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In this paper, we show that similar open-source codes for general relativistic (magneto)hydrodynamic
[GR(M)HD] produce different results for key features of binary neutron star mergers. First, we present a
new open-source version of the publicly available IllinoisGRMHD code that provides support for realistic,
finite temperature equations of state. After stringent tests of our upgraded code, we perform a code
comparison between GRHydro, IllinoisGRMHD, Spritz, and WhiskyTHC, which implement the same physics, but
slightly different computational methods. The benefit of the comparison is that all codes are embedded in
the Einstein Toolkit suite, hence their only difference is algorithmic. We find similar convergence properties,
fluid dynamics, and gravitational waves, but different merger times, remnant lifetimes, and gravitational
wave phases. Such differences must be resolved before the postmerger dynamics modeled with such
simulations can be reliably used to infer the properties of nuclear matter especially in the era of precision
gravitational wave astronomy.
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I. INTRODUCTION

The detection of gravitational waves (GWs) from the
merger of a binary neutron star (BNS) [1] has established
the need for a clearer understanding of BNS systems. To gain
insight into the physics of BNS mergers, observations
associated with such events—be they in the GW or electro-
magnetic (EM) spectrum—must be analyzed with either
simplified analytical models which parametrize the domi-
nant physical phenomena in the system, e.g., [2–6] or with
the use of accurate numerical relativity (NR) simulations.
Parametric/phenomenological models of BNS mergers can-
not reliably capture the physics of the most extreme stages of
the merger, including the merger itself and the environment
immediately following, where the matter is in a highly
dynamical state and the spacetime curvature is the strongest.
For a reliable, first-principles understanding of these stages
of BNS mergers, the use of NR is the only recourse.
Numerical simulations allow for the systematic isolation
of different physical phenomena/physics, which provides a
powerful tool for deducing the role of magnetic fields,
e.g., [7–14], equation of state (EOS) effects, e.g., [15–24],
and neutrino transport, e.g., [18,20,25,26].
There are many important physical effects to consider in

simulations of BNS mergers (see [27–32] for reviews);
such as finite temperature EOSs and magnetic fields.
Regarding the use of realistic EOSs in BNS merger
simulations, an important aspect is the consistent evolution
of the electron fraction, as it provides crucial information
for the description of nucleosynthesis processes that take

part during and after merger, and is necessary to fully
describe kilonova (KN) afterglows [33,34]. Additionally,
the thermodynamic properties of the postmerger remnant
and ejecta are important and not well-approximated by cold
EOSs (see, e.g., [35,36]). Magnetic fields are also a crucial
ingredient to consider in BNS merger simulations. In
particular, an area which remains poorly understood is
the effect of magnetic fields on ejecta properties. Large
scale magnetic fields are important in the evolution of the
postmerger remnant and in the kilonova signal associated
with BNS mergers, as they are expected to power relativ-
istic jets [13,37–40] and drive relativistic outflow [41–43].
The interplay between finite temperature EOSs and strong
magnetic fields remains insufficiently characterized in BNS
merger simulations. For example, realistic EOSs have been
shown to produce lower-velocity ejecta when compared to
simple analytic EOSs [18,23,31,44,45] while, on the other
hand, simulations which account for magnetic effects
suggest that, if magnetic fields are strong enough, shocked
dynamical ejecta during merger could be boosted to higher
velocities [10–14,46]. Most modern simulations of BNS
mergers consider only some of the aforementioned physical
effects, and there have only been a handful of simulations
which consider all effects at once [10–14,47]. Even in
the case of more complete simulations, all treatments of
neutrino transport to-date must make some level of
approximation since solving the full (6þ 1)-dimensional
neutrino transport equation is not possible with current
schemes and computational resources.
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There are currently available several codes with support to
different levels of physics. For instance, many state-of-the-
art codes with microphysical EOS compatibility do not
implement a constrained-transport treatment of magnetic
fields. While variety in the numerical methods and codes
used in the study of BNS mergers is a strong point from the
perspective of understanding numerical systematic errors,
key differences between codes can lead to a range of
predictions for the relevant observables, depending on the
physics included in simulations. For example, although there
is general agreement in the ejecta properties predicted by
different codes [17–19,23,25,45,48–50], dynamical ejecta
masses range over 10−4M⊙ ≲Mej ≲ 10−2M⊙ while speeds
range over 0.1c≲ vej ≲ 0.3c, depending on the total binary
mass, EOS, and numerical methods considered. Simulations
with even the highest resolutions can have numerical
uncertainties of over 40% [48,51–53]. The need for accurate
simulations and detailed estimates of the error budgets is
becoming more and more urgent as future GW detectors
are expected to be more sensitive than current systematic
errors [54]. Future investigations of BNS mergers would
ideally require a set of catch-all, accurate, open source
general relativistic (magneto)hydrodynamic [GR(M)HD]
codes which can reliably simulate BNS systems while
considering as many microphysical phenomena as possible.
At the very least, reliable future predictions using NR codes
require detailed comparisons, including cross-checks of the
results obtained using different codes and of the varied
numerical methods used within the codes themselves.
In order to begin addressing each of these needs, we first

present a new implementation of realistic, finite-temperature
EOS support in IllinoisGRMHD

1 (as extensively discussed
below), and then perform a systematic comparison between
different open-source GR(M)HD codes: IllinoisGRMHD [56],
GRHydro [57], Spritz [58], and WhiskyTHC [59–61]. These codes
implement the same physics and have largely overlapping
numerical methods, e.g., they are all housed within the
Einstein Toolkit [62,63], thereby we can isolate and compare the
impact on the evolution and uncover the existence of
systematic errors arising only from the GR(M)HD codes.
This allows us to test the robustness of certain results with
respect to different computational choices. In most cases,
such choices are about failsafes for when the main algo-
rithms fail, as in the case of the conservative-to-primitive
schemes used in the artificial atmosphere. In our comparison,
we focused on BNS mergers and found that important
quantities disagree across the codes. For example, codes do
not agree on whether the remnant is stable or undergoes
collapse very shortly after merger, which has profound
implications for EM observations. This calls for more
detailed studies and comparisons across different codes.
This paper is split in two parts. First, we discuss in detail

the formalism employed by IllinoisGRMHD, the extensions

required to reach feature-parity with the other codes, and the
testsweperformed. Inparticular, in Sec. IIwe review thebasic
equations that are relevant toBNS systems, and provide detail
on their numerical treatment within IllinoisGRMHD. In Sec. III
we describe our methods for implementing realistic, finite
temperature EOS capability within IllinoisGRMHD. In Sec. IV
we discuss stringent dynamical tests of the extended version
of IllinoisGRMHD which cover a broad range of scenarios.
Readers that are familiar with GRMHD simulations may
skip this part and focus on the results. In the second part,
starting from Sec. IV E, we discuss the results from our
simulations of BNS mergers.
Our extension to IllinoisGRMHD to allow for the use of

realistic, finite-temperature EOSs is public. The extensions
we have made to IllinoisGRMHD are crucial for understanding
the interplay between magnetic fields and the EOS in the
postmerger environment, and is a first step to including
neutrino transport schemes in the code. The current state of
IllinoisGRMHD (including the extensions we describe here)
opens up many avenues of investigation surrounding
compact object mergers with strong magnetic fields. For
instance, the new code capabilities will make possible the
calculation of nucleosynthesis rates and help elucidate the
role of microphysical, finite temperature EOSs in BNS
mergers with strong magnetic fields, among many other
interesting phenomena.
Throughout the work we use geometrized units, where

G ¼ c ¼ 1, unless otherwise stated. In addition, in cases
where we use logarithmic scales, we assume that
log≡ log10, unless otherwise noted. All visualizations
and postprocess analyses in this work were carried out
with the KUIBIT software package [64].

