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We analyze quantum properties of N ¼ 2 and N ¼ 4 supersymmetric gauge theories formulated in
terms ofN ¼ 1 superfields and investigate the conditions imposed on a renormalization prescription under
which the nonrenormalization theorems are valid. For this purpose in these models we calculate the
two-loop contributions to the anomalous dimensions of all chiral matter superfields and the three-loop
contributions to the β-functions for an arbitraryN ¼ 1 supersymmetric subtraction scheme supplementing
the higher covariant derivative regularization. We demonstrate that, in general, the results do not vanish due
to the scheme dependence, which becomes essential in the considered approximations. However, the two-
loop anomalous dimensions vanish if a subtraction scheme is compatible with the structure of quantum
corrections and does not break the relation between the Yukawa and gauge couplings which follows
from N ¼ 2 supersymmetry. Nevertheless, even under these conditions the three-loop contribution to the
β-function does not in general vanishes forN ¼ 2 supersymmetric theories. To obtain the purely one-loop
β-function, one should also chose an Novikov, Shifman, Vainshtein, and Zakharov (NSVZ) renormaliza-
tion prescription. The similar statements for the higher loop contributions are proved in all orders.

DOI: 10.1103/PhysRevD.107.105006

I. INTRODUCTION

Nonrenormalization theorems essentially improve the
ultraviolet behavior of supersymmetric theories in com-
parison with the nonsupersymmetric case. In particular,
in N ¼ 1 supersymmetric theories the superpotential does
not receive divergent quantum corrections [1], so that the
renormalizations of masses and Yukawa couplings appear
to be related to the renormalization of chiral matter
superfields. Moreover, the β-function of supersymmetric
theories is related to the anomalous dimension of the chiral
matter superfields by the NSVZ equation [2–5]. In theories
with extended supersymmetry the cancellation of diver-
gences is much more significant. In particular, in N ¼ 2
supersymmetric gauge theories all contributions to the
β-function beyond the one-loop approximation vanish
[6–8]. Also the anomalous dimensions of all chiral super-
fields in these theories are equal to 0 [7–9]. Therefore,

choosing a gauge group and a representation for the
hypermultiplet superfields in such a way that the one-loop
β-function vanishes [10], it is possible to construct N ¼ 2
supersymmetric theories finite in all orders [9]. In particu-
lar, N ¼ 4 supersymmetric Yang–Mills theory is finite in
all orders [6,7,11–13] in agreement with a large number of
explicit calculations made in various orders of the pertur-
bation theory [14–22]. Some terms breaking N ¼ 2
supersymmetry but preserving the finiteness have been
constructed in [23–25].
However, it is important to understand how to calculate

quantum corrections in order for the nonrenormalization
theorems to be valid. For example, the NSVZ β-relation
originally obtained from some general arguments is not
satisfied in the DR scheme, when a theory is regularized by
dimensional reduction [26] and divergences are removed
by modified minimal subtractions [27]. This was demon-
strated by explicit three- and four-loop calculations made in
[28–31] (see [32] for review). However, as it turned out, in
these approximations the NSVZ equation can be restored
with the help of a specially tuned finite renormalization,
because its scheme independent consequences [33,34] are
satisfied. This implies that the NSVZ equation is valid only
for special renormalization prescriptions, which are usually
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called the NSVZ schemes. According to [35–38], these
schemes constitute an infinite set and are related by finite
renormalizations which satisfy a special constraint. A
simple prescription giving some NSVZ schemes was
obtained in the case of using the higher covariant derivative
regularizaton [39–41] in the supersymmetric version
[42,43]. According to [44,45], the NSVZ equation is valid
in all orders in the HDþMSL scheme.1 Here HD andMSL
are short for higher derivatives and minimal subtractions of
logarithms, respectively. By definition, in the HDþMSL
scheme a theory is regularized by higher covariant deriv-
atives and divergences are removed by minimal subtraction
of logarithms when only powers of lnΛ=μ (where Λ is the
dimensionful regularization parameter and μ is a renorm-
alization scale) are present in the renormalization constants,
while all finite constants are set to 0. (The proof was based
on the all-order perturbative derivation of the NSVZ
β-function made in [47] forN ¼ 1 supersymmetric electro-
dynamics and in [45,48,49] for the N ¼ 1 non-Abelian
supersymmetric theories. Its various parts have been
verified and confirmed by numerous explicit calculations
(see, e.g., [50–58]), some of them being made in such
orders of the perturbation theory where the scheme
dependence becomes essential.)
For N ¼ 2 supersymmetric gauge theories in the DR

scheme the anomalous dimensions of the chiral matter
superfields vanish at least up to the three-loop approximation
[59]. The two- [60] and three-loop [28] contributions to theβ-
function are also equal to 0. The vanishing of the four-loop
contribution to the β-function of N ¼ 2 supersymmetric
gauge theories formulated in terms of N ¼ 1 superfields in
the DR schemewas an essential ingredient of the calculation
made in [29] where the four-loop β-function was found for
generalN ¼ 1 theories except for one undetermined param-
eter. This in particular implies that the DR scheme is NSVZ
for N ¼ 2 supersymmetric gauge theories, at least, in the
lowest orders.2 However, it is known that the finiteness
in the DR scheme does not in general ensure the finiteness
for an arbitrary renormalization prescription. For instance,
one-loop finite N ¼ 1 supersymmetric theories in the DR
scheme are finite in the two-loop approximation [65], but
are not two-loop finite for a generalN ¼ 1 supersymmetric
renormalization prescription [66]. Moreover, there are DR
calculations for N ¼ 2 supersymmetric Yang–Mills theory
in the component formulation which reveal the three-loop
divergences. Originally these divergences were found in
[63]. They also remained after the result was corrected in
[67]. Note that for the N ¼ 4 supersymmetric Yang–Mills
theory a similar calculation [22] demonstrated the absence of
divergences up to the four-loop approximation. The reason

why the three-loopdivergences found in [63,67] appear is not
now quite clear.
In this paper we consider theories with extended super-

symmetry formulated in terms of N ¼ 1 superfields. This
implies that one supersymmetry is manifest and survives
even at the quantum level, while the others are hidden and
can be broken by quantum corrections. In this case expres-
sions for the two-loop anomalous dimensions and for the
three-loop β-function can be found from the corresponding
general result for N ¼ 1 supersymmetric gauge theories
obtained in [68]. Starting from the expressions obtained in
this way we analyze the conditions which should be imposed
on the renormalization prescription in order for the N ¼ 2
nonrenormalization theorem to be valid. In particular, we
will demonstrate that the renormalization prescription should
be compatible with a structure of quantum corrections,
NSVZ, and N ¼ 2 supersymmetric.
The paper is organized as follows. In Sec. II we recall

how gauge theories with extended supersymmetry can be
formulated in the N ¼ 1 superspace. The higher covariant
derivative regularization, quantization, and renormalization
of these theories in a manifestly N ¼ 1 supersymmetric
way are performed in Sec. III. The two-loop anomalous
dimensions and the three-loop β-function for theories under
consideration are investigated in Sec. IV. We start with the
calculation of the renormalization group functions (RGFs)
defined in terms of the bare couplings in Sec. IVA using the
general result obtained earlier for N ¼ 1 supersymmetric
gauge theories. Next, in Sec. IV B we obtain RGFs defined
in terms of the renormalized couplings for a general
renormalization prescription compatible withN ¼ 1 super-
symmetry. A particular case of the DR scheme is consid-
ered in Sec. IV C. A class of the NSVZ schemes for
theories with extended supersymmetry is described in
Sec. IV D. In Sec. V we analyze the conditions imposed
on the renormalization prescriptions under which the
N ¼ 2 and N ¼ 4 nonrenormalization theorems are sat-
isfied in the case of using the N ¼ 1 formulation of these
theories. In particular, we demonstrate that they are valid for
all NSVZ renormalization prescriptions compatible with
N ¼ 2 supersymmetry and a structure of quantum correc-
tions. This is verified in the lowest nontrivial approximation
in Sec. VA and proved in all orders in Sec. V B. In Sec. VI
we demonstrate the existence of the NSVZ renormalization
prescriptions incompatible with a structure of quantum
corrections for which the higher order corrections to the
anomalous dimensions and the β-function of N ¼ 2 super-
symmetric gauge theories do not vanish. The results of the
paper are briefly summarized in the Conclusion.

II. N = 2 SUPERSYMMETRIC GAUGE THEORIES
IN N = 1 SUPERSPACE

N ¼ 2 supersymmetric theories can be considered as a
particular case of N ¼ 1 supersymmetric theories and

1In the Abelian case one more all-loop NSVZ prescription is
the on-shell scheme [46].

