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We investigate particle creation and entanglement structure in a dispersive model with subluminal

dispersion relation. Assuming the step function spatial velocity profile of the background flow, mode

functions for a massless scalar field are exactly obtained by the matching method. Power spectrums of

created particles are calculated for the subsonic and the trans-sonic flow cases. For the trans-sonic case, the

sonic horizon exists, and created particles show the Planckian distribution for the low frequency region, but

the thermal property disappears for the high frequency region near the cutoff frequency introduced by the

nonlinear dispersion. For the subsonic case, although the sonic horizon does not exist, the effective group

velocity horizon appears due to the nonlinear dispersion for the high frequency region, and an approximate

thermal property of the power spectrum arises. The relation between particle creation and entanglement

between each mode is also discussed.
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I. INTRODUCTION

Quantum field theory in black hole spacetimes predicts
the emission of thermal Hawking radiation from black
holes, whose temperature is given by the surface gravity
at their event horizons [1,2]. This property of Hawking
radiation from black holes suggests that black holes behave
as a kind of thermodynamical object, and the theory of
black hole thermodynamics is formulated [3]. The thermal
property of Hawking radiation leads to a problem called the
information loss paradox, and for deeper understanding
of this issue, an analysis of entanglement between the
Hawking mode (Hawking radiation) and its partner mode
has been done to investigate the quantum informational
aspect of the black hole evaporation [4].

The original Hawking’s scenario implies that low energy
radiations are originated from a high energy region above
the Planckian scale, at which quantum gravitational physics
will become important. Thus it is crucial to clarify the effect
of the Planckian scale cutoff on the thermal property of
Hawking radiation (the trans-Planckian problem) [5,6]. To
resolve this problem, it is necessary to consider the origin
of the particle radiated from the black hole. If we consider
time reversed evolution of emission of Hawking radiation,
the frequency of emitted radiations exponentially increases
as they approach the black hole horizon and exceeds the
Planckian frequency; beyond the frequency, the quantum
effect of gravity may become important. To investigate
such a situation, Unruh proposed a sonic analog of black
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holes [7,8]; he found that the equation of sonic waves in
moving fluid has the same form as a massless scalar field in
curved spacetimes, whose metric has a similar structure as
black hole spacetimes. The acoustic metric corresponds to
the black hole spacetime with Painlevé coordinates

:—c\,xs/x (1)

where x; is the Schwarzschild radius and c is the light
velocity. A cutoff wave number k; is introduced as the
distance between atoms constituting fluid. He numerically
calculated the power spectrum of the radiation for the
analog black hole with the high frequency cutoff and has
shown that the cutoff does not affect the spectrum of
Hawking radiation in a low frequency region.

Owing to the introduction of the frequency cutoff, the
Lorentz invariance of the system is broken, and additional
wave modes associated with the cutoff appear. Owing to
these modes, Hawking radiation in analog black holes is
produced by a process that the Planckian modes trans-
formed into the low energy modes (mode conversion). If
the velocity profile v(x) is a slowly changing function of
the spatial coordinate, a lot of analyses have been done so
far based on the WKB method. These studies show that for
W,k < kg where « is the first derivative of the velocity
profile at the sonic horizon, the temperature of the radiation
is given by «x/(2z), and this coincides with Hawking’s
results [6,9-12].

If the velocity profile »(x) is not a slowly changing
function of the spatial coordinate, and if the expected
temperature of analog black holes is high, then several
studies of particle creation in analog models [11,13-16]

ds> = —c*df* + (dx—v(x)dt)?,  v(x)
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have shown that the spectrum of radiation depends not only
on the first derivative of the fluid velocity at the sonic
horizon, but also on other parameters such as the frequency
cutoff. This implies that the mechanism of radiation from
analog black holes with high temperature does differs from
the original Hawking radiation. Investigations of entangle-
ment for analog models of black holes also have been done
recently [17-20]. The study of the entanglement between
involved modes is useful not only for the detection of the
Hawking radiation in the laboratory experiment but also for
understanding the emission mechanism of the radiation.
In this paper, we consider an analog model with a step
function velocity profile of the background flow, and apply
the step discontinuous method introduced by [11,13,15]
to evaluate Bogoliubov coefficients. Then we calculate
the number density of created particles and entanglement
negativity between involved modes. Although the present
study may have overlaps with the analysis by Busch and
Parentani [17], in which entanglement structure for a high
temperature analog black hole was studied, our analysis
differs from their work in several points; first, we calculated
the multipartite entanglement between modes. Second, we
investigated the structure of partner modes for two different
types of analog spacetimes: the one with a sonic horizon
and the other without a sonic horizon.

The paper is organized as follows. In Sec. II, we shortly
review particle creation in an analog system with the dispersive
media. In Sec. III, we determine the Bogoliubov coefficients
for the step function velocity profile. In Sec. IV, we investigate
the entanglement structure of the in-vacuum state. In Sec. V,
we show the results of our numerical calculation. Section VIis
devoted to the summary and conclusion. We used the unit
¢ = h = G =1 throughout this paper.

II. WAVE MODES FOR STEEP
VELOCITY PROFILE

We consider wave modes of an analog model with
dispersive media. This section is mainly based on [11,12].
We adopt the following wave equation of a massless real
scalar field [8,12]:

(0, + 0,0(x))(9, + v(x) )b (x. 1) = cF(=i0,)Rb(x. 1).
)

This is the equation for sonic waves in a moving fluid with a
position dependent velocity profile »(x) and the sound
velocity c¢,(k) with the wave number k = —id,. In the
following, we assume that the velocity of the fluid has the
step function profile'

"The step function is defined by

0 x <0)
9(x)—{1/2 (x=0)
1 (x>0).

v(x)=V_+(V,.=-V_)0(x), Vi.<O0, (3)

and the flow velocity in the x > 0 region is subsonic V, >
—1. We assume subluminal dispersion ¢?(k) =1 — k*/k3
with the cutoff of wave number k. This type of dispersion
arises from the dispersion relation for a chain of harmonic
oscillators, @’ o sin?(ka/2), where a is the parameter
related to the distance between particles. This dispersion
relation has also been observed in dc-SQUID systems
[21,22]. The sonic horizon exists at x =0 if V_ < —1,
and in such a case, the region x < O becomes supersonic
(inside of the sonic horizon). We will see in Sec. II A that,
owing to the dispersive property of the fluid for high
frequency, there exists an effective horizon (group velocity
horizon) that has a similar property to the sonic horizon, even
when the whole region is subsonic and there is no sonic
horizon.