II. BASIC EQUATIONS

Throughout this work we will predominantly work with
numerical codes that solve the Einstein field equations,

Gμν ¼ 8πTμν; ð1Þ

(where Gμν and Tμν are the Einstein and stress-energy
tensors, respectively), coupled to the equations of ideal
relativistic (magneto)hydrodynamics. In particular, we
focus on the use of IllinoisGRMHD to solve the equations of
ideal relativistic magnetohydrodynamics. IllinoisGRMHD takes
advantage of the Baumgarte-Shapiro-Shibata-Nakamura
(BSSN) formulation [65–67] of the 3þ 1 Arnowitt-Deser-
Misner (ADM) formalism, which recasts the Einstein
equations in the form of an initial-value problem (for more
details, see textbooks on the subject, e.g. [68–71]), in which
the spacetime line element is given by

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð2Þ

where α is the lapse, βi is the shift vector, γμν ¼ gμν þ nμnν
represents the induced metric on spacelike hypersurfaces,1Recently, [55] implementeda similar extension to IllinoisGRMHD.
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and nμ ¼ ð1=α;−βi=αÞ is the future-pointing unit vector
orthogonal to each spatial slice. The solution to Eq. (1)
involves the evolution of the magnetohydrodynamic varia-
bles that appear on the right-hand sides of the ADM
equations. An approach which is well suited to the 3þ 1
formalism is the Eulerian (or Valencia) formulation of
relativistic hydrodynamics [72,73]. In this formulation,
the evolution equations for the relevant fluid variables
arise from several conservation laws, including the
continuity equation

∇μðρbuμÞ ¼ 0; ð3Þ

where ρb is the rest mass density and uμ is the fluid four-
velocity, the lepton number conservation (when neutrino
effects are ignored)

uμ∇μðYeÞ ¼ 0; ð4Þ

which can be rewritten by use of Eq. (3) as

∇μðρbYeuμÞ ¼ 0; ð5Þ

where Ye ≡ ne=nb is the electron fraction and nb (ne) is
the baryon (electron) number density, the conservation of
stress energy

∇μTμν ¼ 0; ð6Þ

and the homogeneous Maxwell’s equations

∇νF�μν ¼ 0; ð7Þ

where F�μν ¼ 1
2
εμναβFαβ is the dual to the electromagnetic

field strength tensor Fαβ and εμναβ is the rank-4 Levi-Civita
symbol. The matter variables are evolved using Eqs. (3)–(7)
once they have been cast in flux-conservative form,

∂tCþ ∇ · F ¼ S; ð8Þ

where C, F, and S are vectors which contain the
conservative, flux, and source terms, respectively. The vector
of primitive variables P

P ¼

2
6666664

ρb

P

vi

Bi

Ye

3
7777775
; ð9Þ

contains information on the physical state of the fluid, where
P is the fluid pressure, vi ¼ ui=u0 is the fluid three-velocity
and Bi are the spatial components of the magnetic field as
measured by a normal observer. The conservative variables
C are determined in terms of the primitive variables,
the lapse α, and the metric as

C ¼

2
6666664

ρ�
τ̃

S̃i
B̃i

Ỹe

3
7777775
¼

2
6666664

α
ffiffiffi
γ

p
ρbu0

α2
ffiffiffi
γ

p
T00 − ρ�

ðρ�hþ αu0b2Þui − α
ffiffiffi
γ

p
b0biffiffiffi

γ
p

Bi

ρ�Ye

3
7777775
; ð10Þ

where bμ ¼ Bμ
ðuÞ=

ffiffiffiffiffiffi
4π

p
[where Bμ

ðuÞ is the magnetic field as

measured by an observer in the fluid rest frame], γ is the
determinant of the 3-metric, and h ¼ 1þ ϵþ P=ρ0 is the
specific enthalpy (where ϵ is the specific internal energy).
We note that IllinoisGRMHD uses the coordinate three-velocity,
vi ≡ ui=u0, unlike many other evolution codes, which also
adopt the Valencia formalism, but use the Eulerian three-
velocity viðnÞ ¼ ui=ðαu0Þ þ βi=α [74,75], i.e., the velocity

measured by normal observers. Additionally, we note that
IllinoisGRMHD works with an ideal fluid stress-energy tensor
of the form

Tμν ¼ ðρbhþ b2Þuμuν þ ðPþ b2=2Þgμν − bμbν: ð11Þ

The evolution equations for the relevant fluid variables are
determined by using the aforementioned conservation laws
and casting them in the form of Eq. (8). It is useful to pay
special attention to the evolution of the magnetic field, due to
how it is treated in IllinoisGRMHD. Specifically, the evolution
equation for the magnetic field is

∂tB̃i þ ∂jðvjB̃i − viB̃jÞ ¼ 0; ð12Þ

where B̃i is the conservative variable corresponding to the
magnetic field Bi, as defined in Eq. (10). The use of Eq. (12)
to evolve the magnetic field results in terms that violate the
no-monopole constraint (∇ · B ¼ 0), which is addressed
in IllinoisGRMHD by instead considering the evolution of the
vector potential Aμ ¼ Φnμ þ Aμ (where Ai is the magnetic
vector potential and Φ is electric scalar potential) and
recovering the magnetic field as B̃i ¼ εijk∂jAk. The evolu-
tion equation for Ai is

∂tAi ¼ εijkvjB̃k − ∂iðαΦ − βjAjÞ: ð13Þ

IllinoisGRMHD works in the generalized Lorenz gauge
∇μAμ ¼ ξnμAμ [76], where ξ is chosen such that the
Courant-Friedrich-Lewy condition corresponding to it is
satisfied at all times given the grid choices. In the following
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we provide additional descriptions of the algorithms
employed within IllinoisGRMHD for the implementation of
finite temperature EOS compatibility. We direct the reader
to [56] for a detailed description of all of the additional
algorithms employed within IllinoisGRMHD.

