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We investigate aspects of spontaneous breakdown of symmetry for the OðNÞ symmetric linear sigma
model in the background of Rindler and anti–de Sitter spacetimes respectively. In the large N limit, by
computing the one-loop effective action, we report that in three dimensional Rindler space, there is a phase
transition from the disordered phase to an ordered phase past a certain critical Rindler acceleration parameter
“a.” Connections with finite temperature field theory results are established, thereby further reinforcing the
idea that Rindler space can indeed be a proxy for Minkowski spacetime with finite temperature. We extend
our calculations to anti-de Sitter space in various dimensions and observe that symmetry is broken in three
dimensions, but not in four dimensions. We discuss the implications of our results.
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I. INTRODUCTION

The study of quantum field theory (QFT) in curved
spacetimes has a long and illustrative history of nearly half a
century, including path-breaking works like Hawking’s
derivation of black hole radiation [1]. In these works,
the gravitational backreaction of quantum fields is often
neglected, and gravity and the curved spacetime serve only
as a classical arena where the quantum field resides. We will
call this approximation scheme a probe limit. However,
even within the approximation scheme of a probe limit,
important physics like black hole radiation is demonstrated.
Here in this work, following the same general theme of QFT
in a curved spacetime, we would take up certain questions,
namely in the context of spontaneous symmetry breaking
and study these questions [2–4]. Spontaneous symmetry
breaking is not only the central pillar in our state of the art
understanding of the standard model [5], but the same
physical mechanism serves as a bedrock for superconduc-
tivity and other related phenomena in condensed matter
physics [6]. Also, the breakdown of spontaneous symmetry
and associated phase transitions play important roles in
cosmology [7–9]. Details of such calculations in general
curved spacetimes can be found in [10–14].

The precise model we would concentrate on is an OðNÞ
symmetric linear sigma model with N (usually N ≫ 1)
scalar fields. The spontaneous symmetry breaking in this
model was studied analytically in flat spacetime [15]. It is to
be mentioned that large N OðNÞ sigma models are some
of the few examples where dynamical symmetry breaking
could be studied nonperturbatively in the ϕ4 coupling.
Actually a large N saddle point calculation shows a
breaking of OðNÞ symmetry in three dimensional linear
sigma models. Here, wewould like to study how the physics
of large-N sigma models are affected by curved back-
grounds and spacetimes with an event horizon.
To that end, we focus on anti–de Sitter (AdS space) and

Rindler space for concreteness. Anti–de Sitter spaces have
been used heavily in the context of gauge-gravity corre-
spondence, or holography [16]. Even in the context of
holography, QFT phenomena like superconductivity have
already been modeled/discussed in a probe limit [17].
Another spacetime we would look at is the Rindler space.
Despite not being curved, Rindler space is interesting in its
own right as it possesses an event horizon and, as an
extension—a temperature as well (Fulling–Davies–Unruh
effect [18,19]). Additionally, it is to be noted Rindler space
and AdS appear as a near-horizon geometry of nonextremal
and extremal black holes, respectively.
The plan of the paper is as follows: In Sec. II, we outline

the OðNÞ symmetric sigma model in large N limit for an
arbitrary spacetime. In Secs. III and IV, we calculate the
one-loop effective potential for Rindler and in anti–de Sitter
spacetimes in various dimensions and consider scenarios
for spontaneous symmetry breaking/restoration and phase
transitions. Finally, we summarize our results in Sec. Vand
discuss their implications.
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II. OðNÞ SYMMETRIC LINEAR SIGMA MODEL
IN THE LARGE N LIMIT

The OðNÞ symmetric scalar field with λϕ4 type inter-
action is described by the Euclidean action [15,20–23]

S ¼
Z

dvx

�
1

2
gμν∂μϕ∂νϕþ 1

2
m2

0ϕ
2 þ λ0

8N
ðϕ2Þ2

�
; ð1Þ

where ϕ is an N-component field, ϕ2 ¼ ϕ:ϕ, and dvx ¼
ddx

ffiffiffi
g

p
is the d dimensional invariant measure. One can

introduce an auxiliary field to the theory which does not
affect the dynamics of the field as [15,20]

S ¼
Z

dvx

�
1

2
ϕð−∇2 þ σÞϕ −

N
2λ0

σ2 þ Nm2
0

λ0
σ

�
; ð2Þ

where∇2 is the d dimensional Laplacian. Then the partition
function for the theory is

