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We consider resolved imaging of faint sources with the solar gravitational lens (SGL) while treating the
Sun as an extended gravitating body. We use our new diffraction integral that describes how a spherical
electromagnetic wave is modified by the static gravitational field of an extended body, represented by series
of multipole moments characterizing its interior mass distribution. Dominated by the solar quadrupole
moment, these deviations from spherical symmetry significantly perturb the image that is projected by
the Sun into its focal region, especially at solar equatorial latitudes. To study the optical properties of the
quadrupole SGL, we develop an approximate solution for the point spread function of such an extended
lens. We also derive semianalytical expressions to estimate signal levels from extended targets. With these
tools, we study the impact of solar oblateness on imaging with the SGL. Given the small value of the solar
quadrupole moment, the majority of the signal photons arriving from an extended target still appear within
the image area projected by the monopole lens. However, these photons are scrambled, thus reducing the
achievable signal-to-noise ratio during the image recovery process (i.e., deconvolution). We also evaluate
the spectral sensitivity for high-resolution remote sensing of exoplanets with the extended SGL. We assess
the impact on image quality and demonstrate that despite the adverse effects of the quadrupole moment, the
SGL remains uniquely capable of delivering high-resolution imaging and spectroscopy of faint, small, and
distant targets, notably terrestrial exoplanets within ∼30–100 parsec from us.
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I. INTRODUCTION

With their impressive capabilities, current and upcoming
fleets of space-based optical telescopes will accelerate the
discoveries of terrestrial exoplanets and will also be able to
detect signs of habitability.1 This information is expected
from transit spectroscopy and reflected imaging observa-
tions that will probe the atmospheric composition of these
newly discovered worlds. However, visiting these targets
is out of the question: there are no extant or foreseeable
advances in propulsion, power, and communication tech-
nologies to allow for interstellar travel. Remote sensing is
our only viable option. To confirm the presence of higher-
order life on the surface of a distant exoplanet, ideally we
would have access to direct multipixel imaging and high-
resolution spectroscopy [1]. Such imaging of terrestrial
exoplanets, using conventional astronomical instruments
(i.e., telescopes and interferometers) is a challenging
endeavor [2,3]. These targets are small, they are at large
distances from us, they are not self-luminous, and their
light arrives on a strong noise background due to their host
star and exozodiacal light [4,5].

To overcome these challenges, we can try to increase the
sensitivity and resolution of our optical instruments. This
can be achieved by developing ever larger telescopes,
preferably placing them outside the Earth’s atmosphere.
Over the last quarter century we have successfully operated
the Hubble Space Telescope2 (HST) with its 2.4 m primary
mirror, working at optical wavelengths. Its long-anticipated
successor, the James Webb Space Telescope3 (JWST)
began operation in 2022, collecting images and spectro-
scopic data with its 6.5-m primary mirror, working in the
near-infrared (near-IR) band. This observatory is expected
to bring us exciting transit spectroscopy data on many
exoplanets in our stellar neighborhood. Even larger space
telescopes with ∼15–25 m apertures may be built in the
2030s [6]. Still, not even these instruments will allow us to
directly image exoplanetary surfaces or conduct spatially
resolved surface spectroscopy, which would be needed to
unambiguously confirm higher-order life and habitation.
The main obstacle is the diffraction limit: in order to see an
Earth-like planet as just one resolved pixel from a distance
of z0 ¼ 100 light-years (ly), a diffraction-limited telescope

1https://exoplanets.nasa.gov/.

2https://en.wikipedia.org/wiki/Hubble_Space_Telescope.
3https://en.wikipedia.org/wiki/James_Webb_Space_Telescope.

PHYSICAL REVIEW D 107, 104063 (2023)

2470-0010=2023=107(10)=104063(22) 104063-1 © 2023 American Physical Society

https://orcid.org/0000-0003-4255-9497
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.104063&domain=pdf&date_stamp=2023-05-30
https://doi.org/10.1103/PhysRevD.107.104063
https://doi.org/10.1103/PhysRevD.107.104063
https://doi.org/10.1103/PhysRevD.107.104063
https://doi.org/10.1103/PhysRevD.107.104063
https://doi.org/https://exoplanets.nasa.gov/
https://doi.org/https://exoplanets.nasa.gov/
https://doi.org/https://exoplanets.nasa.gov/
https://en.wikipedia.org/wiki/Hubble_Space_Telescope
https://en.wikipedia.org/wiki/Hubble_Space_Telescope
https://en.wikipedia.org/wiki/Hubble_Space_Telescope
https://doi.org/https://en.wikipedia.org/wiki/James_Webb_Space_Telescope
https://doi.org/https://en.wikipedia.org/wiki/James_Webb_Space_Telescope
https://doi.org/https://en.wikipedia.org/wiki/James_Webb_Space_Telescope


aperture or interferometric baseline of 1.22λðz0=2R⊕Þ ∼
90.5ðλ=1 μmÞ km would be needed. Resolved multipixel
images with n linear pixels require proportionally larger
operating configurations.
Clearly, such instrument systems are not feasible any-

time soon, if ever. Although the new generation of science
instruments will allow us to gather more data from
observation of unresolved objects as they transit over their
host stars, these instruments will not offer any details about
the surfaces of these planets. We will not be able to see their
continents and oceans, study their weather, understand the
planetary topography, or see signs of technological activity.
We will learn nothing about the possible presence of a
civilization with these instruments. To discover, confirm,
and study advanced life on a distant world, a radically new
approach is needed.
One possible solution that is within reach at our current

level of technology is the solar gravitational lens (SGL)
[7–12]. According to the general theory of relativity [13–15],
the gravitational field of a massive body, manifesting in the
form of spacetime curvature, affects light propagation in the
vicinity of that body [16–20]. The curvature affects an
electromagnetic (EM) wave by inducing a phase delay that
depends on the impact parameter. As a result, the EM
wavefront is deflected, focused behind the body, leading to
significant gain or light amplification [7]. Any massive body
acts as a lens. The larger the mass, the stronger is the lens.
The parameter determining the strength of a gravitational

lens is its Schwarzschild radius rg ¼ 2GM=c2, where M is
the mass of the body. Among solar system bodies, the Sun
is the heaviest and most dynamically stable object, provid-
ing a lens with unique optical properties. For the Sun
rg ≃ 2.95 km, which provides the SGL with its impressive
optical properties, including its peak light amplification,
μ0 ¼ 4π2rg=λ ¼ 1.17 × 1011ð1 μm=λÞ, and angular reso-

lution, δθ ≃ 0.38ðλ= ffiffiffiffiffiffiffiffiffi
2rgz̄

p Þ ¼ 0.10ðλ=1 μmÞð650 AU=z̄Þ12
nanoarcsecond [7,21].
The focal region of the SGL begins at the heliocentric

distance of z̄ ¼ R2
⊙=2rg ¼ 547.8ðb=R⊙Þ2 astronomical

units (AU), where R⊙ is the solar radius [7,22]. The success
of the Voyager 1 spacecraft, as it continues to operate at
distances beyond 158 AU after 45 years in deep space,4

demonstrates that the SGL’s focal region is accessible with
current technologies [23]. Placing at the focal region of the
SGL a 1-m telescope that is equipped with a coronagraph to
block light from our Sun and treating the solar corona as the
main source of noise yield a strong signal-to-noise ratio
(SNR) for imaging of faint objects. Technical challenges
notwithstanding, the SGL appears to be our only realistic
means for direct high-resolution imaging and spectroscopy
of terrestrial exoplanets in our stellar neighborhood within
∼100–300 light-years (∼30–100 parsec).

Recognizing the unique value of the SGL for the quest of
finding, confirming, and remotely investigating life outside
our home planet, we studied its optical properties exten-
sively [7–10,24]. We developed a wave-optical treatment
[25] of the SGL and modeled light propagation in the
vicinity of the Sun [26,27]. We addressed the impact of the
solar corona, treating it as the main source of stochastic
noise [21,28]. This work allowed us to validate the imaging
capabilities of the SGL and develop a mission concept that
would be able to deliver resolved imaging and spectro-
scopic data within a realistic mission time frame [11,12].
The Sun is not a perfect gravitational monopole. We

extended our model to treat the Sun as a body with a
gravitational field that is characterized by an infinite set of
gravitational multipole moments [24,29]. We showed how
each of these multipole moments affects the point-spread
function (PSF) of the SGL, leading to the formation of
caustics in the image plane [30–32]. We recognized that
although the Sun is an extended body, its nonspherical
deformations are very small and are dominated by the
quadrupole moment J2. Given the small value of this
moment, light received from an extended body in an image
plane in the focal region of the SGL still falls mostly within
the image area defined by the monopole lens, but it is
scrambled, which affects image recovery (deconvolution),
amplifying noise, reducing the SNR of the recovered
image. Understanding the impact of the solar quadrupole
on the quality of image recovery is essential, which is the
primary motivation for this paper.
The paper is organized as follows: Section II summarizes

the image formation process with the extended SGL.
Section III discusses the quadrupole PSF. We develop an
approximate solution for the diffraction integral, dealing
separately with the region inside and outside the astroid
caustic boundary formed by the quadrupole moment. In
Sec. IV, we develop analytical expressions describing
the intensity distribution and power received at the focal
plane of the imaging telescope. In Sec. V, we evaluate the
SGL-amplified signals and estimate the spectral SNR for
imaging and spectroscopy of exoplanets with the extended
SGL. In Sec. VI, we summarize results and discuss possible
next steps in the investigation of the SGL. To keep the main
text streamlined, we placed some detailed calculations in
the appendices.

II. WAVE OPTICAL TREATMENT OF EXTENDED
GRAVITATIONAL LENSES

We consider the propagation of a monochromatic EM
wave that originates at a target of radius of R⊕ positioned at
the distance of z0 from the Sun (we rely on results presented
in [21,29,31]). The wave travels in the direction toward the
Sun, where it is focused and amplified by the SGL. To
capture the image formed by the EM waves from the target,
we position an imaging telescope in the SGL focal region,
at the heliocentric distance z̄ and near the primary optical4https://voyager.jpl.nasa.gov/mission/status/.
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axis (the line that connects the center of the target with
that of the Sun and extends into the focal region of the
SGL; see [7–10,21]) in what is known as the region of
strong interference of the SGL. Next, we introduce two-
dimensional coordinates to describe points in the source
plane, x0; the position of the telescope in the image plane,
x0; points in the image plane within the telescope’s
aperture, x; and points in the optical telescope’s focal
plane xi. These are given as follows:

fx0g≡ ðx0; y0Þ ¼ ρ0ðcosϕ0; sinϕ0Þ ¼ ρ0n0; ð1Þ

fx0g≡ ðx0; y0Þ ¼ ρ0ðcosϕ0; sinϕ0Þ ¼ ρ0n0; ð2Þ

fxg≡ ðx; yÞ ¼ ρðcosϕ; sinϕÞ ¼ ρn; ð3Þ

fxig≡ ðxi; yiÞ ¼ ρiðcosϕi; sinϕiÞ ¼ ρini: ð4Þ

We rely on (1)–(4), but slightly redefining them by
introducing x0 ¼ −ðz̄=z0Þx0

0, which allows us to use

x00 ¼ x0 − x0
0 ≡ ρ00n00 ¼ ρ00ðcosϕ00; sinϕ00Þ: ð5Þ

To image faint, distant objects with the SGL, we
represent an imaging telescope by a convex thin lens with
aperture d and focal distance f. We position the telescope
at a point with coordinates x0 in the image plane in the
strong interference region of the lens (see discussion in
[8,21]). To stay within the image, x0 is within the range:
jx0j þ d=2 ≤ r⊕, where r⊕ ¼ ðz̄=z0ÞR⊕ is the radius of
the image.
We introduce the following notations for the two spatial

frequencies α and ηi, and a useful scale ratio β:

