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We investigate particle creation and entanglement structure in a dispersive model with subluminal
dispersion relation. Assuming the step function spatial velocity profile of the background flow, mode
functions for a massless scalar field are exactly obtained by the matching method. Power spectrums of
created particles are calculated for the subsonic and the trans-sonic flow cases. For the trans-sonic case, the
sonic horizon exists, and created particles show the Planckian distribution for the low frequency region, but
the thermal property disappears for the high frequency region near the cutoff frequency introduced by the
nonlinear dispersion. For the subsonic case, although the sonic horizon does not exist, the effective group
velocity horizon appears due to the nonlinear dispersion for the high frequency region, and an approximate
thermal property of the power spectrum arises. The relation between particle creation and entanglement
between each mode is also discussed.
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I. INTRODUCTION

Quantum field theory in black hole spacetimes predicts
the emission of thermal Hawking radiation from black
holes, whose temperature is given by the surface gravity
at their event horizons [1,2]. This property of Hawking
radiation from black holes suggests that black holes behave
as a kind of thermodynamical object, and the theory of
black hole thermodynamics is formulated [3]. The thermal
property of Hawking radiation leads to a problem called the
information loss paradox, and for deeper understanding
of this issue, an analysis of entanglement between the
Hawking mode (Hawking radiation) and its partner mode
has been done to investigate the quantum informational
aspect of the black hole evaporation [4].
The original Hawking’s scenario implies that low energy

radiations are originated from a high energy region above
the Planckian scale, at which quantum gravitational physics
will become important. Thus it is crucial to clarify the effect
of the Planckian scale cutoff on the thermal property of
Hawking radiation (the trans-Planckian problem) [5,6]. To
resolve this problem, it is necessary to consider the origin
of the particle radiated from the black hole. If we consider
time reversed evolution of emission of Hawking radiation,
the frequency of emitted radiations exponentially increases
as they approach the black hole horizon and exceeds the
Planckian frequency; beyond the frequency, the quantum
effect of gravity may become important. To investigate
such a situation, Unruh proposed a sonic analog of black

holes [7,8]; he found that the equation of sonic waves in
moving fluid has the same form as a massless scalar field in
curved spacetimes, whose metric has a similar structure as
black hole spacetimes. The acoustic metric corresponds to
the black hole spacetime with Painlevé coordinates

ds2 ¼−c2dt2þðdx−vðxÞdtÞ2; vðxÞ ¼−c
ffiffiffiffiffiffiffiffiffi
xs=x

p
ð1Þ

where xs is the Schwarzschild radius and c is the light
velocity. A cutoff wave number k0 is introduced as the
distance between atoms constituting fluid. He numerically
calculated the power spectrum of the radiation for the
analog black hole with the high frequency cutoff and has
shown that the cutoff does not affect the spectrum of
Hawking radiation in a low frequency region.
Owing to the introduction of the frequency cutoff, the

Lorentz invariance of the system is broken, and additional
wave modes associated with the cutoff appear. Owing to
these modes, Hawking radiation in analog black holes is
produced by a process that the Planckian modes trans-
formed into the low energy modes (mode conversion). If
the velocity profile vðxÞ is a slowly changing function of
the spatial coordinate, a lot of analyses have been done so
far based on the WKB method. These studies show that for
ω; κ ≪ k0 where κ is the first derivative of the velocity
profile at the sonic horizon, the temperature of the radiation
is given by κ=ð2πÞ, and this coincides with Hawking’s
results [6,9–12].
If the velocity profile vðxÞ is not a slowly changing

function of the spatial coordinate, and if the expected
temperature of analog black holes is high, then several
studies of particle creation in analog models [11,13–16]
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have shown that the spectrum of radiation depends not only
on the first derivative of the fluid velocity at the sonic
horizon, but also on other parameters such as the frequency
cutoff. This implies that the mechanism of radiation from
analog black holes with high temperature does differs from
the original Hawking radiation. Investigations of entangle-
ment for analog models of black holes also have been done
recently [17–20]. The study of the entanglement between
involved modes is useful not only for the detection of the
Hawking radiation in the laboratory experiment but also for
understanding the emission mechanism of the radiation.
In this paper, we consider an analog model with a step
function velocity profile of the background flow, and apply
the step discontinuous method introduced by [11,13,15]
to evaluate Bogoliubov coefficients. Then we calculate
the number density of created particles and entanglement
negativity between involved modes. Although the present
study may have overlaps with the analysis by Busch and
Parentani [17], in which entanglement structure for a high
temperature analog black hole was studied, our analysis
differs from their work in several points; first, we calculated
the multipartite entanglement between modes. Second, we
investigated the structure of partner modes for two different
types of analog spacetimes: the one with a sonic horizon
and the other without a sonic horizon.
The paper is organized as follows. In Sec. II, we shortly

reviewparticle creation in an analog systemwith thedispersive
media. In Sec. III, we determine the Bogoliubov coefficients
for the step functionvelocity profile. In Sec. IV, we investigate
the entanglement structure of the in-vacuum state. In Sec. V,
we show the results of our numerical calculation. SectionVI is
devoted to the summary and conclusion. We used the unit
c ¼ ℏ ¼ G ¼ 1 throughout this paper.

II. WAVE MODES FOR STEEP
VELOCITY PROFILE

We consider wave modes of an analog model with
dispersive media. This section is mainly based on [11,12].
We adopt the following wave equation of a massless real
scalar field [8,12]:

ð∂t þ ∂xvðxÞÞð∂t þ vðxÞ∂xÞϕðx; tÞ ¼ c2sð−i∂xÞ∂2xϕðx; tÞ:
ð2Þ

This is the equation for sonic waves in a moving fluid with a
position dependent velocity profile vðxÞ and the sound
velocity csðkÞ with the wave number k ¼ −i∂x. In the
following, we assume that the velocity of the fluid has the
step function profile1

vðxÞ¼V−þðVþ−V−ÞθðxÞ; V�< 0; ð3Þ

and the flow velocity in the x > 0 region is subsonic Vþ >
−1. We assume subluminal dispersion c2sðkÞ ¼ 1 − k2=k20
with the cutoff of wave number k0. This type of dispersion
arises from the dispersion relation for a chain of harmonic
oscillators, ω2 ∝ sin2ðka=2Þ, where a is the parameter
related to the distance between particles. This dispersion
relation has also been observed in dc-SQUID systems
[21,22]. The sonic horizon exists at x ¼ 0 if V− < −1,
and in such a case, the region x < 0 becomes supersonic
(inside of the sonic horizon). We will see in Sec. II A that,
owing to the dispersive property of the fluid for high
frequency, there exists an effective horizon (group velocity
horizon) that has a similar property to the sonic horizon, even
when the whole region is subsonic and there is no sonic
horizon.

A. Mode functions

For the wave equation (2) with the subluminal dispersion
and the velocity profile, Eq. (3), by assuming
ϕ ∝ e−iωtþikxðx ≠ 0Þ, the dispersion relation is obtained as

ω− kV� ¼ �jkj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

�
k
k0

�
2

s
; ω > 0:

ðsigns in no particular orderÞ ð4Þ

We denote k�i ðωÞ as solutions of the dispersion relation
corresponding to V�, where the index i denotes a label to
distinguishmodes. Since the spacetime is static and thewave
equation does not contain explicit time dependence, a plane
wave with a frequency ω does not couple to other plane
waves with different ω. We call ω the laboratory frequency
and Ω ≔ ω − kV� the comoving frequency. Note that the
comoving frequency is not conserved and changes its value
depending on x. Solutions of the dispersion relation and
correspondingmodes in our setup are shown in Fig. 1 using a
dispersion diagram; the vertical axis is the comoving
frequency and the horizontal axis is the wave number. The

FIG. 1. Dispersion diagram with the subluminal dispersion for
the subsonic case. A straight line represents Ω ¼ ω − V�k. The
dispersion relation has four roots which define modes. We name
them ū; v; u1; u2 modes in the increasing order of k.