A. Mode functions

For the wave equation (2) with the subluminal dispersion
and the velocity profile, Eq. (3), by assuming
¢ o e~ @tHik¥(x £ (), the dispersion relation is obtained as

£\ 2
w—kV, ==+[k| 1—<—), @ > 0.
ko

(signs in no particular order) (4)

We denote ki*(w) as solutions of the dispersion relation
corresponding to V., where the index i denotes a label to
distinguish modes. Since the spacetime is static and the wave
equation does not contain explicit time dependence, a plane
wave with a frequency @ does not couple to other plane
waves with different @. We call w the laboratory frequency
and Q := w — kV the comoving frequency. Note that the
comoving frequency is not conserved and changes its value
depending on x. Solutions of the dispersion relation and
corresponding modes in our setup are shown in Fig. 1 using a
dispersion diagram; the vertical axis is the comoving
frequency and the horizontal axis is the wave number. The

Q

A uz
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FIG. 1. Dispersion diagram with the subluminal dispersion for
the subsonic case. A straight line represents Q = @ — V_ k. The
dispersion relation has four roots which define modes. We name
them i, v, u;, u, modes in the increasing order of k.
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FIG. 2. Dispersion diagrams and modes for the subsonic case. For @ < @wgyy, the in-state and the out-state contain independent four
modes. For wgyy < o, there in no right-moving modes in x < 0 and the in-state and the out-state contain three independent modes.

curve in the diagram represents the right-hand side of the

dispersion relation +|k|\/1 — (k/kg)?, and the straight line
represents the left-hand side of the dispersion rela-

tion w — kV 4.

From this diagram, we can identify modes as four real
roots ky, k,, k,,, k,, in the increasing order of k. For larger
values of w or |V_|, we will have only two real solutions,
kg, k, with k < 0, and two nonreal solutions. One of the
imaginary solutions corresponds to the decaying mode, and
the other imaginary solution corresponds to the growing
mode. For the velocity profile with the step function (3),
mode functions ¢ are plane waves

wi(1,:X) = €7 Cy iexp (iki (0)x),  i=0,0,u;,uy, (5)
where the index =+ corresponds to the sign of the x
coordinate, and C; ; are normalization constants. We call
u,, it in x > 0 Planckian modes and v, u; in x > 0, and & in
x < 0 non-Planckian modes. The Planckian modes appear
due to nonlinearity of the dispersion relation. On the other
hand, the non-Planckian modes exist even for linear
dispersion without the cutoff effect. The naming of modes
depends on values of @ and V_.. With the increase of w, the
non-Planckian mode u; approaches the Planckian u, mode.
In such a situation, we call u; the sub-Planckian mode. The
group velocity of each mode is given by

v, = <%>_1. (6)

We present behavior of modes for the subsonic case (Fig. 2)
and the trans-sonic case (Fig. 3). The in modes are defined as

modes with negative group velocity for x > 0 and positive
group velocity for x < 0 (incoming tox = 0 fromx = £00).
The out modes are defined as modes with positive group
velocity for x > 0 and negative group velocity for x <0
(outgoing from x = 0 toward x = +00).

For the subsonic case (Fig. 2), we assume —1 < V_ <
V. < 0. For sufficiently small w, there are four in and out

out

A
N

(=}

FIG. 3. Dispersion diagrams and modes for the trans-sonic
case. There are no right-moving modes in x < 0.
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modes (left panel in Fig. 2). If we increase w, the mode u; and
the mode u, in x < 0 coalesce at the critical frequency wgyy,
and above this frequency, we have only two out modes in
x < 0 (right panel in Fig. 2). For ogyy < @, x = 0 behaves
as a sonic horizon because there exist no right-moving modes
inx < 0, and this region effectively becomes the supersonic
region. We call this effective horizon the group velocity
horizon (GVH) [11]. There are three in modes in x > 0
(uy, 1, v), and one out mode for x > 0 (u;) and two out
modes in x < 0 (&, v).

For the trans-sonic case V_ < -1 <V, <0 (Fig. 3),
x = 0 is the sonic horizon. There are three in modes in
x > 0 (us, , v), and two out modes in x < 0 (it, v) and one
out mode for x > 0 (u;). There exist no right-moving
modes in the supersonic region x < 0.

The incoming Planckian mode u; is reflected at the
sonic horizon or the GVH. And it is transformed to the
outgoing sub-Planckian mode u;. This process is called
the mode conversion [12]. At the same time, the Planckian
mode i is transformed to the sub-Planckian mode &~ for
the trans-sonic case. More detailed discussion on modes for
the slowly varying velocity profile can be found in [9-11].

B. Quantization and vacuum state

We quantize a classical field obeying the field equation
Eq. (2). The action for the field is given by

5= [ dndxll0,+ 0007 - les(i0)0.0P) (1)
and the conjugate momentum z(¢, x) for ¢(¢, x) is given by

7(t,x) = (0, + vo,) (1, x). (8)

The canonical commutation relation between quantized
fields is imposed as

[p(1,x). 2(1.y)] = i6(x ~ ). ©)

The Klein-Gordon inner product [12] on ¢ = const surface
for solutions ¢y, ¢, of the field equation is defined by

(b1 hs) = —i / dx(h Db — 3D

——i [ as(ums - i) (10
where D = d; 4+ vd, and the inner product is conserved:
d(¢l ’ ¢2)
——===0. 11
r (11)

With the Klein-Gordon inner product, we can define
creation and annihilation operators associated with the
positive norm solution {¢;} of the wave equation by

a(p) = (bind).  a'(¢r) =—(#5.0).  (12)

This set of creation and annihilation operators satisfies the
following commutation relations:

(
&(fﬁi)»a(fﬁjﬂ = _(flj)i»(ﬁj'),
@ (i), a7 ()] = = (7. ;). (13)