Z ¼
Z

DϕDσe−S½ϕ;σ�: ð3Þ

The path integral over ϕ in Eq. (3) can be evaluated using
the standard Gaussian integral, which gives

Z ¼
Z

Dσ e
−N

2
log ðdet ð−∇2þσ̄ÞÞ−

R
dvx

�
− N
2λ0

σ2þNm2
0

λ0
σ

�

¼
Z

Dσ e−Seff ; ð4Þ

where Ō ¼ O=μ2 for any symbol “O” and with μ as some
arbitrary constant with the dimension of mass and Seff is the
effective action and is given as

Seff ¼
N
2
logðdetð−∇2þ σ̄ÞÞþ

Z
dvx

�
−

N
2λ0

σ2þNm2
0

λ0
σ

�

¼N
2

Z
dvx logð−∇2

xþ σ̄Þþ
Z

dvx

�
−

N
2λ0

σ2þNm2
0

λ0
σ

�
:

ð5Þ

If the theory consists of a large number of scalar fields
(N → ∞), the dominant contribution to Z comes from the
saddle point of Seff . One can evaluate the effective action
and the corresponding effective potential (Veff ) around the
saddle point as

Veff ¼
N
2
log ð−∇2

x þ σ̄Þ − N
2λ0

σ2 þ Nm2
0

λ0
σ: ð6Þ

Note that quantum corrections do not involvem0 or λ0 in it.
We can rewrite the logarithm of an operator using the
coincident limit of the corresponding Euclidean Green’s
function as [24–28]

V1 ¼
N
2
log ð−∇2

x þ σ̄Þ

¼ N
2

Z
σ

0

dm2lim
u→0

Gðu;m2Þ: ð7Þ

Here Gðu;m2Þ is the Euclidean propagator of a massive
scalar field of mass m in d dimensional space and u is the
invariant distance. In the coincident limit (u → 0) propa-
gator diverges. For a renormalizable theory, looking at the
classical action [Eq. (2)] we can write the renormalization
conditions as

dVeff

dσ

����
σ→μ2

¼ Nm2

λ
; ð8aÞ

d2Veff

dσ2

����
σ→μ2

¼ −
N
λ
; ð8bÞ

where λ and m are the renormalized parameters. Here μ is
an arbitrary constant with dimensions of energy and in
possible cases we take μ ¼ 0. After renormalization, the
total potential (V) is

V ¼ 1

2
σϕ2 þ Vren

eff ; ð9Þ

where Vren
eff is the renormalized effective potential. The

extreme of the total potential is determined by stationary
points of V, i.e.,

∂V
∂σ

¼ 0; ð10aÞ

∂V
∂ϕ

¼ 0: ð10bÞ

We can use Eq. (10a) for writing σ as a function of ϕ and
can use the result to write V as a function of ϕ alone. Then
the condition for extrema of the potential is

dV
dϕ

¼ ∂V
∂ϕ

þ ∂V
∂σ

∂σ

∂ϕ

¼ ∂V
∂ϕ

¼ 0; ð11Þ

where in the second line of Eq. (11) we use Eq. (10a).
Using Eq. (11) in Eq. (9) gives

dV
dϕ

¼ σϕ: ð12Þ

Now the minima of the potential can occur at ϕ ¼ 0 or
σ ¼ 0. The field configuration corresponding to ϕ ¼ 0
minima is OðNÞ symmetric. But the field configuration
corresponding to σ ¼ 0 is not OðNÞ symmetric. So,
if the global minima of the potential are at σ ¼ 0, then
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one says the theory exhibits spontaneous symmetry break-
ing [29–31].
The formalism outlined here is generic. The OðNÞ

symmetric linear sigma model at large N limit in
Minkowski spacetime is well studied in the literature
[20–22]. In flat spacetime, the OðNÞ symmetric linear
sigma model exhibits spontaneous symmetry breaking in
three dimensions [20], and there is no spontaneous
symmetry breaking in two or four dimensions [20–22].

