < vFk;

1; jωj > vFk;
ð36Þ

whereas for its imaginary part one obtains
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Im εLðω; kÞ ¼

8>>><
>>>:

0; jωj < vFk;
παkc

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−v2Fk

2
p ; ω > vFk;

− παkc
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−v2Fk

2
p ; ω < −vFk:

ð37Þ

This permittivity is regular at zero frequency. Because of
this, using the similarity with εIðωÞ in Eq. (2), we consider
the function

FLðω; kÞ − 1 ¼ 1

π

Z
�

∞

−∞

Im εLðx; kÞ
x − ω

dx: ð38Þ

Substituting Eq. (37) in Eq. (38), we find

FLðω; kÞ − 1 ¼ αkc
2

�
−
Z
�

−b

−∞

dx

ðx − ωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − b2

p

þ
Z
�∞

b

dx

ðx − ωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − b2

p
�
: ð39Þ

By changing the sign of the integration variable in the first
integral of this equation, after identical transformations we
bring it to the form

FLðω; kÞ − 1 ¼ αkc
Z
�

∞

b

xdx

ðx2 − ω2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − b2

p : ð40Þ

Now we introduce the integration variable u ¼ x2 − b2

and obtain

FLðω; kÞ − 1 ¼ αkc
2

Z
�∞

0

du
ðuþ b2 − ω2Þ ffiffiffi

u
p : ð41Þ

Evaluating the last integral with the help of 3.222(2) in
Ref. [50], we finally find

FLðω; kÞ − 1 ¼
� παkc

2
ffiffiffiffiffiffiffiffiffiffi
b2−ω2

p ; jωj < b;

0; jωj > b:
ð42Þ

These results agree with the real part of the longitudinal
permittivity of graphene in Eq. (36). For this reason, the
first dispersion relation takes the form

Re εLðω; kÞ − 1 ¼ 1

π

Z
�∞

−∞

Im εLðx; kÞ
x − ω

dx: ð43Þ

To prove the validity of the inverse dispersion relation for
εLðω; kÞ, we consider the quantity

GLðω; kÞ ¼ −
1

π

Z
�∞

−∞

Re εLðx; kÞ
x − ω

dx: ð44Þ

Substituting here the real part of εLðω; kÞ from Eq. (36),
one obtains

GLðω; kÞ ¼ −
1

π

Z
�

b

−b

dx
x − ω

�
1þ παkc

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − x2

p
�

−
1

π

�Z
�∞

b

dx
x − ω

þ
Z
�−b

−∞

dx
x − ω

�
: ð45Þ

Combining the last two integrals with the first contribution
to the first integral and taking into account Eq. (9), we
simplify Eq. (45) to

GLðω; kÞ ¼ −
αkc
2

Z
�

b

−b

dx

ðx − ωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − x2

p

¼ −
αkc
2

�Z
�0

−b

dx

ðx − ωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − x2

p

þ
Z
�

b

0

dx

ðx − ωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − x2

p
�
: ð46Þ

By changing the sign of the integration variable in the
first integral, after identical transformations, we rewrite
Eq. (46) as

GLðω; kÞ ¼ αkcω
Z
�b

0

dx

ðω2 − x2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − x2

p : ð47Þ

This integral is calculated using the result 1.2.50(10) in
Ref. [51],

GLðω; kÞ ¼ αkc
2

8>><
>>:

0; jωj < b;
πffiffiffiffiffiffiffiffiffiffi

ω2−b2
p ; ω > b;

− πffiffiffiffiffiffiffiffiffiffi
ω2−b2

p ; ω < −b:
ð48Þ

By comparing Eq. (48) with Eq. (37), one arrives at the
inverse dispersion relation for the longitudinal dielectric
permittivity of graphene,