α ¼ k

ffiffiffiffiffiffiffi
2rg
z̄

r
; ηi ¼ k

ρi
f
; β ¼ z̄

z0
; ð6Þ

α ¼ðαx; αyÞ ¼ αðcosϕξ; sinϕξÞ ¼ αnξ; ηi ¼ ηini; ð7Þ

where k ¼ 2π=λ is the wave number of an EM wave and nξ

is the unit vector in the direction of the light ray’s vector
impact parameter [7,21,29].
With these definitions, the intensity distribution at the

focal plane of the imaging telescope is given by

Iðxi;x0Þ ¼
1

z20
μ0

�
kd2

8f

�
2
ZZ

d2x00Bsðx00ÞA2ðxi;x00Þ;

μ0 ¼ 2πkrg; ð8Þ

where Bsðx00Þ is the source’s surface brightness and
Aðxi;x00Þ is the Fourier-transformed complex amplitude
of the EM wave at the focal plane of the imaging telescope,
which is given as

Aðxi;x00Þ ¼ 1

2π

Z
2π

0

dϕξ

�
2J1ðαdûðϕξ;xiÞÞ

αdûðϕξ;xiÞ
�

× exp

�
−ik
� ffiffiffiffiffiffiffi

2rg
z̄

r
βρ00 cosðϕξ − ϕ00Þ

þ 2rg
X∞
n¼2

Jn
n

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgz̄

p �
n
sinnβs

× cos½nðϕξ − ϕsÞ�
��

; ð9Þ

where the Jn in (9) are the dimensionless zonal harmonic
coefficients characterizing the mass distribution within the
Sun, while ðβs;ϕsÞ are the target’s position in a heliocentric
spherical coordinate system that is aligned with the solar
axis of rotation (see [24,29–32] for details). In addition,
J1ðxÞ is the Bessel function of the first kind and uðϕξ;xiÞ is
the normalized spatial frequency, which, with the defini-
tions (6) and (7), has the structure

ûðϕξ;xiÞ ¼ jαþ ηij=2α

¼
�
1

4

�
1−

ηi
α

�
2

þ ηi
α
cos2

�
1

2
ðϕξ −ϕiÞ

��1
2

: ð10Þ

From (10), we can see that at the exact location of the
Einstein ring that forms in the telescope’s focal plane,
i.e., when ηi ¼ α or ρi ¼ f

ffiffiffiffiffiffiffiffiffiffiffi
2rg=z̄

p
, the spatial frequency

ûðϕξ;xiÞ collapses to ûERðϕξ;xiÞ ¼ cos½1
2
ðϕξ − ϕiÞ�. That

means that for any position in the focal plane with
azimuthal coordinate ϕi along the Einstein ring, there will
be a particular angle ϕξ that will result in ûERðϕξ;xiÞ ¼ 0. It
is only at those points along the Einstein ring, the ratio
2J1ðxÞ=x in (9) reaches it largest value of 2J1ðxÞ=x → 1,
making the largest contribution to the overall integral (9).
The integral (8) must be evaluated for two different

regions corresponding to the telescope pointing within the
image and outside of it, as was done in [9]. The principal
technical challenge is the evaluation of the integral (9) that
represents a Fourier transform of the EM field amplitude. In
[11], we addressed that challenge in the case of a monopole
lens (i.e., when5 Jn≥2 ¼ 0), opening the path for analytical
or semianalytical treatments. We now use a similar
approach in the case of a weakly aspherical axisymmetric
lens with a small quadrupole mass moment (i.e., when
J2 ≠ 0; Jn>2 ¼ 0).

III. THE QUADRUPOLE PSF OF THE
EXTENDED SGL

The Sun is an axisymmetric rotating body with north-
south symmetry. Its mass distribution, therefore, can be

5The dipole moment, J1, vanishes when the origin of the
coordinate system coincides with the Sun’s center-of-mass.
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fully represented using even multipole moments J2n
contributing to the integral (9). The solar multipole
moments are well-determined using interplanetary space-
craft tracking data, yielding J2 ¼ ð2.25� 0.09Þ × 10−7

[33], and J4 ¼ −4.44 × 10−9, J6 ¼ −2.79 × 10−10, J8 ¼
1.48 × 10−11 [34]. As was shown in [29,30,32], for the
SGL the contribution from the solar J2 dominates, and
when studying the qualitative properties of the SGL PSF,
contributions from higher moments may be safely
neglected. Therefore, we now consider only the quadrupole
SGL, formally characterized by 0 < J2 ≪ 1; Jn>2 ¼ 0.

A. Fourier-transformed amplitude of the EM field

In the case of a quadrupole SGL, the Fourier-transformed
amplitude Aðxi;x00Þ of the EM field given by (9) takes the
form [29,30,32]:

Aðxi;x00Þ ¼ 1

2π

Z
2π

0

dϕξ

�
2J1ðαdûðϕξ;xiÞÞ

αdûðϕξ;xiÞ
�

× exp½−iðαβρ00 cosðϕξ − ϕ00Þ
þ β2 cos½2ðϕξ − ϕsÞ�Þ�; ð11Þ

where α and β are from (6) and uðϕξ;xiÞ is given by (10).
The values of α and β2 are estimated as

α ¼ k

ffiffiffiffiffiffiffi
2rg
z̄

r
¼ 48.97

�
1 μm
λ

��
650 AU

z̄

�1
2

m−1; ð12Þ

β2 ¼ krgJ2

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgz̄

p �
2

sin2βs

¼ 3518.34sin2βs

�
J2

2.25 × 10−7

�

×

�
1 μm
λ

��
650 AU

z̄

�
rad: ð13Þ

Despite its nice, elegant, and compact form, the integral
(11) is not known to have an analytic solution. (Even for
the monopole case we had to treat this integral using the
method of stationary phase [12].) This is why, in [24,29,31]
we evaluated it numerically, and in [30] we studied a
semianalytical form of the quadrupole SGL using the
algebraic solution of a quartic equation in [32]. All of
these approaches (especially the approach based on the
quartic equation) can be used to develop either numerical or
semianalytical estimates of the SNR. However, numerical
results in particular provide less insight for instrument and
mission development. Thus, another treatment of the
integral (11) is needed.
Similar to the approach taken in [12], we may evaluate

the integral (11) using the method of stationary phase. With
the rapidly varying phase given as

φðϕξÞ ¼ −ðαβρ00 cosðϕξ −ϕ00Þ þ β2 cos½2ðϕξ −ϕsÞ�Þ; ð14Þ

for that, we compute the first and second derivatives of this
expression:

φ0ðϕξÞ ¼ αβρ00 sinðϕξ − ϕ00Þ þ 2β2 sin½2ðϕξ − ϕsÞ�; ð15Þ

φ00ðϕξÞ ¼ αβρ00 cosðϕξ − ϕ00Þ þ 4β2 cos½2ðϕξ − ϕsÞ�: ð16Þ

The phase is stationary when φ0ðϕξÞ ¼ 0. Solving this
equation algebraically using Cardano’s quartic solution we

obtain four roots for ϕ½n�
ξ ; n ∈ ½1; 4� [32]. This quartic-based

solution may be used to evaluate the integral (11) and then
use the result in (8), as was done in [32]. However, though
valid, the solution still has to be evaluated numerically. As
an alternative, we now develop another analytic solution
to (11) that may provide much needed insight into the
overall imaging properties of the extended SGL and the
achievable SNR.
As was shown in [30] the integral (11) rapidly oscillates

and has a sharp transition boundary in the form of the
astroid caustic [35,36] that, using polar coordinates
ðβρ00;ϕ00Þ in the image plane, is given by

βρ00acðϕÞ ¼
4β2
α

	
sin

2
3ðϕ00 − ϕsÞ þ cos

2
3ðϕ00 − ϕsÞ



−3
2: ð17Þ

Using (12) and (13), we estimate the unscaled magnitude
of the astroid caustic in the image plane given by (17) as

4β2
α

¼ 2J2
R2
⊙ffiffiffiffiffiffiffiffiffi
2rgz̄

p sin2βs ¼ 287.39sin2βs

�
650 AU

z̄

�1
2

m:

ð18Þ

Therefore, for a given target, the size of the quadrupole
caustic of the SGL is determined by the angle βs (corre-
sponding to the sky position of the source), and the distance
of the image plane from the Sun. When the observed target
is in the direction to the solar axis of rotation, i.e., βs ≃ 0 or
βs ≃ π, the caustic collapses, resulting in an approximately
monopole pattern. Otherwise, we must account for its
presence in the image plane, especially when the magnitude
of the caustic is much lager then the telescope aperture, i.e.,
when d ≪ 4β2=α. The numerical values of the parameters
α and β2 (as well as their ratio 4β2=α) characterize the
challenge of evaluating the integral (11): any change in the
radial position in the image plane, ρ00, results in rapid
variations of the phase of the integrand.
Refraction of light in the solar corona may reduce the

size of the astroid caustic. As was shown in [26,27], due to
its negative refractive index, the solar corona counteracts
the gravitational deflection of light by bending the light
trajectories outwards and effectively pushing the focal area
of the SGL to larger heliocentric distances. Oblateness of
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the steady-state solar corona may yield a contribution to
the astroid caustic that counteracts the action of the solar
quadrupole moment, thus effectively reducing the size of
the astroid caustic (18). Although, as was seen in [26,27],
such an effect on the phase delay of a light ray at optical
wavelengths may be rather small, it may prove to be useful
and, thus, it needs to be fully evaluated. The relevant work
is ongoing and the results will be reported.
The caustic (17) separates two regions with markedly

different behavior for the integral (11). In the region inside
the caustic the quadrupole term (i.e., ∝ β2) dominates. The
region outside the caustic is dominated by the monopole
term (i.e., ∝ αβρ00). This observation allows us to develop
approximate solutions for each of these two regions. Based
on the caustic properties studied in [30,32], the two regions
are characterized by the following conditions on the
parameters present in the phase of the integral (11): αβρ00 <
4β2 vs αβρ00 ≥ 4β2. These conditions lead to iteratively
developed stationary phase solutions for both of these
regions.
Formally, this can be done by first computing the

Poynting vector of the EM wave in the two regions with
respect to the caustic boundary and then computing the PSF
by averaging the result, as was done, for instance, in [21].
As the phases of the waves in these regions are very
different, the mixed term that would appear in the PSF is
very small and may be neglected. This is why we can
characterize these two regions by two different expressions
for the PSF, with each obtained from (11), evaluated in the
corresponding region.