2Due to the mathematical inconsistency [61] dimensional
reduction can break supersymmetry in very higher orders [62–64].
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formulated in the N ¼ 1 superspace. In this formulation
one supersymmetry is manifest, while the other is hidden.
In terms of N ¼ 1 superfields the action of a renormaliz-
able N ¼ 2 supersymmetric gauge theory with a simple
gauge group G in the massless limit is given by the
expression

S ¼ 1

2e20
Re tr

Z
d4xd2θWaWa

þ 1

2e20
tr
Z

d4xd4θΦþe2VΦe−2V

þ 1

4

Z
d4xd4θðϕþe2Vϕþ ϕ̃þe−2VT

ϕ̃Þ

þ
�

iffiffiffi
2

p
Z

d4xd2θϕ̃TΦϕþ c:c:

�
: ð1Þ

Here V is the (Hermitian) gauge superfield with the
strength Wa. The chiral superfield Φ in the adjoint
representation of the group G is its N ¼ 2 superpartner.
The chiral superfields ϕ and ϕ̃ in the representations R0 and
R̄0, respectively, formN ¼ 2 hypermultiplet. In Eq. (1) the
bare gauge coupling constant is denoted by e0. Below we
will also use the notation α0 ≡ e20=4π.
In our notation the generators of the gauge group in the

fundamental representation are denoted by tA and satisfy
the conditions

trðtAtBÞ ¼ 1

2
δAB; ½tA; tB� ¼ ifABCtC; ð2Þ

where fABC are (real) structure constants. The generators of
the representation R0 we will denote by TA. The similar
conditions for them are written as

trðTATBÞ ¼ TðR0ÞδAB; ½TA; TB� ¼ ifABCTC: ð3Þ

Also in what follows we will use the notations

fACDfBCD ≡ C2δ
AB; CðR0Þij ≡ ðTATAÞij;

r≡ dimG: ð4Þ

In the first two terms of Eq. (1) the superfields V and Φ
are expanded in the generators of the fundamental repre-
sentation, V ¼ e0VAtA, Φ ¼ e0ΦAtA, while in the other
terms (which contain the superfields ϕ and ϕ̃) it is
necessary to use the generators of the representation R0,
V ¼ e0VATA, Φ ¼ e0ΦATA.
The N ¼ 4 supersymmetric Yang–Mills theory is a

particular case of the theory (1) which corresponds to
the hypermultiplet in the adjoint representation of the gauge
group, R0 ¼ Adj. In this case TðR0Þ → TðAdjÞ ¼ C2 and
CðR0Þij → CðAdjÞIJ ¼ C2δ

IJ. (Note that we assume that
the gauge group is simple.)

The theory (1) is invariant under the gauge trans-
formations parametrized by a Lie algebra valued chiral
superfield A,

ϕ → eAϕ; ϕ̃ → e−A
T
ϕ̃; Φ → eAΦe−A;

e2V → e−A
þ
e2Ve−A: ð5Þ

Certainly, it is also invariant under two supersymmetries.
One of them is manifest and remains unbroken at
the quantum level if the theory is formulated and quan-
tized in terms of N ¼ 1 superfields. The other super-
symmetry is hidden. It can be written in the superfield
form [69]

δe2V ¼ iη�e2VΦ − iηΦþe2V ; δΦ ¼ −
i
2
WaDaη;

δϕ ¼ −
1

4
ffiffiffi
2

p D̄2ðη�e−2Vϕ̃�Þ; δϕ̃ ¼ 1

4
ffiffiffi
2

p D̄2ðη�e2VT
ϕ�Þ;

ð6Þ

where the parameter η is a chiral superfield which does not
depend on xμ. Although the action (1) is invariant under
these transformations, at the quantum level the hidden
supersymmetry can in general be broken in the case of
using N ¼ 1 quantization.
As we have already mentioned, the theory (1) is a

particular case of a general renormalizable N ¼ 1 super-
symmetric theory (with a simple gauge group), which in the
massless limit is described by the action

S ¼ 1

2e20
Re tr

Z
d4xd2θWaWa þ

1

4

Z
d4xd4θϕ�iðe2VÞi jϕj

þ
�
1

6
λijk0

Z
d4xd2θϕiϕjϕk þ c:c:

�
: ð7Þ

ForN ¼ 2 supersymmetric gauge theories the chiral matter
superfields ϕi ¼ ðΦA;ϕi; ϕ̃

iÞ belong to the reducible rep-
resentation

R ¼ Adjþ R0 þ R̄0: ð8Þ

(In this paper we will denote the indices corresponding
to the representation R by bold letters. The tensors
with such indices (e.g., the matter superfields ϕi or the
bare Yukawa couplings λijk0 ) and group factors correspond-
ing to the representation R we will also indicate by
bold letters.) The Yukawa couplings in N ¼ 2 supersym-
metric gauge theories are related to the gauge coupling,
because

iffiffiffi
2

p
Z

d4xd2θϕ̃TΦϕ ¼ ie0ffiffiffi
2

p ðTAÞij
Z

d4xd2θϕ̃iΦAϕj: ð9Þ
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Comparing this expression with the Yukawa term in the
action (7) we see that the nontrivial components of λijk0 are
written as

ðλ0ÞijA ¼ ðλ0ÞiAj ¼ ðλ0ÞjiA ¼ ðλ0ÞAij ¼ ðλ0ÞjAi
¼ ðλ0ÞAji ¼

ie0ffiffiffi
2

p ðTAÞij: ð10Þ

III. THE HIGHER COVARIANT DERIVATIVE
REGULARIZATION, QUANTIZATION, AND

RENORMALIZATION IN THEN = 1 SUPERSPACE

In this paper we make the regularization and quantization
of N ¼ 2 supersymmetric theories in the N ¼ 1 super-
space, see, e.g., [69–71]. In this formalism one supersym-
metry remains manifest even at the quantum level, while
the second (hidden) one can be broken by quantum
corrections. The regularization will be made with the help
of the Slavnov higher covariant derivative method [39,40]
in the superfield formulation [42,43]. Note that this
regularization in particular includes the insertion of the
Pauli-Villars determinants for removing the residual one-
loop divergences [41]. The details of this construction in
the supersymmetric case can be found in [72,73].
The choice of the higher covariant derivative regulari-

zation is motivated by the fact that the NSVZ equation in
supersymmetric theories is valid in all loops in the HDþ
MSL scheme [44,45], so that the β-function in a certain
loop can easily be obtained starting from the expressions
for the anomalous dimensions of chiral matter superfields
in the previous loops, see, e.g., [68,74,75]. Moreover, there
are various versions of this regularization, which differ in
the form of the higher derivative terms and the Pauli-Villars
masses. Therefore, expressions for various RGFs depend
on a certain number of regularization parameters, which is
very convenient for investigating the scheme dependence.
For quantization of the theories under consideration we

will also use the background field method [76–78] for-
mulated in terms ofN ¼ 1 superfields [69]. It is introduced
by making the replacement

e2V → e2F ðVÞe2V ; ð11Þ

where V denotes the background gauge superfield, and
F ðVÞ is a certain nonlinear function of the quantum
superfield. This function is needed because the quantum
gauge superfield is renormalized in a nonlinear way [79–81].
This nonlinear renormalization can be reduced to the linear
renormalization of an infinite number of parameters present
in F ðVÞ. The lowest nonlinear term in this function was
found in [82,83]. It was explicitly demonstrated [84] that the
renormalization of its coefficient is needed for the renorm-
alization group equations to be satisfied.
Below we will use the general expression for the two-

loop anomalous dimension of the chiral matter superfields
for N ¼ 1 supersymmetric theories regularized by higher
covariant derivatives obtained in [68]. That is why here we
will use the same version of the higher covariant derivative
regularization as in [68]. In this version after adding terms
with higher derivatives denoted by SΛ the regularized
action

Sreg ≡ Sþ SΛ ð12Þ

will contain two regulator functions RðxÞ and FðxÞ which
appear in the kinetic terms for the gauge and matter
superfields, respectively. Note that we will use the same
regulator function FðxÞ for all chiral matter superfields of
the theory, i.e., ΦA, ϕi, and ϕ̃i.
Constructing the regularized action we also take into

account that Eq. (10) follows from N ¼ 2 supersymmetry,
while hidden supersymmetry can in general be broken by
quantum corrections. This implies that for a generalN ¼ 1
supersymmetric renormalization prescription Eq. (10) can
also be broken. Therefore, if the theory is quantized in the
N ¼ 1 superspace, we expect a possible appearance of
quantum corrections in which the Yukawa term does not
satisfy Eq. (10). Thus, the regularized action can be written
in the form

Sreg ¼
1

2e20
Re tr

Z
d4xd2θWa

�
e−2Ve−2F ðVÞR

�
−
∇2∇2

16Λ2

�
e2F ðVÞe2V

�
Adj

Wa

þ 1

2e20
tr
Z

d4xd4θΦþ
�
F

�
−
∇2∇2

16Λ2

�
e2F ðVÞe2V

�
Adj

Φ

þ 1

4

Z
d4xd4θ

�
ϕþF

�
−
∇2∇2

16Λ2

�
e2F ðVÞe2Vϕþ ϕ̃þF

�
−
∇2∇2

16Λ2

�
e−2F ðVÞT e−2VT

ϕ̃

�

þ
�
ie0ffiffiffi
2

p ½ðTAÞij þ ðλA0 Þij�
Z

d4xd2θϕ̃iΦAϕj þ c:c:

�
; ð13Þ
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where the gauge superfield strength is given by the
expression

Wa ¼
1

8
D̄2½e−2Ve−2F ðVÞDaðe2F ðVÞe2VÞ�; ð14Þ

and a new bare parameter ðλA0 Þij [of the order OðαÞ] is
needed to absorb quantum corrections which break the
hidden supersymmetry. In our notation the covariant
derivatives are written as