Thus if we choose a basis with an orthonormal condition,
our creation and annihilation operators satisfy the standard
commutation relation for the creation and annihilation
operators. In general, it is not easy to construct exactly
the orthonormal basis with respect to the Klein-Gordon
inner product. However, for the step function velocity
profile, as all modes are represented by plane waves, it
is easy to identify positive frequency modes which define a
vacuum state. We note that the mode functions for #* have
negative norms and other modes have positive norms. Once
we defined a vacuum state, multiparticle states can be
obtained by acting the creation operator on the vacuum
state. We have two kinds of vacuum states. The in-vacuum
state |0;,) is the state with no particle at t > —oo0, x = o0

a(¢}")|0n) = 0, (14)

where ¢" is the positive frequency mode function of the in-
state for i = u7, ", v", u5 (subsonic case with @ < wj,),
and i = uj,u", v" (subsonic case with w;, < @ or trans-
sonic case). The out-vacuum state |0,,) is the state with no
particle at t - +oc0,x — *o0,

a(@i™)|0ou) = 0, (15)

where ¢9" is the positive frequency mode function of the out-
state for i = &, v, uy, u} (subsonic case with @ < wyy),
and i = &, v™, u] (subsonic case with wy, < @ or trans-
sonic case). In general, these two vacuum states are not equal,
and the number of the out-state particles in the in-state
vacuum is

(Oinla" (65" )a(¢h7")10s) # O (16)

This implies particle creation occurs at x = 0.
The field operator is expanded as

Pl1.x) =D (a(d)¢r + (He.))

=D _(algp + (He)).  (17)

and creation and annihilation operators are represented as

A

a(g) = (¢ p).  al (@) =— (¢ p).  (18)

III. BOGOLIUBOV COEFFICIENTS

We can analytically determine a relation between the in-
mode state and the out-mode state for the wave equation
with the step function velocity profile.
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A. Matching method

By separating the time dependence of the wave function
as « e in Eq. (2), the wave equation becomes the
following ordinary differential equation:

(—iw+0,v(x))(—iw + v(x)d,)Pp(x) = (1 + i62> O (x)

K
(19)

with the velocity profile given by Eq. (3). For x # 0, the
solution of this equation is the superposition of plane waves
exp(ik; x) for x > 0 and exp(ik;x) for x < 0. Coefficients
of superposition are determined by matching conditions at
x = 0. Let us denote ¢ as the solution of Eq. (19) for x=0.
We impose matching conditions between ¢, and ¢_ at
x = 0 as follows. We require a continuity condition of ¢ at
x = 0 up to the second spatial derivative to ensure the well-
behaved wave function. An additional condition is obtained
by integrating both sides of the wave equation in the range
—& < x < ¢, and taking £ — O:

—io(Vy=V_)p(0)+

1
2 (03¢ (0) — 324~ (0)]. (20)
After all, we require the following four matching conditions
[11,15]:

(Vi =V2)o.$(0)

$7(0) =¢7(0).  0:9™(0) = 0:p7(0).
%" (0) = 92¢7(0).
%" (0) = 32¢7(0) = k5(V. = V_){iwh(0)
— (Vi +V_)o:p(0)}. (21)

Then the wave function ¢(x) = ¢, (x)0(x) + ¢_(x)0(—x)
is the global solution of the wave equation (19).

B. Bogoliubov coefficients

By using the matching formula, Eq. (21), we can
construct ¢; (x) defined for x > 0 connected to the plane
wave e’5i* for x < 0. ¢ (x) can be expressed as

¢ (x) = Z a;; exp(ik} x) (22)

with superposition coefficients {a;;}. Wave numbers
{kj (@)} are determined by Eq. (4). The matching formula
[Eq. (21)] yields the following equations for {a;;}:

Soag=1. D gk =k, D ay(k))? = (k)
J J J

23)
S (k) = () + RV = Vo= (V, 4+ VOkr}

(24)

By solving these relations for «;;, we obtain

i -Bi/A; Ci/A; —=Di/A; 1/A,
ap | —By/A; Cy/A; —Dy/A; 1/A,
a3 ; —B3/As C3/A; —Ds3/A; 1/A;
i —B,/Ay Cy/Ay —Dy4/A; 1/A4
1
k;
" (k;)?
(k7P + (Ve =Vo{o = (Vi + Vo)ki }
(25)
with

A= (k" =k (K =k0) (K =K)),  Bi=kjkk[, (26)

C, = k;rk,ir +kik + kfkj*,
D;=ki +ki+kf
(indices i, j, k, [ are different from each other). (27)
Bogoliubov coefficients are expressed with the super-

position coefficients {a;;} (see Appendix A for more
details):

_(&%‘tf ﬁﬁﬁ [}fw Bﬁul Bﬁuz _(aiﬁn)w‘

a(;ut o ﬁbl_t ﬁuv ﬂvul ﬂuuz alﬁ
Aout ~ ~ ~ ~ ~in s
aglll ﬁulﬁ ﬁu,u ﬂu.ul ﬂuluz aul
~out ~ ~ ~ = ~in
G, ﬂuzit ﬂuzv ﬂuzul ﬂuzuz u,
(28)
where coefficients {f;;} are given by
Nfa, ; .
e )
l(] lllltl
ﬁuli = N- ) ’ (29)
N aum (i =u)
and
N a;;=N; a, f}u j .
~ = N-1 =L (J#F ) 30
ﬁl] o _N;rlaiu][fulu] (j — ul) ’ ( )

i

We obtain the Bogoliubov transformation which relates the
out-mode operators and the in-mode operators:
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(&iL_?)T ﬁuﬁ ﬂfm ﬂﬁul ﬁﬁuz (&gut)’r
a | | B Buw Buw B ao
at | Bua Buw Buw B aw |’
ain Bui Buw Busey Pusr ag
(31)

where {f;;} satisfies the relation ), ﬁikﬂkj = 0;j.

IV. VACUUM STATE

The Bogoliubov transformation involving the # mode is
given by

ayy = Pradf™ + B, (@) + B, @) + B, (@),
(32)

where |Baz|* = |Bau|* = |au, I* = au, I =1 holds. The equal-
ity B, = 0 holds for the subsonic case with the GVH and
the trans-sonic case because there exists no u, mode in
the out-state. The Bogoliubov coefficients related to the
#t mode can be parametrized as

Pan=eP coshr, f;,=e?sinhrsind,

Pau, =P sinhrcosfsing,  f;,, = e+ sinhrcosfcosg,

(33)

where r,0, ¢, ¢y, h,, P53, ¢4 are real parameters. r is the
squeezing parameter, and as r — 0, the number of created
particles decreases. € represents a ratio of the ¥ mode and
the » mode; as 6 — 0, mixing of the # mode and » mode
becomes small. The parameter ¢ represents the ratio of the
u; mode and u, mode.

