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The geodesics of the Ellis-Bronnikov wormhole with two parameters are studied. The asymmetric
wormhole has only one light ring and one innermost stable circular orbit located on one side of the
wormhole throat. Consequently, certain light rays can be reflected back by the wormhole. Additionally,
the same wormhole can have different appearances on both sides of the throat. We present novel images of
the wormhole with a light ring behind the throat in a scenario with an accretion disk as the light source and
in a backlit wormhole scenario, which are distinct from the images of other compact objects and have the
potential to be observed.
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I. INTRODUCTION

The images of black holes captured by the Event Horizon
Telescope are significant achievements in astronomical
observation [1–4] and have sparked a great deal of interest
in the theoretical study of the appearance of compact
objects. These images can be used to test general relativity
and provide insight into the nature of gravity [5]. We expect
to see more images in the future, not just related to black
holes, but possibly to other compact objects as well.
Although images can provide valuable information on

compact objects such as black holes, they may not always
be sufficient to determine the underlying object with
certainty. In the case of black holes, for instance, their
defining characteristic is the presence of an event horizon.
However, the event horizon itself is not directly visible and
cannot be detected by using methods based on electro-
magnetic radiation. Instead, the light ring, which represents
an unstable photon orbit, plays a significant role in the
optical, infrared, or radio appearance [6,7] and therefore its
properties have sparked much interest [8–12]. While the
unstable photon orbit is an important feature of black holes,
it is not exclusive to them. Other types of compact objects,
such as boson stars [13,14], naked singularities [15–19],
quantum black holes [20–24] and wormholes [25–33], can
also possess unstable photon orbits. Therefore, their visual

appearance may be similar to that of black holes. In this
work, we will focus on the appearance of wormholes, to
investigate its similarities and differences with respect to
the images of black holes, which may help distinguish
between the two types of objects and potentially shed light
on the nature of spacetime itself.
Just as the horizon is important for black holes, the throat

is a crucial concept for wormholes. While the throat of a
static wormhole is well defined as a minimal hypersurface
of spacetime, the same cannot be said for dynamic worm-
holes. Using the trapping horizon as the throat of the
dynamic wormholes is one suggestion [34], but there is
currently no universally accepted definition [35–38].
Defining the throat of a wormhole is essential to understand
its geometry and properties. As shown in Refs. [39,40], the
presence of a wormhole throat can modify the shape of the
shadow. In our work, focusing only on static wormholes
allows for a clear definition of the throat, which can then be
used to study the wormhole’s visual appearance and
compare it to that of black holes.
A wormhole connects two regions of spacetime through

its throat. This may result in a special phenomenon: A light
ring (LR) is located only on one side of the wormhole throat
and there is no LR on the other side of the throat. This
means that even the same wormhole can produce different
optical, infrared, or radio images on the two sides of the
throat. Indeed, as shown below, in such a case, while the
wormhole can appear to be a black hole only when
observed from the side of the LR, this is not the case on
the other side. Consequently, the appearance of the worm-
hole viewed from the other side can be distinguished from
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that of black holes, boson stars, or naked singularities.
The ability of one compact object to create two distinct
optical, infrared, or radio images is a typical feature of
wormholes.
Previous studies, such as Refs. [41–43], have inves-

tigated similar phenomena in thin-shell wormhole mod-
els. However, in this work, we will use the Ellis-
Bronnikov (EB) wormhole as an example. The EB
wormhole, as a unique solution for a regular, static,
traversable wormhole in general relativity coupled to a
free phantom scalar field, has two asymptotically flat
regions [44–46]. It is described by two parameters ðq;mÞ.
In the massless case with m ¼ 0, it becomes a symmetric
wormhole where the LR coincides with the throat. Its
appearance when surrounded by optically and geometri-
cally thin dust and its lensing effects were studied in
Refs. [47–50]. For m ≠ 0, it becomes an asymmetric
wormhole and has its LR located on one side of the
throat. By adjusting the parameters ðq;mÞ, one can make
its image resemble that of a Schwarzschild black hole on
the side with the LR, whereas the image on the other side
looks distinctly different. For the case where we consider
a thin accretion disk as the light source, the appearance of
the wormhole on the side without the LR turns out to
consist of several bright rings. These novel features might
be observable in future astronomical observations.
The paper is organized as follows. In Sec. II, we provide