∇a ¼ Da; ∇ _a ¼ e2F ðVÞe2VD̄ _ae−2Ve−2F ðVÞ; ð15Þ

and the subscript Adj indicates that in the corresponding
expression the generators should be taken in the adjoint
representation,

ða0 þ a1X þ a2X2 þ…ÞAdjY
≡ a0Y þ a1½X; Y� þ a2½X; ½X; Y�� þ… ð16Þ

The gauge fixing procedure is made by adding the gauge
fixing term Sgf and the corresponding Faddeev–Popov and

Nielsen–Kallosh ghosts with the actions SFP and SNK,
respectively. They are rather standard, so that we do not
present the corresponding explicit expressions here. They
can be found, e.g., in [57].
The replacement S → Sreg regularizes divergences

beyond the one-loop approximation, and the dimensionful
parameter Λ plays the role of an ultraviolet cutoff. To
remove the residual one-loop divergences, following [41],
we insert into the generating functional the Pauli-Villars
determinants. According to [72,73], for this purpose one
can use two Pauli-Villars determinants. One of them,

Det−1ðPV;MφÞ ¼
Z

Dφ1Dφ2Dφ3 expðiSφÞ; ð17Þ

cancels divergences coming from the (sub)diagrams with
one loop of the gauge superfield and ghosts. The action Sφ
depends on three chiral Pauli-Villars superfields φ1, φ2, and
φ3 in the adjoint representation of the gauge group, which
have the mass Mφ proportional to the parameter Λ in the
higher derivative term,

Sφ ¼ 1

2e20
tr
Z

d4xd4θ

�
φþ
1

�
R

�
−
∇2∇2

16Λ2

�
e2F ðVÞe2V

�
Adj

φ1 þ φþ
2 ½e2F ðVÞe2V �Adjφ2 þ φþ

3 ½e2F ðVÞe2V�Adjφ3

�

þ 1

2e20

�
tr
Z

d4xd2θMφðφ2
1 þ φ2

2 þ φ2
3Þ þ c:c:

�
: ð18Þ

One more Pauli-Villars determinant removes divergences coming from a loop of chiral matter superfields. For the
considered theory it is reasonable to choose it in the form

Det−1ðPV;MÞ ¼
Z

DΦPVDϕPVDϕ̃PV expðiSPVÞ; ð19Þ

where the action SPV includes the massive Pauli-Villars superfields ΦPV , ϕPV , and ϕ̃PV in the representations Adj, R0, and
R̄0, respectively, and is written as

SPV ¼ 1

4

Z
d4xd4θ

�
ϕþ
PVF

�
−
∇2∇2

16Λ2

�
e2F ðVÞe2VϕPV þ ϕ̃þ

PVF

�
−
∇2∇2

16Λ2

�
e−2F ðVÞT e−2VT

ϕ̃PV

�

þ 1

2e20
tr
Z

d4xd4θΦþ
PV

�
F

�
−
∇2∇2

16Λ2

�
e2F ðVÞe2V

�
Adj

ΦPV þ
�
M
2

Z
d4xd2θ

�
ϕ̃T
PV ϕPV þ

1

e20
trðΦ2

PVÞ
�
þ c:c:

�
: ð20Þ

This implies that all these Pauli-Villars superfields have the mass M (which is also proportional to the parameter Λ). Note
that we always assume that the ratios

a≡M
Λ
; aφ ≡Mφ

Λ
ð21Þ

do not depend on the bare couplings. After inserting the above Pauli-Villars determinants the resulting expression for the
generating functional can be written as

Z½sources� ¼
Z

DμDetðPV;MÞ expfiðSreg þ Sgf þ SFP þ SNK þ Sφ þ SsourcesÞg; ð22Þ
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where Dμ denotes the functional integration over all
superfields of the theory.
Note that the regularized action (13) is not invariant

under the transformations of the hidden supersymmetry (6).
In principle, it is possible to choose an N ¼ 2 super-
symmetric higher derivative term [85]. However, the Pauli-
Villars determinants, the gauge fixing term, and the ghost
actions are invariant only under the transformations of
manifest supersymmetry. Therefore, making the change of
the integration variables (6) in the generating functional
(22) we will obtain some additional terms coming from
the variations of these expressions. This implies that (the
equation analogous to) the Slavnov-Taylor identity [86,87]
corresponding to the hidden supersymmetry becomes
rather complicated and difficult to analyze. That is why
we do not present it here.
For the theory under consideration ultraviolet divergen-

ces can be removed by the renormalization of couplings
and superfields. The renormalized couplings will be
denoted by e (or α≡ e2=4π ≡ Zαα0) and λ. Note that,
as we have already mentioned, if N ¼ 2 theories are
quantized in N ¼ 1 superspace, then for a general renorm-
alization prescription the N ¼ 2 relation between the
gauge and Yukawa couplings is broken by quantum
corrections. Due to the absence of divergent quantum
corrections to the superpotential [1] the renormalization

of ðλAÞij is related to the renormalization of chiral matter
superfields and of the gauge coupling constant by the
equation

d
d lnΛ

½e0ðZ1=2
ϕ ÞjkðZ1=2

ϕ ÞliðZαZΦÞ1=2ððTAÞij þ ðλA0 ÞijÞ� ¼ 0:

ð23Þ

In our notation the renormalization constants for the chiral
matter superfields are defined as3

ΦA ¼ ðZαZΦÞ1=2ðΦRÞA; ϕi ¼ ðZ1=2
ϕ ÞijðϕRÞj;

ϕ̃i ¼ ðZ1=2
ϕ Þjiðϕ̃RÞj; ð24Þ

where the subscripts R denote the renormalized superfields.
(Note that we consider a theory with a simple gauge group,
so that all ΦA are renormalized with the same renormaliza-
tion constant ðZαZΦÞ1=2.)
It is convenient to describe ultraviolet divergences with

the help of RGFs. According to [44], it is important to
distinguish between RGFs defined in terms of the bare
couplings and the ones defined in terms of the renormalized
couplings,

βðα0; λ0Þ ¼
dα0
d lnΛ

����
α;λ¼const

; β̃ðα; λÞ ¼ dα
d ln μ

����
α0;λ0¼const

;

ðγϕÞijðα0; λ0Þ ¼ −
dðlnZϕÞij
d lnΛ

����
α;λ¼const

; ðγ̃ϕÞijðα; λÞ ¼
dðlnZϕÞij
d ln μ

����
α0;λ0¼const

;

γΦðα0; λ0Þ ¼ −
d lnZΦ

d lnΛ

����
α;λ¼const

; γ̃Φðα; λÞ ¼
d lnZΦ

d ln μ

����
α0;λ0¼const

: ð25Þ

RGFs defined in terms of the bare couplings are presented in
the left column, and RGFs (standardly) defined in terms
of the renormalized couplings are presented in the right
column. The former ones depend on a regularization, but are
independent of a renormalization prescription for a fixed
regularization. The latter ones depend on both regularization
and renormalization prescription starting from the two-loop
approximation for the anomalous dimensions and from the
three-loop approximation for the β-function. RGFs defined
in terms of the bare couplings for N ¼ 2 supersymmetric
theories are obtained in the case λ0 ¼ 0, and RGFs defined
in terms of the renormalized couplings should be calculated
at λ ¼ 0. (Nevertheless, the renormalization of the Yukawa
couplings should be taken into account.)

Certainly, there is a class of subtraction schemes in
which N ¼ 2 supersymmetry survives at the quantum
level, so that the Yukawa couplings remain related to the
gauge coupling constant and, therefore,

d
d lnΛ

½e0ðZ1=2
ϕ ÞjkðZ1=2

ϕ ÞliðZαZΦÞ1=2ðTAÞij� ¼ 0: ð26Þ

Evidently, in this case there is no need to introduce the
couplings ðλA0 Þij, and the anomalous dimensions of the
matter superfields are related by the equation

γΦðα0ÞðTAÞij þ 2ðγϕÞikðα0ÞðTAÞkj ¼ 0: ð27Þ

According to [45,48,49], see also [88], in the case of
using the higher covariant derivative regularization RGFs
of N ¼ 1 supersymmetric gauge theories defined in terms
of the bare couplings satisfy the NSVZ equation

3Defining the renormalization constant ZΦ we follow the
notation of Ref. [85]. In the case of using this definition the
corresponding one-loop anomalous dimension vanishes.
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βðα0; λ0Þ
α20

¼ −
ð3C2 − TðRÞ þ CðRÞi jγjiðα0; λ0Þ=rÞ

2πð1 − αC2=2πÞ
ð28Þ

for an arbitrary renormalization prescription supplementing
this regularization. Here we assume that the chiral matter
superfields belong to the representation R, for which the
generators of the gauge group are denoted by ðTAÞi j. From
these generators we construct the group Casimirs

CðRÞi j ≡ ðTATAÞi j; trðTATBÞ≡ TðRÞδAB: ð29Þ

For the particular case of N ¼ 2 supersymmetric theories
the representation R is given by the direct sum (8) and the
Casimirs take the form

TðRÞ ¼ C2 þ 2TðR0Þ;