1The step function is defined by

θðxÞ ¼
8<
:

0 ðx < 0Þ
1=2 ðx ¼ 0Þ
1 ðx > 0Þ :
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curve in the diagram represents the right-hand side of the
dispersion relation �jkj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðk=k0Þ2

p
, and the straight line

represents the left-hand side of the dispersion rela-
tion ω − kV�.
From this diagram, we can identify modes as four real

roots kū, kv, ku1 ; ku2 in the increasing order of k. For larger
values of ω or jV�j, we will have only two real solutions,
kū; kv with k < 0, and two nonreal solutions. One of the
imaginary solutions corresponds to the decaying mode, and
the other imaginary solution corresponds to the growing
mode. For the velocity profile with the step function (3),
mode functions ϕ�

i are plane waves

ϕ�
ω;iðt;xÞ¼ e−iωtC�

ω;i expðik�i ðωÞxÞ; i¼ ū;v;u1;u2; ð5Þ
where the index � corresponds to the sign of the x
coordinate, and C�

ω;i are normalization constants. We call
u2; ū in x > 0 Planckian modes and v, u1 in x > 0, and ū in
x < 0 non-Planckian modes. The Planckian modes appear
due to nonlinearity of the dispersion relation. On the other
hand, the non-Planckian modes exist even for linear
dispersion without the cutoff effect. The naming of modes
depends on values of ω and V�. With the increase of ω, the
non-Planckian mode u1 approaches the Planckian u2 mode.
In such a situation, we call u1 the sub-Planckian mode. The
group velocity of each mode is given by

vg ¼
�
dkðωÞ
dω

�
−1
: ð6Þ

We present behavior of modes for the subsonic case (Fig. 2)
and the trans-sonic case (Fig. 3). The in modes are defined as

modes with negative group velocity for x > 0 and positive
group velocity for x < 0 (incoming to x ¼ 0 from x ¼ �∞).
The out modes are defined as modes with positive group
velocity for x > 0 and negative group velocity for x < 0
(outgoing from x ¼ 0 toward x ¼ �∞).
For the subsonic case (Fig. 2), we assume −1 < V− <

Vþ < 0. For sufficiently small ω, there are four in and out

FIG. 2. Dispersion diagrams and modes for the subsonic case. For ω < ωGVH, the in-state and the out-state contain independent four
modes. For ωGVH < ω, there in no right-moving modes in x < 0 and the in-state and the out-state contain three independent modes.

FIG. 3. Dispersion diagrams and modes for the trans-sonic
case. There are no right-moving modes in x < 0.
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modes (left panel in Fig. 2). Ifwe increaseω, themodeu1 and
themode u2 in x < 0 coalesce at the critical frequencyωGVH,
and above this frequency, we have only two out modes in
x < 0 (right panel in Fig. 2). For ωGVH < ω, x ¼ 0 behaves
as a sonic horizon because there exist no right-movingmodes
in x < 0, and this region effectively becomes the supersonic
region. We call this effective horizon the group velocity
horizon (GVH) [11]. There are three in modes in x > 0
(u2; ū; v), and one out mode for x > 0 (u1) and two out
modes in x < 0 (ū; v).
For the trans-sonic case V− < −1 < Vþ < 0 (Fig. 3),

x ¼ 0 is the sonic horizon. There are three in modes in
x > 0 (u2; ū; v), and two out modes in x < 0 (ū; v) and one
out mode for x > 0 (u1). There exist no right-moving
modes in the supersonic region x < 0.
The incoming Planckian mode uþ2 is reflected at the

sonic horizon or the GVH. And it is transformed to the
outgoing sub-Planckian mode uþ1 . This process is called
the mode conversion [12]. At the same time, the Planckian
mode ūþ is transformed to the sub-Planckian mode ū− for
the trans-sonic case. More detailed discussion on modes for
the slowly varying velocity profile can be found in [9–11].

B. Quantization and vacuum state

We quantize a classical field obeying the field equation
Eq. (2). The action for the field is given by

S ¼
Z

dtdx½jð∂t þ v∂xÞϕj2 − jcsði∂xÞ∂xϕj2�; ð7Þ

and the conjugate momentum πðt; xÞ for ϕðt; xÞ is given by
πðt; xÞ ¼ ð∂t þ v∂xÞϕðt; xÞ: ð8Þ

The canonical commutation relation between quantized
fields is imposed as

½ϕ̂ðt; xÞ; π̂ðt; yÞ� ¼ iδðx − yÞ: ð9Þ
The Klein-Gordon inner product [12] on t ¼ const surface
for solutions ϕ1;ϕ2 of the field equation is defined by

ðϕ1;ϕ2Þ ≔ −i
Z

dxðϕ1Dϕ�
2 − ϕ�

2Dϕ1Þ

¼ −i
Z
Σ
dxðϕ1π

�
2 − ϕ�

2π1Þ; ð10Þ

where D ¼ ∂t þ v∂x and the inner product is conserved:

dðϕ1;ϕ2Þ
dt

¼ 0: ð11Þ

With the Klein-Gordon inner product, we can define
creation and annihilation operators associated with the
positive norm solution fϕig of the wave equation by

âðϕiÞ ¼ ðϕi; ϕ̂Þ; â†ðϕiÞ ¼ −ðϕ�
i ; ϕ̂Þ: ð12Þ

This set of creation and annihilation operators satisfies the
following commutation relations:

½âðϕiÞ; â†ðϕjÞ� ¼ ðϕi;ϕjÞ;
½âðϕiÞ; âðϕjÞ� ¼ −ðϕi;ϕ�

jÞ;
½â†ðϕiÞ; â†ðϕjÞ� ¼ −ðϕ�

i ;ϕjÞ: ð13Þ
Thus if we choose a basis with an orthonormal condition,
our creation and annihilation operators satisfy the standard
commutation relation for the creation and annihilation
operators. In general, it is not easy to construct exactly
the orthonormal basis with respect to the Klein-Gordon
inner product. However, for the step function velocity
profile, as all modes are represented by plane waves, it
is easy to identify positive frequency modes which define a
vacuum state. We note that the mode functions for ū� have
negative norms and other modes have positive norms. Once
we defined a vacuum state, multiparticle states can be
obtained by acting the creation operator on the vacuum
state. We have two kinds of vacuum states. The in-vacuum
state j0ini is the state with no particle at t → −∞; x → �∞

âðϕin
i Þj0ini ¼ 0; ð14Þ

where ϕin
i is the positive frequency mode function of the in-

state for i ¼ u−1 ; ū
þ; vþ; uþ2 (subsonic case with ω < ωint),

and i ¼ uþ2 ; ū
þ; vþ (subsonic case with ωint < ω or trans-

sonic case). The out-vacuum state j0outi is the state with no
particle at t → þ∞; x → �∞,

âðϕout
i Þj0outi ¼ 0; ð15Þ

whereϕout
i is the positive frequencymode function of the out-

state for i ¼ ū−; v−; u−2 ; u
þ
1 (subsonic case with ω < ωint),

and i ¼ ū−; v−; uþ1 (subsonic case with ωint < ω or trans-
sonic case). In general, these twovacuum states are not equal,
and the number of the out-state particles in the in-state
vacuum is

h0injâ†ðϕout
i Þâðϕout

i Þj0ini ≠ 0: ð16Þ
This implies particle creation occurs at x ¼ 0.
The field operator is expanded as