III. IMPLEMENTATION OF REALISTIC
EQUATION OF STATE COMPATIBILITY

WITHIN IllinoisGRMHD

The current open-source version of IllinoisGRMHD

solves the equations of GRMHD by assuming simple,
analytic EOSs such as polytropic EOSs; in these cases the
thermal effects are typically approximated using a Γ-law
EOS. With this approach, the pressure of the fluid is P ¼
Pcold þ ðΓth − 1Þρbϵth, where Pcold is any analytic repre-
sentation of the cold EOS and ϵth is the thermal-specific
energy density. These EOSs can only provide a qualitative
understanding of the state of matter during a BNS merger
[24,35]. However, efforts to model parametrically both the
thermal and the cold component of the nuclear EOS in BNS
mergers are under way, see, e.g., [24,77–80].
The implementation of realistic EOSs within

IllinoisGRMHD allows us to understand, in a more detailed
manner, the interplay between the EOS, thermal effects,
and magnetic fields in these systems. Moreover, it is a
crucial first step toward implementing additional important
microphysics within IllinoisGRMHD, such as neutrino trans-
port. The inclusion of realistic EOS capability within
IllinoisGRMHD required two steps: the implementation of
the evolution equation for the electron fraction and the
implementation of algorithms which can perform the
nontrivial inversion of the evolved conservative variables
C to the physical primitive variables P, which we refer to
as conservative-to-primitive inversion. In the following
we discuss the implementation of the evolution equation
for the electron fraction Ye within our extended version
of IllinoisGRMHD. We also discuss the implementation of
state-of-the-art routines within IllinoisGRMHD for
conservative-to-primitive inversion and present relevant
tests. For the remainder of this work, we refer to the
currently available version of IllinoisGRMHD as
OriginalIllinoisGRMHD (abbreviated as OIL).
Our extended version of IllinoisGRMHD will be referred
to as MicrophysicalIllinoisGRMHD (abbreviated
as MIL). In cases where we discuss features which are
common between the two codes, we will refer to them
jointly as the IllinoisGRMHD code. Algorithmically, OIL
and MIL are identical, except for the changes highlighted
in this work which are required for realistic EOS
compatibility.

A. Evolution of the electron fraction

In flux-conservative form, the electron fraction evolution
equation is

∂tðỸeÞ þ ∂jðvjỸeÞ ¼ 0: ð14Þ

With the inclusion of Eq. (14), the full set of equations
solved within MIL is

∂t

2
6666664

ρ�
Ỹe

τ̃

S̃i
Ai

3
7777775
þ ∂j

2
6666664

ρ�vj

Ỹevj

α2
ffiffiffi
γ

p
T0j − ρ�vj

α
ffiffiffi
γ

p
Tj
i

αΦ − βjAj

3
7777775
¼

2
6666664

0

0

s
1
2
α

ffiffiffi
γ

p
Tαβgαβ;i

ϵijkvjB̃k

3
7777775
;

ð15Þ

where

s¼ α
ffiffiffi
γ

p ½ðT00βiβj þ 2T0iβj þ TijÞKij − ðT00βi þ T0iÞ∂iα�;
ð16Þ

and Kij is the extrinsic curvature. The evolution of Ỹe

follows that of the other conservative variables, which begins
with the determination of initial conditions. Presently, we
allow for Ye to be initialized in two possible ways:
(1) Linear profile: we set Ye ¼ ϒρb (where ϒ is a

constant that ensures proper dimensionality), such
that the electron fraction profile is linear with respect
to ρb, in order to consider a simple profile where
gradients are nonzero throughout the solution grid.
This initialization is unphysical and only useful for
testing the advection of Ye in situations without
realistic EOSs, i.e., passive advection of the electron
fraction.

(2) β-equilibrium profile: we set YeðρbÞ according to
the conditions for β-equilibrium in cold neutron
star (NS) matter. This initial profile is suitable for
realistic descriptions of isolated stars as well as for
binaries that are initially separated at large enough
distances such that the components are cold. All of the
BNS initial data considered in our tests are built for
quasiequilibrium systems, in which the assumption
that the components are cold, β-equilibrated stars is
well justified. We use the same assumption of cold
β-equilibrium to initialize all other hydrodynamical
variables at t ¼ 0.

Once the initial data are specified for the primitive variables
at all grid points, the conservative variables are obtained
through the simple algebraic relations provided in Eq. (10),
which provides C at all grid points. For the evolution of C,
we employ three ghost-zones at the outer boundary of each
adaptive mesh refinement (AMR) grid. We fill all buffer
zones at the refinement level boundary with data interpolated
from neighboring rougher or finer levels of refinement using
standard prolongation or restriction operators, respectively.
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Filling in the buffer zones in this manner results in C being
either prolongated or restricted after calculation [56]. To
ensure consistency between C and P, the primitives are
recovered from the conservatives using a root-finding
algorithm at t ¼ 0, which we discuss in Sec. III B. Next,
we evaluate the flux term F in preparation for the next time
step. To this end, we must reconstruct the primitives between
grid points (i.e., at cell interfaces). IllinoisGRMHD employs the
piecewise parabolic method (PPM) [81] for primitives
reconstruction. Reconstruction is used to evaluate the
primitives on the left and right interfaces of all grid points,
PL;R, in all directions. These interface values are then used to
calculate the corresponding conservative variables at cell
interfaces, which are in turn used to calculate the flux term in
Eq. (14) using a second-order, finite-volume, high-resolution
shock-capturing scheme. The handling of fluxes at grid
interfaces FL;R requires a solution to a Riemann problem.
IllinoisGRMHD employs the standard Harten-Lax-vanLeer
(HLL) [82] approximate Riemann solver, where for a given
direction the electron fraction flux is given by

FHLLðYeÞ ¼
c−FR þ cþFL − cþc−ðỸe;R − Ỹe;LÞ

cþ þ c−
; ð17Þ

where c� ¼ �max ð0; cR�; cL�Þ and cL;R� are the maximum
(þ) and minimum (−) characteristic speeds at the left (L) and
right (R) cell interfaces (see [56,83] for further algorithmic
details). The derivatives of the fluxes are then determined
and summed independently for each direction. For instance,
the flux along the x-direction takes the form

ð∂xFxÞijk ¼
FHLL;x
iþ1

2
jk

ðYeÞ − FHLL;x
i−1

2
jk

ðYeÞ
Δx

: ð18Þ

The flux along the y- and z-directions take a similar form,
but we instead consider finite differencing along the j and k
indices, respectively.
The evolution equation for Ye does not include source

terms in the absence of neutrinos, so the right-hand side of
Eq. (18) is then passed to the method of lines (MoL) thorn,
which integrates the conservative variable Ỹe forward in
time. At this point, the updated conservative variables
would be known at all grid points except the outer
boundary. The next step is to recover the primitive variables
given these evolved conservative variables (see Sec. III B).
After the primitives have been recovered, they are checked
for physicality and marginally modified if they are outside
of their physical ranges [84]. For example, in the case of
electron fraction, we check that

Ye;lower ≤ Ye ≤ Ye;upper; ð19Þ

where Ye;lower (Ye;upper) corresponds to the lowest (highest)
value for Ye available in an EOS table. Next, outer

boundary conditions are placed on the recovered primitives
to fill the necessary three ghost zones in each direction. We
apply zero-derivative outflow outer boundary conditions as
described in [56]. Up to this point, the primitives P are
known at the new time step on all grid points. The final step
we take is to recompute the conservatives on all grid points
using Eq. (10) for consistency between P and C, and the
evolution algorithm is allowed to proceed.