CðRÞij ¼

0
B@

C2δ
IJ 0 0

0 CðR0Þij 0

0 0 CðR0Þji

1
CA: ð30Þ

Taking into account that

d lnðZαZΦÞ
d lnΛ

����
α;λ¼const

¼ −
βðα0; λ0Þ

α0
− γΦðα0; λ0Þ ð31Þ

the anomalous dimension matrix can be written as

γji ≡ −
d lnZj

i

d lnΛ
¼

0
B@

ðβ=α0 þ γΦÞδIJ 0 0

0 ðγϕÞji 0

0 0 ðγϕÞij

1
CA:

ð32Þ

Substituting the expressions (30) and (32) into Eq. (28)
after some algebraic transformations we obtain that for the
theory under consideration the NSVZ equation takes the
form

βðα0; λ0Þ
α20

¼ −
1

2π
ð2C2 − 2TðR0Þ þ C2γΦðα0; λ0Þ

þ 2CðR0ÞijðγϕÞjiðα0; λ0Þ=rÞ: ð33Þ

Note that here we keep the dependence on λ0, because
(for theories regularized by higher covariant derivatives)
this equation is valid for an arbitrary N ¼ 1 supersym-
metric theory with the chiral matter superfields in the
representation Adjþ R0 þ R̄0, and N ¼ 2 supersymmetry
is not needed for its derivation.
If we consider a subclass of renormalization prescrip-

tions which satisfy Eq. (26) (or, in other words, do not

break the relation between the gauge and Yukawa cou-
plings), then it is possible to set λ0 ¼ 0 and express γΦðα0Þ
in terms of the anomalous dimension of the hypermultiplet
by multiplying Eq. (27) by ðTAÞji,

γΦðα0Þ ¼ −
2trðγϕðα0ÞCðR0ÞÞ

trCðR0Þ
¼ −

2trðγϕðα0ÞCðR0ÞÞ
rTðR0Þ

:

ð34Þ

Substituting this expression into Eq. (33) we obtain the
exact β-function defined in terms of the bare coupling
constant [85],

βðα0Þ
α20

¼ −
1

π
ðC2 − TðR0ÞÞ

�
1þ 1

2
γΦðα0Þ

�
: ð35Þ

Due to the presence of γΦðα0Þ in this equation quantum
correction can appear in higher orders. However, if the
quantization is made in a manifestly N ¼ 2 supersym-
metric way in N ¼ 2 harmonic superspace [89–91], then
this anomalous dimension vanishes [8]. Then in the case
of using the higher covariant derivative regularization
formulated in the harmonic superspace [92] we obtain
the N ¼ 2 nonrenormalization theorem [6,7], according to
which the β-function vanishes beyond the one-loop
approximation.
In this paper we will calculate the two-loop anomalous

dimensions for the chiral matter superfields and the three-
loop β-function for N ¼ 2 and N ¼ 4 supersymmetric
theories formulated in the N ¼ 1 superspace. In particular,
we will see that for all NSVZ renormalization prescription
compatible with N ¼ 2 supersymmetry and with the
structure of quantum corrections these contributions to
RGFs vanish beyond the one-loop approximation, so that
the N ¼ 2 nonrenormalization theorem is valid in the
considered order.

IV. THE TWO-LOOP RENORMALIZATION OF
SUPERFIELDS AND THE THREE-LOOP
RENORMALIZATION OF THE GAUGE

COUPLING CONSTANT

A. RGFs defined in terms of the bare couplings

For an arbitrary renormalizable N ¼ 1 supersymmetric
gauge theory with a simple gauge group regularized
by higher covariant derivatives the general expression
for the two-loop anomalous dimension of the matter
superfields defined in terms of the bare couplings was
obtained in [68]. In the notation adopted in this paper it is
written as4

4The generalization of this expression to the case of theories
with multiple gauge couplings can be found in [74].
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γijðα0; λ0Þ ¼ −
α0
π
CðRÞij þ

1

4π2
λ�0imnλ

jmn
0 þ α20

2π2
½CðRÞ2�ij −

1

16π4
λ�0iacλ

jab
0 λ�0bdeλ

cde
0

−
3α20
2π2

C2CðRÞij
�
ln aφ þ 1þ A

2

�
þ α20
2π2

TðRÞCðRÞij
�
ln aþ 1þ A

2

�
−

α0
8π3

λ�0lmnλ
jmn
0

× CðRÞilð1 − Bþ AÞ þ α0
4π3

λ�0imnλ
jml
0 CðRÞlnð1 − Aþ BÞ þOðα30; α20λ20; α0λ40; λ60Þ: ð36Þ

Here values of the parameters A, B, a, and aφ depend on a particular version of the higher covariant derivative
regularization. Namely, the parameters A and B are determined by the higher derivative regulators RðxÞ and FðxÞ present
in Eq. (13),

A≡
Z

∞

0

dx ln x
d
dx

�
1

RðxÞ
�
; B≡

Z
∞

0

dx ln x
d
dx

�
1

F2ðxÞ
�
: ð37Þ

The parameters a≡M=Λ and aφ ≡Mφ=Λ are the ratios of the Pauli-Villars masses to the dimensionful parameter of the
regularized theory.
Substituting the Yukawa couplings (10) and the Casimirs (30) into Eq. (36) and taking into account Eq. (31) we obtain

βðα0; λ0 ¼ 0Þ
α0

þ γΦðα0; λ0 ¼ 0Þ ¼ −
α0
π
ðC2 − TðR0ÞÞ þ

α20
π2r

tr½CðR0Þ2�ðB − AÞ þ α20
2π2

ðC2Þ2ð−3 ln aφ þ ln a − 1 − AÞ

þ α20
2π2

C2TðR0Þð2 ln aþ 1þ BÞ þOðα30Þ; ð38Þ

ðγϕÞijðα0; λ0 ¼ 0Þ ¼ α20
π2

½CðR0Þ2�ijðB − AÞ þ α20
2π2

TðR0ÞCðR0Þijð2 ln aþ 1þ AÞ

þ α20
2π2

C2CðR0Þijð−3 ln aφ þ ln a − 1 − 2Aþ BÞ þOðα30Þ: ð39Þ

Note that in the one-loop approximation both anomalous
dimensions vanish. However, in the two-loop approxima-
tion this is not true, because the N ¼ 1 regularization and
quantization can break the relations following from N ¼ 2
supersymmetry. We see that the two-loop contributions
nontrivially depend on the regularization parameters A, B,
a, and aφ. (Certainly, as we already mentioned above,
RGFs defined in terms of the bare couplings are indepen-
dent of the parameters which determine a subtraction
scheme for a fixed regularization.)

The three-loop β-function defined in terms of the bare
couplings can be found using the NSVZ equation (33).
First, from this equation we see that the (scheme indepen-
dent) two-loop contribution to the β-function vanishes,
because in the one-loop approximation γΦ and ðγϕÞij are
equal to 0. Certainly, this agrees with the well-known
nonrenormalization theorem [6–8]. Substituting this result
into Eq. (38) we obtain the two-loop expression for the
anomalous dimension γΦ (defined in terms of the bare
couplings),

γΦðα0; λ0 ¼ 0Þ ¼ α20
π2r

tr½CðR0Þ2�ðB − AÞ þ α20
2π2

ðC2Þ2ð−3 ln aφ þ ln a − 1 − AÞ

þ α20
2π2

C2TðR0Þð2 ln aþ 1þ BÞ þOðα30Þ: ð40Þ

In the case of using the higher covariant derivative
regularization Eq. (33) is valid for RGFs defined in terms
of the bare couplings in all orders, and, in particular, relates

the three-loop β-function to the two-loop anomalous
dimensions. Substituting the expressions (39) and (40)
into the right-hand side of Eq. (33) we obtain
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βðα0; λ0 ¼ 0Þ
α20

¼ −
1

π
ðC2 − TðR0ÞÞ þ

α20
4π3

ðC2Þ3ð3 ln aφ − ln aþ 1þ AÞ − α20
4π3r

ðC2Þ2

× trCðR0Þð2 ln aþ 1þ BÞ þ α20
2π3r

C2tr½CðR0Þ2�ð3 ln aφ − ln aþ 1þ 3A − 2BÞ

þ α20
π3r

tr½CðR0Þ3�ðA − BÞ − α20
2π3r2

trCðR0Þtr½CðR0Þ2�ð2 ln aþ 1þ AÞ þOðα30Þ: ð41Þ

Equivalently, this expression can be derived from the
general equation presented in [68]. According to
Eq. (41), the (regularization dependent) three-loop contri-
bution to the β-function is not equal to 0, again, because
N ¼ 1 regularization and quantization can break the
relations following from N ¼ 2 supersymmetry. From
Eq. (39) and (40) we also see that Eq. (27) is not in
general valid. Therefore, for a general N ¼ 1 supersym-
metric renormalization prescription it is really necessary to
introduce the parameter λ0 into the action, see Eq. (13).