a brief overview of the EB wormhole. In Sec. III, we review
the geodesics of the EB wormhole, considering both null
geodesics (i.e., for light rays) and timelike geodesics (i.e.,
for massive particles). For null geodesics, special trajecto-
ries are identified that allow light rays from one side of the
wormhole to be “reflected” back to the same side.
Particularly, due to the presence of the LR on only one
side, some of light rays from the side without LR can return
after they pass through the throat. For timelike geodesics,
we have found that the innermost stable circular orbit
(ISCO) is located outside of the LR on one side of the throat
and absent on the other side, meaning that the accretion
disk forms only on the side of the wormhole throat with the
LR. In Sec. IV, we study the wormhole images in the case
of an accretion disk as the light source. On the side with the
LR, the wormhole appearance is similar to that of a
Schwarzschild black hole, i.e., an image with a regular
shadow and bright rings. On the side without the LR, the
image comprises several bright rings, caused by the LR and
the accretion disk on the other side. In Sec. V, we study the
backlit wormhole case by exploring three possible situa-
tions depending on the location of the screen lighting the
wormhole and the observers with respect to the throat, with
the assumption that the lighting screen is put far away from
the throat. Finally, in Sec. VI, we conclude and discuss
further directions of research. The Appendix contains some
technical explanations concerning our calculations of the
bright rings in the images.

II. WORMHOLE GEOMETRY

The well-known EB wormhole is a solution of the
Einstein free scalar theory, namely,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Rþ 1

2
ð∂φÞ2

�
; ð1Þ

where R denotes the scalar curvature and φ is the so-called
phantom field because of the sign of its kinetic term. The
EB solution can be expressed as [51]

ds2 ¼ −hðrÞdt2 þ hðrÞ−1dr2 þ R2ðrÞdΩ2
2;

h ¼ e−
m
qφ; R2 ¼ r2 þ q2 −m2

h
;

φ ¼ 2qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −m2

p arctan

�
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 −m2
p �

; ð2Þ

where ðm; qÞ are two integration constants. Note that the
solution requires q > m. The wormhole throat is defined by
the minimum hypersurface of the spacetime. It follows that
the location of the wormhole throat is at

rt ¼ −m: ð3Þ

The area of the wormhole throat is given by

At ¼ 4πR2ð−mÞ

¼ 4πq2 exp

�
−
2m arctanðm=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −m2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 −m2
p �

: ð4Þ

For any m ≠ 0, the solution (2) describes an asymmetric
wormhole. The asymmetry not only indicates different
geometries around the wormhole throat, but also reveals the
presence of two different asymptotically flat regions. The
latter can be seen by expanding the metric function for
R → �∞. This shows that the gravitational potential is
attractive for R → þ∞ while it is repulsive for R → −∞
(see Fig. 1). An analysis of the global structure of the EB
wormhole can be found in Ref. [51]. The entire spacetime
is divided into two separate universes by the wormhole
throat. In the following we will use universe I to denote
r ∈ ð−∞; rtÞ and universe II to denote r ∈ ðrt;∞Þ.
When setting m ¼ 0, the metric (2) reduces to the

symmetric EB wormhole

ds2 ¼ −dt2 þ dr2 þ ðr2 þ q2ÞdΩ2
2: ð5Þ

III. GEODESICS: LIGHT RING AND ISCO

A. Geodesics

The geodesics of a particle with energy E and angular
momentum L in the wormhole background (2) yield for the
orbits the equation
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�
dr
dϕ

�
2

¼ R4ðrÞ
�
1

b2
− VðrÞ

�
;

VðrÞ ¼ hðrÞ
R2ðrÞ − ϵ

hðrÞ
L2

; ð6Þ

where b ¼ L
E is the impact parameter and ϵ ¼ 0 for massless

particles (photons), while ϵ ¼ −1 for massive particles.

B. Light ring

In spherically symmetric backgrounds, the light ring is
the projection of the photon sphere on the equatorial plane.
In the EB wormhole spacetime (2), there is only one light
ring located at rp ¼ −2m. Thus universe I possesses a light
ring. The wormhole mass from the view of the observers at

infinity in universe I is given byM ¼ meπm=ð2
ffiffiffiffiffiffiffiffiffiffi
q2−m2

p
Þ [51].

We choose q ¼ 4.441 and m ¼ 1 for all the plots through-
out this paper, in order to have the location of the LR at 3
times the wormhole mass, analogous to the Schwarzschild
case. Universe II has no light ring and only features at its
inner boundary the wormhole throat. That is to say that
from the view of universe II the light ring is hidden behind
the wormhole throat.
To study the null geodesics, we solve Eq. (6) numerically

for ϵ ¼ 0. To get an intuitive idea before we discuss the
results, it is helpful to take a look at the properties of the rhs
of Eq. (6) for ϵ ¼ 0. We illustrate these in Fig. 2. For a
certain value of b, the motion of photons is only possible in
the regions where 1

b ≥
h
R2. The quantity h

R2 has a maximum at
r ¼ −2m, which corresponds to the location of the unstable
photon orbit (light ring). We obtain the critical value of b by
solving the equation

1

b2c
¼ hð−2mÞ

R2ð−2mÞ ; ð7Þ

which gives

bc ¼ e
−
2m arctanð2m=

ffiffiffiffiffiffiffiffi
q2−m2

p
Þffiffiffiffiffiffiffiffi

q2−m2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3m2 þ q2
q

: ð8Þ

Therefore, there are several types of trajectories for light
rays. We discuss these in the following for increasing
values of b.