ϕ̂ðt; xÞ ¼
X
i

ðâðϕin
i Þϕin

i þ ðH:c:ÞÞ

¼
X
i

ðâðϕout
i Þϕout

i þ ðH:c:ÞÞ; ð17Þ

and creation and annihilation operators are represented as

âðϕin;out
i Þ¼ðϕin;out

i ;ϕ̂Þ; â†ðϕin;out
i Þ¼−ðϕin;out�

i ;ϕ̂Þ: ð18Þ

III. BOGOLIUBOV COEFFICIENTS

We can analytically determine a relation between the in-
mode state and the out-mode state for the wave equation
with the step function velocity profile.
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A. Matching method

By separating the time dependence of the wave function
as ∝ e−iωt in Eq. (2), the wave equation becomes the
following ordinary differential equation:

ð−iωþ ∂xvðxÞÞð−iωþ vðxÞ∂xÞϕðxÞ ¼
�
1þ 1

k20
∂
2
x

�
∂
2
xϕðxÞ

ð19Þ
with the velocity profile given by Eq. (3). For x ≠ 0, the
solution of this equation is the superposition of plane waves
expðikþi xÞ for x > 0 and expðik−i xÞ for x < 0. Coefficients
of superposition are determined by matching conditions at
x ¼ 0. Let us denote ϕ� as the solution of Eq. (19) for x≷0.
We impose matching conditions between ϕþ and ϕ− at
x ¼ 0 as follows. We require a continuity condition of ϕ at
x ¼ 0 up to the second spatial derivative to ensure the well-
behaved wave function. An additional condition is obtained
by integrating both sides of the wave equation in the range
−ε < x < ε, and taking ε → 0:

− iωðVþ − V−Þϕð0Þ þ ðV2þ − V2
−Þ∂xϕð0Þ

¼ 1

k20
½∂3xϕþð0Þ − ∂

3
xϕ

−ð0Þ�: ð20Þ

After all, we require the following four matching conditions
[11,15]:

ϕþð0Þ ¼ ϕ−ð0Þ; ∂xϕ
þð0Þ ¼ ∂xϕ

−ð0Þ;
∂
2
xϕ

þð0Þ ¼ ∂
2
xϕ

−ð0Þ;
∂
3
xϕ

þð0Þ ¼ ∂
3
xϕ

−ð0Þ − k20ðVþ − V−Þfiωϕð0Þ
− ðVþ þ V−Þ∂xϕð0Þg: ð21Þ

Then the wave function ϕðxÞ ¼ ϕþðxÞθðxÞ þ ϕ−ðxÞθð−xÞ
is the global solution of the wave equation (19).

B. Bogoliubov coefficients

By using the matching formula, Eq. (21), we can
construct ϕþ

i ðxÞ defined for x > 0 connected to the plane
wave eik

−
i x for x < 0. ϕþ

i ðxÞ can be expressed as

ϕþ
i ðxÞ ¼

X4
j¼1

αij expðikþj xÞ ð22Þ

with superposition coefficients fαijg. Wave numbers
fkþj ðωÞg are determined by Eq. (4). The matching formula
[Eq. (21)] yields the following equations for fαijg:X
j

αij ¼ 1;
X
j

αijk
þ
j ¼ k−i ;

X
j

αijðkþj Þ2 ¼ ðk−i Þ2;

ð23ÞX
j

αijðkþj Þ3 ¼ ðk−i Þ3 þ k20ðVþ − V−Þfω− ðVþ þ V−Þk−i g:

ð24Þ

By solving these relations for αil, we obtain

0
BBB@
αi1

αi2

αi3

αi4

1
CCCA¼

0
BBB@
−B1=A1 C1=A1 −D1=A1 1=A1

−B2=A2 C2=A2 −D2=A2 1=A2

−B3=A3 C3=A3 −D3=A3 1=A3

−B4=A4 C4=A4 −D4=A4 1=A4

1
CCCA

×

0
BBBBB@

1

k−i
ðk−i Þ2

ðk−i Þ3þ k20ðVþ −V−Þfω− ðVþ þV−Þk−i g

1
CCCCCA

ð25Þ

with

Ai ¼ðkþi −kþj Þðkþi −kþk Þðkþi −kþl Þ; Bi¼ kþj k
þ
k k

þ
l ; ð26Þ

Ci ¼ kþj k
þ
k þ kþk k

þ
l þ kþl k

þ
j ;

Di ¼ kþj þ kþk þ kþl
ðindices i; j; k; l are different from each otherÞ: ð27Þ

Bogoliubov coefficients are expressed with the super-
position coefficients fαijg (see Appendix A for more
details):

0
BBB@
−ðâoutū Þ†
âoutv

âoutu1

âoutu2

1
CCCA¼

0
BBB@

β̃ū ū β̃ūv β̃ūu1 β̃ūu2

β̃vū β̃uv β̃vu1 β̃vu2

β̃u1ū β̃u;v β̃u;u1 β̃u1u2

β̃u2ū β̃u2v β̃u2u1 β̃u2u2

1
CCCA
0
BBB@
−ðâinū Þ†
âinv
âinu1
âinu2

1
CCCA;

ð28Þ

where coefficients fβ̃ijg are given by

β̃u1i ¼
8<
:

Nþ
i αu1i

Nþ
u1
αu1u1

ði ≠ u1Þ
N−

u1
Nþ

u1
αu1u1

ði ¼ u1Þ
; ð29Þ

and

β̃ij ¼
8<
:

Nþ
j αij−N

þ
u1
αiu1 β̃u1j

N−
i

ðj ≠ u1Þ

− Nþ
u1
αiu1 β̃u1u1
N−

i
ðj ¼ u1Þ

: ð30Þ

We obtain the Bogoliubov transformation which relates the
out-mode operators and the in-mode operators:
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0
BBB@

ðâinū Þ†
âinv
âinu1
âinu2

1
CCCA ¼

0
BBB@

βū ū βūv βūu1 βūu2
βvū βuv βvu1 βvu2
βu1ū βu1v βu1u1 βu1u2
βu2ū βu2v βu2u1 βu2u2

1
CCCA
0
BBB@

ðâoutū Þ†
âoutv

âoutu1

âoutu2

1
CCCA;

ð31Þ
where fβijg satisfies the relation

P
k β̃ikβkj ¼ δij.

IV. VACUUM STATE

The Bogoliubov transformation involving the ū mode is
given by

âinū ¼ β�̄u ūâoutū þ β�̄uvðâoutv Þ† þ β�̄uu1ðâoutu1 Þ† þ β�̄uu2ðâoutu2 Þ†;
ð32Þ

where jβūūj2−jβūvj2−jβūu1 j2−jβūu2 j2¼1 holds. The equal-
ity βūu2 ¼ 0 holds for the subsonic case with the GVH and
the trans-sonic case because there exists no u2 mode in
the out-state. The Bogoliubov coefficients related to the
ū mode can be parametrized as

βū ū ¼ eiϕ1 coshr; βūv ¼ eiϕ2 sinhrsinθ;

βūu1 ¼ eiϕ3 sinhrcosθsinϕ; βūu2 ¼ eiϕ4 sinhrcosθcosϕ;

ð33Þ

where r; θ;ϕ;ϕ1;ϕ2;ϕ3;ϕ4 are real parameters. r is the
squeezing parameter, and as r → 0, the number of created
particles decreases. θ represents a ratio of the u mode and
the v mode; as θ → 0, mixing of the u mode and v mode
becomes small. The parameter ϕ represents the ratio of the
u1 mode and u2 mode.
With these parameters, we can characterize the out-

vacuum state. Let us define new annihilation operators
Â1; Â2; Â3; Â4 from the in-mode annihilation operators by

Â1 ¼ âoutū ; ð34Þ

Â2 ¼ eiðϕ3−ϕ1Þ sin θ cosϕâoutu1 þ eiðϕ4−ϕ1Þ sin θ sinϕâoutu2

þ eiðϕ2−ϕ1Þ cos θâoutv ; ð35Þ

Â3 ¼ −eiðϕ3−ϕ1Þ cos θ cosϕâoutu1 − eiðϕ4−ϕ1Þ cos θ sinϕâoutu2

þ eiðϕ2−ϕ1Þ sin θâoutv ; ð36Þ

Â4 ¼ −eiðϕ3−ϕ1Þ sinϕâoutu1 þ eiðϕ4−ϕ1Þ cosϕâoutu2 : ð37Þ

These new operators satisfy ½Âi; Âj� ¼ 0 and ½Âi; Â
†
j � ¼ δij.