B. The quadrupole-dominated region: αβρ00 < 4β2

1. The stationary phase solutions

To develop an iterative stationary phase solution to (15)
in the quadrupole-dominated region (i.e., within the caustic
boundary ρ00 ≤ ρac), we introduce a small parameter:

0 ≤ x ¼ αβρ00

4β2
< 1: ð19Þ

Clearly, when ρ00 takes its largest value at the caustic
boundary given by (17), this inequality is still valid. Using
this parameter x, we may solve (15) up to the terms of
Oðx5Þ, by searching for the solution for ϕξ in the form

ϕξ ¼ ϕ½0�
ξ þ ϕ½1�

ξ þ ϕ½2�
ξ þ ϕ½3�

ξ þ ϕ½4�
ξ þOðx5Þ; ð20Þ

with the zeroth order equation after substitution of (20) in
(15) taking the form

sin½2ðϕ½0�
ξ − ϕsÞ� ¼ 0 ð21Þ

that yields the following four solutions for ϕ½0�
ξ :

ϕ½0�
ξ − ϕs ¼

�
0;
π

2
; π;

3π

2

�
; ð22Þ

consistent with those found in [30] at the origin of the
coordinate system, i.e., where ρ00 ¼ 0. Continuing with the
iterative approach, we found four solutions of (15):

ϕξ0 ¼ ϕs þ
αβρ00

4β2
sinðϕ00 − ϕsÞ −

1

2

�
αβρ00

4β2

�
2

sin½2ðϕ00 − ϕsÞ� þ
1

24

�
αβρ00

4β2

�
3

ð9 sin½ϕ00 − ϕs� þ 5 sin½3ðϕ00 − ϕsÞ�Þ

−
1

2

�
αβρ00

4β2

�
4

sin½2ðϕ00 − ϕsÞ� þO
��

αβρ00

4β2

�
5
�
; ð23Þ

ϕξπ
2
¼ π

2
þ ϕs þ

αβρ00

4β2
cosðϕ00 − ϕsÞ þ

1

2

�
αβρ00

4β2

�
2

sin½2ðϕ00 − ϕsÞ� þ
1

24

�
αβρ00

4β2

�
3

ð9 cos½ϕ00 − ϕs� − 5 cos½3ðϕ00 − ϕsÞ�Þ

þ 1

2

�
αβρ00

4β2

�
4

sin½2ðϕ00 − ϕsÞ� þO
��

αβρ00

4β2

�
5
�
; ð24Þ

ϕξπ ¼ π þ ϕs −
αβρ00

4β2
sinðϕ00 − ϕsÞ −

1

2

�
αβρ00

4β2

�
2

sin½2ðϕ00 − ϕsÞ� −
1

12

�
αβρ00

4β2

�
3

sin½ϕ00 − ϕs�ð7þ 5 cos½2ðϕ00 − ϕsÞ�Þ

−
1

2

�
αβρ00

4β2

�
4

sin½2ðϕ00 − ϕsÞ� þO
��

αβρ00

4β2

�
5
�
; ð25Þ

ϕξ3π
2
¼ 3π

2
þ ϕs −

αβρ00

4β2
cosðϕ00 − ϕsÞ þ

1

2

�
αβρ00

4β2

�
2

sin½2ðϕ00 − ϕsÞ� −
1

12

�
αβρ00

4β2

�
3

cos½ϕ00 − ϕs�ð7 − 5 cos½2ðϕ00 − ϕsÞ�Þ

þ 1

2

�
αβρ00

4β2

�
4

sin½2ðϕ00 − ϕsÞ� þO
��

αβρ00

4β2

�
5
�
: ð26Þ
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With these solutions for the stationary phase at hand, we compute the second derivatives of the phase (16). The
corresponding results are obtained in the form that, for compactness, we present pairwise, for f0; πg and fπ

2
; 3π
2
g:

φ00
ξf0jπg ¼ 4β2

�
1� αβρ00

4β2
cosðϕ00 − ϕsÞ −

�
αβρ00

4β2

�
2

sin2ðϕ00 − ϕsÞ �
5

4

�
αβρ00

4β2

�
3

sinðϕ00 − ϕsÞ sin½2ðϕ00 − ϕsÞ�

−
�
αβρ00

4β2

�
4

sin2½2ðϕ00 − ϕsÞ� þO
��

αβρ00

4β2

�
5
��

; ð27Þ

φ00
ξfπ

2
j3π
2
g ¼ −4β2

�
1 ∓ αβρ00

4β2
sinðϕ00 − ϕsÞ −

�
αβρ00

4β2

�
2

cos2ðϕ00 − ϕsÞ ∓ 5

4

�
αβρ00

4β2

�
3

cosðϕ00 − ϕsÞ sin½2ðϕ00 − ϕsÞ�

−
�
αβρ00

4β2

�
4

sin2½2ðϕ00 − ϕsÞ� þO
��

αβρ00

4β2

�
5
��

; ð28Þ

where the upper sign corresponds to the first solution in a pair.
We also compute the values for the stationary phase (14) for each of the four solutions, again presented in pairs:

φξf0jπg ¼ −β2
�
1� 4

αβρ00

4β2
cosðϕ00 − ϕsÞ þ 2

�
αβρ00

4β2

�
2

sin2ðϕ00 − ϕsÞ ∓
�
αβρ00

4β2

�
3

sinðϕ00 − ϕsÞ sin½2ðϕ00 − ϕsÞ�

þ 1

2

�
αβρ00

4β2

�
4

sin2½2ðϕ00 − ϕsÞ� þO
��

αβρ00

4β2

�
5
��

; ð29Þ

φξfπ
2
j3π
2
g ¼ β2

�
1 ∓ 4

αβρ00

4β2
sinðϕ00 − ϕsÞ þ 2

�
αβρ00

4β2

�
2

cos2ðϕ00 − ϕsÞ �
�
αβρ00

4β2

�
3

cosðϕ00 − ϕsÞ sin½2ðϕ00 − ϕsÞ�

þ 1

2

�
αβρ00

4β2

�
4

sin2½2ðϕ00 − ϕsÞ� þO
��

αβρ00

4β2

�
5
��

; ð30Þ

where again, the upper sign corresponds to the first solution
in the pair.
We note that none of the expressions for the second

derivative of the phase (27) and (28) changes signs for
any values of the small parameter x [given by (19)] while
x is within the inner region of the caustic, namely for
0 ≤ x < 1. These expressions stay either positive [i.e., for
(27)] or negative [i.e., (28)]. This fact allows us to assemble
the stationary phase solution for the integral (11) within the
inner caustic region.
Also note that all of the presented solutions correctly

represent the behavior characteristic to the inner region of
the astroid caustic: as ρ00 changes, the solutions move both
radially and azimuthally as was observed in [29,30,32].

2. The complex amplitude

To establish the solution for the complex amplitude (11)
in the inner caustic region, Ainðxi;x00Þ, we first define,
for convenience, the amplitude Aξ for each of the four
solutions:

Aξ ¼
�
2J1ðαdûðϕξ;xiÞÞ

αdûðϕξ;xiÞ
�

→ Aξ ¼ fA0;Aπ
2
;Aπ;A3π

2
g:

ð31Þ

Note that each of these amplitudes is rather small,
reaching their maximum value of 1 when their arguments
vanish, i.e., Aξ ≡ ð2J1ðxξÞ=xξÞ → 1, when xξ → 0. With
the definition (31) and the results for the phase and
its second derivative obtained above, we may now
present the stationary phase solution for the Fourier-
transformed amplitude of the EM field given by the
integral (11) in the inner part of the astroid caustic in
the following form:

Ainðxi;x00Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
8πβ2

p
(
A0

eiðφξ0þπ
4
Þffiffiffiffiffiffiffi

φ̄00
ξ0

q þAπ
2

eiðφξπ=2−π
4
Þffiffiffiffiffiffiffiffiffiffi

φ̄00
ξπ=2

q

þAπ
eiðφξπþπ

4
Þffiffiffiffiffiffiffi

φ̄00
ξπ

q þA3π
2

eiðφξ3π=2−π
4
Þffiffiffiffiffiffiffiffiffiffiffiffi

φ̄00
ξ3π=2

q
)
; ð32Þ

where φ̄00
ξ is the normalized second derivative of the phase

given as φ̄00
ξ ¼ φ00

ξ=4β2 with its form evident from (27)
and (28).
To evaluate the expression (8) in the inner part of the

astroid caustic, we need to compute the square of the Fourier-
transformed amplitude of the EM field, A2

inðxi;x00Þ. We
derive this expression by squaring (32) and using the
expressions derived for the phases (29) and (30) and their
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second derivatives (27) and (28). As a result, the quantity
A2

inðxi;x00Þ may be given in the following form:

A2
inðxi;x00Þ ¼ 1

8πβ2
B2
inðxi;x00Þ; ð33Þ

where B2
inðxi;x00Þ is given by a lengthy expression (A1) that

we reproduced in Appendix A.
This result represents an approximation for the ampli-

tude of the EM field in the inner part of the caustic region
(see also [30] where we studied the behavior of the PSF of
the quadratic SGL along the direction toward the cusp and
that toward the fold). Compared to the monopole version of
the amplitude of the EM field [21,28] which depends only
on the radial coordinate ρ00, expression (A1) also depends
on the azimuthal angle ϕ00. This dependence significantly
impacts the deconvolution penalty [11,21]. This expression
may now be used in (8) that allows us to estimate the signal
intensity of the signal received at the focal plane of an
imaging telescope.

C. The monopole dominated region: αβρ00 > 4β2

1. The stationary phase solutions

To develop an iterative solution to the monopole domi-
nated region, we introduce another small parameter:

0 ≤ y ¼ 4β2
αβρ00

< 1: ð34Þ

Using this parameter, we may solve (15) up to the terms6 of
Oðy3Þ, by searching for a solution for ϕξ in the form

ϕξ ¼ ϕ½0�
ξ þ ϕ½1�

ξ þ ϕ½2�
ξ þOðy3Þ; ð35Þ

with the zeroth order equation taking the form

αβρ00 sinðϕ½0�
ξ − ϕ00Þ ¼ 0 ð36Þ

that yields the following two solutions for ϕ½0�
ξ :

ϕ½0�
ξ − ϕ00 ¼ f0; πg; ð37Þ

consistent with those found in [7] for the monopole SGL.
Continuing with the iterative approach, we found the
following two solutions of (15) that we identify as
fϕξ0;ϕξπg and that are given as

ϕξ0 ¼ ϕ00 −
1

2

�
4β2
αβρ00

�
sin½2ðϕ00 − ϕsÞ� þ

1

4

�
4β2
αβρ00

�
2

× sin½4ðϕ00 − ϕsÞ� þO
��

4β2
αβρ00

�
3
�
; ð38Þ

ϕξπ ¼ π þ ϕ00 þ 1

2

�
4β2
αβρ00

�
sin½2ðϕ00 − ϕsÞ� þ

1

4

�
4β2
αβρ00

�
2

× sin½4ðϕ00 − ϕsÞ� þO
��

4β2
αβρ00

�
3
�
: ð39Þ

With these solutions for the stationary phase at hand, we
compute the second derivatives of the phase (16) and also
compute the values for the stationary phase (14) for each of
the two solutions (38) and (39). The corresponding results
are obtained in the following form:

φ00
ξf0jπg ¼ �αβρ00

�
1� cosðϕ00 − ϕsÞ

�
4β2
αβρ00

�

þ 7

8
sin2½2ðϕ00 − ϕsÞ�

�
4β2
αβρ00

�
2

þO
��

4β2
αβρ00

�
3
��

;

ð40Þ

φξf0jπg ¼ ∓αβρ00
�
1� 1

2
cosðϕ00 − ϕsÞ

�
4β2
αβρ00

�

þ 3

8
sin2½2ðϕ00− ϕsÞ�

�
4β2
αβρ00

�
2

þO
��

4β2
αβρ00

�
3
��

;

ð41Þ

where once again, the upper sign corresponds to the first
solution in a pair.
We can now use these results to assemble the stationary

phase solution in the region outside the caustic.