(i) Light rays with b < bc can travel across all of the
spacetime, from the asymptotic region in universe I
to the other asymptotic region in universe II, and
vice versa. The orange line in the embedding
diagram Fig. 3 depicts such a light ray.

(ii) Light rays with b ¼ bc have a potential turning point
at the light ring. If such a photon starts its motion in
universe I, it reaches the light ring. Since light rays
are unstable against perturbations at the light ring,
they will scatter back to infinity in universe I as
depicted by the blue line in the embedding diagram
Fig. 3 or travel across the wormhole throat to

FIG. 1. The metric function −gtt as a function of the circumferential radius R. The left figure shows r → −∞ (universe I) and the right
one r → þ∞ (universe II). The gravitational potential is attractive in universe I and repulsive in universe II.

FIG. 2. An example of h=R2 and 1=b2 [Eq. (6)]. Parameters q
andm are set as q ¼ 4.441 andm ¼ 1. The red line represents the
wormhole throat location r ¼ −m; the black line represents
1=b2 ¼ 10−1.4; the deep blue line represents h=R2. Null geodesics
are allowed only in the regions satisfying 1=b2 > hðrÞ=R2ðrÞ.
Thus, geodesics in this situation possess turning points.
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universe II. Similarly, if a light ray starts its motion
in universe II, it will cross the wormhole throat to
universe I and reach the light ring, from where it can
either scatter back to infinity in universe II as
depicted by the red line in the embedding diagram
Fig. 3 or travel further into universe I.

(iii) Light rays with a value of b > bc represent the most
interesting case. The figure shows two turning
points, one on each side of the throat. In this case,
a photon approaching the throat from far away in
universe I will reach the left turning point and be
reflected back. On such a fly-by orbit it will not
cross the light ring and hence will never reach the
wormhole throat. One of the purple lines in the
embedding diagram Fig. 3 represents such a light
ray. The photons approaching the throat from uni-
verse II, however, fall into two classes. For the first
class the turning point is beyond the throat in
universe I. In this case the photons will pass the
wormhole throat and will then be reflected back to
universe II. Here the photons satisfy

br ≥ b > bc;

br ¼ q exp

�
−
2m arctanðm=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −m2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 −m2
p �

. ð9Þ

In contrast, for the second class the turning point is still
in universe II. Hence the photons are only bent by the
wormhole in this case. One of the purple lines in the
embedding diagram Fig. 3 represents such a light ray.

Thus the following observation holds for wormhole
solutions in general: If a wormhole spacetime contains
only one light ring that does not coincide with its single
throat, light rays from the side without the light ring can be
reflected by the throat. The red line in the embedding
diagram Fig. 3 represents such a light ray.
We exhibit the null geodesics of the asymmetric worm-

hole spacetime in a systematic fashion in the left and

middle plots of Fig. 3. The left figure shows the geodesics
for universe I and the middle figure for universe II. Here the
orange lines depict light rays with b > br, the red lines
depict light rays with br ≥ b > bc, and the purple lines
depict light rays with b < bc.

1 The gray center represents
the wormhole throat.

C. ISCO

The existence of bound orbits of massive particles is
important in order to form an accretion disk around a
compact object. In this case we should set ϵ ¼ −1 in
Eq. (6). Of particular interest here is the ISCO. To
investigate the ISCO, one needs to find the minimum
value of L such that

∂V
∂r

����
r¼rISCO

¼ 0;
∂
2V
∂
2r

����
r¼rISCO

¼ 0: ð10Þ

When solving the above equations, we see that the
wormhole spacetime possesses only one ISCO, which is
located at

rISCO ¼ −3m −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ q2

q
; ð11Þ

and

L ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mð−q2 − 3mð2mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ q2

p
ÞÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ q2

pq

× exp

�
−
m arctan

�
3mþ

ffiffiffiffiffiffiffiffiffiffiffiffi
4m2þq2

pffiffiffiffiffiffiffiffiffiffi
q2−m2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −m2

p �
: ð12Þ

FIG. 3. The null geodesics of the spacetime: On the left is the figure for universe I and in the middle for universe II. Here light rays with
b > br are depicted in orange, light rays with br ≥ b > bc in red, and light rays with b < bc in purple. The coordinates here are given by
ðX ¼ R cosðϕÞ; Y ¼ R sinðϕÞÞ. The figure on the right is an embedding diagram for the null geodesics with several typical light rays (see
text). The upper asymptotic region represents universe II and the lower one universe I. The white circle shows the wormhole throat.