B. RGFs defined in terms of the renormalized couplings

Next, we proceed to calculating RGFs defined in terms
of the renormalized couplings. For this purpose we first
integrate the renormalization group equations in the left
column of Eq. (25). The solutions contain some finite
constants which fix a renormalization prescription in the
considered order of the perturbation theory. For example,
the relation between the bare and renormalized gauge
coupling constants can be presented in the form

1

α0
¼ 1

α
þ C2

π

�
ln
Λ
μ
þ b11

�
−
TðR0Þ
π

�
ln
Λ
μ
þ b12

�

þ α

π2
ðC2Þ2b21 −

α

2π2r
C2trCðR0Þb22

−
α

π2r
tr½CðR0Þ2�b23 þOðα2; αλÞ; ð42Þ

where bi are the finite constants. Note that we included
into this expression all products of group factors which
can appear in the considered approximation. This implies
that we deal with subtraction schemes compatible with
the structure of quantum corrections [28,93].5 Similarly, the
renormalization constants for the matter superfields in the
lowest approximation contain the finite constants ji and gi
and can be written as

ZΦ ¼ 1þ α

π
C2j11 −

α

π
TðR0Þj12 þOðα2; αλÞ; ð43Þ

ðZϕÞij ¼ δji þ
α

π
CðR0Þijg1 þOðα2; αλÞ: ð44Þ

Also finite constants li can appear in the renormalization
of the coupling λ0 present in Eq. (13). In the lowest
approximation the expression λ0 − λ (where λ is the
corresponding renormalized coupling) should be finite.
Taking into account all possible structures that can appear
in calculating quantum corrections in N ¼ 1 theories it is
possible to present the relation between the bare and
renormalized Yukawa couplings in the lowest order in
the form

ðλA0 Þij ¼ ðλAÞij −
αC2

2π
ðTAÞijl11 þ

αTðR0Þ
2π

ðTAÞijl12
þ α

2π
CðR0ÞikðTAÞkjl13 þOðα2; αλÞ: ð45Þ

Note that usually the renormalization of the Yukawa
couplings in supersymmetric theories is made according
to the prescription

λijk ¼ λmnp
0 ð

ffiffiffi
Z

p
Þmið

ffiffiffi
Z

p
Þnjð

ffiffiffi
Z

p
Þpk; ð46Þ

where Zi
j are the renormalization constants for the chiral

matter superfields, ϕi ¼ ð ffiffiffi
Z

p ÞijðϕRÞj. For the theory under
consideration this subtraction scheme corresponds to the
finite constants satisfying the constraints

l11 ¼ j11; l12 ¼ j12; l13 ¼ −2g1: ð47Þ

However, below we will use a more general renormaliza-
tion prescription in which the coefficients li are arbitrary.
Substituting the renormalization constants for the matter

superfields and the relation between the bare and renor-
malized coupling constants into the equations presented in
the right column of Eq. (25) we obtain RGFs defined in
terms of the renormalized couplings. Note that for N ¼ 2
supersymmetric gauge theories they should be calculated at
λ ¼ 0, but the renormalization of the Yukawa couplings
should nevertheless be taken into account, because we
consider general N ¼ 1 supersymmetric renormalization
prescriptions, which, in particular, include the ones break-
ing N ¼ 2 supersymmetry. The resulting expressions for
RGFs are written as

5All renormalization prescriptions considered in this paper
are also compatible with N ¼ 1 supersymmetry because the
quantization and renormalization are made in terms of N ¼ 1
superfields.
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γ̃Φðα; λ ¼ 0Þ ¼ α2

π2r
tr½CðR0Þ2�ðB − Aþ l13Þ þ

α2

2π2
ðC2Þ2ð−3 ln aφ þ ln a − 1 − A − 2j11Þ

þ α2

2π2
C2TðR0Þð2 ln aþ 1þ B − 2l11 þ 2j11 þ 2j12Þ þ

α2

π2
TðR0Þ2ðl12 − j12Þ þOðα3Þ; ð48Þ

ðγ̃ϕÞijðα; λ ¼ 0Þ ¼ α2

π2
½CðR0Þ2�ijðB − Aþ l13Þ þ

α2

2π2
TðR0ÞCðR0Þijð2 ln aþ 1þ Aþ 2g1 þ 2l12Þ

þ α2

2π2
C2CðR0Þijð−3 ln aφ þ ln a − 1 − 2Aþ B − 2g1 − 2l11Þ þOðα3Þ; ð49Þ

β̃ðα; λ ¼ 0Þ
α2

¼ −
1

π
ðC2 − TðR0ÞÞ þ

α2

4π3
ðC2Þ3ð3 ln aφ − ln aþ 1þ A − 4b21Þ −

α2

4π3r
ðC2Þ2

× trCðR0Þð2 ln aþ 1þ B − 2b22 − 2l11 − 4b21Þ þ
α2

2π3r
C2tr½CðR0Þ2�ð3 ln aφ − ln a

þ 3A − 2Bþ 1þ 2b23 þ 2l11 − l13Þ −
α2

2π3r2
C2½trCðR0Þ�2ðb22 þ l12Þ þ

α2

π3r
tr½CðR0Þ3�

× ðA − B − l13Þ −
α2

2π3r2
trCðR0Þtr½CðR0Þ2�ð2 ln aþ Aþ 1þ 2b23 þ 2l12Þ þOðα3Þ ð50Þ

and depend on both regularization parameters and finite constants which determine a renormalization prescription.
For the N ¼ 4 supersymmetric Yang–Mills theory R0 ¼ Adj, so that TðR0Þ ¼ C2 and CðR0Þij → C2δ

IJ. Therefore, in
this case RGFs defined in terms of the renormalized couplings take the form

γ̃Φðα; λ ¼ 0Þ ¼ α2

2π2
ðC2Þ2

�
3B − 3A − 3 ln

aφ
a

− 2l11 þ 2l12 þ 2l13
	
þOðα3Þ; ð51Þ

ðγ̃ϕÞABðα; λ ¼ 0Þ ¼ δAB ·
α2

2π2
ðC2Þ2

�
3B − 3A − 3 ln

aφ
a

− 2l11 þ 2l12 þ 2l13
	
þOðα3Þ; ð52Þ

β̃ðα; λ ¼ 0Þ
α2

¼ −
3α2

4π3
ðC2Þ3

�
3B − 3A − 3 ln

aφ
a

− 2l11 þ 2l12 þ 2l13
	
þOðα3Þ: ð53Þ

From these equations we see that both the three-loop
β-function and the two-loop anomalous dimensions do not
in general vanish. This seems to contradict the well-known
fact that the N ¼ 4 supersymmetric Yang-Mills theory is
finite in all loops [6,7,11–13]. However, we actually
considered the theory with manifestN ¼ 1 supersymmetry
and admitted such renormalizations that spoil extended
supersymmetry. If we restrict ourselves to such renormal-
ization prescriptions that do not break extended supersym-
metry, then the theory will be finite. We will discuss this
in detail below in Sec. V. Here we will only note that for
an arbitrary renormalization prescription the expressions
(51)–(53) satisfy the equations

ðγ̃ϕÞABðα; λ ¼ 0Þ ¼ δABγ̃Φðα; λ ¼ 0Þ þOðα3Þ; ð54Þ

β̃ðα; λ ¼ 0Þ
α2

¼ −
3

2π
C2γ̃Φðα; λ ¼ 0Þ þOðα3Þ: ð55Þ

C. RGFs in the DR scheme

Let us compare the results for RGFs obtained above with
the corresponding expressions in the DR scheme found in
[28–30]. The expressions for finite constants corresponding
to this renormalization prescription were found in [68],
where the relation between the bare and renormalized
coupling constants and the renormalization constant for
the chiral matter superfields were written in the form

1

α
−

1

α0
¼ −

3

2π
C2

�
ln
Λ
μ
þ b11

�
þ 1

2π
TðRÞ

�
ln
Λ
μ
þ b12

�
−

3α

4π2
ðC2Þ2

�
ln
Λ
μ
þ b21

�
þ α

4π2r
C2trCðRÞ

�
ln
Λ
μ
þ b22

�

þ α

2π2r
tr½CðRÞ2�

�
ln
Λ
μ
þ b23

�
−

1

8π3r
CðRÞji λ�imnλ

jmn

�
ln
Λ
μ
þ b24

�
þOðα2; αλ2; λ4Þ; ð56Þ
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Zi
jðα; λÞ ¼ δi

j þ α

π
CðRÞij

�
ln
Λ
μ
þ g11

�
−

1

4π2
λ�imnλ

jmn

�
ln
Λ
μ
þ g12

�
þOðα2; αλ2; λ4Þ: ð57Þ

For N ¼ 2 supersymmetric gauge theories considered in this paper the Yukawa couplings are given by Eq. (10).
Substituting them into Eqs. (56) and (57) and comparing the result with Eqs. (42)–(44) we establish the correspondence
between the notations of Ref. [68] and of this paper,

g1 ¼ g11 − g12; j11 ¼ g11 −
3

2
b11 þ

1

2
b12; j12 ¼ g12 − b12; b11 ¼

3

2
b11 −

1

2
b12;

b12 ¼ b12; b21 ¼
3

4
b21 −

1

4
b22 −

1

2
b23; b22 ¼ b22 − b24; b23 ¼ b23 − b24: ð58Þ

According to [68], for a general N ¼ 1 supersymmetric gauge theory regularized by higher covariant derivatives RGFs
(defined in terms of the renormalized couplings) coincide with the ones in the DR scheme if the finite constants are given by
the expressions

b11 ¼ ln aφ; b12 ¼ ln a; g11 ¼ −
1

2
−
A
2
; g12 ¼ −

1

2
−
B
2
;

b21 ¼ ln aφ þ
1

4
; b22 ¼ ln aþ 1

4
; b23 ¼ −

1

4
−
A
2
; b24 ¼ −

1

4
−
B
2
: ð59Þ

Also in the DR scheme the renormalization of the Yukawa couplings is made according to Eq. (46), so that the
corresponding finite constants are given by Eq. (47). Thus, using Eqs. (47), (58), and (59) we obtain the values of the finite
constants corresponding to the DR scheme,

b11 ¼
3

2
ln aφ −

1

2
ln a; b12 ¼ ln a; g1 ¼

1

2
ðB − AÞ;

b21 ¼
3

4
ln aφ −

1

4
ln aþ 1

4
þ A

4
; b22 ¼ ln aþ 1

2
þ B

2
; b23 ¼

1

2
ðB − AÞ;

l11 ¼ −
3

2
ln aφ þ

1

2
ln a −

1

2
−
A
2
; l12 ¼ − ln a −

1

2
−
B
2
; l13 ¼ A − B;

j11 ¼ −
3

2
ln aφ þ

1

2
ln a −

1

2
−
A
2
; j12 ¼ − ln a −

1

2
−
B
2
: ð60Þ

Substituting these values of the finite constants into
Eqs. (48)–(50) we obtain RGFs in the DR scheme,