With these new operators, from Eq. (31), annihilation
operators of the in-mode can be written as

âinū ¼ eiϕ1ðcosh rÂ1 þ sinh rÂ†
2Þ; ð38Þ

âinv ¼ eiϕ
0
1

�
ρ

cosh r
ðsinh rÂ†

1 þ cosh rÂ2Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

jρj2
cosh2r

r
ðcosϕ0Â3 þ sinϕ0Â4Þ

�
; ð39Þ

âinu1 ¼ eiϕ
0
2

�
ρ0

cosh r
ðsinh rÂ†

1 þ cosh rÂ2Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

jρ0j2
cosh2r

r
ðcosϕ00Â3 þ sinϕ00Â4Þ

�
; ð40Þ

âinu2 ¼ eiϕ
0
3

�
ρ00

cosh r
ðsinh rÂ†

1 þ cosh rÂ2Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

jρ00j2
cosh2r

r
ðcosϕ000Â3 þ sinϕ000Â4Þ

�
; ð41Þ

where we introduced new constants ϕ0
1;ϕ

0
2;ϕ

0
3;ϕ

00;ϕ000;
ρ; ρ0; ρ00 which are related to the original parameters
ϕ1;ϕ2;ϕ3;ϕ4; βij. From these relations, the vacuum con-
dition for the in-state yields

ðcosh rÂ1 þ sinh rÂ†
2Þj0ini ¼ 0;

ðsinh rÂ†
1 þ cosh rÂ2Þj0ini ¼ 0; ð42Þ

Â3j0ini ¼ 0; Â4j0ini ¼ 0; ð43Þ

and the in-vacuum state is written as

j0ini ¼
1

cosh r

X∞
n¼0

ð− tanh rÞnjnA1
ijnA2

ij0A3
ij0A4

i: ð44Þ

Thus the in-vacuum state is the two mode squeezed state of
the A1 mode and A2 mode.
To quantify the entanglement structure between modes,

we use negativity as the entanglement criterion. See
Appendix B for the method to calculate negativity from
the Bogolyubov coefficients.

V. RESULTS

Our analysis is performed for the subsonic case and the
trans-sonic case. For the subsonic case, there are right-
moving modes with low frequency ω in x < 0; however,
there exists a critical frequency ωGVH such that there is no
right-moving mode with frequencies ω > ωGVH in x < 0.
This means that modes with sufficiently high frequency can
feel the effective sonic horizon (GVH) at x ¼ 0 even for the
subsonic case. For the trans-sonic case, there is no right-
moving mode in the supersonic region x < 0, and the point
x ¼ 0 is the sonic horizon.
In our analysis, we adopt two sets of parameters

fk0 ¼ 100; Vþ ¼ −0.4; V− ¼ −0.6g (subsonic case) and
fk0 ¼ 100; Vþ ¼ −0.75; V− ¼ −1.25g (trans-sonic case).
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Corresponding to the cutoff wave number k0, the cutoff
frequency ωc is determined by Vþ and k0. The value of
ωGVH is given by a point at which the line Ω ¼ csðkÞk is
tangent to Ω ¼ ω − V−k in the dispersion diagram:

ωGVH ¼ k0
16

�
3V− þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
− þ 8

q �

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 − 2V2

− þ 2V−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
− þ 8

qr
: ð45Þ

The value of ωc is given by a point at which the line Ω ¼
cðkÞk is tangent toΩ ¼ ω − Vþk in the dispersion diagram:

ωc ¼
k0
16

�
3Vþ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2þ þ 8

q �

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 − 2V2þ þ 2Vþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2þ þ 8

qr
: ð46Þ

For the subsonic case, ωc=k0 ¼ 0.240;ωGVH=k0 ¼ 0.133,
and ωGVH=ωc ¼ 0.554. For the trans-sonic case, ωc=k0 ¼
0.0666.

A. Power spectrum of created particles

The power spectrum of out-going particles (radiations) is
represented as

fu1ðωÞ ¼ jβu1ūj2; fu2ðωÞ ¼ jβu2ūj2;
fvðωÞ ¼ jβvūj2; fūðωÞ ¼ jβū ūj2 − 1: ð47Þ

For these power spectrums, we introduce the effective
temperature TiðωÞ by the relation

fiðωÞ ¼
1

eω=TiðωÞ − 1
: ð48Þ

If the effective temperature is constant with respect to ω in
some frequency range, the power spectrum has a Planckian
distribution in that frequency range, and radiation cannot be
distinguished from the thermal one.

1. Subsonic case

For the subsonic case, the analytical formula of the
power spectrum in the low frequency region [15] is

jβu1ūj2 ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Vþ

p ðVþ − V−Þ2
4ðVþ þ 1Þ3=2ðV− þ 1Þ2

ω

k0
; ω=k0 ≪ 1: ð49Þ

Particle creation in the low frequency region occurs due
to the Planckian mode associated with the nonlinear
dispersion. Actually for k0 → ∞ with fixed ω, the created
particle number becomes zero. For a high frequency region
over ωGVH, particle creation occurs due to the mode
conversion associated to the GVH, which is also related
to the Planckian mode.

We plot our result of power spectrums in Fig. 4, where
frequency is normalized, so the cutoff frequency becomes
equal to 1. From ω dependence of the effective temperature
(Fig. 5), the thermality of the spectrum is not observed for
ω < ωGVH. In the ω → 0 limit, the number of u1 particles
becomes zero, but finite numbers of ū particles and u2
particles are created, and the numbers of these particles are
almost same. However, the behavior of power spectrums
for these particles in the higher frequency region is quite
different. The number of ū particles increases with the
increase of frequency until the frequency reaches ωGVH, at
which point the GVH appears. After the GVH is formed,
the number of u1; ū particles decreases as frequency
increases. The number of u2 particles decreases with the
increase of frequency, and becomes zero after the GVH is
formed. The number of v particles increases smoothly
across ω ¼ ωGVH as frequency increases.
The effective temperature does not become constant in

any frequency region (left panel of Fig. 5). This means the
power spectrum cannot be regarded as Planckian distribu-
tion in any frequency region. If we define the effective
temperature by adding a parameter μi as

fiðωÞ ¼
1

eðωþμiÞ=TiðωÞ − 1
; ð50Þ

the effective temperature becomes constant for ω ≥ ωGVH
and around ω ∼ ωGVH if we choose an appropriate value of
μi (right panel of Fig. 5). This implies the power spectrum
is indistinguishable from the thermal one with chemical
potential μi if we observe the emitted particles with
frequency around ω ∼ ωGVH.