1Note that in the left figure we do not show the light rays of the
first class entering universe I via the throat that are reflected back.
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Thus there is no ISCO in universe II. In order to get an
intuitive idea of the possible orbits, we exhibit plots of V,
Eq. (6), in Fig. 4. For our choice of parameters q ¼ 4.441,
m ¼ 1, the ISCO is obtained for L ¼ 2.896 and located at
rISCO ¼ −7.871. Moreover, for a given ratio q=m, the areal
radius of rISCO, i.e., RðrISCOÞ, is proportional to the

physical mass M ¼ meπm=ð2
ffiffiffiffiffiffiffiffiffiffi
q2−m2

p
Þ. The factor for the

proportionality relation is

RðrISCOÞ=M¼
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þγ2þ3

ffiffiffiffiffiffiffiffiffiffiffiffi
4þγ2

qr

×exp

�
−

1ffiffiffiffiffiffiffiffiffiffiffi
γ2−1

p �
π

2
þarctan

�
3þ

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2þ4

p
ffiffiffiffiffiffiffiffiffiffiffi
γ2−1

p ���
;

ð13Þ

while γ is the ratio q=m. Thus the choice of γ ¼ 4.441
implies RðrISCOÞ ¼ 4.881M. Note that the effective poten-
tial VðrÞ is monotonically decreasing in universe II; hence,
there are no bound orbits for massive particles. Based on
the above considerations we draw the conclusion that only
one side of the wormhole throat allows for the existence of
an accretion disk.
For the symmetric EB wormhole, where m ¼ 0, the

single light ring coincides with the wormhole throat. In this

case there is no stable bound orbit and no ISCO in either
universe (L ¼ 0 for m → 0). Thus, in the symmetric
wormhole case, no accretion disk would exist around the
wormhole throat.

IV. WORMHOLE IMAGES
WITH AN ACCRETION DISK

In this section, we present the results for wormhole
images when the emission of light originates from an
optically and geometrically thin disk around the wormhole
throat. According to the above considerations, the accretion
disk will be surrounding the wormhole only in universe I.
We here adopt the following two models for the emitted

intensity:

Iem1 ¼
� I0

ð−r−5Þ2 ; r ≤ rISCO

0; r > rISCO;

Iem2 ¼ I0

�
rISCO
r

�
4 1 − tanhð50ðr − rISCOÞÞ

2
; ð14Þ

which arise in astrophysics scenarios (see e.g. [13,31,52–55]).
I0 is the normalization factor which has the same dimen-
sion as Iem. We show these two functions employed for the
emitted intensity in Fig. 5.

FIG. 4. The effective potential VðrÞ [Eq. (6)] is shown for timelike geodesics (ϵ ¼ −1) and several values of the angular momentum L
in the left figure and for the critical value L ¼ 2.89607 of the ISCO in the right figure. The vertical red line represents the wormhole
throat location r ¼ −m (q ¼ 4.441 and m ¼ 1).

FIG. 5. The emitted intensity Iem [Eq. (14)]: The left figure shows Iem1 and the right one Iem2. The normalization factor I0 is set to 1 in
both figures.
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The emitted intensity Iem and the observed intensity Iobs
have the relation [31,54,55]

IobsðbÞ ¼
X
n

�
gttðrÞ

gttð�∞Þ
�

2

Iemjr¼rnðbÞ; ð15Þ

where rnðbÞ is the transfer function that indicates
the nth intersection with the accretion disk. Now we use
the ray-tracing method to obtain the observed intensity Iobs

and the wormhole images. One can find the details of the
method in Refs. [52,56]. Applying the usual setup, the
resulting configuration is shown in Fig. 6. Here the loca-
tion of the accretion disk, i.e., the light source, is
seen in green. It extends outward from the ISCO (blue
circle). The observation screen is located asymptoti-
cally far from the wormhole in universe I and is shown
in yellow.

FIG. 6. The left figure shows the configuration in universe I: The green lines indicate the accretion disk and thus the light source. The
blue circle denotes the location of the ISCO. The yellow line denotes the observation screen in the asymptotic region of universe I. Also
shown are the sets of light rays producing the image of the wormhole on the screen (see text). In the right figure the black line denotes the
total deflection angle of a light ray approaching from infinity and scattered back to infinity in universe I. The red line denotes the
deflection angle of a light ray from infinity in universe I to the ISCO. The three blue lines, from left to right, correspond to the range of
the purple lines, the red lines, and the orange lines of the left figure. As seen in the left figure, a light ray may cross the ISCO twice and
will then give rise to two different deflection angles at R ¼ RISCO. We show the first angle and the second angle as functions of b in
purple and in red, respectively, in the right figure. For the orange light rays of the left figure, the first intersection with the ISCO taking
place at ϕ ¼ − π

2
corresponds to the edge of the outer bright region in Fig. 7. For the red and purple light rays of the left figure, in contrast,

the second intersection with the ISCO is crucial to determine the boundary of the bright regions. Thus, for the red and purple light rays
the red line in the right figure is a boundary line for the bright regions, when its value is − 3π

2
, − 5π

2
and so on. The other boundary line is

given by the black line, since the light rays reach the accretion disk at infinity.