γ̃Φðα; λ ¼ 0Þ ¼ Oðα3Þ; ðγ̃ϕÞijðα; λ ¼ 0Þ ¼ Oðα3Þ; ð61Þ

β̃ðα; λ ¼ 0Þ
α2

¼ −
1

π
ðC2 − TðR0ÞÞ þOðα3Þ: ð62Þ

This implies that the N ¼ 2 (and, therefore, N ¼ 4) non-
renormalization theorems are satisfied in the DR scheme at
least in the considered approximation.

D. NSVZ schemes for N = 2 supersymmetric theories

Note that RGFs (48)–(50) satisfy the NSVZ equation

β̃ðα; λ ¼ 0Þ
α2

¼ −
1

2π
ð2C2 − 2TðR0Þ þ C2γ̃Φðα; λ ¼ 0Þ

þ 2CðR0Þijðγ̃ϕÞjiðα; λ ¼ 0Þ=rÞ ð63Þ

only if the finite constants fixing a renormalization pre-
scription satisfy the equations

2b21 þ j11 ¼ 0; b22 þ j12 ¼ 0; b23 − g1 ¼ 0;

ð64Þ

which specify the class of NSVZ schemes. From Eq. (60)
it is easy to see that the DR scheme is NSVZ for N ¼ 2
supersymmetric theories in agreement with [28,29].
Equation (64) agrees with the general statement [35–38]

that (for RGFs defined in terms of the renormalized
couplings) various NSVZ schemes are related by finite
renormalizations α0 ¼ α0ðαÞ, ðZ0Þij ¼ ðzÞikðZÞkj which sat-
isfy the constraint

1

α0
−
1

α
þ C2

2π
ln
α0

α
−

1

2πr
CðRÞijðln zÞji ¼ B; ð65Þ
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where B is a finite constant. For N ¼ 2 supersymmetric
gauge theories considered in this paperEq. (65) takes the form

1

α0
−
1

α
−

1

πr
CðR0Þijðln zϕÞji −

1

2π
C2 ln zΦ ¼ B; ð66Þ

where ðzϕÞij and α0zΦ=α describe the finite renormalizations
of the hypermultiplet superfields and of the chiral superfields

ΦA, respectively.6 In the case of using the higher covariant
derivative regularization some NSVZ schemes are given by
the HDþMSL prescription [44], when divergences are
removed byminimal subtractions of logarithms.7 If the values
without primes correspond to this scheme, then the scheme
defined by Eqs. (42)–(45) is obtained after the finite
renormalization

1

α0
¼ 1

α
−
C2

π
b11 þ

TðR0Þ
π

b12 −
α

π2
ðC2Þ2b21 þ

αC2

2π2r
trCðR0Þb22 þ

α

π2r
tr½CðR0Þ2�b23 þOðα2; αλÞ;

ðλ0AÞij ¼ ðλAÞij þ
αC2

2π
ðTAÞijl11 −

αTðR0Þ
2π

ðTAÞijl12 −
α

2π
CðR0ÞikðTAÞkjl13 þOðα2; αλÞ;

zΦ ¼ 1þ α

π
C2j11 −

α

π
TðR0Þj12 þOðα2;αλÞ; ðzϕÞij ¼ δji þ

α

π
CðR0Þijg1 þOðα2; αλÞ: ð67Þ

Substituting these expressions into Eq. (65) we obtain the
constraints (64) together with the equation

B ¼ −
C2

π
b11 þ

TðR0Þ
π

b12; ð68Þ

which determines the constant B.

V. THE NONRENOMALIZATION THEOREMS

A. The lowest nontrivial approximation

The results for RGFs presented above seem to disagree
with the well-known nonrenormalization theorems for
theories with extended supersymmetry. Namely, in N ¼ 2
supersymmetric gauge theories the β-function should
contain only the one-loop contribution [6–8], and all
anomalous dimensions should vanish [6,7]. The N ¼ 4
supersymmetric Yang-Mills theory should be finite in all
orders [6,7,11–13]. As we have already mentioned,
the contradiction appears because we admit such renorm-
alization prescriptions that break extended supersymmetry.
Therefore, in general, we cannot expect that the above
nonrenormalization theorems will be valid. However,
there are special classes of subtraction schemes which
are compatible with extended supersymmetry. In this
section we construct such renormalization prescriptions
and verify for them the validity of the nonrenormalization
theorems.
In theories with N ¼ 2 supersymmetry the Yukawa

couplings are related to the gauge coupling constant.

Written in terms of the bare couplings this relation is
given by Eq. (10). If we use a renormalization prescription
compatible with N ¼ 2 supersymmetry, then a similar
equation should also be valid for the renormalized cou-
plings. In particular, this implies that it is possible to choose
such a subtraction scheme that

e0ðTAÞlk ¼ eðZ−1=2
ϕ ÞjkðZ−1=2

ϕ ÞliðZαZΦÞ−1=2ðTAÞij: ð69Þ

Differentiating Eq. (69) with respect to ln μ at fixed values
of the bare couplings we obtain the equation

γ̃ΦðαÞðTAÞij ¼ −2ðγ̃ϕÞikðαÞðTAÞkj: ð70Þ

Substituting RGFs (48)–(50) into this relation and
equating coefficients at various group factors we obtain
the constraints on the finite constants fixing a renormaliza-
tion prescription compatible withN ¼ 2 supersymmetry in
the considered approximation,8

l11 ¼
B
2
−
A
2
þ j11− g1; l12 ¼ j12; l13 ¼A−B;

j11 ¼−
3

2
lnaφþ

1

2
lna−

1

2
−
A
2
; j12 ¼− lna−

1

2
−
A
2
− g1:

ð71Þ

(Note that the values of finite constants (60) corresponding
to the DR-scheme satisfy these equations.) It is easy to see
that the constraints (71) lead to the vanishing of the two-
loop contributions to the anomalous dimensions of all
chiral matter superfields, so that

6According to Eq. (24), in our notation the renormalization
constants for the superfields ΦA are ðZαZΦÞ1=2 ¼ ðαZΦ=α0Þ1=2.

7Minimal subtractions of logarithms can supplement various
versions of the higher covariant derivative regularization, so that
there is a certain set of the HDþMSL schemes, each of them
being NSVZ.

8Strictly speaking, Eq. (69) is more restrictive and, in par-
ticular, in the lowest order also gives the equation
g1 ¼ ðB − AÞ=2. However, below we will investigate only
consequences of the weaker condition (70).
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γ̃ΦðαÞ ¼ Oðα3Þ; ðγ̃ϕÞijðαÞ ¼ Oðα3Þ: ð72Þ

However, the three-loop contribution to the β-function does not in general vanish,

β̃ðαÞ
α2

¼ −
1

π
ðC2 − TðR0ÞÞ

�
1 −

α2

π2r
trðCðR0Þ2Þðb23 − g1Þ þ

α2

2π2
ðC2Þ2ð2b21 þ j11Þ −

α2

2π2
C2TðR0Þðb22 þ j12Þ

�
þOðα3Þ:

ð73Þ

The vanishing three-loop contribution is obtained only
in the NSVZ schemes, which satisfy Eq. (64) and, in
particular, include the DR scheme.9 Thus, in the considered
approximation the N ¼ 2 nonrenormalization theorem is
valid in all N ¼ 2 supersymmetric NSVZ schemes (com-
patible with the structure of quantum corrections),

β̃ðαÞ
α2

¼ −
1

π
ðC2 − TðR0ÞÞ þOðα3Þ: ð74Þ

For the N ¼ 4 supersymmetric Yang-Mills theory the
hypermultiplet superfields belong to the adjoint represen-
tation, and the theory is invariant under the manifest
SOð3Þ symmetry which rotates chiral matter superfields.
Taking into account that, according to Eq. (24), the
renormalization constant for the superfields ΦA contains
the factor ðZαÞ1=2 we conclude that for renormalization
prescriptions compatible with the SOð3Þ symmetry
the anomalous dimensions should be related by the
equation