Im εLðω; kÞ ¼ −
1

π

Z
�

∞

−∞

Re εLðx; kÞ
x − ω

dx: ð49Þ

Hence, the spatially nonlocal dielectric permittivities of
graphene εTrðω; kÞ and εLðω; kÞ satisfy the dispersion
relations given by Eqs. (27) and (35) and by Eqs. (43)
and (49), respectively. These dispersion relations have the
same form as in the case of spatially local permittivities
having a similar pole structure at zero frequency, but
depend on the wave vector magnitude as a parameter.
This is in accordance with the standard approach of
classical electrodynamics of continuous media [30].
The additional terms in the dispersion relations for

graphene (27) and (35) originate from the double pole at
zero frequency, which is present in the real part of the
transverse dielectric permittivity εTrðω; kÞ. This pole is in
some formal analogy to that in the generalized plasmalike
permittivity (7). As a result, the dispersion relations (8), on
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the one hand, and (27) and (35), on the other hand, have a
similar form. It should be remembered, however, that the
pole structure of the response functions of graphene is
derived from the first principles of quantum field theory,
whereas the term −ω2

p=ω2 in the permittivity (7) was
introduced in a phenomenological manner by omitting
the dissipation properties of conduction electrons in order
to bring the Lifshitz theory in agreement with the meas-
urement data. (See Sec. VI for a possible role of these
results for resolving problems in the theoretical description
of the Casimir force between metallic plates.) Note also that
the spatially nonlocal permittivities of graphene are non-
analytic at the branch points ω ¼ �vFk on the real
frequency axis. As is seen from the above and from the
next section, this, however, does not affect the form of
dispersion relations.

V. THE DISPERSION RELATIONS FOR THE
RESPONSE FUNCTIONS OF GRAPHENE

ALONG THE IMAGINARY FREQUENCY AXIS

Here, we derive the dispersion relations representing the
dielectric permittivities of graphene along the imaginary
frequency axis. For this purpose, let us consider the integral

Z
C

ω½εðω; kÞ − 1�
ω2 þ ξ2

dω; ð50Þ

where εðω; kÞ is either the transverse or the longitudinal
permittivity of graphene. The contour C in the plane of
complex ω consists of a semicircleCR of the infinitely large
radius R, three semicircles Cl

ρ, Cr
ρ, and Cρ of the infinitely

small radii ρ around the branch points ω ¼ ∓vFk and
ω ¼ 0, and the real frequency axis (see Fig. 1). The dashed
line in Fig. 1 shows the lower edge of the branch cut
between the points ω ¼ ∓vFk.
Inside of the contour C the function under the integral in

Eq. (50) possesses the single simple pole at the point ω ¼ iξ
of the imaginary frequency axis. Because of this, the integral
(50) is calculated by using the Cauchy residue theorem,

Z
C

ω½εðω; kÞ − 1�
ω2 þ ξ2

dω ¼ 2πiRes
ω¼iξ

ω½εðω; kÞ − 1�
ω2 þ ξ2

¼ πi½εðiξ; kÞ − 1�: ð51Þ

The integral on the left-hand side of Eq. (51) takes
different values for εðω; kÞ ¼ εTrðω; kÞ and εðω; kÞ ¼
εLðω; kÞ. We begin with the first option and consider

HTrðξ; kÞ ¼
Z
C

ω½εTrðω; kÞ − 1�
ω2 þ ξ2

dω: ð52Þ

The quantityHTrðξ; kÞ can be presented as the sum of the
integrals along the real frequency axis from −∞ toþ∞ and
along the contours Cl

ρ, Cρ, Cr
ρ, and CR. In so doing, the

contour CR should be bypassed in the positive direction
(i.e., counterclockwise), whereas the semicircles Cl

ρ, Cρ,
and Cr

ρ are bypassed in the negative direction (i.e.,
clockwise).
It is easily seen that the integral along the contour CR

vanishes. Let us calculate

HTr
Cρ
ðξ; kÞ ¼

Z
Cρ

ω½εTrðω; kÞ − 1�
ω2 þ ξ2

dω; ð53Þ

where εTrðω; kÞ − 1 is explicitly defined by the first line in
Eq. (16). Substituting this explicit expression in Eq. (53),
one obtains

HTr
Cρ
ðξ; kÞ ¼ −

παkc
2

Z
Cρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − ω2

p
dω

ωðω2 þ ξ2Þ : ð54Þ

The semicircle Cρ can be presented in the form
ω ¼ ρeiφ, where φ varies from π to 0. Then Eq. (54) is
rewritten as

HTr
Cρ
ðξ; kÞ ¼ −i

παkc
2

Z
0

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − ρ2e2iφ

p
ρ2e2iφ þ ξ2

dφ

⟶
ρ→0

i
παkc
2

Z
π

0

b
ξ2

dφ ¼ i
π2αkcb
2ξ2

: ð55Þ

In Appendix B, it is proven that

Z
Cl
ρ

ω½εTrðω; kÞ − 1�
ω2 þ ξ2

dω ¼
Z
Cr
ρ

ω½εTrðω; kÞ − 1�
ω2 þ ξ2

dω ¼ 0;