2. Trans-sonic case

In this case, the power spectrum in the low frequency
region [14,15] is

jβu1ūj2≈
ðVþþ1Þ3=2ðV−þ1ÞðVþþV−Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−Vþ
p ð−V−þ1ÞðVþ−V−Þ

k0
ω
; ω=k0≪ 1:

ð51Þ

Figure 6 shows power spectrums of emitted radiations in
this case. In the low frequency region, spectrums of u1; ū
particles are thermal, and they decrease rapidly near the
cutoff frequency ωc. The number of the v particles shows
behavior similar to that for the subsonic case.
Figure 7 shows the behavior of the effective temperature

for the u1 particle. Around ω ∼ 0, it becomes constant
which reflects the thermal property of emitted radiation.
For the trans-sonic case with ω ∼ 0, neglecting the

contribution of the v mode, the Bogoliubov coefficients
satisfy jβu1u2 j2 − jβu1ūj2 ≈ 1. These coefficients diverge as
1=ω. Using this relation, the power spectrum of the u1
particle is
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jβu1ūj2 ≈
����� βu1u2βu1ū

����2 − 1

�
−1
: ð52Þ

The ratio jβu1u2=βu1ūj determines the power spectrum of the
u1 particle. As ω → 0 the ratio jβu1u2=βu1ūj goes to 1 for the
trans-sonic case; this behavior of the Bogoliubov

coefficients originated from the boundary condition for
the decaying wave function in x < 0 (see Appendix C for
details). The ratio can be approximated as

���� βu1u2βu1ū

���� ≃ 1þ γω ≈ eγω; ð53Þ

FIG. 4. Power spectrums of created particles for the subsonic case. ωGVH=ωc ¼ 0.554 for the present parameters. Across ω ¼ ωGVH,
the number of modes changes from four to three, and the spectrums of u1; ū; u2 are not smooth at ωGVH.

FIG. 5. Left: effective temperature of u1 particle determined by Eq. (48) for the subsonic case. The effective temperature does not
become constant for any frequency region. Right: effective temperature of u1 particle determined by Eq. (50) for ω ≥ ωGVH for the
subsonic case. The effective temperature becomes constant around ω ∼ ωGVH. In this plot, we chose μi ¼ 1.2ωc.
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where γ is a factor determined by V�. This approximation
indicates that the power spectrum of the u1 particle shows
thermal distribution with effective temperature T ¼ 1=ð2γÞ
in the low frequency range. Using (51), the temperature is
given by

Tðω ¼ 0Þ ¼ ðVþ þ 1Þ3=2ðV− þ 1ÞðVþ þ V−Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Vþ

p ð−V− þ 1ÞðVþ − V−Þ
k0: ð54Þ

This formula provides a numerical value of the temperature
as Tðω ¼ 0Þ ¼ 4.20 for present parameters and is consistent

with the numerical result (Fig. 7). However, this temperature
seems to have nothing to do with the surface gravity of the
horizon because it diverges for the step velocity profile, and
the thermal property appears due to nonlinear dispersion
relation (the Planckian mode). Indeed, the temperature (54)
can be regarded as corresponding to the effective surface
gravitywhich is defined by the velocity difference divided by
the effective thickness of the sonic horizon determined by the
cutoff wave number k0.

B. Entanglement structure

1. Subsonic case

To analyze entanglement between each particle mode,
we calculated parameters r; θ;ϕ introduced in the previous
section. These parameters determine components of the
covariance matrix for the vacuum state. Figure 8 shows
the behavior of these parameters for the sub-sonic case. The
squeezing parameter r increases with the increase of fre-
quency untilωGVH, and then decreaseswith the increase ofω.
The mixing parameters θ and ϕ go to zero as ω → 0, and
increase with the increase of ω. Thus from the definition of
parameters (33), the u2 particle (Plankian mode) is mainly
created forω → 0. Asω increases, the number of u1 particles
increases until ωGVH. For ωGVH < ω, as the GVH is formed,
the creation of theu2 particle is shut down, and theu1 particle
and ū particle mainly contribute as created particles.
Behavior of the entanglement negativity for the subsonic

case is shown in Figs. 9–11. Figure 9 is the negativity
for bipartitioning of the total pure system [four modes for

FIG. 6. Power spectrums for the trans-sonic case.

FIG. 7. Effective temperature of the u1 particle for the trans-
sonic case. Around ω ∼ 0, the effective temperature becomes
constant.

FIG. 8. Behavior of parameters r; θ;ϕ for the subsonic case.
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ω < ωGVH (left panel) and three modes forωGVH < ω (right
panel)]. For ω < ωGVH, entanglement between u1; v par-
ticles andother particles goes to zero asω → 0. This decrease
of entanglement corresponds to the decrease of the created
number of u1 particles and v particles. Entanglement
between ū; v; u1 particles and other particles increases with
the increase of ω, whereas entanglement between the u2
particle and other particles decreases. For ωGVH < ω where

the GVH exists, the u2 particle disappears, and the total
number of modes becomes three. Entanglement between
ū; u1 particles and other particles decreases, and entangle-
ment between thev particle and other particles increaseswith
the increase of ω.
In the limit of ω → 0, u1 and v modes are separable from

the three other modes, and the u2 and ū mode forms an
entangled pair. With the increase of frequency, entanglement

FIG. 9. Negativity for the subsonic case. For low frequency ω < ωGVH (left panel), the number of particle modes is four. For high
frequency ωGVH < ω (right panel), the number of particle modes is three.

FIG. 10. Negativity of reduced state for the subsonic case in the low frequency region 0 < ω < ωGVH.

FIG. 11. Negativity of reduced two mode state for the subsonic case.
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between u1 and ūmodes, and entanglement between v and
ū modes become larger. And near the frequency ωGVH,
entanglement between the u1 and ū modes becomes the
main contribution to entanglement of the four modes
system. For ω > ωGVH, entanglement between the u1
and ū modes starts to decrease, whereas entanglement
between the v and ū modes keeps increasing, and their
amount becomes comparable near the cutoff frequency ωc.
We present schematic pictures of the entanglement struc-
ture in Fig. 12.
For ω ∼ 0, non-Planckian modes u1; v cannot entangle

with Planckian modes u2; ū. With the increase of frequency,
the non-Planckian mode u1 becomes the sub-Planckian
mode, and ū and u1 are entangled. This is the reason why
entanglement between u1 and other modes gets larger with
the increase of frequency in the low frequency region.
Now let us comment on the property of the radiation

for ωGVH < ω where the GVH exists. For models with
slowly varying velocity profiles, in the vicinity of the GVH,
the wave number corresponding to emitted particles is
expressed as

kðxÞ ≈ ω

κðx − x0Þ þ ω=kðx0Þ þ kðx0Þ∂cs=∂kjkðx0Þ
; ð55Þ

where x0 is the location of the GVH, κ is the first derivative
of the velocity profile at the GVH, and kðx0Þ is the wave
number at the GVH (see Appendix D for the derivation of
this formula). This x dependence of the wave number is the
same as the behavior of the wave number of the trans-sonic

case if we regard the location x� ¼ x0 − ðω=kðx0Þ −
kðx0Þ∂cs=∂kjkðx0ÞÞ=κ as the sonic horizon hidden inside
the group velocity horizon. We remark that Eq. (55) can
approximate the behavior only outside the group velocity
horizon. If we construct the global solution which can be
connected to the u1 out mode in x → ∞, it is a decaying
function inside the group velocity horizon, and no singular
behavior as expressed by Eq. (55) appears in reality. We also
remark that x� corresponds to the real sonic horizon when the
sonic horizon exists. Since the behavior of the wave number
of the Hawking mode is not distinguishable from that of the
trans-sonic case, we can use the method of Laplace trans-
formation and the saddle point approximation well discussed
in the previous research [9,10,23], and we obtain thermal
behavior of the radiation. The bipartite entanglement for
ωGVH < ω decreases with the increase of ω, which is the
same behavior for the trans-sonic case and related to the
thermal property of radiations. These considerations suggest
that the mechanism of the particle creation for ωGVH < ω is
analogous to that of the trans-sonic one although the
analogous spacetime does not have the sonic horizon.