With these parameters, we can characterize the out-
vacuum state. Let us define new annihilation operators

A, Ay, As, A, from the in-mode annihilation operators by
Ay = a2, (34)

~

Ay = €379 sin 0 cos pag™ + ¢/#+=91) sin @ sin pag™
+ e (¢2 ¢l) CcOS 9'\0"” (35)

~

Ay = —e'93=91) cos O cos pagt — e!(#=41) cos @ sin pag!
+ e (¢2 ¢l) Sln 9’\0“1 (36)
Ay = —e'#3=9) sin pa" + e'P=t) cos padt.  (37)
These new operators satisfy [A;, A ;] =0and [Ai,fl;} = 0;j.
With these new operators, from Eq. (31), annihilation

operators of the in-mode can be written as

ai" = ¢ (cosh rA, + sinh rf\;), (38)

ain = e [ p (smh rAl + coshrA,)

2
+14/1 cc|)€}|12 (cos p'A; + sin ¢’A4)], (39)

Al o
ap = e [

1
PP (cos "y +sing'A 40
T osh?r (cos @Az +sing"Ay)|,  (40)

ain — pidh P
1253 -
cosh r

(smh rAl + coshra,)

(sinh rA] + cosh rA,)

//|2

—_

_'_

i (cos¢”’12\3 —|—sin¢’”12\4)], (41)
cosh?r

where we introduced new constants ¢, 5, @5, ¢, ¢".
p.p,p" which are related to the original parameters
&1, ¢2, h3, P4, Bij. From these relations, the vacuum con-
dition for the in-state yields

(cosh rA; + sinh rA})[0,,) = 0,
(sinh rA] + cosh rA,)[0;,) = 0, (42)

A3|Oin> =0, A4|0in> =0, (43)

and the in-vacuum state is written as

o0

- —tanh7) 04,0 44
oy D0 0410 (44

|11’1

Thus the in-vacuum state is the two mode squeezed state of
the A; mode and A, mode.

To quantify the entanglement structure between modes,
we use negativity as the entanglement criterion. See
Appendix B for the method to calculate negativity from
the Bogolyubov coefficients.

V. RESULTS

Our analysis is performed for the subsonic case and the
trans-sonic case. For the subsonic case, there are right-
moving modes with low frequency @ in x < 0; however,
there exists a critical frequency wgyy such that there is no
right-moving mode with frequencies @ > wgyy in x < 0.
This means that modes with sufficiently high frequency can
feel the effective sonic horizon (GVH) at x = 0 even for the
subsonic case. For the trans-sonic case, there is no right-
moving mode in the supersonic region x < 0, and the point
x = 0 is the sonic horizon.

In our analysis, we adopt two sets of parameters
{kg = 100,V, = —0.4,V_ = —0.6} (subsonic case) and
{kg =100,V, = —0.75,V_ = —1.25} (trans-sonic case).
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Corresponding to the cutoff wave number k, the cutoff
frequency o, is determined by V, and ky. The value of
wgvy is given by a point at which the line Q = ¢ (k)k is
tangent to Q = w — V_k in the dispersion diagram:

k
WGV :l—g <3V_ +4/V2 +8>
x \/8—2V3+2V_\/V3+8. (45)

The value of w, is given by a point at which the line Q =
c(k)k is tangent to Q = @ — V_ k in the dispersion diagram:

ko
o, :16<3V++\/Vi+8>
X \/8—2vi+2v+,/v2++8. (46)

For the subsonic case, w,/ky = 0.240, wgyy/ko = 0.133,
and wgyy/®. = 0.554. For the trans-sonic case, w,/ky =
0.0666.

A. Power spectrum of created particles

The power spectrum of out-going particles (radiations) is
represented as

fu,(w) = |ﬂu1ﬁ|2’ fuz(a)) = |ﬁu212|27
fv(w) = |ﬂv12|27 fﬁ(w) = |ﬁ1212|2 - L (47)

For these power spectrums, we introduce the effective
temperature 7,;(w) by the relation

1

filo) = ST 1 (48)

If the effective temperature is constant with respect to  in
some frequency range, the power spectrum has a Planckian
distribution in that frequency range, and radiation cannot be
distinguished from the thermal one.

1. Subsonic case

For the subsonic case, the analytical formula of the
power spectrum in the low frequency region [15] is

VI-V (V.-V_)? w

(Vi + )(V_+ kg

|ﬁulﬁ|2 ~ 1 w/ky < 1. (49)

Particle creation in the low frequency region occurs due
to the Planckian mode associated with the nonlinear
dispersion. Actually for ky — oo with fixed w, the created
particle number becomes zero. For a high frequency region
over wgyy, particle creation occurs due to the mode
conversion associated to the GVH, which is also related
to the Planckian mode.

We plot our result of power spectrums in Fig. 4, where
frequency is normalized, so the cutoff frequency becomes
equal to 1. From @ dependence of the effective temperature
(Fig. 5), the thermality of the spectrum is not observed for
® < wgyy- In the @ — 0 limit, the number of u; particles
becomes zero, but finite numbers of & particles and u,
particles are created, and the numbers of these particles are
almost same. However, the behavior of power spectrums
for these particles in the higher frequency region is quite
different. The number of # particles increases with the
increase of frequency until the frequency reaches wgyy, at
which point the GVH appears. After the GVH is formed,
the number of u;,u particles decreases as frequency
increases. The number of u, particles decreases with the
increase of frequency, and becomes zero after the GVH is
formed. The number of v particles increases smoothly
across @ = wgyy as frequency increases.

The effective temperature does not become constant in
any frequency region (left panel of Fig. 5). This means the
power spectrum cannot be regarded as Planckian distribu-
tion in any frequency region. If we define the effective
temperature by adding a parameter yu; as

1

filw) = St @ _ 1’ (50)
the effective temperature becomes constant for > wgyg
and around @ ~ wgyy if we choose an appropriate value of
u; (right panel of Fig. 5). This implies the power spectrum
is indistinguishable from the thermal one with chemical
potential p; if we observe the emitted particles with
frequency around @ ~ @wgyg-

2. Trans-sonic case

In this case, the power spectrum in the low frequency
region [14,15] is

(Vo + 132V 1) (Vo +V )k

VISV Vo)V =vo) @

|ﬂullft|2z

(51)

Figure 6 shows power spectrums of emitted radiations in
this case. In the low frequency region, spectrums of u, it
particles are thermal, and they decrease rapidly near the
cutoff frequency w,. The number of the v particles shows
behavior similar to that for the subsonic case.