FIG. 7. The dependence on the impact parameter b is shown for the observed intensities and illustrated in the corresponding images for
model Iem1 (upper figures) and model Iem2 (lower figures). The observers here are in universe I.
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To construct the image for observers at infinity in universe
I, we now apply the ray-tracingmethod to the setup in Fig. 6.
This shows that only those light rays which intersect the
accretion disk can be observed. For example, the light rays
depicted in orange produce the outer, most bright region of
the right images shown in Fig. 7, forwhichb ∈ ð5.2614;∞Þ.
The light rays with b ¼ 5.2614 are associated with the edge
of the shadow. The light rays depicted in red result in the first
bright ring inside the shadow in the images of Fig. 7 and
feature b ∈ ð4.0593; 4.4097Þ. Every time the light rays bend
by π, this will cause a bright ring. So, there are in fact many
bright rings inside the shadow. The widths of the rings are
determined by the corresponding ranges of b. But these
ranges become narrower and narrower. The light rays in

purple cover the small range ofb ∈ ð3.9087; 3.9189Þ, which
is therefore too hard to observe in Fig. 7. Recalling that the
critical value of the LR is b ¼ bc ¼ 3.9023, we realize that
the purple light rays are already very close to the LR. Hence,
this implies that observations will yield only one bright ring
even though there are many thin bright rings inside the
shadow, that get thinner and thinner.
We show the results in Fig. 7. For observers in universe I

the image of an EB wormhole looks like that of a
Schwarzschild black hole as obtained in Ref. [52]. The
shadows cast by the emission profiles are bounded by the
ISCO, where the critical light ray has b ¼ 5.2614.
Moreover, there are bright rings inside the black hole
shadow, close to the LR.

FIG. 8. The left figure shows light rays from infinity in universe II that travel across the throat to universe I and there hit the accretion
disk. The range of the red lines corresponds to the first left blue line in the right figure. The range of the purple lines corresponds to the
second blue line in the right figure. In the right figure the red line denotes the deflection angle for light rays from infinity in universe II to
the ISCO in universe I. The black line denotes the deflection angle for light rays from infinity in universe II to infinity in universe I.

FIG. 9. The dependence on the impact parameter b is shown for the observed intensities and illustrated in the corresponding images for
model Iem1 (upper figures) and model Iem2 (lower figures). The observers here are in universe II.
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For observers at infinity in universe II, there is no light
source and all the light originates from universe I. Light
rays that can cross the wormhole throat satisfy b < bc. But
not all these light rays can intersect the accretion disk in
universe I. To clarify this issue, we show the related light
rays and the deflection angle of the light rays from þ∞ to
−∞ (black line) and from þ∞ to rISCO (red line) and their
variation with b in blue in Fig. 8. The corresponding
images are shown in Fig. 9.
There is no accretion disk or other light source in

universe II; therefore, we here observe only light rays
from universe I. The innermost bright ring is produced by
light rays with b ∈ ð1.8614; 2.3679Þ (purple lines in
Fig. 8). The second innermost bright ring is produced by
light rays with b ∈ ð3.6799; 3.8052Þ (red lines in Fig. 8).
Since light rays can wind many times for b close to bc, we
conclude that there are in fact many bright rings. However,

the width of these bright rings decreases and so does the
distance between two such bright rings. Thus, we cannot
observe these further bright rings. This intriguing phe-
nomenon is new in astrophysics. It indicates that the image
of a spherically symmetric wormhole could consist of a
multitude of rings with decreasing width and increasing
size, that approach the LR at bc ¼ 3.9023.

V. BACKLIT WORMHOLE

We next discuss the appearance of the backlit wormhole,
where we assume a planar screen that is infinitely far away,
and infinite in extent, and that emits isotropically with
uniform brightness behind a wormhole.
In Ref. [52] this model was considered for the

Schwarzschild black hole. We here follow their conven-
tions and assume that the observed intensity Iobs is equal to
the emitted brightness Iem. But otherwise the situation for a
wormhole is different. In a wormhole spacetime, there can
be two screens that lie in two different universes, respec-
tively. This fact can lead to new interesting phenomena
concerning the wormhole appearance.
To begin with, let us consider that the emitting screen is

located in universe I, and the observers are also in universe I
(see Fig. 10). The corresponding wormhole image is shown
in the left plot of Fig. 11. The edge of the shadow pertains
to the edge of the orange lines in Fig. 10, where
b ¼ 4.4097. The cause of the bright ring inside the shadow
are the light rays with b ∈ ð3.9031; 3.9189Þ with a deflec-
tion angle in ð3=2π; 2πÞ. Similar to the case of the accretion
disk, there are in fact many bright rings inside the shadow
due to the multiple winding of light rays close to the LR.
But this is hard to observe.
Next, let us consider that the screen and the observers are

not in the same universe. One may naively think that the
appearance of the wormhole is different when the screen is
in universe I and when it is in universe II. However, this is
wrong. No matter in which universe the screen is, the
observers in the other universe obtain the same image.