ðγ̃ϕÞABðαÞ ¼ δAB
�
γ̃ΦðαÞ þ

β̃ðαÞ
α

�
: ð75Þ

This equation agrees with Eq. (54), because the (scheme
independent) two-loop β-function for the model under
consideration is equal to 0. Note that the validity of
Eq. (54) is not so trivial, because, in general, we choose
different renormalization constants for the superfieldΦ and
for the hypermultiplet superfields. Nevertheless, the finite
constants present in ZΦ and ðZϕÞij did not enter the
expressions for the two-loop anomalous dimensions of
the N ¼ 4 theory [given by Eqs. (51) and (52)], so that the
SOð3Þ symmetry really leads to the coincidence of all
anomalous dimensions in this approximation.
For N ¼ 4 renormalization prescriptions the N ¼ 4

relation between the gauge and Yukawa couplings

λiA;jB;kC ¼ −
effiffiffi
2

p fABCεijk ð76Þ

(where the SOð3Þ indices i, j, k take the values from 1 to 3
and numerate three chiral matter superfields in the adjoint
representation) should be valid for the renormalized values.
Therefore, from Eqs. (70) and (75) we obtain the relation10

β̃ðαÞ ¼ −
3α

2
γ̃ΦðαÞ: ð77Þ

In the lowest nontrivial approximation [Oðα3Þ] the left-
hand side of Eq. (77) vanishes, and we obtain the relation
between finite constants which should be satisfied for
the renormalization prescriptions compatible with N ¼ 4
supersymmetry,

3B − 3A − 3 ln
aφ
a

− 2l11 þ 2l12 þ 2l13 ¼ 0: ð78Þ

Then from Eqs. (51)–(53) we see that all RGFs vanish in
the considered approximation,

γ̃Φ ¼ Oðα3Þ; ðγ̃ϕÞAB ¼ Oðα3Þ; β̃ðαÞ
α2

¼ Oðα3Þ;
ð79Þ

certainly, in agreement with theN ¼ 4 nonrenormalization
theorem. Note that, according to Eqs. (72) and (73) in the
considered approximation this theorem will be valid even
for an arbitrary N ¼ 2 renormalization prescription.

B. The all-loop results

Evidently, for N ¼ 2 supersymmetric gauge theories the
anomalous dimension ðγ̃ϕÞij should include group structures
with two indices constructed from the generators of the
representation R0 and the gauge group structure constants.
Therefore, the expression ðγ̃ϕÞikðTAÞkj can contain only
terms proportional to ðC2Þx½CðR0Þy�ikðTAÞkj, where x ≥ 0,
y ≥ 1. If we admit only renormalization prescriptions
compatible with the structure of quantum corrections and
with N ¼ 2 supersymmetry, then we should equate the
coefficients at different group structures in Eq. (70).
However, its left side is proportional to ðTAÞij, while the

9Certainly, we discuss only theories with extended supersym-
metry. ForN ¼ 1 supersymmetric theories in the DR scheme the
NSVZ equation is not in general satisfied [28–30].

10Note that in our notation for N ¼ 4 supersymmetric Yang–
Mills theory and renormalization prescriptions compatible with
the SOð3Þ symmetry ΦA

i ¼ ðZαZΦÞ1=2ðΦRÞAi .

QUANTUM PROPERTIES OF GAUGE THEORIES WITH … PHYS. REV. D 107, 105006 (2023)

105006-13



right-hand side cannot contain this structure. Therefore, both
sides of this equation should vanish, so that in this case

γ̃ΦðαÞ ¼ 0; ðγ̃ϕÞijðαÞ ¼ 0: ð80Þ

Then from the NSVZ equation written for renormalization
prescriptions which do not break Eq. (70),

β̃ðαÞ ¼ −
α2

π
ðC2 − TðR0ÞÞ

�
1þ 1

2
γ̃ΦðαÞ

�
; ð81Þ

we obtain that only the one-loop contribution to the
β-function does not vanish,

β̃ðαÞ ¼ −
α2

π
ðC2 − TðR0ÞÞ: ð82Þ

Now, it is possible to formulate the conditions under
which the N ¼ 2 nonrenormalization theorems are valid
for N ¼ 2 theories formulated in N ¼ 1 superspace.
Namely, the anomalous dimensions of chiral matter super-
fields vanish if
(1) The renormalization prescription does not break the

N ¼ 2 relation between the gauge and Yukawa
couplings.

(2) The renormalization prescription is compatible with
the structure of quantum corrections.

(3) Moreover, all contributions to the β-function beyond
the one-loop approximation vanish if the conditions
1 and 2 are satisfied and the renormalization pre-
scription is NSVZ.

Certainly, the requirements 1 and 2 are rather natural.
Really, at the classical level in N ¼ 2 supersymmetric
gauge theories the Yukawa couplings are related to the
gauge coupling. Therefore, if the divergences are invariant
under the transformations of N ¼ 2 supersymmetry, then
the first condition should be satisfied. As for the second
condition, it is quite reasonable to require that the finite part
of counterterms should include only such structures that
could appear in divergences. That is why the reasoning
carried out in this paper can also allow rederiving the
N ¼ 2 nonrenormalization theorem from the NSVZ equa-
tion, although the approach considered in this paper does
not seem like the best for it.
For N ¼ 4 supersymmetric Yang–Mills theory from

Eqs. (63) and (75) we conclude that for an arbitrary scheme
compatible with SOð3Þ symmetry the NSVZ equation takes
the form

β̃ðαÞ
α2

¼ −
3C2γ̃ΦðαÞ

2πð1þ αC2=πÞ
; ð83Þ

where the factor 3 appears because the theory contains
three chiral superfields in the adjoint representation of the
gauge group. According to [66], for one-loop finite N ¼ 1

supersymmetric theories the NSVZ equation should be
satisfied in the first nontrivial approximation for an
arbitrary renormalization prescription. Equation (55)
exactly confirms this statement.
If we will consider N ¼ 4 supersymmetric schemes,

then from Eq. (77) (which is valid in this case) and the
NSVZ relation (83) we obtain the all-loop finiteness of the
theory under consideration,

γ̃Φi
ðαÞ ¼ 0; β̃ðαÞ ¼ 0; ð84Þ

where all chiral matter superfields of the theory are denoted
byΦA

i with i ¼ 1; 2; 3. Note that in this case there is even no
need to require the validity of the NSVZ equation. Really,
according to [94,95] (see also [66]), for N ¼ 1 super-
symmetric theories finite in a certain loop the β-function
vanishes in the next loop. Then, according to Eq. (77) the
anomalous dimension of the chiral matter superfields in this
next loop also vanishes. This certainly implies that for
N ¼ 4 supersymmetric schemes the N ¼ 4 supersymmet-
ric Yang-Mills theory is finite in all loops.
Certainly, theN ¼ 4 nonrenormalization theorem is also

valid if the renormalization prescription satisfies the above
conditions 1–3.

VI. RENORMALIZATION PRESCRIPTIONS
INCOMPATIBLE WITH THE STRUCTURE

OF QUANTUM CORRECTIONS

In the previous section we demonstrated that for any
N ¼ 2 supersymmetric renormalization prescription com-
patible with the structure of quantum corrections the
anomalous dimensions of all chiral matter superfields
vanish. Also for the N ¼ 2 supersymmetric NSVZ
schemes compatible with the structure of quantum correc-
tions all contributions to the β-function beyond the one-
loop approximation are equal to 0. However, according to
[85], the NSVZ equation and the relation between the
Yukawa and gauge couplings do not ensure that the
anomalous dimensions vanish and only the one-loop
contribution to the β-function is nontrivial. In this section
we will demonstrate that for the renormalization prescrip-
tions which are incompatible with the structure of quantum
corrections the higher order corrections to RGFs can be
nontrivial even for the NSVZ schemes.
For simplicity, below we will assume that the hyper-

multiplet representation R0 is irreducible. Therefore, the
hypermultiplet anomalous dimension is proportional to the
identity matrix,

ðγ̃ϕÞij ¼ γ̃ϕδ
j
i : ð85Þ

Similarly, we obtain

CðR0Þij ¼ CðR0Þδji with CðR0Þ ¼
r
d
TðR0Þ; ð86Þ
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where r ¼ δAA is the dimension of the gauge group, and
d ¼ δii is the dimension of the representation R0. Then the
result of [85] for the exact β-function obtained for the
NSVZ renormalization prescriptions which do not break
the relation between the gauge and Yukawa couplings is
given by Eq. (81). Now, let us find out if it is really possible
to obtain nontrivial higher order corrections to the gauge
β-function for such renormalization prescriptions. Earlier
we saw that the anomalous dimension in the right-hand side
vanishes if a renormalization prescription is compatible
with a structure of quantum corrections. However, if this is
not so, then the anomalous dimension and the higher order

contributions to the β-function can be nontrivial even for
N ¼ 2 supersymmetric NSVZ renormalization prescrip-
tions. How can this occur? Let us assume that we calculate
quantum corrections for an N ¼ 2 supersymmetric theory
with a fixed gauge group and a fixed hypermultiplet
representation (unlike the calculation described above,
when the gauge group and hypermultiplet representation
were arbitrary). In this case all group factors become
numbers, and we cannot distinguish between, say, C2 and
TðR0Þ. Then, according to Eqs. (42)–(45), the renormal-
ization prescription in the lowest loops is determined by the
finite constants

j1 ≡ C2j11 − TðR0Þj12; l1 ≡ C2l11 − TðR0Þl12 −
r
d
TðR0Þl13;

b1 ≡ C2b11 − TðR0Þb12; b2 ≡ ðC2Þ2b21 −
1

2
C2TðR0Þb22 −

r
d
TðR0Þ2b23; ð87Þ

and g1. In this section by an explicit calculation we
demonstrate that these finite constants can be chosen so
that the two-loop contributions to the anomalous dimensions
of the chiral superfields and the three-loop contribution to the