Figure 7 shows the behavior of the effective temperature
for the u; particle. Around @ ~ 0, it becomes constant
which reflects the thermal property of emitted radiation.

For the trans-sonic case with @ ~ 0, neglecting the
contribution of the » mode, the Bogoliubov coefficients
satisfy |B,,,|* = |Bu,al* & 1. These coefficients diverge as
1/w. Using this relation, the power spectrum of the u;
particle is
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FIG. 4. Power spectrums of created particles for the subsonic case. wgyy/®,. = 0.554 for the present parameters. Across @ = wgyy,
the number of modes changes from four to three, and the spectrums of u;, ii, u, are not smooth at wgyy.
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w/we

FIG. 5.
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w/we

Left: effective temperature of u; particle determined by Eq. (48) for the subsonic case. The effective temperature does not

become constant for any frequency region. Right: effective temperature of u; particle determined by Eq. (50) for @ > wgyy for the
subsonic case. The effective temperature becomes constant around @ ~ wgyy. In this plot, we chose u; = 1.2w,.

Bual ~ (\ P (52)

ﬂulﬁ

2 -1
1)

The ratio |f,,,,,/f,a| determines the power spectrum of the
u, particle. As w — 0 the ratio |$,,,,,,/B.,z| goes to 1 for the
trans-sonic case; this behavior of the Bogoliubov

coefficients originated from the boundary condition for
the decaying wave function in x < 0 (see Appendix C for
details). The ratio can be approximated as

:Buluz

53
ﬁulﬁ ( )

~14yo e,
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FIG. 6. Power spectrums for the trans-sonic case.

FIG. 7. Effective temperature of the u; particle for the trans-
sonic case. Around @ ~ 0, the effective temperature becomes
constant.

where y is a factor determined by V.. This approximation
indicates that the power spectrum of the u; particle shows
thermal distribution with effective temperature 7 = 1/(2y)
in the low frequency range. Using (51), the temperature is
given by

(Vo + 132 (Vo + 1) (V, + V)

VIV (V- DV, = V)

This formula provides a numerical value of the temperature
as T(w = 0) = 4.20 for present parameters and is consistent

T(w=

0) = k. (54)

with the numerical result (Fig. 7). However, this temperature
seems to have nothing to do with the surface gravity of the
horizon because it diverges for the step velocity profile, and
the thermal property appears due to nonlinear dispersion
relation (the Planckian mode). Indeed, the temperature (54)
can be regarded as corresponding to the effective surface
gravity which is defined by the velocity difference divided by
the effective thickness of the sonic horizon determined by the
cutoff wave number k.

B. Entanglement structure

1. Subsonic case

To analyze entanglement between each particle mode,
we calculated parameters r, 6, ¢ introduced in the previous
section. These parameters determine components of the
covariance matrix for the vacuum state. Figure 8 shows
the behavior of these parameters for the sub-sonic case. The
squeezing parameter » increases with the increase of fre-
quency until wgyy, and then decreases with the increase of @.
The mixing parameters € and ¢ go to zero as @ — 0, and
increase with the increase of @. Thus from the definition of
parameters (33), the u, particle (Plankian mode) is mainly
created for @ — 0. As w increases, the number of u; particles
increases until wgyy. For wgyy < @, as the GVH is formed,
the creation of the u, particle is shut down, and the u; particle
and i particle mainly contribute as created particles.

Behavior of the entanglement negativity for the subsonic
case is shown in Figs. 9-11. Figure 9 is the negativity
for bipartitioning of the total pure system [four modes for

0.150

0.125 0.500

0.100

« 0075

0.100 :
@ 0.050

0.050 0.010 0.10
0.005
0.05 :
0.2 0.4 : 0.6 0.8 1.0 0.0 0.2 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
YN /o, o/,
FIG. 8. Behavior of parameters r, 6, ¢ for the subsonic case.
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FIG. 9. Negativity for the subsonic case. For low frequency @ < wgyy (left panel), the number of particle modes is four. For high
frequency wgyy < @ (right panel), the number of particle modes is three.
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FIG. 10. Negativity of reduced state for the subsonic case in the low frequency region 0 < ® < @wgyy-
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FIG. 11.

® < wgyy (left panel) and three modes for wgyy < @ (right
panel)]. For o < wgyy, entanglement between u;, v par-
ticles and other particles goes to zero as @ — 0. This decrease
of entanglement corresponds to the decrease of the created
number of u; particles and » particles. Entanglement
between i, v, u; particles and other particles increases with
the increase of w, whereas entanglement between the u,
particle and other particles decreases. For ogyy < @ where

Negativity A:B
0.20
0.05
0.02 _

u:v
0.01
0.6 0.7 0.8 0.9 1.0
wlw,

Negativity of reduced two mode state for the subsonic case.

the GVH exists, the u, particle disappears, and the total
number of modes becomes three. Entanglement between
u, u; particles and other particles decreases, and entangle-
ment between the v particle and other particles increases with
the increase of w.

In the limit of @ — 0, u; and v modes are separable from
the three other modes, and the u, and # mode forms an
entangled pair. With the increase of frequency, entanglement
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FIG. 12. Schematic pictures of entanglement structure for the subsonic case. Red disks represent non-Planckian modes, blue disks
represent the Planckian mode, and green disks represent sub-Planckian modes. For low frequency, entanglement of the system is shared
mainly by # — u, pair. For @ ~ wgyy, entanglement of the system is shared mainly by it — u; pair.

between u; and # modes, and entanglement between » and
# modes become larger. And near the frequency wgvy,
entanglement between the u; and # modes becomes the
main contribution to entanglement of the four modes
system. For @ > wgyy, entanglement between the i
and # modes starts to decrease, whereas entanglement
between the v and # modes keeps increasing, and their
amount becomes comparable near the cutoff frequency w..
We present schematic pictures of the entanglement struc-
ture in Fig. 12.

For w ~ 0, non-Planckian modes u;, v cannot entangle
with Planckian modes u,, ii. With the increase of frequency,
the non-Planckian mode u; becomes the sub-Planckian
mode, and # and u; are entangled. This is the reason why
entanglement between u; and other modes gets larger with
the increase of frequency in the low frequency region.