III. RINDLER SPACE

We now focus on studying spontaneous symmetry break-
ing of the OðNÞ symmetric linear sigma model in the large
N limit in Rindler space. Since Rindler space is the
spacetime, as perceived by a uniformly accelerated observer
in Minkowski spacetime, the idea is to check if observer
dependence plays a role in the effects of spontaneous
symmetry breaking. For the case of N ¼ 1, λϕ4 theory,
the spontaneously broken Z2 symmetry is restored for a
uniformly accelerated observer at a certain critical accel-
eration [8,32,33]. To check whether similar behavior per-
sists in the large N limit for the linear sigma model, we start
by considering the theory in Rindler coordinates [34,35].
The Rindler metric for a dþ 2 dimensional space with
Euclidean signature is given as

ds2 ¼ ξ2dτ2 þ dξ2 þ ðdx1Þ2 þ � � � þ ðdxdÞ2: ð13Þ

Note that in this choice of coordinates, τ is dimensionless.
As we are interested in the qualitative behavior of the
effective potential, all one has to do is read off the results
from [33] with M2 replaced with σ as

Vren
eff ¼

N
2λ

σ2 þ Nm2

λ
σ −

2Nσ
dþ1
4

ð4πÞdþ2
2 π

3
2ξ

dþ3
2

Kdþ1
2
ð2αÞ; ð14Þ

where m and λ are the renormalized parameters and α ¼
ξ

ffiffiffi
σ

p
which is a dimensionless parameter. With the effective

potential in hand, one can study the symmetry behavior of
the vacuum configurations in different dimensions.

A. Four dimensions

In four dimensions, the near-horizon limit of the effective
potential is

lim
α→0

Vren
eff jd¼2 ¼ −

N
2λ

σ2 þ Nm2

λ
σ þ Na2

16π3
σ; ð15Þ

where we choose the trajectory ξ ¼ 1=a. Also, one can use
Eq. (14) with d ¼ 2 in renormalization condition [Eq. (8a)]
to see the effective parameters as

m2
eff

λ
¼ m2

λ
þ a2

16π3
; ð16Þ

where there is a correction to the parameters due to
acceleration. However, the effective potential for the linear
sigma model in large N limit is double valued in four
dimensional Minkowski space and the global minima of
the potential is symmetric under OðNÞ transformation for
all values of m and λ [21,22]. So, there is no spontaneous
symmetry breaking for the linear sigma model in large N
limit in standard flat space. Therefore, one cannot comment
on the frame dependence of spontaneous symmetry break-
ing by naively looking at Eq. (15) in four dimensions.

B. Three dimensions

It is known in the literature [20] that in three dimensions
with m2 < 0, the vacuum configuration of the field is not
symmetric under OðNÞ transformations. This implies that
OðNÞ symmetry is spontaneously broken. Similar to the
λϕ4 theory [33], one can therefore expect the restoration
of OðNÞ symmetry in accelerated frames. We can study
symmetry restoration by considering the near horizon limit
of the effective potential. In three dimensions [d ¼ 1 in
Eq. (14)], the near-horizon limit of the effective potential is
(leading order in a)

lim
α→0

Vren
eff jd¼1 ¼ −

N
2λ

σ2 þ Nm2

λ
σ −

Nσa
8π3

log

�
σ

a2

�
; ð17Þ

where we choose the trajectory ξ ¼ 1=a. Now consider a
theory with spontaneous symmetry breaking in standard
flat space (m2 < 0). In accelerated frames [from Eq. (17)],
the effective mass [from Eq. (8a)] turns positive after some
critical acceleration or the symmetry violation disappears
for some high acceleration. Now one can try to calculate the
effective mass and the corresponding critical acceleration
using Eq. (14) with d ¼ 1 in Eq. (8a). But the critical
acceleration will depend on some arbitrary scale μ (despite
the fact that the normalized effective potential is indepen-
dent of any such scale). So, like in finite temperature field
theory [36], Eq. (17) is not very useful for predicting the
critical acceleration. However, the structure of Eq. (17)
guarantees that symmetry is indeed restored for at least a
certain class of Rindler observers. Additionally, our tech-
niques are general and can be utilized to comment on the
aspects of symmetry breaking in Rindler space for arbitrary
spacetimes.