2. Transsonic case

Figure 13 shows the ω dependence of parameters r; θ;ϕ,
and Fig. 14 shows negativity for the trans-sonic case.
Entanglement between ū; u1 modes and other modes
decreases with the increase of ω, and entanglement
between the v mode and other modes also increases with
the increase of ω. This behavior is consistent with that of

FIG. 12. Schematic pictures of entanglement structure for the subsonic case. Red disks represent non-Planckian modes, blue disks
represent the Planckian mode, and green disks represent sub-Planckian modes. For low frequency, entanglement of the system is shared
mainly by ū − u2 pair. For ω ∼ ωGVH, entanglement of the system is shared mainly by ū − u1 pair.

FIG. 13. Frequency dependence of parameters r; θ;ϕ for the trans-sonic case.
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the power spectrum; with the increase of entanglement, the
number of created particles increases.
For the ω → 0 limit, the v mode becomes approximately

separable from other modes, and u1 and ū are entangled.
With the increase of ω, entanglement between the u1 and ū
modes decreases, and entanglement between the v and ū
modes increases. And the amount of these entanglements
becomes comparable near the cutoff frequency ωc. This
behavior is the same as that observed in our previous study
for the trans-sonic flow with finite surface gravity at the
sonic horizon [20]. A schematic structure of entanglement
for the trans-sonic case is shown in Fig. 15.

VI. CONCLUSION

We have calculated the power spectrum and entangle-
ment of the scalar field modes in the dispersive media with
a step velocity profile. For the trans-sonic case, we have
obtained the similar result as [20], but the temperature of
the radiation is given by Eq. (54), which is not equal to
the derivative of the fluid velocity at the sonic horizon. For
the subsonic case, the situation is completely different.
Entanglement between the u1 mode and ū mode, and the
power spectrum of the created u1 particle increases with
frequency ω until the frequency reaches ωGVH where the
GVH appears. The power spectrum becomes a decreasing
function of frequency for ωGVH < ω. For the dispersive
model investigated in this paper, the power spectrum of the

u1 mode for the subsonic case and for the trans-sonic case
has a similar behavior in the high frequency region.
Concerning entanglement structure, we found that
Planckian modes cannot entangle with non-Planckian
modes (see Figs. 12 and 15); for the subsonic case, in
the low frequency limit, the u1 mode and v mode are non-
Planckian modes, and the ū mode and u2 mode are
Planckian modes. Entanglement of the system is shared
only between the u2 mode and ū mode, and the u1 particle
is not created. With the increase of frequency, the u1 mode
becomes a sub-Planckian mode and the u1 particle can be
created. For the trans-sonic case, all of the modes are sub-
Planckian modes in the low frequency limit, and the u1
mode and ū mode can entangle. From the viewpoint of
entanglement, the sonic horizon and the group velocity
horizon are indistinguishable; they both lead to the dom-
inant entanglement between the u1 mode and ū mode. In
this paper, we choose a steplike velocity profile for the
simplicity. However, the results remain valid even in the
more realistic case where the velocity profile is not exactly
steplike, but rather smoothed. This is because the value of
the surface gravity is unimportant for the small cutoff case
TH > ωcutoff as we have shown in our previous paper [20].
While we did not discuss these issues in this paper, we are
interested in the following topics: the first one is how the
cutoff scale affects the total energy and the total entangle-
ment of modes. We do not understand how the total energy
of modes and entanglement is shared between modes with
nonlinear dispersions. The second one is the behavior of
two point correlation functions. Two point correlation
functions for analog black holes are investigated in [24–27].
It may be interesting to evaluate them for the subsonic
case without a sonic horizon. The third one is the depend-
ence of dispersion relation on particle creations and
entanglement. We considered the subluminal dispersion
in this paper, but for the superluminal dispersion, the
number of the negative norm modes is different, and we
expect a different entanglement structure. The final one is
the case with the time dependent velocity profile. The
dispersion relation is modified due to the inclusion of an
additional self-interaction term in the Lagrangian. However,

FIG. 14. Behavior of negativity for the trans-sonic case.

FIG. 15. Schematic pictures of entanglement structure for the
trans-sonic case. Red disks represent non-Planckian modes, blue
disks represent Planckian modes, and green disks represent sub-
Planckian modes. For low frequency, entanglement of the system
is shared mainly by the ū-u1 pair.

YUKI OSAWA and YASUSADA NAMBU PHYS. REV. D 107, 105005 (2023)

105005-12



we need to consider the loop correction when we construct
the out vacuum state [28–31] for the dynamical cases. The
behavior of the number density or the entanglement
structure for such cases would not exhibit the thermal
property even for the small frequency. These problems are
left for our future research.
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APPENDIX A: CALCULATION OF THE
BOGOLIUBOV COEFFICIENTS

By specifying a mode in x < 0, it is possible to obtain a
wave function which satisfies a given boundary condition

in x < 0. Schematic diagrams describing four possible
different boundary conditions in the x < 0 region are
shown in Fig. 16.
For the plane wave expðik−i xÞ in x < 0 with a real wave

number k−i , we can define the normalized mode function

ϕin=out
i ðxÞ ¼ expðikin=outi xÞ=N�

i with

N�
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πcsðk�i Þk�i vgðk�i Þ

q
; vg ¼

�
dk
dω

�
−1
: ðA1Þ

We put labels “�” and “in/out” depending on the asymp-
totic regions and the sign of the group velocity. If all modes
are normalizable (i.e., all solutions of the dispersion
relation are real), plane wave solutions with specified
boundary conditions are given as follows:

ðaÞ ϕðxÞ ¼
�
N−

u1ϕ
in
u1 ðx < 0Þ

Nþ
u1αu1u1ϕ

out
u1 þ Nþ

u2αu1u2ϕ
in
u2 þ Nþ

ū αu1ūϕ
in
ū þ Nþ

v αu1vϕ
in
v ðx > 0Þ ðA2Þ

ðbÞ ϕðxÞ ¼
�N−

u2ϕ
out
u2 ðx < 0Þ

Nþ
u1αu2u1ϕ

out
u1 þ Nþ

u2αu2u2ϕ
in
u2 þ Nþ

ū αu2ūϕ
in
ū þ Nþ

v αu2vϕ
in
v ðx > 0Þ ðA3Þ

ðcÞ ϕðxÞ ¼
�
N−

ūϕ
out
ū ðx < 0Þ

Nþ
u1αūu1ϕ

out
u1 þ Nþ

u2αūu2ϕ
in
u2 þ Nþ

ū αū ūϕ
in
ū þ Nþ

v αu1vϕ
in
v ðx > 0Þ ðA4Þ

ðdÞ ϕðxÞ ¼
�N−

u1ϕ
out
u1 ðx < 0Þ

Nþ
u1αvu1ϕ

out
u1 þ Nþ

u2αvu2ϕ
in
u2 þ Nþ

ū αvūϕ
in
ū þ Nþ

v αvvϕ
in
v ðx > 0Þ: ðA5Þ

Even if there exist unnormalizable modes, the logic is
essentially the same, but we have to treat the norm of
modes more carefully. From Eqs. (A2)–(A5), we can read
off relations between the in-mode functions and the
out-mode functions. For example, let us consider Eq. (A2).