2. The complex amplitude

We note that none of the expressions for the second
derivative of the phase (40) change signs for any values of
the small parameter y [given by (34)] while y is in the outer
caustic region. These expressions stay either positive
[i.e., for uppers sign in (40)] or negative [i.e., for lower
sign in (40)]. This fact allows us to assemble the stationary
phase solution for the integral (11) for the outer caustic
region. For that, similar to (31), we define the amplitudeAξ

for each of the two solutions:

Aξ ¼
�
2J1ðαdûðϕξ;xiÞÞ

αdûðϕξ;xiÞ
�

→ Aξ ¼ fA0;Aπg; ð42Þ

where all the quantities involved are computed with (38)
and (39).
With the definition (42) and the results for the phase and

its second derivative obtained above, we may now present
the stationary phase solution of the Fourier-transformed

6As the quantity y from (34) diminishes rapidly as ρ00
increases, it is sufficient to use only the first few terms in a
power series expansion.
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amplitude of the EM field given by the integral (11) outside
of the astroid caustic in the following form:

Aoutðxi;x00Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2παβρ00

p
(
A0

eiðφξ0þπ
4
Þffiffiffiffiffiffiffi

φ̄00
ξ0

q þAπ
eiðφξπ−π

4
Þffiffiffiffiffiffiffi

φ̄00
ξπ

q
)
;

ð43Þ

where φ̄00
ξ is the normalized second derivative of the phase

as φ̄00
ξ ¼ φ00

ξ=αβρ
00 with its form evident from (40) and

where the phases are given by (41) and their second
derivatives were computed in the form (40).
The square of the Fourier-transformed amplitude of the

EM field, A2
outðxi;x00Þ in the region outside the astroid

caustic that is needed in (8), may be given as

A2
outðxi;x00Þ ¼ 1

2παβρ00
B2
outðxi;x00Þ; ð44Þ

with B2
outðxi;x00Þ up to terms of Oðð4β2=αβρ00Þ3Þ, given as

B2
outðxi;x00Þ ¼ ðA2

0 þA2
πÞ
�
1þ 1

16
ð1þ 15 cos½4ðϕ00 − ϕsÞ�Þ

�
4β2
αβρ00

�
2
�
þ ðA2

π −A2
0Þ cos½2ðϕ00 − ϕsÞ�

�
4β2
αβρ00

�
þ 2A0Aπ

× sin

�
2αβρ00

�
1þ 3

8
sin2½2ðϕ00 − ϕsÞ�

�
4β2
αβρ00

�
2
���

1 −
1

16
ð3 − 11 cos½4ðϕ00 − ϕsÞ�Þ

�
4β2
αβρ00

�
2
�
: ð45Þ

With this result, we may now proceed with evaluating the
optical properties of the quadrupole SGL.

IV. INTENSITY DISTRIBUTION AND SIGNAL
RECEIVED BY A TELESCOPE

Expression (8) allows us to compute the power received
from the resolved source. For an actual astrophysical source,
Bsðx0Þ is, of course, an arbitrary function of the coordinates
x0, and thus the integral can only be evaluated numerically.
However, we can obtain an analytic result in the simple
case of a disk of uniform brightness, characterized by
Bsðx0Þ ¼ Bs. In this case, the integral (8) takes the form

Iðxi;x0Þ ¼ μ0
Bs

z20

�
kd2

8f

�
2
ZZ

d2x00A2ðxi;x00Þ; ð46Þ

where the integration over d2x00 is done within the image
boundary, with respect to the telescope position x0.
Expression (46) is a good choice when dealing with the

integral form for the EM field amplitude as given by (11).
Using this expression, it is possible to separate regions
inside and outside the caustic boundary, and obtain a finite
result. However, withA2ðxi;x00Þ given by (11), this integral
is highly oscillatory, difficult to evaluate computationally.
To tame the behavior of the integral, we may use the

quartic solution for A2ðxi;x00Þ presented in [32]. The
quartic solution is a good approximation to the integral
(11) everywhere except for the immediate vicinity of the
caustic boundary. Therefore, the integration in (46) needs to
account for that as was done in [32]. To do that, we will rely
on the two approximate solutions for A2ðxi;x00Þ that we
developed for the inner part of the caustic,A2

inðxi;x00Þ, and
the outer part, A2

outðxi;x00Þ, which are, respectively, given
by (33) and (44).

To properly identify integration limits in (46), we need to
take into account all possible positions of the astroid with
respect to the caustic boundary. These include the case
when (i) the astroid caustic is completely within the image;
(ii) the center of the caustic is still within the image, but
some parts of it are outside; (iii) the center of the caustic is
outside the image, but some parts of it are still within the
image; and (iv) the entire caustic is outside the image. The
first pair of these four cases correspond to the telescope
being positioned within the image nominally projected by
the monopole PSF, while the second pair represents cases
when the telescope is outside. For details, see [9,11,12,21].
The first of these four cases is shown in Fig. 1 (left). The

second and third cases are characterized by additional
parameters that are shown in Fig. 1 (right). We now
consider these cases in detail, starting with the telescope
fully inside the projected image of the source.

A. Intensity distribution for the telescope
within the image

To integrate (46), we introduce a new coordinate system in
the source plane, x00, with the origin at the telescope position:
x0 − x0

0 ¼ x00. As the vector x0
0 is constant, dx0dy0 ¼

dx00dy00. Switching to polar coordinates, ðx00;y00Þ→ðr00;ϕ00Þ,
we can represent the circular edge of the source, R⊕, by the
curve ρ⊕ðϕ00Þ that is given by the relation (see [21])

ρ⊕ðϕ00Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
⊕ − ρ020 sin

2ϕ00
q

− ρ00 cosϕ
00

≡ R⊕

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

	ρ0
r⊕



2
sin2ϕ00

r
−
ρ0
r⊕

cosϕ00
�
; ð47Þ

where ρ0 is the telescope’s position within the image (note
that ρ00=R⊕ ≡ ρ0=r⊕).
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From (17) this astroid caustic’s boundary, projected onto
the source plane, has the form

ρacðϕ00Þ ¼
�
4β2
αβ

�	
sin

2
3ðϕ00 þ ϕ0 − ϕsÞ

þ cos
2
3ðϕ00 þ ϕ0 − ϕsÞ



−3
2: ð48Þ

Expressions (47) and (48) can be used to establish the
relationships between the boundary of the astroid caustic,
ρacðϕ00Þ, and that of the image of the source, ρ⊕ðϕ00Þ.

1. Astroid caustic is entirely within the image

Consider the first case, when the astroid caustic is
completely inside the image boundary. To develop insight
into the behavior of the signal received by the telescope, we
use the results for A2

inðxi;x00Þ and A2
outðxi;x00Þ developed

earlier and given by (33) [with B2
inðxi;x00Þ from (A1)] and

(44) and (45), correspondingly. From (46), these results
yield the following expression for the intensity in the
telescope focal plane:

Iðxi;x0Þ¼ μ0
Bs

z20

�
kd2

8f

�
2
�Z

2π

0

dϕ00
Z

ρac

0

ρ00dρ00A2
inðxi;x00Þ

þ
Z

2π

0

dϕ00
Z

ρ⊕

ρac

ρ00dρ00A2
outðxi;x00Þ

�
: ð49Þ

After rearranging the integration limits and using expres-
sions for A2

inðxi;x00Þ and A2
outðxi;x00Þ and given by (33)

and (44), correspondingly, this expression may be pre-
sented in the following, equivalent form:

Iðxi;x0Þ ¼ μ0
Bs

z20

�
kd2

8f

�
2 1

αβ

�
1

2π

Z
2π

0

dϕ00

×
Z

ρ⊕

0

dρ00B2
outðxi;x00Þ − 1

2π

Z
2π

0

dϕ00
Z

ρac

0

dρ00

×
�
B2
outðxi;x00Þ −

�
αβρ00

4β2

�
B2
inðxi;x00Þ

��
:

ð50Þ

We recognize the first term in the expression as the
intensity of light received in the focal plane of an imaging
telescope in the case of the monopole PSF, i.e., treating the
sun as a spherically symmetric lens [9,11,12,21]. To evaluate
the remaining terms in (50), we observe that B2

outðxi;x00Þ ≃
1þOðyÞ and B2

inðxi;x00Þ ≃ 1þOðxÞ. With the numerical
values for α and β2 from (12) and (13), correspondingly,
we see that in the inner part of the caustic, the ratio
ðαβρ00Þ=ð4β2Þ≡ x < 1; see (19). Therefore, the second
integral in (50) represents a reduction of the signal estimated
based on the monopole PSF by accounting for the fact that
the Sun is an extended oblate object.
Looking at the functional form of B2

inðxi;x00Þ and
B2
outðxi;x00Þ we see that the second term in (50) is not

uniform, but has azimuthal dependence because of the
functional form of the caustic boundary itself, ρacðϕ00Þ,
given by (48) and also the azimuthal dependence present in

FIG. 1. Geometry and parametrization of the extended SGL for imaging purposes. Left: the astroid caustic projection on the source
plane is inside the source. Right: When the caustic projection boundary intersects the source boundary, it is characterized by the angles
ϕ1;2. Furthermore, if the center of the caustic projection is outside the source, it is characterized by ϕ�. Otherwise, the parametrization is
the same as for the caustic projection that is completely inside the source. Additional configurations, including the caustic projection
being entirely outside the source, or a caustic with two or three cusps inside the source and the center either inside or outside can be
treated similarly, with additional angular parameters characterizing intersections.
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B2
inðxi;x00Þ. So, most of the signal reaches the telescope’s

focal plane, but due to the presence of the second term in
(50), this signal is scrambled.
To study the signal from a source in the case on the

extended PSF, we evaluate the power received at the tele-
scope focal plane. For that, we need to integrate the intensity
in the focal plane over the area occupied by the Einstein ring.
Similar to the discussion in [21], one can estimate this
quantity as

Pfbðx0Þ ¼ ϵeePðx0Þ≡ ϵee

Z
2π

0

dϕi

Z
∞

0

Iðxi;x0Þρidρi;

ð51Þ

where Iðxi;x0Þ is from (50) and also we introduce the
encircled energy factor, ϵee ¼ 0.69.
To evaluate the integral in (51), we notice that only two

quantities in that expression depend on ρi and ϕi, namely
B2
outðxi;x00Þ and B2

inðxi;x00Þ. As was discussed in [21,37],
for any set of stationary phase solutions, ϕ½j�, where j ¼
∈ ½1; 4� for the quadrupole PSF and j ¼∈ ½1; 2� for the
monopole PSF, the following two useful relations exist:

Z
2π

0

dϕi

Z
∞

0

ρidρi

�
2J1ðαdûðϕ½j�

ξ ;xiÞÞ
αdûðϕ½j�;xiÞ

�
2

¼ 4π

�
λf
πd

�
2

;