FIG. 10. The figure shows universe I. The green line denotes
the emitting screen and the yellow line the observation screen in
the asymptotic region of universe I. The orange lines represent
light rays that hit the emitting screen with a deflection angle in
ð1=2π; πÞ, while the red lines depict light rays that hit the emitting
screen with a deflection angle in ð3=2π; 2πÞ.

FIG. 11. The figures show the backlit wormhole images. In the left figure the emitting screen and the observers are both in universe I.
In the central figure the emitting screen and observers are in different universes. In the right figure emitting screens are in both universes
but the observers are in universe I.
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We show the image for the case with the screen in
universe II and the observers in universe I in the central
plot of Fig. 11. Note that only light rays with b < bc can
then travel across the wormhole throat from one asymptotic
infinity to the other asymptotic infinity. Moreover, not all
such light rays can hit the emitting screen behind the
wormhole throat. Only light rays with b > bc for which the
deflection angle satisfiesΔϕ∈ð1=2πþnπ;3=2πþnπÞ with
integer n can cause bright regions. The ranges of the
corresponding light rays are shown in blue in Fig. 12. The
bright region in the central plot of Fig. 11 is caused by
light rays with b ∈ ð1.8614; 3.6799Þ. The thin bright ring
outside the bright region corresponds to light rays with
b ∈ ð3.89116; 3.9019Þ. Further bright rings are hard to
observe.
Finally, if the emitting screens are in both universes and

possess the same brightness, then observers in universe I
see the right image shown in Fig. 11, which depicts a broad
bright ring surrounded by a narrow black ring, and a
shadow in the center. In fact, combining the left and the
central plots of Fig. 11 gives rise to the right plot of Fig. 11.
We now locate the observers in universe II and perform a

similar analysis as above. First we consider that the emitting
screen and the observers are both in universe II. The
corresponding light rays are shown in Fig. 13. The orange
lines form a bright region whose edge corresponds to
b ¼ 4.1159 in the left figure of Fig. 14. When compared
to the analogous case above with both in universe I, that is
depicted in the left figure of Fig. 11, we note that the
wormhole casts a smaller shadow in universe II. The red lines
form a very thin bright ring inside the shadow, for which
b ∈ ð3.9027; 3.9103Þ. Note that, as compared to the universe
I case, the bright ring is here located closer to the edge of the
shadow. Analogous to the above discussion, there are in fact
many bright rings inside the shadow that are hard to observe.
The central plot in Fig. 14 shows the wormhole image

that is obtained when the emitting screen is in universe I
and the observers are in universe II. Clearly, it is the same
figure as for the case when the emitting screen is in

FIG. 13. The figure shows universe II. The green line denotes
the emitting screen, and the yellow line the observation screen in
the asymptotic region of universe II. The orange lines represent
light rays that hit the emitting screen with a deflection angle in
ð1=2π; πÞ, while the red lines depict the light rays that hit the
emitting screen with a deflection angle in ð3=2π; 2πÞ.

FIG. 12. In the figure the black line denotes the deflection angle
for light rays from infinity in universe II to infinity in universe I.
The long blue line corresponds to the bright region with b ∈
ð1.8614; 3.6799Þ in the central plot of Fig. 11. The short blue line
corresponds to the thin bright ring with b ∈ ð3.89116; 3.9019Þ.

FIG. 14. The figure shows the backlit wormhole images. In the left figure the emitting screen and the observers are both in universe II.
In the central figure the emitting screen and the observers are in different universes. In the right figure the emitting screens are in both
universes but the observers are in universe II.
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universe II and the observers are in universe I; i.e., the two
central plots in Figs. 11 and 14 are identical.
Finally, when we combine the left plot and the central

plot of Fig. 14 we again obtain the right plot of Fig. 14.
In this case the emitting screens are in both universes and
possess the same brightness, and the observers are in
universe II.