ð56Þ

FIG. 1. The contour of integration C in the upper half-plane of
complex frequency consisting of the real frequency axis, the
semicircle CR of an infinitely large radius R, the semicircles Cl

ρ

and Cr
ρ of the infinitely small radii ρ around the branch points at

ω ¼ ∓vFk, and the semicircle Cρ of an infinite small radius ρ
around the double pole at ω ¼ 0. The lower edge of the branch
cut is shown by the dashed line.
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i.e., the branch points ω ¼ �vFk do not contribute to the
result. Substituting Eqs. (55) and (56) in Eq. (51) written
for εðω; kÞ ¼ εTrðω; kÞ, we find

εTrðiξ; kÞ − 1 ¼ −
i
π

Z
�

∞

−∞

ω½εTrðω; kÞ − 1�
ω2 þ ξ2

dωþ παk2cvF
2ξ2

:

ð57Þ
Taking into account that the following integrals of the

odd functions of ω vanish,

Z
�

∞

0

ωdω
ω2 þ ξ2

¼
Z
�

∞

0

ωRe εTrðω; kÞ
ω2 þ ξ2

dω ¼ 0; ð58Þ

we rewrite Eq. (57) in the form

εTrðiξ; kÞ − 1 ¼ 2

π

Z
�∞

0

ωIm εTrðω; kÞ
ω2 þ ξ2

dωþ παk2cvF
2ξ2

; ð59Þ

which is the final form of the dispersion relation expressing
εTrðiξ; kÞ via Im εTrðω; kÞ. The last term on the right-hand
side of the Eq. (59) originates from the double pole of
εTrðω; kÞ at zero frequency.
We come now to the longitudinal dielectric permittivity

of graphene εLðω; kÞ and consider

HLðξ; kÞ ¼
Z
C

ω½εLðω; kÞ − 1�
ω2 þ ξ2

dω; ð60Þ

where the contour C is shown in Fig. 1. The integral (60) is
again presented as the sum of the integrals along the real
frequency axis and along the contours Cl

ρ, Cρ, Cr
ρ, and CR

with the vanishing integral HL
CR

along the latter in the
limiting case R → ∞.
For the dielectric permittivity εLðω; kÞ given by the first

line of Eq. (15), the point ω ¼ 0 is regular. Because of this

HL
ρ ðξ; kÞ ¼

Z
Cρ

ω½εLðω; kÞ − 1�
ω2 þ ξ2

dω!
ρ→0

0: ð61Þ

The explicit calculation using Eq. (15) confirms this
conclusion.
According to Eq. (15), at the branch points ω ¼ �vFk,

the permittivity εLðω; kÞ diverges by taking the real and
complex values depending on whether the approach to a
singular point along the real frequency axis occurs from the
smaller or larger in magnitude values of frequency. In spite
of this fact, as shown in Appendix B,

Z
Cl
ρ

ω½εLðω; kÞ − 1�
ω2 þ ξ2

dω ¼
Z
Cr
ρ

ω½εLðω; kÞ − 1�
ω2 þ ξ2

dω ¼ 0;

ð62Þ

i.e., the branch points again do not contribute to the result.

Thus, using Eq. (51) written in this case for εLðω; kÞ, one
obtains

εLðiξ; kÞ − 1 ¼ −
i
π

Z
�

∞

−∞

ω½εLðω; kÞ − 1�
ω2 þ ξ2

dω: ð63Þ

With the help of Eq. (58), where Re εTrðω; kÞ is replaced
with Re εLðω; kÞ, this equation can be rewritten in the form

εLðiξ; kÞ − 1 ¼ 2

π

Z
�∞

0

ωIm εLðω; kÞ
ω2 þ ξ2

dω; ð64Þ

which is the standard form of the dispersion relation valid
for the response functions that are regular at zero frequency.
Thus, the presence of the branch points and respective
cut shown in Fig. 1 in the case of graphene makes no
impact on the form of dispersion relations. Because of
this, the statement that the dielectric permittivity has no
singular points on the real frequency axis with the possible
exception of only the coordinate origin [30] is, broadly
speaking, inapplicable in the presence of spatial dispersion.