B. Conservative-to-primitive solvers

At every step of the evolution an inversion from the
evolved conservative variables C to the physical primitive
variables P is required to know the state of the fluid.
Eq. (10) presents a system of nonlinear algebraic expres-
sions which can be solved for nine relevant fluid variables
(ρb, vi, Bi, Ye, and either h or ϵ). These nine variables,
along with an EOS, in turn provide all of the information
required to determine P, along with other fluid variables of
interest. For example, a solution to Eq. (10) can provide the
five main variables (ρ0, vi, ϵ) and, trivially, Bi and Ye. We
can then determine the remaining variable, P with the use
of an EOS and incidentally obtain information on other
physical variables such as the temperature T and specific
entropy sb. As we require a solution for five main variables
in order to determine P, the primitives inversion problem is
fundamentally a nontrivial 5D problem that cannot be
solved analytically. 5D schemes which solve Eq. (10)
were originally implemented in early MHD codes such
as HARM [85]. However, these schemes were eventually
found to be inefficient and inaccurate, which led to the
development of methods which solve for only two auxiliary
variables [86] and thereby reduce the dimensionality of
the problem to 2D. The dimensionality of the problem can
be further reduced to 1D; modern 1D algorithms which
provide reliable and efficient solutions have been devel-
oped [17,87] and are widely used in GR(M)HD codes.
In order to consider strongly magnetized systems which

include realistic descriptions of the dense matter EOS, we
implement state-of-the-art conservative-to-primitive solvers
within MIL. Our implementation includes porting the solvers
discussed in [88] for use in the Einstein Toolkit, packaged within
a new thorn ConservativeToPrimitive which can
interface with MIL and its associated thorns, but also works
as a standalone thorn which can be used with other GR(M)
HD codes that operate within the Cactus infrastructure. We
focus on a subset of the solvers implemented in [88], due to
their reliability, speed, and algorithmic similarity to the
original solvers used in OIL (see [89] for another possible
approach). In particular we focus on the 2D solver of [86]
(which we label Noble), the 1D solver of [17] (which we
label Palenzuela), and the 1D solver of [87] (which we
label Newman). We note that the Noble solver uses the
same algorithm as the solvers in the original version
of IllinoisGRMHD and that other GRMHD codes with
realistic EOS capability rely on the Palenzuela
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algorithm [58,90,91]. We refer the reader to [88] for
a review of the algorithms used in each solver within
ConservativeToPrimitive.2

We employ a set of preliminary tests to confirm that our
port of these solvers to the Einstein Toolkit behaves as
intended. In particular, we test the aforementioned solvers
using the same tests as [88] where a set of primitives P are
initialized, randomly perturbed, used to calculate a set of
conservatives C, and finally recovered into a new set P’.
The primitives recovery for each solver is then assessed by
considering the relative error between the original set P and
the recovered set P0 (along with other diagnostics including
the number of interpolation calls to the EOS table and

number of algorithm iterations). In these tests, a subset of
the primitives is varied over the physically allowed range
while holding others constant. We focus on the case of the
LS220 realistic, finite temperature, tabulated EOS [92,93]
and employ tests where we prescribe the ratio of magnetic
to fluid pressure Pmag=P ¼ b2=ð2PÞ ¼ 0.001, the Lorentz
factor W ¼ 2, and the electron fraction Ye ¼ 0.1, while
scanning over the allowed range of rest mass density ρb and
temperature T for this EOS. For each value of ρb and T that
we consider, we determine the relative error between the
original and recovered set of primitives. We present the
results for this set of tests in the top panel of Fig. 1. As a
comparison, we also show the results of these tests using
the implementation of the solvers within the code of [88] in
the bottom panel of Fig. 1.
For all tests, we find very good agreement between the

original solvers and our implementation of them within
the Einstein Toolkit. Points on Fig. 1 which appear in white
indicate the failure of a given solver to recover a consistent
set of primitives. Points at which the solvers fail which are
surrounded by successful recovery are usually due to the
random perturbations we induce on P before recovery,
which occurs for both the original code of [88] and our
implementation within ConservativeToPrimitive
(see the top-left and lower-right panels of Fig. 1).
However, there are regions of variable space where solvers
consistently fail regardless of the initial perturbations
(in both our implementation of the solvers within

FIG. 1. Top panel: Relative error in the recovery of primitives for a selection of the solvers originally implemented in [88] and ported
to the Einstein Toolkit within the ConservativeToPrimitive thorn (labeled C2P). We test the LS220 EOS [92,93] with three of the
available solvers. For all tests, we fix a subset of the primitives and provide random initial data for the remainder. Specifically, we fix
Pmag=P ¼ 10−3,W ¼ 2, and Ye ¼ 0.1 while scanning the physically allowed range for T and ρb. Bottom panel: Same as the top panel,
but using the original implementation of each solver in the code packaged with [88] (labeled S).

2We point out that [88] appears to have typographical errors in
the algorithm description for the Newman solver, when compared
to the original paper of [87]. In particular, there is a difference in
the calculation of the auxiliary variable M2 [see Eq. (47) of [88]
as compared to Eq. (4.7) of [87]], where [87] correctly calculates
it as M2 ¼ mimi ¼ S̃iS̃

i, where S̃i is the conservative variable
associated with the momentum density which appears in the left-
hand side of Eq. (15). Equation (47) of [88] inconsistently
calculates this variable as M2 ¼ ðBiviÞ2= ffiffiffi

γ
p

, where γ is the
determinant of the 3-metric γij, Bi is the magnetic field, and vi is
the fluid three-velocity. We also note that the first term of Eq. (55)
in [88] misses a factor of the auxiliary variable a, when compared
to the analogous Eq. (5.11) in [87]. We point out that despite
these typographical errors, the numerical implementation of the
Newman solver within the code of [88] is consistent with the
correct algorithmic steps presented in [87].
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ConservativeToPrimitive and the original imple-
mentation in [88]). The most reliable solver across variable
space is the Newman solver although, as indicated by the
rightmost panels of Fig. 1, it may fail for cold matter
(T ≲ 10 MeV) in the high-density regime ρb≈1014 gcm−3,
which is a highly relevant area of variable space for BNS
mergers. It is important to note that regions where a given
solver may fail are often well covered by at least one of the
other solvers. Therefore, in practice the best use of these
solvers should employ a hybrid approach, where a solver
which fails in a given region of variable space is substituted by
a solver which provides reliable solutions in that same region.
In the following we discuss the choice of solvers we employ
moving forward.

C. Solution algorithm

The preliminary tests presented in Fig. 1 suggest
that some solvers are better suited for systems involving
neutron stars with realistic EOSs over others. Nevertheless,
we note that the use of any solver is still likely to produce
robust solutions. Therefore, the chief property that we
use in determining the primary solver to utilize is the
performance speed and agreement with the results of the
OIL code. For realistic EOSs, the bottleneck in limiting
solver speed is typically the number of times the solver
must interpolate the EOS. Among the solvers in
ConservativeToPrimitive, the Noble solver
requires the fewest such EOS calls, resulting in the most
efficient solutions [88]. Nevertheless, the Palenzuela
and Newman solvers require a similar number of EOS calls
to Noble, and the Palenzuela solver has the added
benefit of strong agreement with OIL and of reliable
coverage across densities and temperatures, as suggested
by the leftmost panels of Fig. 1. Due to the reliability
and agreement with OIL, and because the performance is
not much worse than other solvers, we consider the
Palenzuela solver as the optimal choice for our primary
solver. In the remainder of this work, we adopt the
following solution algorithm for conservative-to-primitive
inversion in MIL
(1) We employ the Palenzuela solver in our first

attempt at a solution. We find that the Palenzuela
solver is robust for both analytic and microphysical
EOSs and comparably efficient to other solvers.

(2) If the Palenzuela solver fails, as it is disposed to
for highly relativistic matter, we try to recover a
solution with either the Newman or Noble solvers.
The Noble solver is robust for highly magnetized
flows and highly efficient, but begins to fail at high
Lorentz factors. The Newman solver is reliable for
both highly magnetized and highly relativistic flows.