In the asymptotic out region, the wave function is expressed
as ϕðxÞ ¼ Nþ

u1αu1u1ϕ
out
u1 ; thus this mode defines the out-

vacuum state. In the asymptotic in region, the wave
function is expressed as the superposition of plane
waves

(a) (b) (c) (d)

FIG. 16. Four different boundary conditions in x < 0 for the wave equation (19) to determine the Bogoliubov coefficients.
(a) Boundary condition with ϕ−ðxÞ ¼ ϕin

u1 . For the subsonic case with ωGVH < ω or the trans-sonic case, the mode u1 becomes the
decaying mode. (b) Boundary condition with ϕ−ðxÞ ¼ ϕout

u2 . (c) Boundary condition with ϕ−ðxÞ ¼ ϕout
ū . (d) Boundary condition with

ϕ−ðxÞ ¼ ϕout
v .
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ϕðxÞ ¼ N−
u1ϕ

in
u1 þ Nþ

u2αu1u2ϕ
in
u2 þ Nþ

ū αu1ūϕ
in
ū þ Nþ

v αu1vϕ
in
v :

ðA6Þ

Therefore, we obtain the following in-out relation

Nþ
u1αu1u1ϕ

out
u1 ¼ N−

u1ϕ
in
u1 þ Nþ

u2αu1u2ϕ
in
u2 þ Nþ

ū αu1ūϕ
in
ū

þ Nþ
v αu1vϕ

in
v : ðA7Þ

Repeating the same procedure for the three other boundary
conditions, we obtain three other in-out relations:

N−
u2ϕ

out
u2 þ Nþ

u1αu2u2ϕ
out
u1 ¼ Nþ

u2αu2u2ϕ
in
u2 þ Nþ

ū αu2ūϕ
in
ū

þ Nþ
v αu2vϕ

in
v ; ðA8Þ

N−
ūϕ

out
ū þ Nþ

u1αūu1ϕ
out
u1 ¼ Nþ

u2αūu2ϕ
in
u2 þ Nþ

ū αū ūϕ
in
ū

þ Nþ
v αu1vϕ

in
v ; ðA9Þ

N−
u1ϕ

out
u1 þ Nþ

u1αvu1ϕ
out
u1 ¼ Nu2αvu2ϕ

in
u2 þ Nþ

ū αvūϕ
in
ū

þ Nþ
v αvvϕ

in
v : ðA10Þ

By taking the Klein-Gordon inner product of both sides
with the field operator ϕ̂ both sides, from Eq. (18), we
obtain the transformation between the in-mode operators
and the out-mode operators [Eqs. (28)–(30)]. This trans-
formation is the Bogoliubov transformation, and the trans-
formation is determined by 4 × 4 Bogoliubov coefficients.

APPENDIX B: ENTANGLEMENT NEGATIVITY

To quantify entanglement between each mode using the
negativity, we introduce canonical variables X̂i; P̂i by

X̂i¼
âini þðâini Þ†ffiffiffi

2
p ; P̂i ¼

âini − ðâini Þ†
i

ffiffiffi
2

p ; ½X̂i; P̂j� ¼ iδij:

ðB1Þ

Then the wave function of the in-vacuum state is given as

ψ0ðX1;X2;X3;X4Þ¼ hX1;X2;X3;X4j0ini

¼ 1

π
exp

�
−
X2
1þX2

2þX2
3þX2

4

2

�
: ðB2Þ

The Wigner function of this wave function is defined by

WðX;PÞ ≔ 1

ð2πÞ4
Z

d4YeiP·Yψ0

�
X −

Y
2

�
ψ�
0

�
X þ Y

2

�

¼ 1

π3
expð−X2 − P2Þ: ðB3Þ

Introducing a vector with canonical variables ξ̂ ¼ ðX̂1; P̂1;
X̂2; P̂2; X̂3; P̂3; X̂4; P̂4ÞT , the covariance matrix is defined by

Vij ≔
	
ξ̂iξ̂j þ ξ̂jξ̂i

2



¼

Z
d8ξξiξjWðξÞ; ðB4Þ

and for the wave function Eq. (B2), Vij ¼ δij=2. Since the
Bogoliubov transformation preserves commutation relations
of creation and annihilation operators, it also keeps commu-
tation relations between canonical variables defined in terms
of creation and annihilation operators.
Now we introduce canonical variables for the out modes

as

x̂i ¼
âouti þ ðâouti Þ†ffiffiffi

2
p ; p̂i ¼

âouti − ðâouti Þ†
i

ffiffiffi
2

p ;

and introduce a vector with canonical variables for the in
mode as ξ̂0 ¼ ðx̂1; p̂1; x̂2; p̂2; x̂3; p̂3; x̂4; p̂4ÞT . The relation
between in and out canonical variables is given by

ξ̂i ¼
X
j

Sijξ̂
0
j ðB5Þ

where

S ¼

0
BBBBBBBBBBBBB@

Re½β11� Im½β11� Re½β12� −Im½β12� Re½β13� −Im½β13� Re½β14� −Im½β14�
Im½β11� Re½β11� Im½β12� −Re½β12� Im½β13� −Re½β13� Im½β14� −Re½β14�
Re½β21� Im½β21� Re½β22� −Im½β22� Re½β23� −Im½β23� Re½β24� −Im½β24�
Im½β21� Re½β21� Im½β22� Re½β22� Im½β23� Re½β23� Im½β24� Re½β24�
Re½β31� Im½β31� Re½β32� −Im½β32� Re½β33� −Im½β33� Re½β34� −Im½β34�
Im½β31� −Re½β31� Im½β32� Re½β32� Im½β33� Re½β33� Im½β34� Re½β34�
Re½β41� Im½β41� Re½β42� −Im½β42� Re½β43� −Im½β43� Re½β44� −Im½β44�
Im½β41� −Re½β41� Im½β42� Re½β42� Im½β43� Re½β43� Im½β44� Re½β44�

1
CCCCCCCCCCCCCA

ðB6Þ
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with the subscript of βij representing 1; 2; 3; 4 ¼ ū;
v; u1; u2. Since this transformation keeps canonical com-
mutation relations, the matrix S satisfies

SΩST ¼ Ω; Ω ¼ ⨁
4

i¼1

�
0 1

−1 0

�
:

From j det Sj ¼ 1, the relation between the in-mode covari-
ance matrix V and the out-mode covariance matrix V 0 is
derived as

Vij ¼
Z

d8ξξiξjWðξÞ ¼
X
k;l

Z
d8ξ0SikSjlξ0kξ

0
lWðSðξ0ÞÞ

¼ ðSV 0STÞij; ðB7Þ

whereWðSðξ0ÞÞ ¼ W0ðξ0Þ is theWigner function for ξ0. Thus
the covariance matrix for the out mode can be written as

V 0 ¼ S−1VðSTÞ−1 ¼

0
BBB@

V1 V2 V3 V4

� V5 V6 V7

� � V8 V9

� � � V10

1
CCCA; ðB8Þ

where Vj; j ¼ 1;…; 10 denotes 2 × 2 submatrices of 8 × 8

covariancematrixV0. For theGaussian state considered here,
it is easy to obtain the covariancematrix for the reduced three
mode state by simply integrating out one mode:

Ṽij ¼
Z

d6ξξiξjW̃ðξÞ ¼
Z

d6ξξiξj

�Z
d2ξWðξÞ

�
¼ Vij;

where W̃ðξÞ is theWigner function for reduced state, and Ṽij

is the covariance matrix of the reduced state. A similar
argument can be applied to the covariance matrix of a two
mode state. Using the covariance matrix, it is possible to
evaluate entanglement negativity which quantifies bipartite
entanglement for a given bipartition of the total system
(see Appendix B for its definition).
Entanglement of the in-vacuum state is evaluated using

the positive partial transpose (PPT) criterion for continuous
variable [32–34]. The PPT criterion states that if a partially
transposed density matrix has negative eigenvalues, the
bipartite state is entangled. For bosonic systems, we can
rewrite the PPT criterion in terms of a covariance matrix.
From positive definiteness of the density matrix and the
uncertainty relation, the covariance matrix which represents
a physical state should satisfy