VI. CONCLUSIONS AND DISCUSSION OF
IMPLICATIONS TO THE CASIMIR EFFECT

In the foregoing, we have investigated the spatially
nonlocal longitudinal and transverse dielectric permittiv-
ities of graphene expressed via the polarization tensor
based on the first principles of quantum field theory. It was
shown that at zero frequency the longitudinal permittivity is
the regular function, whereas the transverse one possesses a
double pole for any nonzero wave vector. The obtained
expressions are valid for any relationship between the
frequency and the wave vector and thus describe the
electromagnetic response of graphene to both the on-
and off-the-mass-shell fields.
According to our results, both the transverse and

longitudinal permittivities of graphene are the analytic
functions in the upper half-plane of complex frequency
and satisfy the dispersion (Kramers-Kronig) relations for
their real and imaginary parts for any value of the wave
vector. In doing so, the dispersion relation for the transverse
permittivity contains the additional term originating from
the presence of a double pole at zero frequency, whereas the
longitudinal permittivity satisfies the standard dispersion
relation valid for dielectric materials. We have also obtained
the dispersion relations expressing the dielectric permittiv-
ities of graphene along the imaginary frequency axis via
their imaginary parts.
It was shown that the form of dispersion relations for the

response functions of graphene is unaffected by the
presence of the branch points, whose position on the real
frequency axis depends on the magnitude of the wave
vector. We emphasize that the dispersion relations express
the principle of causality and are valid for any function that
is analytic in the upper half-plane of complex frequency.
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An application region of some function, satisfying the
dispersion relations, in the theoretical description of a
definite physical phenomenon is a different matter.
However, the spatially nonlocal dielectric permittivities
of graphene considered above are derived on the basis of
first principles of quantum field theory in the framework
of the Dirac model using the polarization tensor. Because of
this, in the application region of this model, their specific
features, including the presence of a double pole at zero
frequency, are of doubtless physical significance.
As discussed in the Introduction, the experimental data

on measuring the Casimir interaction in graphene systems
are in good agreement with theoretical predictions of the
Lifshitz theory when describing the electromagnetic
response of graphene by means of the polarization tensor
[20–23]. The Lifshitz theory using the polarization tensor
was also found in perfect agreement with the third law of
thermodynamics (the Nernst heat theorem) [52,53].
However, the predictions of the Lifshitz theory for metallic
test bodies were found to be in disagreement with the
measurement data and with the Nernst heat theorem when
the response of metals at low frequencies is described by
the dissipative Drude model. An agreement is restored
when using the dissipationless plasma model at low
frequencies where it should not work.
The meaning of the disagreement of the fundamental

Lifshitz theory with the measurement data should not be
underestimated. Sometimes in the literature the following
formulations are used: “experimental measurements of the
Casimir interaction between two metallic objects… show a
better agreement with the theoretical prediction using the
plasma model than with that of the Drude model” [54] or
“somewhat surprisingly, the less realistic dissipationless
plasma model is in better agreement with experiment than
the Drude model” [34]. In several precision Casimir
experiments, however, the Drude model was excluded at
the confidence level up to 99.9% (see Refs. [24,25] for a
review). Moreover, in the differential force measurement,
where the theoretical predictions using the Drude and the
plasma models differ by up to a factor of 1000, the Drude
model was conclusively excluded, whereas the plasma
model was shown to be in agreement with the measurement
data [55]. Thus, the experimental situation demonstrates
not a better or worse agreement, but an exclusion of the
description by means of the Drude model and an agreement
with the description given by the plasma model.
Although a neglect by the dissipation of conduction

electrons at low frequencies cannot be considered as a
satisfactory resolution of the problem, one should, never-
theless, admit that the plasma model has some important
physical property that is missing in the Drude model. The
lesson of graphene suggests that this property is the double
pole at zero frequency, which appears for graphene only at
a nonzero wave vector, i.e., only with account of the spatial

dispersion. This conclusion is in line with the spatially
nonlocal phenomenological permittivities of metals sug-
gested in Refs. [43–46], which almost coincide with the
Drude model for the on-the-mass-shell fields, but deviate
from it for the fields off the mass shell and possess the
double pole at zero frequency.
Recently, the experimental test for the response of metals