Now let us comment on the property of the radiation
for wgyy < @ where the GVH exists. For models with
slowly varying velocity profiles, in the vicinity of the GVH,
the wave number corresponding to emitted particles is
expressed as

w
k(x) » K(x = x0) + @/ k(x0) + k(x0)dc/ Okl (xy)

(55)
where x, is the location of the GVH, « is the first derivative
of the velocity profile at the GVH, and k(x,) is the wave
number at the GVH (see Appendix D for the derivation of
this formula). This x dependence of the wave number is the
same as the behavior of the wave number of the trans-sonic

case if we regard the location x* = xy— (w/k(xg) —
k(xo)dc,/0k|y(,))/x as the sonic horizon hidden inside
the group velocity horizon. We remark that Eq. (55) can
approximate the behavior only outside the group velocity
horizon. If we construct the global solution which can be
connected to the #; out mode in x — oo, it is a decaying
function inside the group velocity horizon, and no singular
behavior as expressed by Eq. (55) appears in reality. We also
remark that x* corresponds to the real sonic horizon when the
sonic horizon exists. Since the behavior of the wave number
of the Hawking mode is not distinguishable from that of the
trans-sonic case, we can use the method of Laplace trans-
formation and the saddle point approximation well discussed
in the previous research [9,10,23], and we obtain thermal
behavior of the radiation. The bipartite entanglement for
wgyy < @ decreases with the increase of w, which is the
same behavior for the trans-sonic case and related to the
thermal property of radiations. These considerations suggest
that the mechanism of the particle creation for wgyy < @ is
analogous to that of the trans-sonic one although the
analogous spacetime does not have the sonic horizon.

2. Transsonic case

Figure 13 shows the w dependence of parameters r, 0, ¢,
and Fig. 14 shows negativity for the trans-sonic case.
Entanglement between #,u; modes and other modes
decreases with the increase of w, and entanglement
between the » mode and other modes also increases with
the increase of w. This behavior is consistent with that of
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0.5
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FIG. 13.
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Frequency dependence of parameters r, 6, ¢ for the trans-sonic case.
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FIG. 14. Behavior of negativity for the trans-sonic case.
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FIG. 15. Schematic pictures of entanglement structure for the
trans-sonic case. Red disks represent non-Planckian modes, blue
disks represent Planckian modes, and green disks represent sub-
Planckian modes. For low frequency, entanglement of the system
is shared mainly by the #-u; pair.

the power spectrum; with the increase of entanglement, the
number of created particles increases.

For the @ — 0 limit, the » mode becomes approximately
separable from other modes, and u; and # are entangled.
With the increase of w, entanglement between the u; and u
modes decreases, and entanglement between the v and u
modes increases. And the amount of these entanglements
becomes comparable near the cutoff frequency w,.. This
behavior is the same as that observed in our previous study
for the trans-sonic flow with finite surface gravity at the
sonic horizon [20]. A schematic structure of entanglement
for the trans-sonic case is shown in Fig. 15.

VI. CONCLUSION

We have calculated the power spectrum and entangle-
ment of the scalar field modes in the dispersive media with
a step velocity profile. For the trans-sonic case, we have
obtained the similar result as [20], but the temperature of
the radiation is given by Eq. (54), which is not equal to
the derivative of the fluid velocity at the sonic horizon. For
the subsonic case, the situation is completely different.
Entanglement between the #; mode and # mode, and the
power spectrum of the created u; particle increases with
frequency w until the frequency reaches wgyy where the
GVH appears. The power spectrum becomes a decreasing
function of frequency for wgyy < @. For the dispersive
model investigated in this paper, the power spectrum of the

u; mode for the subsonic case and for the trans-sonic case
has a similar behavior in the high frequency region.
Concerning entanglement structure, we found that
Planckian modes cannot entangle with non-Planckian
modes (see Figs. 12 and 15); for the subsonic case, in
the low frequency limit, the #; mode and » mode are non-
Planckian modes, and the # mode and u, mode are
Planckian modes. Entanglement of the system is shared
only between the u, mode and # mode, and the u; particle
is not created. With the increase of frequency, the ©#; mode
becomes a sub-Planckian mode and the u; particle can be
created. For the trans-sonic case, all of the modes are sub-
Planckian modes in the low frequency limit, and the u,
mode and # mode can entangle. From the viewpoint of
entanglement, the sonic horizon and the group velocity
horizon are indistinguishable; they both lead to the dom-
inant entanglement between the u; mode and # mode. In
this paper, we choose a steplike velocity profile for the
simplicity. However, the results remain valid even in the
more realistic case where the velocity profile is not exactly
steplike, but rather smoothed. This is because the value of
the surface gravity is unimportant for the small cutoff case
Ty > ®cuofr @S We have shown in our previous paper [20].
While we did not discuss these issues in this paper, we are
interested in the following topics: the first one is how the
cutoff scale affects the total energy and the total entangle-
ment of modes. We do not understand how the total energy
of modes and entanglement is shared between modes with
nonlinear dispersions. The second one is the behavior of
two point correlation functions. Two point correlation
functions for analog black holes are investigated in [24-27].
It may be interesting to evaluate them for the subsonic
case without a sonic horizon. The third one is the depend-
ence of dispersion relation on particle creations and
entanglement. We considered the subluminal dispersion
in this paper, but for the superluminal dispersion, the
number of the negative norm modes is different, and we
expect a different entanglement structure. The final one is
the case with the time dependent velocity profile. The
dispersion relation is modified due to the inclusion of an
additional self-interaction term in the Lagrangian. However,
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we need to consider the loop correction when we construct
the out vacuum state [28-31] for the dynamical cases. The
behavior of the number density or the entanglement
structure for such cases would not exhibit the thermal
property even for the small frequency. These problems are
left for our future research.
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APPENDIX A: CALCULATION OF THE
BOGOLIUBOV COEFFICIENTS

By specifying a mode in x < 0, it is possible to obtain a
wave function which satisfies a given boundary condition
|

— pin
N”] U

@) o0 = {

b o ={ o

@¢w—{””m

in x < 0. Schematic diagrams describing four possible
different boundary conditions in the x < 0 region are
shown in Fig. 16.