IV. ANTI–DE SITTER SPACE

Wenowconsider a different physical scenario.We inquire
whether the curvature of spacetime plays a role in the effects
of phase transition or symmetry breaking/restoration for
the linear sigma model. To that end we consider the OðNÞ
linear sigma model in the background of anti–de Sitter
spacetime focusing on three and four dimensions. We
consider Euclidean AdSdþ1 with the metric

ASPECTS OF SPONTANEOUS SYMMETRY BREAKING IN … PHYS. REV. D 107, 105004 (2023)

105004-3



ds2 ¼ L2

z2

�
dz2 þ

Xd
i¼1

dx2i

�
; ð18Þ

where L is the AdS scale. The bulk to bulk scalar
Green’s function for AdSdþ1 is well discussed in the
literature [26,27,37], and we borrow the results from [37] as

GðWÞ ¼ α0
Ld−1W

Δ
2F1

�
Δ;Δþ 1 − d

2
; 2Δ − dþ 1;−4W

�
;

ð19Þ
where

W ¼ 1

2

1

coshðuLÞ − 1
;

Δ ¼ d
2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4m2L2

p
;

α0 ¼
ΓðΔÞ

2πd=2ΓðΔ − d
2
þ 1Þ ; ð20Þ

and 2F1 is the usual Hypergeometric function. Note that in
the coincident limit (i.e., u → 0), W diverges, and Green’s
function is singular as expected. We now specialize to three
and four dimensions for our analysis.

A. Four dimensions

One can expand GðWÞ around u ¼ 0, for the case of
d ¼ 3, which gives

lim
u→0

GðWÞ ¼ 1

12π2

�
3

u2
−
16þ 3ΔðΔ − 5Þ

4L2
þ 3

4L2

× ðΔ − 2ÞðΔ − 1Þ
�
2HΔ−3 þ 2 log

�
u
2L

���
;

ð21Þ

where Hz is the harmonic number. Using Eq. (21) we can
calculate V1 [see Eq. (7)] as

V1 ¼
N

8L2π2

�
σ

�
γ þ L2

u2
−

5

12
þ β

3
þ log

�
u
2L

�

þ 1

2
logðΓðβÞÞ þ β logðΓðβÞÞ − 3ψð−2; βÞ

�

þ L2σ2

4

�
log

�
u
2L

�
þ γ −

1

2

�
−

13

2L2
ψð−2; βÞ

þ β

L2

�
3

4
þ 2 logðΓðβÞÞ þ 6ψð−3; βÞ

�

þ 1

L2
ðlogðΓðβÞÞ − 6ψð−4; βÞ þ 3ψð−3; βÞÞ

�
; ð22Þ

where γ is the Euler’s constant and ψ is the polygamma
function, and for notational simplicity we choose

β ¼ −
1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4L2σ

p
: ð23Þ

Following the arguments in [27] one can see that as long as
the Breitenlohner-Friedman bound [38–41] (here in the
case of the large N sigma model this translates to a
condition on the auxiliary field −9=4L2 < σ) is satisfied,
β is real and so is V1. This can be most easily seen by
looking at the form of functional determinant [Eq. (7)]
where the computation of the effective potential is mapped
in terms of the auxiliary field σ, which in the case of a
single field interacting field theory is just the usual V 00ðϕÞ
term and the Breitenlohner-Friedman bound in four dimen-
sions is given by −9=4L2 < V00ðϕÞ [27]. In flat Minkowski
spacetime, σ < 0 leads to a similar complex effective
potential [20]. The existence of an imaginary part of
the effective potential is clear evidence of instability.
Equation (22) regularizes the effective potential and the
divergences in the effective potential is in linear and
quadratic powers of σ [26,27] allowing us to renormalize
the theory by redefining m0 and λ0. Using the renormal-
ization condition [Eq. (8a)], we can write

1

48L2π2
þ 1

8π2u2
þm2

0

λ0
þ 1

8L2π2
log

�
u
2L

�
¼ m2

λ
; ð24Þ

and Eq. (8b) gives

1

144
−

1

96π2
−

1

λ0
þ 1

16π2
log

�
u
2L

�
¼ −

1

λ
: ð25Þ

Note that the renormalized parameters include the finite
terms involving L. Using Eqs. (24) and (25) one can write
the renormalized effective potential as