ð52Þ

Z
2π

0

dϕi

Z
∞

0

ρidρi

�
2J1ðαdûðϕ½j�

ξ ;xiÞÞ
αdûðϕ½j�;xiÞ

��
2J1ðαdûðϕ½k�

ξ ;xiÞÞ
αdûðϕ½k�;xiÞ

�
≲ 5 × 10−3 · 4π

�
λf
πd

�
2

: ð53Þ

Applying these relations on B2
outðxi;x00Þ and B2

inðxi;x00Þ given by (A1) and (45), correspondingly, we have

Z
2π

0

dϕi

Z
∞

0

ρidρiB2
outðxi;x00Þ ¼ 8π

�
λf
πd

�
2

ð1þOðy2ÞÞ; ð54Þ

Z
2π

0

dϕi

Z
∞

0

ρidρiB2
inðxi;x00Þ ¼ 16π

�
λf
πd

�
2
�
1þ

�
αβρ00

4β2

�
2

þ 1

4
ð9 − 5 cos½4ðϕ00 þ ϕ0 − ϕsÞ�Þ

�
αβρ00

4β2

�
4

þO
��

αβρ00

4β2

�
6
��

; ð55Þ

where we neglected the mixed terms of the typeAjAk and also kept (54) to the order ofOðy2Þ as even the terms of that order
are already small and rapidly diminishing.
With results (54) and (55), expression (51) for the power received at the telescope’s focal plane takes the form

Pfbðx0Þ ¼ ϵee

Z
2π

0

dϕi

Z
∞

0

Iðxi;x0Þρidρi

¼ ϵeeμ0
Bs

z20

πd2R⊕

2αβ

�
ϵðρ0Þ −

1

2πR⊕

Z
2π

0

dϕ00
�
ρac −

�
αβ

4β2

�

×

�
ρ2ac þ

1

2

�
αβ

4β2

�
2

ρ4ac þ
1

12
ð9 − 5 cos½4ðϕ00 þ ϕ0 − ϕsÞ�Þ

�
αβ

4β2

�
4

ρ6ac

���
; ð56Þ

where the blur factor ϵðρ0Þ is given by the expression [9]

ϵðρ0Þ ¼
1

2π

Z
2π

0

dϕ00
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ρ0
r⊕

�
2

sin2ϕ00
s

¼ 2

π
E
��

ρ0
r⊕

�
2
�
; ð57Þ

where E½x� is the elliptic integral [38,39]. Using the expression for the astroid caustic ρacðϕ00Þ given by (48) we define
quantity qðϕ00Þ as below

ρacðϕ00Þ ¼
�
4β2
αβ

�
qðϕ00Þ; where qðϕ00Þ ¼

	
sin

2
3ðϕ00 þ ϕ0 − ϕsÞ þ cos

2
3ðϕ00 þ ϕ0 − ϕsÞ



−3
2: ð58Þ

With this definition, we take the integrals over dϕ00 in (56) that results in
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Pfbðx0Þ ¼ ϵeeμ0
Bs

z20

πd2R⊕

2αβ

�
ϵðρ0Þ −

�
4β2
αr⊕

�
1

2π

Z
2π

0

dϕ00
�
qðϕ00Þ − q2ðϕ00Þ − 1

2
q4ðϕ00Þ

−
1

12
ð9 − 5 cos½4ðϕ00 þ ϕ0 − ϕsÞ�Þq6ðϕ00Þ

��

¼ ϵeeμ0
Bs

z20

πd2R⊕

2αβ

�
ϵðρ0Þ − 0.106

�
4β2
αr⊕

��
: ð59Þ

From (18), we estimate

4β2
αr⊕

¼
2J2

�
R2
⊙ffiffiffiffiffiffi
2rgz̄

p
�
sin2βs

ðz̄=z0ÞR⊕

¼ 0.429sin2βs

�
650 AU

z̄

�3
2

�
z0

30 pc

��
6378 km

R⊕

�
:

ð60Þ

As a result, the fraction of light by which the presence of
the solar quadrupole reduces the amount of light received
within the image compared to the monopole case is given as

0.106

�
4β2
αr⊕

�
≃ 0.045sin2βs

�
650 AU

z̄

�3
2

�
z0

30 pc

�

×

�
6378 km

R⊕

�
: ð61Þ

Expression (61) suggests that in the case of the quadru-
pole PSF some fraction of the signal photons may fall
outside the source image, as it is defined by the monopole
PSF. All these photons are still in the image proximity but
are scrambled. So, the signal is there, but to recover the
image, the signal must be unscrambled, i.e., deconvolved.

2. Center of the astroid is still within the image, but some
parts of it are out

In the vicinity of the image boundary, some part of the
astroid caustic extends beyond the image boundary, so for
some angles ϕ00 the parametric equation for the caustic (17)
intersects with that of the image boundary (47), setting the
condition to determine the angles (up to eight) at which
such an intersection occurs:

ρacðϕ00Þ ¼ ρ⊕ðϕ00Þ→ ϕ00 ¼ fϕ1;ϕ2;ϕ3;ϕ4;ϕ5;ϕ6;ϕ7;ϕ8g:
ð62Þ

Note that there are eight angles only when all four cusps are
outside the image boundary while the center of the astroid
remains inside. (This presupposes that the astroid is
comparable in size and area to the projected image.)
Here, for simplicity, we assume that the center of the
astroid caustic is inside the image and only one cusp is
outside the image area.
Assuming that there are only two of such angles

ðϕ1;ϕ2Þ≡ ðϕ1ðx0Þ;ϕ2ðx0ÞÞ (see also Fig. 1), the integra-
tion for the intensity in the telescope’s focal plane in (46)
changes to

Iðxi;x0Þ ¼ μ0
Bs

z20

�
kd2

8f

�
2
�Z

2π−ϕ1

ϕ2

dϕ00
Z

ρac

0

ρ00dρ00A2
inðxi;x00Þ þ

Z
ϕ2

−ϕ1

dϕ00
Z

ρ⊕

0

ρ00dρ00A2
inðxi;x00Þ

þ
Z

2π−ϕ1

ϕ2

dϕ00
Z

ρ⊕

ρac

ρ00dρ00A2
outðxi;x00Þ

�
: ð63Þ

Similar to (50), after rearranging the integration limits and using expressions forA2
inðxi;x00Þ andA2

outðxi;x00Þ and given by
(33) and (44), correspondingly, this expression may be presented in the following equivalent form:

Iðxi;x0Þ ¼ μ0
Bs

z20

�
kd2

8f

�
2 1

αβ

�
1

2π

Z
2π

0

dϕ00
Z

ρ⊕

0

dρ00B2
outðxi;x00Þ − 1

2π

Z
2π

0

dϕ00

×
Z

ρac

0

dρ00
�
B2
outðxi;x00Þ −

�
αβρ00

4β2

�
B2
inðxi;x00Þ

�

þ 1

2π

Z
ϕ2

−ϕ1

dϕ00
Z

ρac

ρ⊕

dρ00
�
B2
outðxi;x00Þ −

�
αβρ00

4β2

�
B2
inðxi;x00Þ

��
: ð64Þ
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By looking at (64), we can immediately see that the first
two integrals in this expression are identical to those in (50)
and represent a reduction of the signals due to the PSF of
the oblate Sun. The last term is new, implying that some

part of the reduced signal is recovered. The best way to
evaluate this behavior is to study the power received in the
telescope’s focal plane. For that, following the logic used to
develop (56), we rely on (52) and (53) to derive

Pfbðx0Þ ¼ ϵee

Z
2π

0

dϕi

Z
∞

0

Iðxi;x0Þρidρi ¼ ϵeeμ0
Bs

z20

πd2R⊕

2αβ

�
ϵðρ0Þ − 0.106

�
4β2
αr⊕

�

þ 1

2πR⊕

Z
ϕ2

−ϕ1

dϕ00
�
ρac − ρ⊕ −

�
αβ

4β2

��
ρ2ac − ρ2⊕ þ 1

2

�
αβ

4β2

�
2

ðρ4ac − ρ4⊕Þ

þ 1

12
ð9 − 5 cos½4ðϕ00 þ ϕ0 − ϕsÞ�Þ

�
αβ

4β2

�
4

ðρ6ac − ρ6⊕Þ
���

: ð65Þ

We can simplify this integral in the limiting case when ϕ1;ϕ2;ϕ0 ≪ 1° are all small. That allows us to set the values of ρ0
and ρ⊕ at ϕ00 ¼ 0. For that, from (47) and (48) we have the following relevant values [with qðϕ00Þ from (58)]:

ρ⊕ð0Þ ¼ R⊕

�
1 −

ρ0
r⊕

�
and ρacð0Þ ¼

�
4β2
αβ

�
qðϕ0Þ; ð66Þ

which yields

1

2πR⊕

Z
ϕ2

−ϕ1

dϕ00
�
ρac−ρ⊕−

�
αβ

4β2

��
ρ2ac−ρ2⊕þ1

2

�
αβ

4β2

�
2

ðρ4ac−ρ4⊕Þþ
1

12
ð9−5cos½4ðϕ00 þϕ0−ϕsÞ�Þ

�
αβ

4β2

�
4

ðρ6ac−ρ6⊕Þ
��

¼ϕ1þϕ2

2π

��
αr⊕
4β2

��
1−

ρ0
r⊕

�
2
�
1þ1

2

�
αr⊕
4β2

�
2
�
1−

ρ0
r⊕

�
2

þ 1

12
ð9−5cos½4ðϕ0−ϕsÞ�Þ

�
αr⊕
4β2

�
4
�
1−

ρ0
r⊕

�
4
�

−
�
1−

ρ0
r⊕

�
þ
�
4β2
αr⊕

��
qðϕ0Þ−q2ðϕ0Þ−

1

2
q4ðϕ0Þ−

1

12
ð9−5cos½4ðϕ0−ϕsÞ�Þq6ðϕ0Þ

��

≤−
ϕ1þϕ2

2π

�
δρ0
r⊕

þ5

6

�
4β2
αr⊕

�
þO

��
δρ0
r⊕

�
2
��

; ð67Þ

where δρ0 ¼ r⊕ − ρ0. Remember that in this case ρ0 < r⊕;
thus the expression (67) is positive.
Evaluating this result similar to (59), we see that in this

area near the image boundary, depending on the telescope
position, ρ0, some photons are being further removed from
the area enveloping the image. Thus, we can see that the
flux anticipated from a target is ∼6% weaker than in the
monopole case, as shown by (61).

B. Intensity distribution at an off-image telescope
position

The same conditions to derive (50) are valid where the
telescope is at an off-image position, so the power received
by the telescope takes the same form. The only difference
comes from the fact that we are outside the image; thus, the
integration limits change. First, we note that the circular
edge of the source, R⊕, is given by a curve, ρ⊕ðϕ00Þ, the
radial distance of which in this polar coordinate system is
given as

ρ�⊕ðϕ00Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
⊕ − ρ020 sin

2ϕ00
q

þ ρ00 cosϕ
00

¼ R⊕

 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−
�
ρ0
r⊕

�
2

sin2ϕ00
s

þ ρ0
r⊕

cosϕ00
!
; ð68Þ

with the angle ϕ00 in this case defined so that ϕ00 ¼ 0 when
pointing at the center of the source. The angle ϕ00 varies only
within the rangeϕ00∈ ½ϕ−;ϕþ�, with ϕ� ¼ � arcsinðR⊕=ρ00Þ.
Given the sign in front of the square root in (68), for
any angle ϕ00 there will be two solutions for ρ⊕ðϕ00Þ, given
as ðρ−⊕; ρþ⊕Þ.