V þ i
2
Ω ≥ 0; ðB9Þ

where the inequality of the matrix stands for positive
definiteness of the matrix [35]. With this property of a
physical density matrix, the PPT criterion is equivalent
to the following statement: If the state is separable, the

covariance matrix Ṽ with the partially transposed density
matrix satisfies

Ṽ þ i
2
Ω ≥ 0: ðB10Þ

The covariance matrix Ṽ is easily calculated by inverting
the sign of the momentum pi → −pi, which corresponds
to the partial transposition of a mode [34]. By diagonaliza-
tion of Ṽ using a symplectic matrix Sd,

Ṽ þ i
2
Ω ¼ STd

�
⨁
i

�
κi i=2

−i=2 κi

��
Sd; ðB11Þ

where fκig are symplectic eigenvalues of Ṽ. If all of the
symplectic eigenvalues are greater than 1=2, Ṽ þ ði=2ÞΩ is
positive definite. To quantify entanglement, the negativity
is defined by

N ¼ 1

2
max

�� Y
κi<1=2

1

2κi

�
− 1; 0

�
; ðB12Þ

and the logarithmic negativity LN ≔ logð2N þ 1Þ. IfN > 0
or equivalently LN > 0 holds when the bipartite state is
entangled. Logarithmic negativity is entanglement mono-
tone (does not increase under the Local Operation and
Classical Communication) and additive; thus logarithmic
negativity can be used as an entanglement measure [36,37].

APPENDIX C: POWER SPECTRUM IN LOW
FREQUENCY REGION

For the trans-sonic case, we expand the Bogoliubov
coefficients as a power series of ω by comparing the same
order terms in both sides of the matching formula.
For simplicity, we neglect the uv mixing. The linear
combination of the u1 mode, u2 mode, and ūmode is chosen
so that it decays exponentially as x → −∞. We consider
wave functions Aexpfik−decayxg for x<0 and expfikþu1xgþ
B expfikþu2xgþC expfikþū xg for x > 0, and match them at
x ¼ 0. The matching formula corresponding to Eq. (21) is
written as

A ¼ 1þ BþC; Ak−decay ¼ kþu1 þ Bkþu2 þCkþū ;

Aðk−decayÞ2 ¼ ðkþu1Þ2 þ Bðkþu2Þ2 þCðkþū Þ2: ðC1Þ

We expand A, B, C in the power of ω as

A ¼ Að0Þ þ Að1Þωþ � � � ;
B ¼ Bð0Þ þ Bð1Þωþ � � � ;
C ¼ Cð0Þ þ Cð1Þωþ � � � : ðC2Þ

We substitute Eq. (C2) into Eq. (C1), and equate terms with
the same powers of ω. Wave numbers k−decay; k

þ
u1 ; k

þ
u2 ; k

þ
ū are

determined as solutions of the dispersion relation, Eq. (4), as
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k−decay ¼ ik0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
− − 1

q
þ
�
dΩ
dk

�
−1
ωþ � � � ;

kþu2 ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2þ

q
þ
�
dΩ
dk

�
−1
ωþ � � � ;

kþū ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2þ

q
þ
�
dΩ
dk

�
−1
ω � � � ;

kþu1 ¼
ω

1 − Vþ
:

By substituting these expressions into Eq. (C1), we obtain
coefficients of the wave function in the lowest order of ω as

Að0Þ ¼ 1−
V2
− − 1

V2
− − V2þ

;

Bð0Þ ¼ −
1

2

�
V2
− − 1

V2
− − V2þ

− i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
− − 1

1− V2þ

s �
1þ V2

− − 1

V2
− − V2þ

��
;

Cð0Þ ¼ −
1

2

�
V2
− − 1

V2
− − V2þ

þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
− − 1

1− V2þ

s �
1þ V2

− − 1

V2
− − V2þ

��
:

ðC3Þ

In the zeroth order of ω, Nþ
u2 ¼ Nþ

ū ; jαu1u2=αu1ūj ¼
jβu1u2=βu1ūj ¼ jBð0Þ=Cð0Þj ¼ 1 holds. We leave some com-
ments for the subsonic case. Most of the calculations are
essentially the same with the trans-sonic case but we need to
connect the Hawking mode with the plane wave mode k−u1
instead of the decaying mode. The zeroth order coefficients
can be represented by Eq. (C3), but the ratio jαu1u2=αu1ūj ¼
jβu1u2=βu1ūj ¼ jBð0Þ=Cð0Þj is not equal to unity since the

factor i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
− − 1

p
is not purely imaginary. This difference

leads to the different behaviors of the power spectrum for the
subsonic case and transonic case in the low frequency region.

APPENDIX D: WKB SOLUTIONS FOR
SLOWLY VARYING CASE WITH
GROUP VELOCITY HORIZON

In this Appendix, let us consider the behavior of the
WKB solution in the vicinity of the group velocity horizon.

If the velocity profile and the wave number kðxÞ are the
slowly varying function of x, the dispersion relation is
given by

ðω − vðxÞkÞ2 ¼ c2sðkÞk2: ðD1Þ
Since the group velocity horizon is a point where the right-
moving mode and left-moving mode in x > 0merge due to
the subluminal dispersion, the condition for the group
velocity horizon x ¼ x0 is represented as follows:

�ω ¼ ðvðx0Þ þ csðkðx0ÞÞÞkðx0Þ
−vðx0Þ ¼ ∂

∂k ðc2sðkÞk2Þjk¼kðx0Þ:
ðD2Þ

The first equation corresponds to the dispersion relation,
and the second equation corresponds to the condition that
two modes merge. Indeed, the second condition is the
derivative of the dispersion relation at k ¼ k0. By deriving
the first equation, we obtain

0 ¼ ðvðx0Þ þ csðkðx0ÞÞÞ þ kðx0Þ
�
v0ðx0Þ

dx
dk

����
k0

þ ∂cs
∂k

����
k0

�
:

ðD3Þ

Now let us derive the approximate solution kðxÞ of the
dispersion relation corresponding to the Hawking mode at
the vicinity of the group velocity horizon x ¼ x0. Assuming
that Taylor expansion for kðxÞ is possible about x0, we can
approximate kðxÞ by

kðxÞ ¼ k0 þ
∂k
∂x

����
x0

ðx − x0Þ ðD4Þ

≈ k0

�
1

1þv0ðx0Þðx−x0Þ=ðvðx0Þþcsðk0Þþk20∂cs=∂kjk0Þ
�
:

ðD5Þ

Here, we used the second equality of the (D2) and the
formula of the Taylor expansion ð1þ xÞ−1 ≈ 1 − x. By
using the first formula of the (D2) we can further simplify
the equation,

kðxÞ ≈ ω

ωðω=k0 þ v0ðx0Þðx − x0Þ þ k0∂cs=∂kjk0Þ=ðωþ k20∂cs=∂kjk0Þ
: ðD6Þ

In the low frequency region, csðkÞ ≈ 1 holds for the right-
moving mode outside the group velocity horizon; therefore
we can set ∂cs=∂kjk0 ¼ 0 in this formula. We finally obtain

kðxÞ ≈ ω

v0ðx0Þðx − x0Þ þ ω=k0 þ k0∂cs=∂kjk0
: ðD7Þ
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