Vren
eff ¼

Nm2σ

λ
−
Nσ2

2λ
þ N
8L2π2

�
σ2L2

4

�
γ−

1

3
−
π2

9

�

þ σ

2

�
2γþ 2β

3
þð2βþ 1Þ logðΓðβÞÞ− 6ψð−2;βÞ− 7

6

�

þ β

L2

�
3

4
þ 2 logðΓðβÞÞþ 6ψð−3;βÞ

�

þ 1

L2
ðlogðΓðβÞÞ− 6ψð−4;βÞþ 3ψð−3;βÞ

−
13

2
ψð−2;βÞÞ

�
: ð26Þ

Now using Eq. (9) one can calculate the total potential. As a
check, in the limit L → ∞, V matches with the flat space
potential as [20–22]
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lim
L→∞

V ¼ 1

2
σϕ2 þm2Nσ

λ
−
Nσ2

2λ
þ Nσ2

64π2
log

�
σ

μ2

�
; ð27Þ

where we choose μ ¼ 1=L as the arbitrary energy scale.

1. Ground state

In order to understand spontaneous symmetry breaking,
we begin by determining the stationary points of the
potential V. Substituting Eq. (26) in Eq. (10a) gives

ϕ2ðσÞ ¼ N
72L2π2λ

ð−144π2L2m2 þ 3λL2σ þ λπ2L2σ

þ 144L2π2σ − 9λðβ þ 1þ L2σÞHβ−1Þ: ð28Þ

The variation of ϕ2 as a function of σ is shown in Fig. 1.
From Fig. 1 we can see that ϕ2 attains a maximum value
ϕ2
max at σ ¼ σ0 and monotonically decreases after that. This

is similar to the case in four dimensional flat space and it
indicates that Vðϕ2Þ is a double valued function of ϕ2 for
ϕ2 < ϕ2

max [21,22].
The field configuration with minimum potential deter-

mines the ground state of the theory. One can find the
ground state by comparing the values of the potential at
possible minima. Consider the minima at σ ¼ 0

Vð0Þ ¼ −
0.003N
L4

: ð29Þ

But at this point

ϕ2ð0Þ ¼ −
2m2N
λ

: ð30Þ

For m2 > 0 the field becomes complex, therefore σ ¼ 0

requires m2 ≤ 0. From Fig. 1, we can see that ϕ ¼ 0 for
both σ1 and σ2. For m2 < 0, and ϕ2ð0Þ > 0 ⇒ σ1 < 0. As
discussed below Eq. (23), σ can take negative values within
the Breitenlohner-Friedman bound. Now, one needs to
identify the global minima of the potential. From Eq. (9)

Vðϕ ¼ 0Þ ¼ Vren
eff ðσÞ: ð31Þ

For small values of σ

lim
σ→0

Vren
eff ðσÞ ¼ Vðσ ¼ 0Þ þ Nm2σ

λ
þOðσ2Þ: ð32Þ

So for m2 < 0, Veff increases from Vð0Þ to Vðσ1Þ as
σ1 < 0, but decreases from Vð0Þ to Vðσ2Þ. Then

Vðσ2Þ < Vð0Þ: ð33Þ

So, for m2 < 0 the global minima of the potential is at
ϕ ¼ 0. Therefore, the global minima of the potential is a
symmetric one and there is no spontaneous symmetry
breaking.
Now, if m2 > 0 the minimum of the potential can only

occur at ϕ ¼ 0. Subsequently, there is no spontaneous
symmetry breaking in the system in this case. Now the
minimum of the potential can be at σ1 or σ2. For m2 > 0,
from Eq. (32), one can see that the Vren

eff decreases towards
Vðσ1Þ (as σ1 < 0) and increases towards Vðσ2Þ. So

Vðσ1Þ < Vðσ2Þ; ð34Þ

which makes σ1 the global minima. Now for m2 ¼ 0 we
can repeat the same arguments for m2 < 0 and conclude
that ϕðσ2Þ is the global minimum configuration of the field.
In conclusion, in four dimensional AdS there is no

spontaneous symmetry breaking for any values of m2

with λ > 0.