to the low-frequency s-polarized fields off the mass shell
was suggested [56,57]. It is based on measuring the
magnetic field of a magnetic dipole oscillating in the
proximity of a metallic plate. The point is that most of
the experiments confirming the validity of the Drude model
were performed in the area of the propagating waves on the
mass shell. As to the area of the s-polarized off-the-mass-
shell waves, it remains little explored. Thus, the available
information for the surface plasmon polaritons is restricted
to only the area of p-polarized waves off the mass shell
[58]. The total internal reflection technique makes it
possible to examine the response of metals to the off-
the-mass-shell fields, but for k only slightly exceeding ω=c
[59–61]. The methods used in the near field optical
microscopy to surpass the diffraction limit [62,63] are also
more suitable for the p-polarized waves off the mass
shell [64].
One can conclude that the already available information

concerning the response functions of graphene obtained on
the solid basis of quantum field theory should be used for a
reanalysis of the low-frequency electromagnetic response
of metals in the area of s-polarized waves off the mass shell
where the necessary experimental information is missing.
In this respect, it seems prospective to continue inves-
tigation of the 3D Dirac materials [65] and to generalize the
obtained results for the case of more complicated physical
systems such as real metals.
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APPENDIX A: INVOLVED INTEGRALS

Here, we calculate the integrals used in Sec. IV. Thus, the
integral that appears in Eq. (32) is

I1 ¼
Z

b

−b

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − x2

p

x − ω
: ðA1Þ

Using the result 1.2.53(9) in Ref. [51], one can present this
integral in the form
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I1 ¼ −
Z

b

−b

xdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − x2

p − ω

Z
b

−b

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − x2

p þ ðb2 − ω2Þ
Z

b

−b

dx

ðx − ωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − x2

p

¼ −πωþ ðb2 − ω2Þ
Z

b

−b

dx

ðx − ωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − x2

p : ðA2Þ

The integral entering Eq. (A2) is rearranged to the formZ
b

−b

dx

ðx − ωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − x2

p ¼
Z

0

−b

dx

ðx − ωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − x2

p þ
Z

b

0

dx

ðx − ωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − x2

p : ðA3Þ

By changing the sign of the integration variable in the first integral on the right-hand side of Eq. (A3), we easily obtainZ
b

−b

dx

ðx − ωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − x2

p ¼ −2ω
Z

b

0

dy

ðω2 − y2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − y2

p : ðA4Þ

The last integral can be evaluated with the help of 1.2.50(10) in Ref. [51] with the result

Z
b

−b

dx

ðx − ωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − x2

p ¼ −2ω
� 0; jωj < b;

π
2jωj

ffiffiffiffiffiffiffiffiffiffi
ω2−b2

p ; jωj > b: ðA5Þ

Substituting this result in Eq. (A2) and taking into
account that ω=jωj ¼ 1 for ω > 0 and ω=jωj ¼ −1 for
ω < 0, we arrive at

I1 ¼
8<
:

−πω; jωj < b;

−πωþ π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − b2

p
; ω > b;

−πω − π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − b2

p
; ω < −b:

ðA6Þ

The second integral that appears in Eq. (32),

I2 ¼
Z

b

−b
dx

b −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − x2

p

x2
; ðA7Þ

is a more simple one. By multiplying the numerator and
denominator by bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − x2

p
, one can rearrange it to the

form

I2 ¼
Z

b

−b

dx

bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − x2

p ¼ 2

Z
b

0

dx

bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − x2

p : ðA8Þ

Introducing the integration variable y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − x2

p
, we

obtain

I2 ¼ 2

Z
b

0

ydy

ðyþ bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − y2

p
¼ 2

Z
b

0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − y2

p − 2b
Z

b

0

dy

ðyþ bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − y2

p
¼ 2 arcsin

y
b

����b
0

þ 2

ffiffiffiffiffiffiffiffiffiffiffi
b − y
bþ y

s ����
b

0

¼ π − 2: ðA9Þ

APPENDIX B: BRANCH POINTS

Here, we calculate the integrals of the form of HTrðξ; kÞ
and HLðξ; kÞ in Eqs. (52) and (60) along the semicircles Cl