(3) If all of the aforementioned solvers fail we impose a
fix of the velocities, as done in the OIL code [56],
which assumes a cold EOS (T ¼ 0.1 MeV); we refer
to this fix as the “Font” fix, which has been

generalized from its original form in OIL for generic
EOSs.

(4) Finally, if all other recovery attempts have failed, it
is likely that the fluid element is at low densities,
so we set the recovered primitives to values which
are sensible for atmospheric conditions [cold
temperature Tatm ¼ 0.1 MeV, low density ρb;atm ≤
10−7ρb;max, fixed electron fraction Ye;atm ¼ 0.25,
and a pressure which is consistent with the EOS
Patm ¼ Pðρb;atm; Tatm; Ye;atmÞ]. We note that the
other open-source codes we consider, with the
exception of GRHydro which uses the same treatment
as MIL, only fix atmospheric values of ρb and T, but
not Ye. We emphasize, however, that the values of
the primitive variables in the atmosphere are gen-
erally dynamically unimportant, and are set for
numerical stability.

We find that the above solution algorithm leads to a robust
and efficient evolution across the physically allowed range
of variables for a finite temperature, realistic EOS. We note
that the order of solvers used is completely customizable at
run time and can be changed dynamically for any simu-
lation, and that any ordering of the Palenzuela, Noble,
and Newman solvers results in a reliable solution. The order
of solvers chosen here is optimal when considering effi-
ciency and reliability for finite temperature, tabulated EOSs.
In the remainder of this work, we utilize the MIL code with
the above solution algorithm, unless otherwise noted.

IV. DYNAMICAL TESTS OF MIL
AND CODE COMPARISONS

A. Summary of tests, initial data, and grid hierarchies

In this section we focus on code comparisons between
MIL and other open-source codes GR(M)HD codes. As
tests of MIL, we employ a number of evolutions for which
the system behavior is well understood. Where relevant, we
compare the results of the MIL code to other publicly
available codes with similar capabilities. In particular
we compare with the GRHydro [57], Spritz [58], WhiskyTHC

[59–61], and OIL [56] codes.
We present the results of these tests as follows:
(1) G2TOV: We first discuss tests which employ a

Tolman-Oppenheimer-Volkoff (TOV) star built with
a Γ ¼ 2 polytrope, which we label test G2TOV. For
test G2TOV we compare the solution to results
obtained with the GRHydro code. This test was
designed to mirror those considered in [56].

(2) LSTOV: Next, we discuss tests where we consider a
magnetized TOV star constructed using the finite
temperature, tabulated LS220 EOS [92,93], which
we label test LSTOV. For this test we compare our
solutions to those obtained with the publicly avail-
able Spritz code, which uses an implementation of the
Palenzuela solver for finite temperature EOSs.
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(3) G2BNS: Next, we test our code in the case of a
BNS merger, assuming a Γ ¼ 2 polytropic EOS.
We compare the solution against the results of the
GRHydro, Spritz, WhiskyTHC, and OIL codes. We
consider both magnetized and unmagnetized sys-
tems, and refer to this test as G2BNS.

(4) LSBNS: Finally, we consider a BNS built using the
LS220 EOS. Along with the MIL code, we simulate
this system with the GRHydro, and WhiskyTHC codes.
The binary configuration is built such that there is a
transient hypermassive neutron star (HMNS) post-
merger remnant, which allows us to compare proper-
ties of the merger remnant between codes. We also
consider evolution with the Spritz code, but we do not
include those results, because the public version of
the code is still under development for cases with
tabulated EOS support in the context of binary
neutron star mergers. We label this test as LSBNS.

The use of MIL and ConservativeToPrimitive
requires the initialization of three new required variables
when evolving finite temperature, realistic EOSs. Namely,
we must initialize the specific internal energy ϵ, temper-
ature T, and electron fraction Ye such that they are
consistent with the initial data. For tests which employ a
cold polytropic EOS we initialize the specific internal
energy as

ϵ ¼ P
ðΓ − 1Þρ0

: ð20Þ

For polytropic EOSs, the initialization of T and Ye are
independent to that of ϵ and do not play a role in the fluid
evolution, so we simply initialize Ye based on the first type
of profile listed in Sec. III A and fix T ¼ 0.1 MeV,
although the temperature is a passive variable in such
tests. For tests which employ realistic, finite temperature
EOSs, we are interested in equilibrium initial data, which
requires cold, uniform temperatures and β-equilibrium.
To construct cold, β-equilibrium initial data, we build
barotropic tables that provide PðρbÞ. Due to the fact that
ConservativeToPrimitive makes use of EOS
tables in the format of the StellarCollapse repository
[92] via the EOS driver thorn EOS_Omni, we construct
cold, β-equilibrium tables required for initial data using the
StellarCollapse tables. The StellarCollapse
tables provide several fluid variables (including the pres-
sure P, specific internal energy ϵ, and constituent chemical
potentials μi, where i ¼ p, n, e is an index over the particle
species for protons, neutrons, and electrons, respectively) at
discrete values of the rest mass density ρb, electron fraction
Ye, and temperature T. Each of the fluid variables may
be interpolated to arbitrary values of the triplet ðρb; Ye; TÞ.
To extract the cold, β-equilibrated, barotropic functions
required for initial data (PðρbÞ, and ϵðρbÞ), we take the
following steps:

(1) We fix the value of T ¼ Tcold ¼ 0.1 MeV. The
lowest possible temperature values in these tables
are typically T ¼ 0.01 − 0.05 MeV, but entries near
the table limits are not finely sampled, which often
leads to interpolation errors in the primitives recov-
ery process. As such, we employ a finite temperature
which is still cold compared to the Fermi energy but
avoids the table boundaries.

(2) For a given value of ρb ¼ ρb;curr, we scan the
available range of Ye and evaluate the chemical
potentials relevant for beta equilibrium [μiðYe;
ρb;curr; TcoldÞ].

(3) We employ root-finding to locate the value of Ye
which corresponds to β-equilibrium, such that

μn − μp − μe ¼ 0: ð21Þ

At this value of Ye ¼ Ye;β, we record the pressure
and specific internal energy. We continue the algo-
rithm from step 2 above, scanning the available
range of ρb and thereby constructing tabulated
functions for the barotropic pressure P and specific
internal energy ϵ as functions of the rest mass
density ρb for β-equilibrium matter.

In Table I we present the grid hierarchy corresponding to
each dynamical test we consider. For each case we list the
test name, the finest-level grid resolution dxfin, the number
of refinement levels (RL), the number of grid-points per NS
radius (GP), the half-side length of each nested grid (HSL)
listed from finest to coarsest, and the evolution codes used.
In all cases we evolve the spacetime using the McLachlan
spacetime evolution code within the Einstein Toolkit (via
the ML_BSSN thorn) [94,95], unless otherwise noted.
ML_BSSN solves the Einstein equations within the
BSSN formulation of the ADM 3þ 1 formalism. Our
gauge conditions consist of the “1þ log” slicing condition
for the lapse [96] and the “gamma-driver” condition for the
shift [97]. Integration in time is carried out using a fourth-
order accurate Runge-Kutta (RK4) scheme, using the MoL
thorn, with a Courant factor of 0.5, unless otherwise stated.