For the plane wave exp(ik; x) in x < 0 with a real wave
number k;, we can define the normalized mode function

™" (x) = exp(ik™"x)/NF with

1

-1
W= Jare GOk = ()7
0}

We put labels “£” and “in/out” depending on the asymp-
totic regions and the sign of the group velocity. If all modes
are normalizable (i.e., all solutions of the dispersion
relation are real), plane wave solutions with specified
boundary conditions are given as follows:

(x <0) (A2)
Nif G B3+ Ny, ity + Ni i + Niao (x> 0)
(x <0)
N Q@3+ Nop @, @8+ Nt ap + Ny, 0 (x> 0) (A3)
| | <0 (A4)
NI, Ay, 2?[ + N;Lzaﬁuz wy T N7z + Njaw/,(p‘@‘} (x>0)
(x <0)
Ny oy 2+ Ny, }f’z + Nioz " + Nfa,, " (x > 0). (A3)

@¢@—{m”w

Even if there exist unnormalizable modes, the logic is
essentially the same, but we have to treat the norm of
modes more carefully. From Egs. (A2)—(AS), we can read
off relations between the in-mode functions and the
out-mode functions. For example, let us consider Eq. (A2).

(a) (b)

/

Uy u

v v

,‘% w

In the asymptotic out region, the wave function is expressed
as ¢(x) = N,j a, ,, 5" thus thig rgode d§fines the out-
vacuum state. In the asymptotic in region, the wave
function is expressed as the superposition of plane
waves

(c) (d)

/'m

N

FIG. 16. Four different boundary conditions in x < O for the wave equation (19) to determine the Bogoliubov coefficients.
(a) Boundary condition with ¢~(x) = c/’)‘u“l For the subsonic case with wgyy < @ or the trans-sonic case, the mode u; becomes the

out
Uy

decaying mode. (b) Boundary condition with ¢~ (x) = ¢
¢~ (x) = 3"

. (¢) Boundary condition with ¢~ (x) = ¢9". (d) Boundary condition with
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— N— Hin + in + in + in
¢<X) - Nul up +Nu2au]u2 Uy +Nﬁ au1ﬁ¢ﬁ +N1: au1v¢1:'

(A6)
Therefore, we obtain the following in-out relation

+ out __ A7— pin + in + in

Nulaulul Uy _Nul U +Nu2au1u2 Uy +N174 au1ﬁ¢u
+ in

+ NL‘ aulv¢v . <A7)

Repeating the same procedure for the three other boundary
conditions, we obtain three other in-out relations:

— _pout + out _ A7+ in + in
Nu2¢u2 + Nulauzuz u, Nuzauzuz Uy + NIZ alt2ﬁ¢u

+ Nfay,, 7, (A8)

N7 ™ + Ny, @, @ = N g, an + Nfag
+ N;fraulu 11{1’ (A9)

N;1 ¢gl1n =+ Nu+1 Ay, 3111t = Nuzavuz },{nz + N;avﬁ(ﬁiﬁn
+ Ny, hin, (A10)

By taking the Klein-Gordon inner product of both sides
with the field operator g?ﬁ both sides, from Eq. (18), we
obtain the transformation between the in-mode operators
and the out-mode operators [Egs. (28)—(30)]. This trans-
formation is the Bogoliubov transformation, and the trans-
formation is determined by 4 x 4 Bogoliubov coefficients.

APPENDIX B: ENTANGLEMENT NEGATIVITY

To quantify entanglement between each mode using the
negativity, we introduce canonical variables X;, P; by
S — ai" +(ar)’

’ V2

(B1)

Then the wave function of the in-vacuum state is given as
|

Re[p)] Im[By] Relp] —Im[p)]
Im[,]  Re[fn] Im[p,] —Re[fi]
Re[fy)] Im[By] Relfy] —Im[fy)]
g— Im[$y] Relfy] Im[Bn| Re[fx]
Re[fy)] Im[B3] Relfs] —Im[fs)]
Im[3] —Relfy] Im[Bz] Re[fs]
Re[fy] Im[By]  Re[fn] —Im[y]
Im[B,] —Relfy] Im[fy]  Relfy]

wo(X1, X2, X3, X4) = (X1, X5, X3, X4[0y)

1 X2+ X244 x24 X2
_ Xp(— ]+ 2—; 3+ 4>‘ (B2)

The Wigner function of this wave function is defined by

1 ‘ Y Y
O = e 8 (X3 i (63)

(B3)

1
= —exp(—X* - P?).
T

Introducing a vector with canonical variables é = (}A( Py,
X5, Py, X5, P, Xy, f’4)T, the covariance matrix is defined by

vy= (P55 = [amewe.  ms

and for the wave function Eq. (B2), V;; = 6;;/2. Since the
Bogoliubov transformation preserves commutation relations
of creation and annihilation operators, it also keeps commu-
tation relations between canonical variables defined in terms
of creation and annihilation operators.

Now we introduce canonical variables for the out modes
as

- &?ut + (a?ut)'i' R ac)ut _ (&qut)T

i_Tv pi =

and introduce a vector with canonical variables for the in
mode as & = (&, P1, X2, D2, &3, P3» X4, P4)7. The relation
between in and out canonical variables is given by

&=> 5" (B5)
where
Re[f3] —Im[3] Re[fy] —Im[B 4]
Im[B3] —Re[f3] Im[B,] —Re[f4]
Re[fy] —Im[fy;] Re[frs] —Im[fay]
Im[B,;]  Re[fr] Im[By] Re[fr]
Relpy] ~Imf] Reff] —Imifs] (56)
Im[f5;]  Re[fs3] Im[Bs] Re[fsy)
Re[fys] —Im[fy3] Relfuy] —Im[Byy]
Im[fy3]  Re[fys] Im[By] Re[fu]
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with the subscript of fp;; representing 1,2,3,4 =i,
v, Uy, Up. Since this transformation keeps canonical com-
mutation relations, the matrix S satisfies

470 1
SQST = Q, Q:@( )
i—1\—1 0

From | det S| = 1, the relation between the in-mode covari-
ance matrix V and the out-mode covariance matrix V' is
derived as

v, = / FeeEWE) =S / PESESIEEW(S(E))
k.l

= (SV’ST)U, (B7)
where W(S(€)) = W'(€) is the Wigner function for €. Thus
the covariance matrix for the out mode can be written as

V., V, V5 V,
* V5 V6 V7

where V;, j =1, ..., 10 denotes 2 x 2 submatrices of 8 x 8
covariance matrix V. For the Gaussian state considered here,
itis easy to obtain the covariance matrix for the reduced three
mode state by simply integrating out one mode:

Vij= /d6§§i§jv~v(§) = /d6§§i§/(/ d2§W(§)> =V

where W (€) is the Wigner function for reduced state, and V;;
is the covariance matrix of the reduced state. A similar
argument can be applied to the covariance matrix of a two
mode state. Using the covariance matrix, it is possible to
evaluate entanglement negativity which quantifies bipartite
entanglement for a given bipartition of the total system
(see Appendix B for its definition).