1. Off-image, caustic does not intersect the image
boundary

Assuming that the brightness of the source in this region
is uniform, Bðx0; y0Þ ¼ Bs, we use (68) and evaluate (8) for
this set of conditions:
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Ioffðxi;x0Þ ¼ μ0
Bs

z20

�
kd2

8f

�
2
Z

ϕþ

ϕ−

dϕ00

×
Z

ρþ⊕

ρ−⊕

ρ00dρ00A2
outðxi;x00Þ

¼ μ0
Bs

z20

�
kd2

8f

�
2 1

2παβ

Z
ϕþ

ϕ−

dϕ00

×
Z

ρþ⊕

ρ−⊕

dρ00B2
outðxi;x00Þ: ð69Þ

We next compute the power deposited at off image
locations as

Pfb·outðx0Þ ¼ ϵee

Z
2π

0

dϕi

Z
∞

0

Ioffðxi;x0Þρidρi

¼ ϵeeμ0
Bs

z20

πd2

2αβ

1

2π

Z
ϕþ

ϕ−

dϕ00
Z

ρþ⊕

ρ−⊕

dρ00

¼ ϵeeμ0
Bs

z20

πd2R⊕

2αβ
βðρ0Þ; ð70Þ

where the factor βðρ0Þ given by the following expression:

βðρ0Þ ¼
1

π

Z
ϕþ

ϕ−

dϕ00
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ρ0
r⊕

�
2

sin2ϕ00
s

¼ 2

π
E
�
arcsin

r⊕
ρ0

;

�
ρ0
r⊕

�
2
�
; ð71Þ

where E½a; x� is the incomplete elliptic integral [38]. This
result is identical to that obtained for the case of photo-
metric imaging with the SGL discussed in [9].

2. Off-image, caustic intersecting the image boundary

When the astroid is off-image but the astroid caustic
intersects the image boundary, the following expression
characterizes the intensity at the telescope’s focal plane:

Ioutðxi;x0Þ ¼ μ0
Bs

z20

�
kd2

8f

�
2 1

2παβ

�Z
ϕþ

ϕ−

dϕ00
Z

ρþ⊕

ρ−⊕

dρ00

× B2
outðxi;x00Þ −

Z
ϕ2

−ϕ1

dϕ00
Z

ρac

ρ−⊕

dρ00

×
�
B2
outðxi;x00Þ −

�
αβρ00

4β2

�
B2
inðxi;x00Þ

��
;

ð72Þ

where again ðϕ1;ϕ2Þ≡ ðϕ1ðx0Þ;ϕ2ðx0ÞÞ. We recognize
that the first term is identical to that of (69), representing the
effect of the monopole caustic. The second term looks very
similar to that of the last term in (64), representing the
additional flux received at the monopole-suggested circular
off-image area.
To evaluate the power received in the telescope’s focal

plane, we follow the logic used to develop (56) and (73),
and derive

Pfb·offðx0Þ ¼ ϵee

Z
2π

0

dϕi

Z
∞

0

Ioffðxi;x0Þρidρi

¼ ϵeeμ0
Bs

z20

πd2R⊕

2αβ

�
βðρ0Þ −

1

2πR⊕

Z
ϕ2

−ϕ1

dϕ00
�
ρac − ρ−⊕ −

�
αβ

4β2

��
ρ2ac − ðρ−⊕Þ2

þ 1

2

�
αβ

4β2

�
2

ðρ4ac − ðρ−⊕Þ4Þ
���

: ð73Þ

Again, assuming that ϕ1;ϕ2, and ϕ0 are all small, we can evaluate the last integral by taking its value at ϕ00 ¼ 0 for ρ⊕ and
ϕ00 ¼ ϕs for ρac. For that, from (68) and (48) we have the following relevant expressions:

ρ⊕ð0Þ¼R⊕

�
ρ0
r⊕

−1

�
and ρacð0Þ¼

�
4β2
αβ

�
qðϕ0Þ ð74Þ

that yield

−
1

2πR⊕

Z
ϕ2

−ϕ1

dϕ00
�
ρac − ρ−⊕ −

�
αβ

4β2

��
ρ2ac − ðρ−⊕Þ2 þ

1

2

�
αβ

4β2

�
2

ðρ4ac − ðρ−⊕Þ4Þ
��

¼ −
ϕ1 þ ϕ2

2π

��
αr⊕
4β2

��
ρ0
r⊕

− 1

�
2
�
1þ 1

2

�
αr⊕
4β2

�
2
�
ρ0
r⊕

− 1

�
2
�
−
�
ρ0
r⊕

− 1

�
þ
�
4β2
αr⊕

��
qðϕ0Þ − q2ðϕ0Þ −

1

2
q4ðϕ0Þ

��

≤
ϕ1 þ ϕ2

2π

�
δρ0
r⊕

þ 5

6

�
4β2
αr⊕

�
þO

��
δρ0
r⊕

�
2
��

; ð75Þ
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where again δρ0 ¼ r⊕ − ρ0. As ρ0 > r⊕, the expression
(75) is negative. This term represents a small increase in the
signal in the area outside the image compared to the case of
the monopole SGL.

C. Special case of a very large caustic

In the previous section we have seen that the results
depend on the size of the caustic relative to that of the
image. This is why we consider two special cases: first,
when the telescope is still within the image, but the caustic
is larger than the image, and second, when the telescope is
outside the image, but the image is still within the caustic
boundary.

1. Large caustic with the telescope inside the image

In the case of a very large caustic, 4β2=α ≥ βR⊕ ¼ r⊕
(i.e., when αr⊕=4β2 ≤ 1), when the telescope is inside the
image, the intensity of light received in the focal plane of
the telescope is given as

Iinlcðxi;x0Þ ¼ μ0
Bs

z20

�
kd2

8f

�
2 1

8πβ2

Z
2π

0

dϕ00

×
Z

ρ⊕

0

ρ00dρ00B2
inðxi;x00Þ: ð76Þ

Using this result, we compute the power

Pfb·in·lcðx0Þ ¼ ϵee

Z
2π

0

dϕi

Z
∞

0

Iinlcðxi;x0Þρidρi

¼ ϵeeμ0
Bs

z20

πd2R2
⊕

8β2

�
1þ 1

2

�
αr⊕
4β2

�
2

×

�
1þ 2

�
ρ0
r⊕

�
2
��

≃ ϵeeμ0
Bs

z20

πd2R2
⊕

8β2

�
1þO

�
αr⊕
4β2

�
2
�
;

ð77Þ

where ρ0 ≤ r⊕. We note that the amount of power received
from a source in the case of the extended SGL with the
large size of the astroid caustic that is comparable to the
size of the image of the source is smaller compared to
the case of a monopole PSF by a factor of

Pfb·in·lcðx0Þ=Pmono
fb·in·lcðx0Þ

¼ ϵeeμ0
Bs

z20

πd2R2
⊕

8β2

=

ϵeeμ0
Bs

z20

πd2R⊕

2αβ

¼ αr⊕
4β2

≤ 1: ð78Þ

Again, from (18), we estimate

αr⊕
4β2

¼ ðz̄=z0ÞR⊕

2J2

�
R2
⊙ffiffiffiffiffiffi
2rgz̄

p
�
sin2βs

¼ 2.33
sin2βs

�
z̄

650 AU

�3
2

�
30 pc
z0

��
R⊕

6378 km

�
: ð79Þ

2. Large caustic with the telescope outside the image

In the case of a very large caustic, 4β2=α ≥ βR⊕ ¼ r⊕,
but with the telescope outside the image, the intensity of
light received at the focal plane of the imaging telescope is
given as

Ioutlc ðxi;x0Þ ¼ μ0
Bs

z20

�
kd2

8f

�
2
Z

ϕþ

ϕ−

dϕ00

×
Z

ρþ⊕

ρ−⊕
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�
2 1
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Z
ϕþ
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×
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ρþ⊕
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ρ00dρ00B2
inðxi;x00Þ: ð80Þ

Using this result, we compute the power

Pfb·out·lcðx0Þ ¼ ϵee

Z
2π

0

dϕi

Z
∞

0

Ioutlc ðxi;x0Þρidρi

¼ ϵeeμ0
Bs

z20

πd2

8β2

1

2π

Z
ϕþ

ϕ−

dϕ00
�
ðρþ⊕Þ2 − ðρ−⊕Þ2 þ

1

2

�
αβ

4β2

�
2

ððρþ⊕Þ4 − ðρ−⊕Þ4Þ
�

≃ ϵeeμ0
Bs

z20

πd2R2
⊕

2β2

ρ0
r⊕

1

2π

Z
ϕþ

ϕ−

dϕ00 cosϕ00
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ρ0
r⊕

�
2

sin2ϕ00
s

; ð81Þ

where ρ0 ≥ r⊕ and where the final simplification is applicable in the case ðαr⊕=4β2Þ < 1.
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V. EVALUATING THE SGL-AMPLIFIED SIGNALS

We consider an Earth-like exoplanet, as viewed from the
focal region of the SGL, starting at ∼548 AU from the Sun,
through a thin-lens telescope. The image of an exoplanet in
our galactic neighborhood, at distances up to ∼30 pc from
the Sun, is projected by the SGL to an image area several
kilometers in size (∼1.3 km for an Earth-like exoplanet at
30 pc, observed at 650 AU from the Sun). A telescope in
the focal region of the SGL, looking back in the direction of
the Sun, sees a faint Einstein ring form around the Sun from
light reflected and emitted by the exoplanet.

A. Modeling the spectral signal

To provide estimates for the anticipated photon fluxes
from realistic exoplanetary sources when they are imaged
with the SGL, we model the spectral signal using our own
Sun and the Earth as representative cases. Following [21],
we consider a planet that is identical to our Earth, orbiting,
at a distance of 1 AU, a star that is identical to our Sun. The
total flux received by such a target is the same as the solar

irradiance at the top of Earth’s atmosphere. In [12] we
developed a realistic model of the spectral brightness BsðλÞ
of the exoplanet that includes longer wavelengths where we
added the planetary thermal emission:

BsðλÞ ¼
2

3
a
�
R⊙

AU

�
2 2hc2

λ5ðehc=λkBT⊙ − 1Þ þ
2hc2

λ5ðehc=λkBT⊕ − 1Þ ;

ð82Þ

where a is the Earth’s visible light albedo, T⊙ ¼ 5772 K
is the temperature of the Sun, and T⊕ ¼ 252 K is the
effective radiating temperature of the Earth.
Expression (50) allows us to compute the power received

from the resolved source. For an actual astrophysical
source, Bsðx0; λÞ is, of course, an arbitrary function of
the coordinates x0 and thus the integral (8) can only be
evaluated numerically. However, we can obtain an analytic
result in the simple case of a disk of uniform brightness,
characterized by Bsðx0; λÞ ¼ BsðλÞ. In this case, we inte-
grate (50):

Iðxi;x0; λÞ ¼ μ0
BsðλÞ
z20

�
kd2

8f
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2 1
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�
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2π

Z
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0
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dρ00B̂2
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Z
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0
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�
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αβρ00

4β2

�
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inðxi;x00Þ

��
; ð83Þ

where B̂outðxi;x00Þ and B̂inðxi;x00Þ are the truncated Fourier-transformed amplitudes of the EM field. The first of these two
quantities is given as