B. Diagnostics

We employ several diagnostics to assess the quality of
our simulations. In cases where several resolution simu-
lations are considered and some solution is known, we
monitor convergence of the solution by calculating the
convergence order ncon as

ncon ¼
log

�
Li−L0

Lj−L0

�
log ðΔxi=ΔxjÞ

; ð22Þ

where L0 is the value that the solution should approach
in the continuum limit, i is a label for a grid of a given
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resolution, Li corresponds to the solution on grid i, andΔxi
corresponds to the grid resolution for grid i. For all cases
involving fluid variables we typically consider the refer-
ence solution L0 in Eq. (22) to be the initial data itself. The
use of such a reference solution can prove troublesome in
cases with unreliable or faulty initial data. In several of the
cases we consider, we find a lack of convergence toward the
continuum solution even at the start of the simulation,
suggesting nonconvergent initial data. In such cases we
consider the self-convergence of a given solution, which is
demonstrated when

ðLCR − LHRÞ
��

ΔxMR

ΔxHR

�
n
− 1

�

¼ ðLMR − LHRÞ
��

ΔxCR
ΔxHR

�
n
− 1

�
; ð23Þ

where n is the expected convergence order, L is the solution
on a given grid, Δx is the grid resolution for a given grid,
and the labels CR, MR, and HR correspond to the
canonical, medium, and high resolution grids, respectively.
We refer to quantities scaled according to Eq. (23) using the
symbol c½L�, for quantity L.
We monitor the maximum rest mass density ρb;max and

minimum of the lapse function αmin to qualitatively assess
stability and collapse. We also consider spacetime quan-
tities, such as the Hamiltonian constraint violations, in
order to assess convergence of the solution. We consider
2D snapshots of several fluid quantities, including the rest
mass density ρb, temperature T, and different components
of the magnetic field strength Bi, where relevant. When

considering rotational properties of the fluid, we compute
the angular velocity in the equatorial plane as

Ω ¼ Xvy − Yvx

ϖ2
; ð24Þ

where ϖ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
, X ≡ ðx − xcomÞ, Y ≡ ðy − ycomÞ, x

and y are the Cartesian coordinates, and xcom and ycom
correspond to the coordinates of the Newtonian center-
of-mass.
In cases where we consider gravitational radiation, we

extract GWs using the Newman-Penrose formalism
[99,100], with focus on the s ¼ −2 spin-weighted spherical
harmonic decompositions of the Newman-Penrose scalar
Ψ4. The coefficients of the spin-weighted decomposition
are labeledΨl;m

4 , where l andm are the degree and order for
the spherical harmonics. We extract Ψl;m

4 from the numeri-
cal solution at fixed concentric spheres with increasing
coordinate radii rex ¼ ηkm, where η takes on several
discrete values 70≲ η≲ 450. When extracting GWs, we
ensure to use the values ofΨl;m

4 which are in the wave zone.
Where relevant, we compute the GW strain h from

Ψ4 ¼ ḧþ − iḧ×; ð25Þ
using the fixed-frequency integration method [95]. We
identify the time of merger tmer as the time when the GW
amplitude reaches an absolute maximum during the merger.

C. G2TOV: Test using a TOV star with polytropic EOS

We first consider the case of TOV initial data constructed
using a Γ ¼ 2 polytropic EOS. We construct initial data

TABLE I. Grid hierarchy and simulation settings for the tests presented in Sec. IV, in the case of the lowest-resolution grids employed.
For each case we list the test name, the finest-level grid resolution dxfin, the number of refinement levels (RL), the number of grid points
per NS radius (GP), and the half-side length of each nested grid (HSL) listed from finest to coarsest. We also list the evolution codes
(Evol. code), Riemann solver (Riemann sol.), reconstruction scheme (Recon. scheme), and conservative-to-primitive error tolerance (C-
to-P tol.) used in each simulation. In terms of the Riemann solver, we use either the Harten-Lax-vanLeer (HLL) [82] or Harten-Lax-
vanLeer-Einfeldt (HLLE) [98], depending on the algorithm available in each code. In all cases we use the piecewise parabolic method
(PPM) for primitives reconstruction, except for when we employ the WhiskyTHC code in which case use MP5.

Test dxfin RL GP HSL (M⊙) Evol. code Riemann sol. Recon. scheme C-to-P tol.

G2TOV 0.25 1 32 (10.0) MIL HLL PPM 10−8

GRHydro HLLE PPM 10−8

LSTOV 0.111 3 64 (8.9, 17.8, 35.6) MIL HLL PPM 10−8

Spritz HLLE PPM 10−8

G2BNS 0.155 7 40 (13.0, 17.9, 26.1, 60.0, 120.0, 240.0, 396.0) OIL HLL PPM 10−8

MIL HLL PPM 10−8

Spritz HLLE PPM 10−8

GRHydro HLLE PPM 10−8

WhiskyTHC HLLE MP5 10−8

LSBNS 0.14 7 50 (8.7, 17.4, 34.8, 69.6, 139.2, 278.4, 556.8) MIL HLL PPM 10−8

GRHydro HLLE PPM 10−8

WhiskyTHC HLLE MP5 10−8
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using the TOVSolver thorn within the Einstein Toolkit with a
central rest mass density of ρb;c ¼ 0.00129 and polytropic
constant of κ ¼ 100. We consider a static spacetime and do
not employ mesh refinement (i.e., the test is carried out in
the Cowling approximation). This is the only test we
consider under the Cowling approximation. The half-side
length of the solution grid extends to 1.25RNS, where
RNS ≈ 8M⊙ is the NS radius. Although the outer grid
boundary for test G2TOV is significantly close to the
surface of the stellar solution, we emphasize that test
G2TOV is done in the Cowling approximation, such that
the spacetime is static. We find that the regions near the grid
boundary remain atmospheric at all grid resolutions tested,
and because the spacetime is static, we do not worry about
radiation reflection from the grid boundaries affecting
the fluid solution. Moreover, for this test we are mainly
concerned about the convergence of the solution on the
central grid point which, as suggested by Fig. 2, changes by
at most ∼0.4% and 0.2% for the simulations employing
GRHydro and MIL, respectively.
Our canonical, medium, and high resolution grids

employ grid spacings such that there are 32, 40, and 50
grid points covering the NS radius, respectively. We evolve
with the MIL code and with the GRHydro code as a
comparison. In the case of the GRHydro evolution we employ
the Harten-Lax-vanLeer-Einfeldt (HLLE) [98] Riemann
solver and PPM reconstruction for maximum algorithmic
overlap with MIL.
In the top panel of Fig. 2 we show the evolution of the

relative change in the central rest mass density, where
Δρb;c ≡ ρb;cðtÞ − ρb;cð0Þ over a timescale of 20tdyn, where

tdyn ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρb;cð0Þ

q
ð26Þ

is the dynamical time. We show results for the low-,
medium-, and high-resolution grids, using solid magenta,
dashed blue, and dotted green lines, respectively. We find
that the evolution of a polytropic TOV star proceeds as
expected, with oscillations in the rest mass density not
exceeding ∼0.2% and decreasing over time as the model
settles. In the lower panel of Fig. 2 we also depict the
convergence order of Δρb;c=ρb;cð0Þ, with comparisons of
the canonical/medium and medium/high resolution results
depicted with the solid red and dashed blue lines, respec-
tively. As we increase the grid resolution we find that the
quantity Δρb;c converges to zero at the expected second-
order rate. In the right panel of Fig. 2 we show the results of
the G2TOV test in the case of evolution with the GRHydro

code. We find behavior in the GRHydro code which is
consistent with that of the MIL code. When evolving with
GRHydro we find that oscillations in the rest mass density are
of larger amplitude when compared to the MIL code, but
the solution nonetheless converges at the expected rate.