Entanglement of the in-vacuum state is evaluated using
the positive partial transpose (PPT) criterion for continuous
variable [32-34]. The PPT criterion states that if a partially
transposed density matrix has negative eigenvalues, the
bipartite state is entangled. For bosonic systems, we can
rewrite the PPT criterion in terms of a covariance matrix.
From positive definiteness of the density matrix and the
uncertainty relation, the covariance matrix which represents
a physical state should satisfy

Vet %Q >0, (B9)
where the inequality of the matrix stands for positive
definiteness of the matrix [35]. With this property of a
physical density matrix, the PPT criterion is equivalent
to the following statement: If the state is separable, the

covariance matrix V with the partially transposed density
matrix satisfies

v+ éQ > 0. (B10)
The covariance matrix V is easily calculated by inverting
the sign of the momentum p; — —p;, which corresponds

to the partial transposition of a mode [34]. By diagonaliza-
tion of V using a symplectic matrix S,

17+ég_s§<@< " i/2>>sd, (B11)

i —l/2 K;

where {k;} are symplectic eigenvalues of V. If all of the
symplectic eigenvalues are greater than 1/2, V + (i/2)Q is
positive definite. To quantify entanglement, the negativity
is defined by

o | (1T 55) 1)
N = —max — | = 1,0,
2 K,-Bl/ZZK"

and the logarithmic negativity Ly = log(2N + 1).If N > 0
or equivalently Ly > 0 holds when the bipartite state is
entangled. Logarithmic negativity is entanglement mono-
tone (does not increase under the Local Operation and
Classical Communication) and additive; thus logarithmic
negativity can be used as an entanglement measure [36,37].

(B12)

APPENDIX C: POWER SPECTRUM IN LOW
FREQUENCY REGION

For the trans-sonic case, we expand the Bogoliubov
coefficients as a power series of @ by comparing the same
order terms in both sides of the matching formula.
For simplicity, we neglect the uv mixing. The linear
combination of the #; mode, ©, mode, and i mode is chosen
so that it decays exponentially as x - —co. We consider

wave functions Aexp{ikg,,,x} for x<0 and exp{ikj x} +

Bexp{ik} x} + Cexp{ikj x} for x > 0, and match them at
x = 0. The matching formula corresponding to Eq. (21) is
written as

=kt

A=1+B+C, Ak + Bk, + Ck3,

decay uy
A(kGeeay)® = (ki )* + B(ki,)* + C(ks ). (C1)
We expand A, B, C in the power of @ as
C=CO4+cWg+---. (C2)

We substitute Eq. (C2) into Eq. (C1), and equate terms with

- + ket
the same powers of . Wave numbers kg, ... k. ky,. kz are

determined as solutions of the dispersion relation, Eq. (4), as
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decay \/V2_1+( > 0+,
kquz:k()\/l—Vi-f—(E) Cl)+,
dQ\ 1
+_ _y2 ae
ki = koy/1 V++<dk> W
w

+
ky, =

-V,

By substituting these expressions into Eq. (C1), we obtain
coefficients of the wave function in the lowest order of w as

2 _
Jo_ Vol
V:i-v2
1/ V2-1 V2 -1 VZ-1
BO) — — =i+ | ]
2\wvzovz Wi U v o2
1/V2-1 V2 -1 V2 -1
c0) — _ ———+ 1 s 1+ —3 5 .
AN A VI 2l R T 72)
(C3)
In the zeroth order of w, N, =Nj. |, .,/ =

Buyuy/ Buyal = |B®/CO| = 1 holds. We leave some com-
ments for the subsonic case. Most of the calculations are
essentially the same with the trans-sonic case but we need to
connect the Hawking mode with the plane wave mode k;,
instead of the decaying mode. The zeroth order coefficients
can be represented by Eq. (C3), but the ratio |, ,, /@, z| =
Buyuy/Buya| = |B@/CO)| is not equal to unity since the
factor i4/V2 — 1 is not purely imaginary. This difference
leads to the different behaviors of the power spectrum for the
subsonic case and transonic case in the low frequency region.

APPENDIX D: WKB SOLUTIONS FOR
SLOWLY VARYING CASE WITH
GROUP VELOCITY HORIZON

In this Appendix, let us consider the behavior of the
WKB solution in the vicinity of the group velocity horizon.
|

If the velocity profile and the wave number k(x) are the
slowly varying function of x, the dispersion relation is
given by

(@ —v(x)k)> = 2(k)k>.
Since the group velocity horizon is a point where the right-
moving mode and left-moving mode in x > 0 merge due to
the subluminal dispersion, the condition for the group
velocity horizon x = x is represented as follows:

{w = (v(x0) + ¢(k(x0)))k(xo)

~o(xg) = & (AR

The first equation corresponds to the dispersion relation,
and the second equation corresponds to the condition that
two modes merge. Indeed, the second condition is the
derivative of the dispersion relation at k = k. By deriving
the first equation, we obtain

(D1)

(D2)

dx

0= (v(x0) + ¢s(k(x0))) + k(o) <1/(XO) k|,

oc, >
va

ok
(D3)

Now let us derive the approximate solution k(x) of the
dispersion relation corresponding to the Hawking mode at
the vicinity of the group velocity horizon x = x;. Assuming
that Taylor expansion for k(x) is possible about x,, we can
approximate k(x) by

Kx) = ko + o (x=x0) (D4)
o 1 )
° 140/ (x0) (x—=x0) / (v(x0) + ¢ (ko) + k5o, / 0kl ) )
(03)

Here, we used the second equality of the (D2) and the
formula of the Taylor expansion (1 +x)~'~1—x. By
using the first formula of the (D2) we can further simplify
the equation,

@

k(x) ~

In the low frequency region, c,(k) ~ 1 holds for the right-
moving mode outside the group velocity horizon; therefore
we can set dc/ k| &, = 0 in this formula. We finally obtain

w(w/ky + V' (x0) (x — Xxo) + koOc,/ Ok, )/ (@ + k§oc,/okl,,)

(Do)

I
w

V' (x0)(x = xo) + @/ko + kodc,/ Okl

k(x) ~ (D7)
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