β-function do not vanish even for N ¼ 2 supersymmetric
NSVZ renormalization prescriptions. Really, for an irreduc-
ible hypermultiplet representation RGFs (48)–(50) can be
rewritten in terms of the finite constants (87) as

γ̃Φðα; λ ¼ 0Þ ¼ −
3α2

2π2
ðC2Þ2 ln

aφ
a
þ α2

2π2
TðR0Þ

�
C2 þ

2r
d
TðR0Þ

�
ðB − AÞ − α2

2π2
ðC2 − TðR0ÞÞ

× C2ð2 ln aþ 1þ AÞ − α2

π2
TðR0Þðl1 − j1Þ −

α2

π2
C2j1 þOðα3Þ; ð88Þ

γ̃ϕðα; λ ¼ 0Þ ¼ −
3α2r
2π2d

C2TðR0Þ ln
aφ
a
þ α2r
2π2d

TðR0Þ
�
C2 þ

2r
d
TðR0Þ

�
ðB − AÞ − α2r

2π2d
TðR0Þ

× ðC2 − TðR0ÞÞð2 ln aþ 1þ AÞ − α2r
π2d

TðR0ÞðC2 − TðR0ÞÞg1 −
α2r
π2d

TðR0Þl1 þOðα3Þ; ð89Þ

β̃ðα; λ ¼ 0Þ
α2

¼ −
1

π
ðC2 − TðR0ÞÞ þ

3α2

4π3
C2

�
ðC2Þ2 þ

2r
d
TðR0Þ2

�
ln
aφ
a

þ α2

4π3
ðC2 − TðR0ÞÞ

×

�
ðC2Þ2 þ

2r
d
TðR0Þ2

�
ð2 ln aþ 1þ AÞ − α2

4π3
TðR0Þ

�
C2 þ

2r
d
TðR0Þ

�
2

ðB − AÞ þ α2

2π3
TðR0Þ

×

�
C2 þ

2r
d
TðR0Þ

�
l1 −

α2

π3
ðC2 − TðR0ÞÞb2 þOðα3Þ; ð90Þ

and the NSVZ conditions (64) take the form

b2 ¼ −
1

2
C2j1 −

r
d
TðR0Þ2g1: ð91Þ

Due to Eq. (70) in the case of the irreducible representation
R0 for N ¼ 2 supersymmetric renormalization prescrip-
tions RGFs satisfy the relation

γ̃ΦðαÞ ¼ −2γ̃ϕðαÞ: ð92Þ

Earlier we saw that if this condition is satisfied separately
for all various group structures present in Eqs. (48)–(50),
then the two-loop anomalous dimensions vanish. This
implies that the considered N ¼ 2 supersymmetric re-
normalization scheme is compatible with the structure of
quantum corrections. However, now we consider a fixed
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gauge group and a fixed hypermultiplet representation, so that it is impossible to distinguish between various group
structures. Therefore, the condition (92) is not so restrictive and in the considered approximation gives only the relation

TðR0Þl1 ¼ −
dC2 þ 2rTðR0Þ

2ðdþ 2rÞ
�
3C2 ln

aφ
a
þ ðC2 − TðR0ÞÞð2 ln aþ 1þ AÞ

−
�
1þ 2r

d

�
TðR0ÞðB − AÞ

�
−
C2 − TðR0Þ
dþ 2r

ð2rTðR0Þg1 þ dj1Þ: ð93Þ

Substituting the value of the finite constant b2 from the NSVZ condition (91) and the value of the finite constant l1 from
Eq. (93) into Eqs. (88)–(90) we obtain the expressions for RGFs in N ¼ 2 supersymmetric schemes (which are in general
incompatible with the structure of quantum corrections),

γ̃Φðα; λ ¼ 0Þ ¼ −2γ̃ϕðα; λ ¼ 0Þ ¼ α2r
π2ðdþ 2rÞ ðC2 − TðR0ÞÞ

×
h
−3C2 ln

aφ
a

− ðC2 − TðR0ÞÞð2 ln aþ 1þ AÞ þ 2TðR0Þg1 − 2j1
i
þOðα3Þ; ð94Þ

β̃ðα; λ ¼ 0Þ
α2

¼ −
1

π
ðC2 − TðR0ÞÞ −

α2r
2π3ðdþ 2rÞ ðC2 − TðR0ÞÞ2

×
h
−3C2 ln

aφ
a

− ðC2 − TðR0ÞÞð2 ln aþ 1þ AÞ þ 2TðR0Þg1 − 2j1
i
þOðα3Þ: ð95Þ

We see that they satisfy the relation (92) and the NSVZ
equation (81), but the two-loop contributions to the
anomalous dimensions and the three-loop contribution to
the β-function do not in general vanish. This implies that
for N ¼ 2 NSVZ supersymmetric schemes which are not
compatible with the structure of quantum corrections the
N ¼ 2 nonrenormalization theorem can in general be
broken. However, for renormalization prescriptions which
satisfy the condition

j1 − TðR0Þg1 þ
3

2
C2 ln

aφ
a

þ 1

2
ðC2 − TðR0ÞÞ

× ð2 ln aþ 1þ AÞ ¼ 0 ð96Þ

the two-loop contributions to the anomalous dimensions
and the three-loop contribution to the β-function vanish,
and this theorem is valid.

VII. CONCLUSION

In this paper we analyzed quantum corrections inD ¼ 4
gauge theories with extended supersymmetry formulated
in N ¼ 1 superspace. In this formulation the only super-
symmetry is manifest at the quantum level, while the
others are hidden and can in general be broken at the
quantum level. That is why in general we cannot expect
that the nonrenormalization theorems following from the
extended supersymmetry are satisfied. This was confirmed
by the explicit calculations of the two-loop anomalous
dimensions and of the three-loop β-function made for a
general renormalization prescription compatible withN ¼ 1

supersymmetry supplementing the higher covariant deriva-
tive regularization. The choice of this regularization was
motivated by the fact that in this case all NSVZ schemes can
easily be constructed. In particular, some of these schemes
(which differ in the choice of the regulator functions and the
Pauli-Villars masses) are given by the HDþMSL prescrip-
tion, when divergences are removed by minimal subtractions
of logarithms.
We demonstrated that for a general renormalization

prescription the two-loop anomalous dimension of the chiral
matter superfields and the three-loop contribution to the
β-function do not vanish. Moreover, the Eq. (70) can also be
broken by quantum corrections. As we discussed, this occurs
because the N ¼ 2 relation (10) between the Yukawa
couplings and the gauge coupling constant is satisfied only
in the case of using the renormalization prescriptions
compatible with N ¼ 2 supersymmetry, while in general
a subtraction scheme can break it. By other words, the
nonrenormalization of superpotential determines the evolu-
tion of the Yukawa couplings, but in the case of N ¼ 1
supersymmetric quantization it is possible that their renorm-
alization group behavior does not coincide with the evolution
of the gauge coupling for renormalization prescriptions
breaking N ¼ 2 supersymmetry.
The three-loop contribution to the β-function of N ¼ 2

supersymmetric gauge theories is not in general equal to 0.
This contribution vanishes if a renormalization prescription
is NSVZ, does not break N ¼ 2 supersymmetry, and is
compatible with the structure of quantum corrections. It
was demonstrated that under these conditions the anoma-
lous dimensions of chiral superfields vanish in all orders
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and all contributions to the β-function beyond the one-loop
approximation are equal to 0 in agreement with the well-
known nonrenormalization theorem [6–8]. Therefore, the
argumentation proposed in this paper allows giving a
derivation of this theorem from the NSVZ equation and
some natural conditions imposed on a renormalization
prescription, although at first glance it is rather difficult
to do this within the approach under consideration.
Note that the DR scheme satisfies the above conditions at

least in the three-loop approximation. In particular, in this
approximation it is NSVZ for theories with extended
supersymmetry.
However, if a renormalization prescription is incompat-

ible with the structure of quantum corrections, it is possible
to construct such N ¼ 2 supersymmetric NSVZ renorm-
alization schemes that RGFs do not vanish in higher orders.
An example of such a scheme was explicitly constructed in
this paper.
For N ¼ 4 supersymmetric Yang-Mills theory diver-

gences can appear if a renormalization prescription breaks
extended supersymmetry exactly as in N ¼ 2 theories. In

particular, it was demonstrated that for a general N ¼ 1
substraction scheme the two-loop anomalous dimension
and the three-loop β-function may be different from to 0.
However, these contributions to RGFs satisfy the NSVZ
equation for any renormalization prescription according to
the general theorem [66] which states that for one-loop
finite theories the NSVZ equation in the first nontrivial
order is satisfied for any subtraction scheme compatible
with the finiteness in the previous loops. However, for
an arbitrary renormalization prescription compatible
with N ¼ 4 supersymmetry the N ¼ 4 supersymmetric
Yang–Mills theory appears to be finite in agreement with
[6,7,11–13].
Thus, we formulated the conditions under which the

nonrenormalization theorems are valid for theories with
extended supersymmetry formulated inN ¼ 1 superspace.
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