ρ

and Cr
ρ around the branch points ω ¼ ∓vFk ¼ ∓b, respec-

tively (see Fig. 1). We begin with

HTr
Cl
ρ
ðξ; kÞ ¼

Z
Cl
ρ

ω½εTrðω; kÞ − 1�
ω2 þ ξ2

dω: ðB1Þ

The semicircle Cl
ρ bypassed in the negative direction can

be described as ω ¼ −bþ ρeiφ, where φ varies from π to 0.
The permittivity εTrðω; kÞ is given by the second and first
lines in Eq. (16) when φ varies from π to π=2 and from π=2
and 0, respectively. Substituting these expressions in
Eq. (B1) and using the equation of a semicircle, one finds

HTr
Cl
ρ
ðξ; kÞ

¼ παkc
2

ρ

�Z
π=2

π
dφ

eiφ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−bþ ρeiφÞ2 − b2

p
ð−bþ ρeiφÞ½ð−bþ ρeiφÞ2 þ ξ2�

− i
Z

0

π=2
dφ

eiφ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − ð−bþ ρeiφÞ2

p
ð−bþ ρeiφÞ½ð−bþ ρeiφÞ2 þ ξ2�

	
: ðB2Þ

From this equation, it is seen that

HTr
Cl
ρ
ðξ; kÞ!

ρ→0
0: ðB3Þ

For the second branch point, we consider the integral

HTr
Cr
ρ
ðξ; kÞ ¼

Z
Cr
ρ

ω½εTrðω; kÞ − 1�
ω2 þ ξ2

dω; ðB4Þ
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where the semicircle is described as ω ¼ bþ ρeiφ and,
again, φ varies from π to 0. Here, however, the permittivity
εTrðω; kÞ is given by the first and second lines of Eq. (16)
when φ varies from π to π=2 and from π=2 and 0,
respectively. Substituting these expressions in Eq. (B4)
and repeating the same calculation as above using the
equation of a semicircle, we obtain

HTr
Cr
ρ
ðξ; kÞ!

ρ→0
0; ðB5Þ

i.e., Eq. (56) in the main text is proven.
Now we consider the quantity

HL
Cl
ρ
ðξ; kÞ ¼

Z
Cl
ρ

ω½εLðω; kÞ − 1�
ω2 þ ξ2

dω; ðB6Þ

related to the longitudinal permittivity of graphene. In this
case, the permittivity is given by Eq. (15), i.e., it diverges at
the branch points ω ¼ ∓b. In the vicinity of the branch
point ω ¼ −b under consideration now, εLðω; kÞ is given
by the second and first lines in Eq. (15) when φ varies from
π to π=2 and from π=2 and 0, respectively. Substituting
these expressions in Eq. (B6) and using the equation of a
semicircle ω ¼ −bþ ρeiφ, we find

HL
Cl
ρ
ðξ;kÞ

¼ παkc
2

�Z
π=2

π
dφ

ρeiφð−bþρeiφÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−bþρeiφÞ2−b2

p
½ð−bþρeiφÞ2þξ2�

þ i
Z

0

π=2
dφ

ρeiφð−bþρeiφÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2− ð−bþρeiφÞ2

p
½ð−bþρeiφÞ2þξ2�

	
:

ðB7Þ

In the limiting case, when ρ goes to zero, Eq. (B7)
reduces to

lim
ρ→0

HL
Cl
ρ
ðξ; kÞ

¼ −
παkcb

2ðb2 þ ξ2

�Z
π=2

π
eiφlim

ρ→0

ρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−bþ ρeiφÞ2 − b2

p dφ

þ i
Z

0

π=2
eiφlim

ρ→0

ρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − ð−bþ ρeiφÞ2

p dφ

	
: ðB8Þ

The limits under the sign of these integrals can be easily
calculated using l’Hôpital’s rule. For example,

lim
ρ→0

ρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2− ð−bþ ρeiφÞ2

p ¼−lim
ρ→0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2− ð−bþ ρeiφÞ2

p
ð−bþ ρeiφÞeiφ ¼ 0;

ðB9Þ

leading, due to Eq. (B8), to

lim
ρ→0

HL
Cl
ρ
ðξ;kÞ ¼ 0: ðB10Þ

The second branch point ω ¼ vFk is considered in
perfect analogy to the above with the same result,

lim
ρ→0

HL
Cr
ρ
ðξ; kÞ ¼ lim

ρ→0

Z
Cr
ρ

ω½εLðω; kÞ − 1�
ω2 þ ξ2

dω ¼ 0: ðB11Þ

This concludes the proof of Eq. (62).
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