B̂outðxi;x00Þ ¼
�
2J1ðαdû0ðϕ00;xiÞÞ

αdû0ðϕ00;xiÞ
�

2

þ
�
2J1ðαdûπðϕ00;xiÞÞ
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�

2

; ð84Þ

where û0ðϕ00;xiÞ and ûπðϕ00;xiÞ introduced by (10) with the help of definitions (6) and (7) and solutions (38) and (39) are
given as

û0ðϕ00;xiÞ ¼
�
1
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; ð85Þ
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: ð86Þ

Similarly, for B̂inðxi;x00Þ we have

B̂inðxi;x00Þ ¼
�
2J1ðαdûin0 ðϕ00;xiÞÞ

αdûin0 ðϕ00;xiÞ
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ð87Þ
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where ûin0 ðϕ00;xiÞ; ûinπ
2
ðϕ00;xiÞ; ûinπ ðϕ00;xiÞ, and ûin3π

2

ðϕ00;xiÞ introduced by (10) with the help of definitions (6) and (7) and
solutions (23)–(26) are given as

ûin0 ðϕ00;xiÞ ¼
�
1

4

�
1 −

ρi
f

�
z̄
2rg

�1
2

�
2

þ ρi
f

�
z̄
2rg

�1
2

cos2
�
1

2

�
ϕs þ

αβρ00

4β2
sinðϕ00 − ϕsÞ −

1

2

�
αβρ00

4β2

�
2

sin½2ðϕ00 − ϕsÞ�

þ 1

24

�
αβρ00

4β2

�
3

ð9 sin½ϕ00 − ϕs� þ 5 sin½3ðϕ00 − ϕsÞ�Þ −
1

2

�
αβρ00

4β2

�
4

sin½2ðϕ00 − ϕsÞ� − ϕi

���1
2

; ð88Þ

ûinπ
2
ðϕ00;xiÞ ¼

�
1

4

�
1 −

ρi
f

�
z̄
2rg

�1
2

�
2

þ ρi
f

�
z̄
2rg

�1
2

cos2
�
1

2

�
π

2
þ ϕs þ

αβρ00

4β2
cosðϕ00 − ϕsÞ þ

1

2

�
αβρ00

4β2

�
2

sin½2ðϕ00 − ϕsÞ�

þ 1

24

�
αβρ00

4β2

�
3

ð9 cos½ϕ00 − ϕs� − 5 cos½3ðϕ00 − ϕsÞ�Þ þ
1

2

�
αβρ00

4β2

�
4

sin½2ðϕ00 − ϕsÞ� − ϕi

���1
2

; ð89Þ

ûinπ ðϕ00;xiÞ ¼
�
1

4

�
1 −

ρi
f

�
z̄
2rg

�1
2

�
2

þ ρi
f

�
z̄
2rg

�1
2

sin2
�
1

2

�
ϕs −

αβρ00

4β2
sinðϕ00 − ϕsÞ −

1

2

�
αβρ00

4β2

�
2

sin½2ðϕ00 − ϕsÞ�

−
1

12

�
αβρ00

4β2

�
3

sin½ϕ00 − ϕs�ð7þ 5 cos½2ðϕ00 − ϕsÞ�Þ −
1

2

�
αβρ00

4β2

�
4

sin½2ðϕ00 − ϕsÞ�� − ϕi

���1
2

; ð90Þ

ûin3π
2

ðϕ00;xiÞ ¼
�
1

4

�
1 −

ρi
f

�
z̄
2rg

�1
2

�
2

þ ρi
f

�
z̄
2rg

�1
2

sin2
�
1

2

�
π

2
þ ϕs −

αβρ00

4β2
cosðϕ00 − ϕsÞ þ

1

2

�
αβρ00

4β2

�
2

sin½2ðϕ00 − ϕsÞ�

−
1

12

�
αβρ00

4β2

�
3

cos½ϕ00 − ϕs�ð7 − 5 cos½2ðϕ00 − ϕsÞ�Þ þ
1

2

�
αβρ00

4β2

�
4

sin½2ðϕ00 − ϕsÞ� − ϕi

���1
2

: ð91Þ

The photon count density (per unit time, unit wave-
length, and unit area) that corresponds to (83) can be
readily calculated:

Qðxi;x0; λÞ ¼
λ

hc
Iðxi;x0; λÞ: ð92Þ

This quantity is of primary interest as it forms the basis for
calculating stochastic shot noise, which results from the
quantized nature of light.

B. Spectral signal from the solar corona

The Einstein ring that forms around the Sun from light
emitted by the distant observational target appears on the
bright solar corona background. The corona background
may be removable (its brightness may be accurately esti-
mated or measured) but as light is quantized, some nonre-
movable stochastic (Poisson) noise inevitably remains.
We model the spectral corona brightness as

Bcorðθ; λÞ ¼ 10−12
2hc2

λ⋆λ4ðehc=λkT⊙ − 1Þ
�
3.670

�
θ0
θ

�
18

þ 1.939

�
θ0
θ

�
7.8

þ 5.51 × 10−2
�
θ0
θ

�
2.5
�

×
W

μmm2 sr
: ð93Þ

We evaluate the spectral intensity distribution due to
corona light, as seen by an imaging telescope, similar to (8):

Icorðxi; λÞ ¼
�
kd2

8f

�
2
Z

2π

0

dϕ0
Z

∞

θo

θ0dθ0Bcorðθ0; λÞ

×

�
2J1ðkdûðx0;xiÞÞ

kdûðx0;xiÞ
�

2

; ð94Þ

where θ0 ¼ R⊙=z̄ corresponds to the solar disk, blocked by
a coronagraph. Following [8], we introduce the corona
spatial frequency, αc, as

αc ¼ k
x0

z̄
≡ k

ρ0

z̄
n0 ¼ kθ0n0: ð95Þ

Using (6) to represent ηi ¼ ηini, we offer a wavelength-
independent definition for the corona spatial frequency in
the form

ûðx0;xiÞ ¼ jαc þ ηij=2k

¼
�
1

4

�
θ0 −

ρi
f

�
2

þ θ0
ρi
f
cos2

�
1

2
ðϕ0 − ϕiÞ

��1
2

:

ð96Þ

The photon count density per unit time, unit wavelength,
and unit area, according to (94) is
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Qcorðxi; λÞ ¼
λ

hc
Icorðxi; λÞ: ð97Þ

Integrating this result over the entire Einstein ring yields
the corona’s spectral density.

C. Sensitivity at optical and near-IR wavelengths

The magnitude of nonremovable stochastic shot noise is
proportional to the square root of the corresponding photon
count density. The SGL SNR can be obtained by taking the
ratio of the signal (photon count from the Einstein ring) to
the square root of the total photon count:

SNRðx0;xi; λÞ ≃
Qðx0;xi; λÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qcorðx0;xi; λÞ

p ; ð98Þ

where we used the approximation Qcor ≫ Q, reflecting a
faint Einstein ring on a bright corona background.
To compute the SNR for a given integration time t,

sensor (pixel) area A, and spectral channel bandwidth λ, the
quantities in the numerator and under the square root in the
denominator must be integrated over these quantities:

SNRðx0;Δt;Δλ;AÞ¼
R t2
t1 dt

R λ2
λ1
dλ
RR

Ad
2xiQðx0;xi;λÞ

½R t2t1 dtR λ2λ1 dλRRAd2xiQcorðx0;xi;λÞ�12
:

ð99Þ
This integral can be replaced by a simple multiplication,

provided that the photon flux is constant over the integra-
tion time Δt, the sensor pixel size Apix, centered on xi, is
small, and the spectral channel bandwidth Δλ centered on λ
is narrow:

SNRðx0;Δt;Δλ;AÞ¼SNRðx0;xi; t;λÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ApixΔλΔt

p
: ð100Þ

D. The deconvolution penalty and simulation results

The SGL projects a blurred image into the image plane.
A sharp image can be restored by unscrambling the blurred
signal through the process of deconvolution. This decon-
volution inevitably amplifies noise.
To see why this is the case, consider that both the

blurring (convolution) and deconvolution are linear proc-
esses that map N source pixelsOi into N image pixels Ij or
vice versa:

Ij ¼
XN
i¼1

CijOi ⇒ Oi ¼
XN
j¼1

C−1
ij Ij; ð101Þ

where the matrix Cij is the convolution matrix and it is
determined by the PSF:

Cij ¼ PSFðxj;x0
iÞ: ð102Þ

Without even knowing the specific form of Cij, we can
quickly draw qualitative conclusions. A blur-free image
would be produced by Cij ¼ δij, i.e., the identity matrix.
Blur mixes up the signal but does not add or remove light.
This implies that the actual Cij will have diagonal elements
that are reduced from unity, while the off-diagonal elements
will increase from 0, but remain small. In short, at any given
pixel in the image plane, less light is received from the
“directly imaged” pixel, while stray light is received from
the other pixels of the source. Deconvolution removes this
straight light, so it is essentially a subtractive process.
However, the nature of stochastic noise is such that it is
always root-square-added. Consequently, as the blur-free
signal is restored, noise is amplified by the deconvolution
process.
If we could compute an inverse of Cij, this conclusion

could be explicitly quantified and validated. Unfortunately,
given that the PSF is represented by an integral for which
at best semianalytical representations are available, direct
inversion of the convolution matrix is not practical.
However, in [28], we were able to develop a model for
the deconvolution matrix that proved useful and reliable
for estimating the deconvolution penalty in the case of the
monopole PSF. This model was presented in the form

C̃ij ¼
4

παd
ðμδij þ νUijÞ; ð103Þ

where Uij is the everywhere-one matrix, μ ≃ 1, and

ν ≃ lnð ffiffiffi
2

p þ 1Þd=D, where D is the image size, assuming
that the image is sampled at regular intervals in the form offfiffiffiffi
N

p
×

ffiffiffiffi
N

p
pixels. This matrix is analytically invertible,

allowing us to reach the following estimate for the change
in the signal-to-noise ratio between the convolved (blurred)
signal SNRC and the recovered (deconvolved) signal
SNRR [12]:

SNRmono
R

SNRC
≃ 0.891

D

d
ffiffiffiffi
N

p : ð104Þ

We can extend this estimate to incorporate the deconvo-
lution penalty in the quadrupole case, albeit with a caveat.
In Appendix B, we develop an estimate for the ratio of

the directly imaged signal in the presence of the quadrupole
moment and the corresponding monopole-only signal:

Pquad
dir ¼ Pmono

dir

�
α 1

2
d

4β2

�
: ð105Þ

We can incorporate this relationship by scaling the factor μ
in (103). This implies scaling the deconvolution penalty:

SNRquad
R

SNRC
≃ 0.891

�
α 1

2
d

4β2

�
D

d
ffiffiffiffi
N

p : ð106Þ
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Despite the simplicity of the derivation, this result turns
out to be a surprisingly reliable estimator of the actual
deconvolution penalty. To investigate this, we numerically
evaluated a large number of test cases using an image of the
Earth as a stand-in for an exoplanet.
Specifically, we evaluated a total number of 5,940

simulation cases, parametrized as follows: z0 ∈ f1.5 pc;
10 pc; 30 pcg; z̄∈f650AU;900AU;1200AUg; d ∈ f1 m;
2 m;3 m;5 m;10 mg; ffiffiffiffi