VI. CONCLUSION AND OUTLOOK

In the present work, we have investigated the images of
asymmetric wormholes as they appear in the different
asymptotic regions. Of particular interest here is the
presence of a light ring on only one side of the wormhole
throat, which can cause light rays to be reflected by the
wormhole, resulting in a typical optical, infrared, or radio
appearance as compared to other compact objects. To
demonstrate this phenomenon, we have here employed
the asymmetric Ellis-Bronnikov wormhole as a primary
example. The wormhole throat, which connects universe I
and universe II, is located at r ¼ −m, and only universe I
has a light ring. Our results show that the behavior of null
geodesics in universe I is similar to that of null geodesics of
a Schwarzschild black hole, suggesting that the wormhole
appearance on this side can mimic a black hole. However,
universe II has no light ring, and null geodesics starting
from infinity in universe II can pass the wormhole throat
into universe I and then be reflected back into universe II.
Based on the analysis of the null geodesics of the Ellis-

Bronnikov wormhole, we have examined the wormhole
images in two scenarios. When using an accretion disk as
the light source, we have found that the appearance of the
wormhole in universe I resembles that of a Schwarzschild
black hole, with both featuring bright rings inside the shadow.
In universe II, the wormhole’s appearance is distinctly
different, however, with only bright rings visible in the dark
sky. This unique appearance is a result of the wormhole’s
geometry.Wehave also considered backlitwormhole images.
If the emitting screen lies on one side of the wormhole only,
then observers who are on the same side see bright rings
inside the shadow. Since the light ring is in universe I, this
phenomenon is clearer for observers in universe I.
Furthermore, since we deal with a wormhole, the emitting
screen can be on the other side of the throat in universe II. In
this case, the backlit wormhole images are very different from
those of black holes and other compact objects.
With the development of observational technology, such

as very long baseline interferometry observations by the
Event Horizon Telescope Collaboration, we will obtain an
increasing number of images of compact objects in the
future. To potentially distinguish different kinds of objects,
theoretical studies are essential [13,17,57,58]. Our present
study predicts new possible images describing the optical,
infrared, or radio appearance of traversable wormholes,
which might be observable in the future. For further studies,
one direction should be to consider images of rotating

wormholes. A simple model for this would be the gener-
alizations of the static Ellis-Bronnikov wormhole con-
structed in Refs. [59–63]. This would be relevant for
astrophysics, since rotating objects are more realistic.
Another direction could be to consider a more realistic
environment around the wormhole, such as a more refined
model of accretion disks or free-falling matter, which might
alter our results.

The code for the calculations included in this work has
been made publicly available [64].
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APPENDIX: DETERMINATION OF THE
DEFLECTION ANGLE

In this appendix, we briefly add some details on how we
determine the curves that limit the ranges of the deflection
angle. We start from the geodesic equation [Eq. (6)] for
photons, ϵ ¼ 0. The deflection angle is then calculated via

ϕ ¼
Z

rend

�∞
1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
R4ðrÞ

�
1

b2
− VðrÞ

��s
dr; ðA1Þ

with the convention ϕð�∞Þ ¼ 0. If the photons encounter
a turning point at r ¼ rt, rend ¼ rt. Otherwise the photons
travel across the wormhole throat to infinity in the other
universe; thus,

ϕ ¼
Z

−m

−∞
1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
R4ðrÞ

�
1

b2
− VðrÞ

��s
dr

þ
Z þ∞

−m
1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
R4ðrÞ

�
1

b2
− VðrÞ

��s
dr; ðA2Þ

where r ¼ −m is the wormhole throat. The location of the
turning point is given by the solution of the equation

1

b2
− VðrtÞ ¼ 0: ðA3Þ

The trajectory of a light ray with impact parameter b is
obtained by numerically solving Eq. (6), which yields
r ¼ rðϕÞ. If a turning point is encountered, the integration
is performed only in ð�∞; rtÞ and symmetry is invoked for

HUANG, KUNZ, YANG, and ZHANG PHYS. REV. D 107, 104060 (2023)

104060-10



the trajectories in ðrt;�∞Þ. The trajectories are illustrated in
polar coordinates, where we employ the physical radius R:

R2 ¼ r2 þ q2 −m2

h
ðA4Þ

and X ¼ R cosðϕÞ, Y ¼ R sinðϕÞ. Thus our terminology
“deflection angle” refers to the polar coordinate ϕ.
We now briefly discuss how we obtain the limiting lines

for the impact parameter b in Figs. 6, 8, and 12, starting
with Fig. 6. In this case the light source, the accretion disk,
and the observers are in universe I. The purple line denotes
the deflection angle ϕpurple for a light ray from infinity of
universe I to its first intersection of the ISCO, r1ISCO:

ϕpurple ¼
Z

r1ISCO

−∞
1

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
R4ðrÞ

�
1

b2
− VðrÞ

��s
dr: ðA5Þ

It delimits the orange light rays in the left figure of Fig. 6.
The critical value is obtained when a light ray hits the
accretion disk for the first time and ϕpurple ¼ − π

2
. This

happens for b ¼ 5.2614. Thus the bright region outside the
black hole shadow is formed by light rays with impact
parameter b in the range b ∈ ð5.2614;þ∞Þ. A part of this
range is indicated by the upper blue line in Fig. 6. It is
associated with transfer function rnðbÞ with n ¼ 1.
The red line denotes the deflection angle ϕred1 for a light

ray from infinity in universe I to its second intersection of
the ISCO, r2ISCO:

ϕred1 ¼
Z

r2ISCO

−∞
1

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
R4ðrÞ

�
1

b2
− VðrÞ

��s
dr: ðA6Þ

The black line denotes the deflection angle ϕblack1 for a
light ray from infinity to a turning point r0 and back to
infinity in the same universe I:

ϕblack1 ¼ 2ϕðr0Þ

¼ 2

Z
r0

−∞
1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
R4ðrÞ

�
1

b2
− VðrÞ

��s
dr: ðA7Þ

Thus the deflection angle ϕblack1 is twice the deflection
angle of a light ray from infinity to the turning point in
universe I.
The light ray with ϕblack1 ¼ − 3π

2
intersects the accretion

disk at infinity. It is one of the critical light rays and has
b ¼ 4.4097. The light ray with ϕred1 ¼ − 3π

2
intersects the

accretion disk at ðR ¼ RISCO;ϕ ¼ − 3π
2
Þ and is another

critical light ray. It has b ¼ 4.0593. Thus the second blue
line in Fig. 6 gives rise to the first bright ring of thewormhole
images in Fig. 7, for which n ¼ 2. Analogously, the light
rays with ϕblack1 ¼ − 5π

2
;− 7π

2
;… also form critical light

rays, and likewise light rays with ϕred1 ¼ − 5π
2
;− 7π

2
;….

Consequently, the secondbright ring in Fig. 7 corresponds to
b ∈ ð3.9087; 3.9189Þ, corresponding to n ¼ 3, that cannot
be observed in the image in Fig. 7.
Next we discuss the case with the light source, the

accretion disk, in universe I and the observers in universe II,
illustrated in Fig. 8. In this case, only light rays trave-
ling across the wormhole throat to universe I can hit the
accretion disk. Such light rays require b < bc. Considering
a specific light ray with b < bc, its deflection angle when
arriving at the throat is given by

ϕt ¼
Z

−m

þ∞
1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
R4ðrÞ

�
1

b2
− VðrÞ

��s
dr: ðA8Þ

This light ray will continue from the throat to the ISCO
corresponding to the deflection angle

ϕISCO ¼
Z

rISCO

−m
1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
R4ðrÞ

�
1

b2
− VðrÞ

��s
dr: ðA9Þ

Thus the deflection angle from infinity in universe II to the
ISCO in universe I is given by

ϕred2 ¼ ϕt þ ϕISCO

¼
Z

rISCO

þ∞
1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
R4ðrÞ

�
1

b2
− VðrÞ

��s
dr ðA10Þ

and is illustrated by the red line in Fig. 8. On the other hand,
when a light ray will keep moving to infinity in universe I,
the total deflection angle for this light ray from infinity in
universe II to infinity in universe I is given by

ϕblack2 ¼
Z

−∞

þ∞
1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
R4ðrÞ

�
1

b2
− VðrÞ

��s
dr ðA11Þ

and is illustrated by the black line in Fig. 8. The function
ϕblack2 ¼ ϕblack2ðbÞ exists for any b < bc.
The light ray with ϕred2 ¼ π

2
passes the point ðR ¼

RISCO;ϕ ¼ π
2
Þ and is one of the critical light rays. It has

b ¼ 3.8052. The light ray with ϕblack2 ¼ π
2
intersects the

accretion disk at infinity and is another critical light ray. It
has b ¼ 3.6799. The first blue line in Fig. 8 ranges between
these two critical values of b and gives rise to the first bring
ring of the wormhole images in Fig. 9, corresponding to
n ¼ 1, since these light rays hit the accretion disk directly.
Analogously, the light rays from ϕred2 ¼ 3π

2
(b ¼ 2.3679) to

ϕblack2 ¼ 3π
2

(b ¼ 1.8614) form the range of the second
bright ring, shown by the shorter blue line in Fig. 8,
corresponding to n ¼ 2. The third bright ring is only seen
in the intensity plot of Fig. 9 but would be hard to observe
in the image.
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Figure 12 considers that the observers and the
emitting screen are located in different universes.
Without loss of generality, we assume that the observers
are at infinity in universe II and the emitting screen is at
infinity in universe I. The black line in Fig. 12 denotes
the deflection angle for this process. We obtained this
deflection angle already when studying Fig. 8
[Eq. (A11)]. The only difference with respect to the case

above is that the light source is now the emitting
screen, and not the accretion disk. Therefore the boundary
of the bright regions is determined by the condition
that the light rays can hit the emitting screen at infinity.
Such light rays have their deflection angle in the ranges
ϕ ¼ ðπ

2
; 3π
2
Þ, ϕ ¼ ð5π

2
; 7π
2
Þ and so on. The two blue lines

in Fig. 12 denote the ranges of b in ϕ ¼ ðπ
2
; 3π
2
Þ and

ϕ ¼ ð5π
2
; 7π
2
Þ.
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