B. Three dimensions

The computation for the three dimensional case is similar
to that of four dimensions. In three dimensions, we can
expand the propagator near u ¼ 0 as [from Eq. (19)]

lim
u→0

GðWÞ ¼ 1

4πL
þ 1

4πu
−

Δ
4πL

þOðuÞ; ð35Þ

where Δ is defined in Eq. (20). Substituting this in Eq. (7)
one can calculate V1 as

V1 ¼
Nσ

8πu
−

N
12Lπ

�
σ þ 1

L2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L2σ

p
: ð36Þ

Here, the Breitenlohner-Friedman bound is −1=L2 < σ and
this guarantees that the effective potential is a real-valued
function. The divergence in V1 is proportional to linear
power in σ. So, one can renormalize it using Eq. (8a) as

1

8π

�
1

u
þ 1

L

�
þm2

0

λ0
¼ m2

λ
: ð37Þ

All the divergence in the effective potential is renormalized
just by Eq. (37). Similar to flat space [20], one can choose
λ ¼ λ0. In Eq. (37) we included finite terms including L in

FIG. 1. A plot of ϕ2 versus σ for m2 > 0.
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the renormalized parameters. Using this condition Eq. (37),
the renormalized effective potential is

Vren
eff ¼

Nσ

8πL
þ Nm2σ

λ
−
Nσ2

2λ
−

N
12Lπ

�
σ þ 1

L2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L2σ

p
:

ð38Þ

1. Ground state

The stationary points of the potential is determined by
Eq. (10). Using Eq. (10a) one can get

ϕ2ðσÞ ¼ −
N
4πL

−
2Nm2

λ
þ 2Nσ

λ
þ N
4πL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L2σ

p
: ð39Þ

Here

dϕ2

dσ
> 0; ð40Þ

which makes ϕ2 a monotonically increasing function of σ.
From Eq. (12), the stationary points of the potential V
occurs at ϕ ¼ 0 or σ ¼ 0. Consider the extremum at σ ¼ 0

Vð0Þ ¼ −
N

12πL3
; ð41Þ

for which we have

ϕ2ð0Þ ¼ −
2Nm2

λ
: ð42Þ

So value of σ ¼ 0 is possible only ifm2 ≤ 0. If we consider
m2 < 0 then from Eq. (42) ϕ2ð0Þ > 0. A monotonically
increasing function cannot reach zero starting from a
positive value. Therefore, ϕ ¼ 0 is not possible and the
only possible extremum is at σ ¼ 0. As the global minima
is an asymmetric one, OðNÞ symmetry is spontaneously
broken. For m2 > 0 and m2 ¼ 0, the only possible ground
state is at ϕ ¼ 0 which is a symmetric one.

V. RESULTS AND DISCUSSION

We calculated the one-loop effective potential for the
OðNÞ symmetric sigma model in Rindler space in arbitrary
dimensions in the large N limit [Eq. (14)]. Interestingly
we observe that in three dimensions, the broken OðNÞ
symmetry will be restored in accelerated frames after a
critical acceleration Eq. (17). This result is analogous to

that of the finite temperature results [36,42]. We also
observe that in four dimensions, the effective mass squared
of the theory gets quantum corrected due to the existence
of an acceleration parameter “a” having dimensions of
mass. One can obtain similar conclusions for N ¼ 1 theory
as shown in [33]. The method for calculating the effective
potential in Rindler spacetime is for arbitrary dimensions.
So one can use our results for studying similar phenom-
enons in arbitrary dimensions.
These results are indicative of the fact that nonpertur-

bative phenomena like spontaneous symmetry break-
down/restoration is possibly observer dependent, and
different Rindler observers report different critical values
at which phase transition occurs. Similar conclusions
are obtained for standard model phase transitions in
[43]. These nontrivial results can also be mapped to the
presence of the event horizon in Rindler space which in
itself is observer dependent, and has a temperature
associated with it. In this sense, a lot of field-theoretic
results in Rindler space are in one-to-one correspondence
with finite temperature physics [8].
We performed similar calculations in the anti–de Sitter

space background, and qualitative results are similar to that
obtained in flat space [20–22]. In four dimensions, there is
no spontaneous symmetry breaking for any values of m2.
However, in three-dimensional AdS, we have spontaneous
symmetry breaking for m2 < 0. Also, one-loop quantum
effects make corrections proportional to 1=L and 1=L2

to the effective mass squared of the theory in three and
four dimensions, respectively. The effect of curvature,
therefore, in this context, was to essentially modify the
effective mass squared of the scalar fields. An interesting
question immediately arises. If one were to instead consider
Rindler-AdS spacetime [44], which is both curved and
possesses an event horizon, what would be the fate of the
ground state of the linear OðNÞ sigma model in such a
spacetime? Especially interesting would be the critical
temperature at which symmetry restoration might occur
and the form of quantum mechanical corrections to the
mass squared terms. We of course reserve these questions
for future work.
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