N
p

∈ f128; 256; 512; 1024g; 0 ≤
sin βs ≤ 1 in intervals of 0.1; and total integration times
of 1, 2 and 5 years using a realistic solar corona model at
λ ¼ 1 μm. Each simulation began with a monochrome
image of the Earth, which was convolved with the quadru-
pole SGL PSF using Fourier convolution. Gaussian noise
corresponding to the solar corona shot noise was added to
the convolved image. The image was then deconvolved
(again using Fourier deconvolution) and the deconvolved
image was compared against the original, to numerically
assess the SNR.
The results are depicted in Fig. 2. As explained in the

figure caption, the vertical axis represents the ratio of
observed (in simulation) to calculated SNR, whereas the
horizontal axis represents the ratio of caustic size to pixel
spacing. The plot is based on 1756 simulation cases. These
were selected using three criteria: (i) The post-deconvolution
SNR had to be greater than 0.5; (ii) The estimate (105) for
the additional deconvolution penalty due to the quadrupole
had to be less than 1; and (iii) The caustic size was to be less

than twice the pixel spacing. The simulation results were
binned for computing averages and standard deviations, as
shown. We note that the results, as depicted, are not
particularly sensitive to these selection criteria, so the figure
is truly representative.
In all cases, we found that so long as the pixel-to-pixel

spacing,D=
ffiffiffiffi
N

p
, was greater than the cusp-to-cusp distance

of the quadrupole caustic, 2ð4β2=αÞ, the observed decon-
volution penalty was well modeled by (106). The estimated
penalty remained almost always within a factor of 2 of
the observed penalty, but usually it was much closer to the
observed value. In fact, for the left-hand side of Fig. 2, the
overall average is 0.98� 0.25, indicating that Eq. (106) is a
robust predictor of the SNR of an image recovered through
deconvolution.
When the cusp-to-cusp distance approached or exceeded

the pixel spacing, however, the deconvolution penalty
rapidly and dramatically increased. This can be understood
when we consider the nature of the astroid caustic: the
caustic boundary and the cusps in particular are very bright.
When pixels are packed too tightly, this means that much
of the light from any source pixels is now deposited outside
the directly imaged pixel in the image plane. This violates
the conditions for our naive estimate of the deconvolution
penalty. Indeed, in these cases, the predictor fared poorly:
for the right-hand side of Fig. 2, the overall average is
0.25� 0.20, indicating that the simulation results yielded
SNRs that were significantly worse than predicted and
varied unpredictably in magnitude.
These results indicate that practical imaging with the

SGL in the presence of the quadrupole moment is subject to
the following two conditions:

Dffiffiffiffi
N

p > 2
4β2
α

; ð107Þ

SNRC > 1.122

�
4β2
α 1

2
d

�
d
ffiffiffiffi
N

p

D
SNRquad

R ; ð108Þ

where SNRquad
R is now the desired post-deconvolution SNR.

The first of these conditions, Eq. (107), determines the
maximum image resolution that can be reliably achieved
before the deconvolution results degrade drastically.
In contrast, the second condition, Eq. (108), informs on

the minimum required pre-deconvolution SNR needed to
achieve a desired post-deconvolution result. This, in turn,
can be used to estimate the required integration times.
As an example, let us consider a potential Earth-like

target in a solar system situated 1.5 pc from ours, in a
direction that is ∼17.5° from the solar polar direction, such
that sin βs ¼ 0.3. The corresponding caustic size is
2ð4β2=αÞ ∼ 25.9 m, whereas the projected image of the
Earth-like exoplanet is D ∼ 26.8 km in diameter. This
suggests that in this case, a megapixel scale image
(
ffiffiffiffi
N

p ≲ 1035) may be achievable. However, the required

FIG. 2. The ratio of the post-deconvolution signal-to-noise ratio
SNRR to the estimated SNR computed using Eq. (106). The
horizontal axis represents the size of the caustic projection of
the quadrupole lens in comparison with the sampling interval,
or pixel spacing, in the image plane. The leftmost data point
corresponds to the monopole lens, with the caustic increasing in
size toward the right. The value of 1 on the horizontal axis
represents the case when the size of the caustic, defined as the
distance between diagonal cusps, becomes as large as the spacing
between the centers of adjacent image pixels.
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integration time may be excessive, and indeed, simulation
results show that this case is very marginal. On the other
hand, an 512 × 512 image can be reliably obtained, using
an integration time of just over 4 years with a single 1-meter
telescope. Simulation results confirm this although in this
particular case, suggesting a somewhat longer (≳5 years)
cumulative integration time.
Finally, we should mention that when we look at cases of

excessively large caustics (e.g., when the observation target
is near the solar equatorial plane, so that the contribution of
the quadrupole moment is the largest), behind the unpre-
dictable behavior there appear to be possible patterns.
Occasionally, simulation results were unexpectedly good,
with a much better SNR than we would have expected
under the circumstances. Our suspicion is that this is a
result of “aliasing,” a resonance between the selected pixel
spacing and the caustic size. We performed some limited
experimentation by varying simulation parameters, and
while we achieved no definite conclusion, the results seem
to support our conjecture. This will need to be investigated
in detail in the future, as such aliasing may lead to carefully
orchestrated observational strategies that could yield
“superresolution” images, images of much better quality
than we might otherwise expect, even in the presence of
large caustics, obtained using realistic integration times.

VI. CONCLUSION

We have studied the optical properties of the quadrupole
PSF of the SGL. We developed an approximate solution for
the diffraction integral in two distinct regions: the regions
inside and outside the caustic boundary. These solutions
were used to study the intensity distribution for light
received in the focal plane of an imaging telescope.
Compared to the case when the Sun is treated as a

spherically symmetric gravitating body characterized by
the monopole axially symmetric PSF, the solar quadrupole
introduces an astroid caustic. The presence of that caustic
does not significantly affect the total power deposited in the
telescope’s focal plane. In fact, in the majority of practical
cases, the total power is reduced by ≲5%. However, the
light received in the focal plane is scrambled, with photons
scattered across image pixels. This contributes significant
blurring above and beyond the blur that is already present

due to the spherical aberration that characterizes the
monopole lens.
As we are in possession of a PSF that describes the

quadrupole lens accurately, a sharp image can be recovered
in principle by the process of deconvolution. This, however,
amplifies noise. Such noise is inevitably present in the case
of an image produced by the SGL, as such an image is
formed by light that appears in the form of a faint Einstein
ring on top of a very bright solar corona background. Due to
the quantized nature of light, even if the corona is accurately
modeled and removed, stochastic noise (shot noise) remains.
To estimate the impact of this noise, we used a simplistic

model that we developed originally for the monopole PSF.
This model captures the qualitative properties of the
convolution matrix and allowed us to estimate the “decon-
volution penalty” accurately. We found that this model can
be readily extended to the quadrupole case with an addi-
tional scaling of signal levels. Although more work is
needed, the results are already encouraging. Deconvolution
remains practical so long as the astroid caustic remains
smaller than the spacing between pixels, and in this regime,
the estimated deconvolution penalty is well matched by
numerical simulation results.
Using these results, wewere able to express a simple set of

conditions that must be satisfied for practical image recovery,
using the SGL as a telescope. This leaves only one major
task that needs to be accomplished in order to fully model
exoplanetary imaging using the SGL: modeling of temporal
behavior, including planetary diurnal rotation, its orbital
motion, and phases of illumination. This work is ongoing;
results, when available, will be reported elsewhere.
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APPENDIX A: EM FIELD AMPLITUDE INSIDE
THE CAUSTIC REGION

We present B2
inðxi;x00Þ, which is referenced in Eq. (33),

to terms up to Oðx5Þ:

B2
inðxi;x00Þ ¼ ðA2

0 þA2
π=2 þA2

π þA2
3π=2Þ

�
1þ x2 þ 1

4
ð9 − 5 cos½4ðϕ00 − ϕsÞ�Þx4

�
þ ðA2

π −A2
0Þ cosðϕ00 − ϕsÞx

×

�
1þ

�
1þ 7

2
sin2ðϕ00 − ϕsÞ

�
x2
�
þ ðA2

π=2 −A2
3π=2Þ sinðϕ00 − ϕsÞx

�
1þ

�
1þ 7

2
cos2ðϕ00 − ϕsÞ

�
x2
�

þ sin 2β2fðA0 þAπÞðAπ=2 þA3π=2Þð481 − 267 cos½4ðϕ00 − ϕsÞ�Þ þ ðA0 −AπÞðAπ=2 −A3π=2Þ

× 148 sin½2ðϕ00 − ϕsÞ�g
1
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x4 þ 2A0Aπ

�
cos½8β2x cosðϕ00 − ϕsÞ�

�
1þ 1

2
x2ð1þ sin2ðϕ00 − ϕsÞÞ
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þ 1

64
x4ð97 − 20 cos½2ðϕ00 − ϕsÞ� − 53 cos½4ðϕ00 − ϕsÞ�Þ

�
þ sin½8β2x cosðϕ00 − ϕsÞ�

× sin½4β2x3 cosðϕ00 − ϕsÞsin2ðϕ00 − ϕsÞ�
�
þ 2Aπ=2A3π=2

�
cos½8β2x sinðϕ00 − ϕsÞ�

×

�
1þ 1

2
x2ð1þ cos2ðϕ00 − ϕsÞÞ þ

1

64
x4ð97þ 20 cos½2ðϕ00 − ϕsÞ� − 53 cos½4ðϕ00 − ϕsÞ�Þ

�

þ sin½8β2x sinðϕ00 − ϕsÞ� sin½4β2x3 sinðϕ00 − ϕsÞcos2ðϕ00 − ϕsÞ�
�
þ ðA0A3π=2 þAπ=2AπÞ

×
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2 sin

�
2β2
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4
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��
× cos

�
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1
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1
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þ ðA0A3π=2 −Aπ=2AπÞ

×

�
2 cos½2β2ð1þ x2Þ� sin

�
4β2xðcosðϕ00 − ϕsÞ þ sinðϕ00 − ϕsÞÞ
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1
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xðcosðϕ00 − ϕsÞ þ sinðϕ00 − ϕsÞÞ

�
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8
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�
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×

�
1þ 1

8
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�
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���
1þ 1

8
x2ð7 − sin½2ðϕ00 − ϕsÞ�Þ

��
þOðx5Þ; ðA1Þ

where x≡ ðαβρ00=4β2Þ < 1 as given by (19).

APPENDIX B: THE SIGNAL POWER RECEIVED BY AN IMAGING TELESCOPE

Assuming that the size of the caustic is smaller than the image size, 4β2=α < r⊕, and the observing telescope positioned
at such a distance from the caustic boundary that the caustic is not intersecting the boundary, ρ0 þ 4β2=α ≤ r⊕, we compute
the intensity received by the telescope:
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Equation (B1) allows us to estimate the power received by an imaging telescope from a position with the image. With the
help of expressions (54) and (55), we have [again, with qðϕ00Þ from (58)]
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Assuming that ðα 1
2
d=4β2Þ ≪ 1, we simplify the result (B2) as
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with ϵðρ0Þ given by (57) and where we have
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One can see that the monopole contribution is dominant with quadrupole taking ∼5% of the power outside the image
defined by the monopole PSF.
As a result, using (B3) and (B4), we have the following expression to describe the total power received by a telescope at a

particular position within the image:
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This result quantifies the fact that even in the case of the quadrupole PSF, most of the image photons are still received
with the image defined by the monopole PSF.
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