D. LSTOV: Test using a cold, magnetized TOV star
with realistic EOS

In this set of tests we consider a cold, magnetized TOV
star built using a realistic EOS. We construct initial data
with several codes as a way to understand the systematic
error introduced at the level of the initial data. In particular,
we use the Cook code [101], the RNSID code [102,103]

FIG. 2. Left panel: Results of test G2TOV in the case of evolution with the MIL code. In the top panel we show the relative change in
central rest mass density compared to the value at t ¼ 0, where Δρb;c ≡ ρb;cðtÞ − ρb;cð0Þ. We depict results for grid resolutions that
employ 32, 40, and 50 grid points per NS radius using solid magenta, dashed blue, and dotted green lines, respectively. In the bottom
panel we show the convergence rate, calculated using Eq. (22), for the quantity depicted in the top panel in cases where we compare the
canonical/medium and medium/high resolution results using solid red and dashed blue lines, respectively. Right panel: same as left
panels but for the GRHydro code.
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packaged within the Einstein Toolkit, and the LORENE code
[104]. In the following we focus on initial data constructed
with the Cook and LORENE codes, as the RNSID code
produces similar results. We construct initial data for a cold,
barotropic, β-equilibrated EOS obtained using the LS220
EOS. The initial configuration has a central energy (rest
mass) density of 0.8 × 1015 g cm−3 (0.74 × 1015 g cm−3),
ADM (rest) mass of 1.4M⊙ð1.55M⊙Þ, and circumferential
radius of RNS ¼ 12.69 km. We employ three levels of fixed
mesh refinement, with the innermost, finest refinement
level extending to 1.5RNS, and every subsequent level
extending to twice the distance of the adjacent finer level.
For all tests we employ a finest-level grid resolution of
dxfin ¼ RNS=64 (which we refer to as canonical resolution),
such that there are 64 grid points covering the NS radius.
We superimpose a purely poloidal magnetic on nonmag-
netized initial data which is confined to the interior of the
NS, using the Seed_Magnetic_Fields_BNS code
within the Einstein Toolkit. The field structure approximately
corresponds to that generated by a current loop [105],
with the toroidal component of the vector potential taking
the form

Aϕ ¼ πr20I0ϖ
2

ðr20 þ r2Þ3=2
�
1þ 15r20ðr20 þϖ2Þ

8ðr20 þ r2Þ2
�
; ð27Þ

where r0 is the current loop radius, I0 is the loop current,
r2 ¼ ϖ þ z2, ϖ ¼ ðx − xNSÞ2 þ ðy − yNSÞ2, and xNS and
yNS are the initial coordinates of the NS center-of-mass.
This choice of magnetic field exhibits a 1=r3 falloff outside
the NS, as expected for a dipole field, but as mentioned
above we do not extend the field to the exterior; the
Seed_Magnetic_Fields_BNS code employs a cutoff
pressure Pcut below which the vector potential is set to zero,
which we set to Pcut ≈ 0.01Pmaxð0Þ [where Pmaxð0Þ is the
maximum fluid pressure at the start of the simulation]. The
initial field strength is such that Bz;max ≈ 1.2 × 1017 G,
which corresponds to a ratio of magnetic to fluid pressure
of b2=2P ≈ 0.001, where b2 ≡ bμbμ.
As a comparison, we also show the evolution of this

model with the Spritz code [58], which uses an implemen-
tation of the Palenzuela solver for finite temperature,
tabulated EOSs. We employ the Spritz code with PPM
reconstruction and the HLLE Riemann solver for maxi-
mum algorithmic overlap with IllinoisGRMHD. In Fig. 3 we
show the evolution of the central rest mass density ρb;c (top
panels), maximum temperature Tmax (center panels using
dashed lines), central temperature Tc (center panels using
solid lines), and maximum magnetic field components
(lower panel) as functions of time. We depict results
corresponding to MIL and Spritz using magenta and blue
lines, respectively. In the top left, center left, and lower
panels of Fig. 3 we focus on cases where initial data was
constructed with the Cook code. We find that the evolution
of the rest-mass density is qualitatively the same between

the MIL the Spritz codes, exhibiting oscillations of at most
∼1%. The configuration shows an initial relatively large
oscillation in the rest mass density of ≳1% which peaks at
t ≈ 1–2tdyn. This initial large oscillation is likely due to the
creation of a cold barotropic EOS from the finite temper-
ature LS220 EOS table as previously discussed, which
requires interpolation and root-finding routines (we note
that similar oscillations happens in test cases with unmag-
netized initial configurations, which suggests that the
superimposed magnetic field is likely not the culprit behind
the oscillations). It is possible that the use of a cold EOS
created from a finite temperature EOS results in initial data
with percent-level numerical errors, which is consistent
with the oscillations of amplitude ∼1.01ρb;cð0Þ shown in
the top left panel of Fig. 3. We note that initial data
produced with the Cook code uses a compactified radial
grid (which is also true for both RNSID and LORENE) in
spherical polar coordinates, and as such interpolation of
the initial data onto the Cartesian grids of the Cactus

infrastructure results in additional numerical errors in the
initial configuration. As the initial configuration settles to
the nearest equilibrium, it begins to exhibit smaller oscil-
lations in the rest mass density of∼0.5%. These oscillations
decay over a timescale of t ≈ 20tdyn. In the center left panel
of Fig. 3, we show the evolution of the maximum and
central temperatures using dashed and solid lines, respec-
tively, for initial data constructed with the Cook code.
The initial configuration is cold for all solvers tested,
with a central (maximum) temperature of Tc ≈ 0.1 MeV
(Tmax ≈ 0.5 MeV). We note that initial data is constructed
for an isothermal star at T ¼ 0.1 MeV. However, once the
initial data for ρb, ϵ, Ye, and P are interpolated onto
the solution grid, we recover the temperature for self-
consistency among the fluid variables, which leads to errors
in the temperature profile at t ¼ 0, near the stellar surface.
Early in the simulations, regardless of the evolution code
used, the model develops a warm atmosphere, which
becomes increasingly warm as the star undergoes small
oscillations. The central configuration remains cold as the
temperature of the atmosphere increases and saturates to
Tmax ≈ 8 MeV. In the lower panel of Fig. 3 we also depict
the maximum value of the magnetic field for each simu-
lation (along the z-direction), again focused on the case
with initial data constructed with the Cook code. We find
that for test LSTOV the MIL code preserves the initial
magnetic field strength for all field components to a better
extent than the Spritz code. The largest change in the
magnetic field strength is seen in Bz, with a maximal
change of at most 7% for evolutions with the MIL code, but
a large oscillation of close to 25% for evolutions with the
Spritz code. For test LSTOV while evolving with the Spritz

code, we find that the large oscillation observed in Bz for
evolutions with the Spritz code persists at higher grid
resolutions as well, with changes in Bz;max of up to 25%
for simulations employing a ∼60% finer grid than that
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presented in Fig. 3 (such that there are 100 gridpoints
covering the NS radius). However, we find that this initial
large oscillation of the maximum magnetic field strength
decreases for weaker initial magnetic field strengths, with
initial values Bz;max ≈ 1 × 1015 G leading to an oscillation
of approximately 1%. In the next section, we discuss the
conservation of the magnetic field strength and structure in
the context of a binary neutron star inspiral and discuss
potential causes for the large change in magnetic field
strength and structure for evolutions with the Spritz code. We
note that the definition of the magnetic field differs by a
factor of

ffiffiffiffiffiffi
4π

p
between Spritz and IllinoisGRMHD, such that

Bi
Spritz ¼ ffiffiffiffiffiffi

4π
p

Bi
IllinoisGRMHD, which has been accounted

for in all tests.
To test the role of initial data on the evolution of the

model, we consider the same initial configuration but
instead built with the LORENE and RNSID codes. We
consider a model with the same central rest mass density
and employ the same grid hierarchy as in the case
considering initial data constructed with the Cook code.

In the right panel of Fig. 3 we present results of the
evolution with the MIL and Spritz codes using magenta and
blue lines, respectively, with focus on the case of initial data
built with the LORENE code. In all cases considered, we
observe initial oscillations of the rest mass density which
do not exceed 2% and subsequent oscillations which are at
the level of ∼1%. The central panel of Fig. 3 shows the
difference in the evolution of the maximum temperature
Tmax (which occurs near the atmospheric low-density
regions of the star) and of the central temperature Tc.
When using ID constructed with the LORENE code, we find
that both Tmax and Tc remain lower, when comparing to
cases that employ ID constructed with the Cook code. We
find that evolution with the Spritz code results in a central
region which remains cold (T ≤ 0.1 MeV, shown using the
blue solid line in the lower-right panel of Fig. 3) throughout
the simulation, whereas the MIL code produces slightly
warmer central regions of up to Tc ¼ 0.3 MeV. We note
that in the MIL code we impose a lower bound on the
temperature of 0.1 MeV to avoid EOS interpolations near

FIG. 3. Top panel: Central rest mass density ρb;c scaled by the value at t ¼ 0 as a function of time for test LSTOV in the case
of evolution with the MIL and Spritz codes; we show the results corresponding to evolution with the MIL and Spritz codes using
magenta and blue lines, respectively. The left and right panels correspond to simulations using initial data constructed by the Cook et al.
code [101] and the LORENE code [104], respectively. Center panel: Central temperature Tc (solid lines) and maximum temperature Tmax
(dashed lines) as functions of time, we use the same color scheme and left/right panel ordering as the top panel. Lower panel: Maximum
value of the magnetic field components Bz; we show the results corresponding to evolution with the MIL and Spritz codes using magenta
solid and blue dotted lines, respectively.
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the table limits. Such a low-temperature floor is not
imposed in the Spritz code, which may be the reason
for the slight difference in Tc between the two codes.
A central temperature of Tc ¼ 0.3 MeV is still significantly
cold from a nuclear perspective and tests of TOV star
evolution without imposing the lower bound on T results in
a temperature profile which is consistent with the Spritz

evolutions. The evolution of the rest mass density and
temperature presented in Fig. 3 is typical of stable TOV
stars. The fact that a realistic TOV star remains stable
and cold over a timescale of t ≈ 20tdyn and the qualitatively
similar behavior between the MIL and Spritz codes
indicates that our implementation of the solvers within
ConservativeToPrimitive is reliable. Tests with
RNSID initial data produce very similar results to those
presented in Fig. 4.
We consider the models constructed using the Cook code

for a resolution study. We evolve the Cook initial data in
two additional higher-resolution simulations with both the
MIL and Spritz codes. For medium (high) resolution tests,
we employ grid resolutions of dxmed ¼ dxcan=1.25 (dxhi ¼
dxcan=1.252) such that there are 80 (100) grid points
covering the NS radius, where dxcan ¼ dxfin as listed in
Table I for the LSTOV test. In the top panel of Fig. 4 we
show the L2 norm of the Hamiltonian constraints kHk for
the canonical (solid red lines), medium (dashed green lines)
and high (dotted blue lines) resolution grids, in cases where
we evolve with the MIL (left panel) and Spritz (right panel)
codes. We find that kHk is generally small and converges
toward zero (the expected value in the continuum limit) for

higher-resolution grids. We also note that the evolution of
kHk is in agreement between the MIL and Spritz codes.
However, we find that kHk converges toward zero at a rate
which is slower than expected, for both evolution codes
considered. Specifically, we find a linear convergence rate
of kHk toward zero. We note that the expected convergence
rate of the evolutions we consider is second order, and that
second-order convergence is demonstrated for polytropic
initial data (see Fig. 2). It is likely that the lower-order
convergence observed for tests employing realistic EOSs is
due to errors in the initial data. In particular, the initial data
codes we consider make use of compactified spherical
polar coordinate grids, which are not the same as the
evolution grids. Numerical errors are therefore inevitable
when interpolating solutions from their original compacti-
fied coordinates to the Cartesian grids employed within the
Einstein Toolkit. We point out that the evolution of magnetized
TOV stars presented in this section is consistent with stable
evolution, and coincides with the results presented in [58]
for Spritz. As there are likely errors at the level of the initial
data when using realistic EOSs we instead consider the self-
convergence of the solution. In the lower panels of Fig. 4
we show kHk scaled according to second-order conver-
gence [i.e., n ¼ 2 in Eq. (23)] for test LSTOV while
comparing the canonical and high resolution (solid red
lines) and medium and high resolution solutions (dashed
blue lines). We again show results for evolution with the
MIL and Spritz codes using the left and right panels,
respectively. The lower panels of Fig. 4 demonstrate that
the solution exhibits self-convergence at the expected order.

FIG. 4. Left panel: Results of test LSTOV in the case of evolution with the MIL code. We depict the convergence of the L2 norm of the
Hamiltonian constraints kHk in the case of a magnetized TOV star built using the LS220 EOS with the LORENE code, evolved with the
MIL code and Palenzuela solver. The top panel depicts kHk for the low-, medium-, and high-resolution grids using solid red, dashed
green, and dotted blue lines, respectively. The bottom panel depicts kHk scaled according to second-order convergence while comparing
the canonical and medium (CR, MR) and medium and high (MR, HR) resolution results using red and blue lines, respectively. Right
panel: Same as the left panel but in the case of evolution with the Spritz code.
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We also consider the same test of convergence in cases with
initial configurations built with the LORENE and RNSID
codes and find similar results to those presented in Fig. 4.
We point out that the construction of TOV initial data is
algorithmically very similar between the Cook, RNSID,
and LORENE codes, as they all make use of compactified
spherical coordinate grids. As such, interpolation errors that
results from a change in the coordinate system will arise in
all tested cases.

E. G2BNS: Test of a BNS with a gamma-law EOS

As an additional test of the solvers implemented within
ConservativeToPrimitive, we consider the evolu-
tion of a BNS system built assuming a polytropic EOS.
We consider this test because the OIL code can reliably
simulate such a system and because it provides a stringent
test of the MIL code new algorithms in a highly relativistic
scenario. We assume a polytropic constant of κ ¼ 123.61
and adiabatic index of Γ ¼ 2. We construct initial data for
an equal mass BNS with an orbital separation of 45 km
using the LORENE code; the ADM mass and radius of each
binary component areMNS¼1.4M⊙ and RNS ¼ 10.36 km,
respectively. During the evolution, we assume a Γ-law EOS
with adiabatic index Γ ¼ 2. In this test we employ AMR,
with two sets of nested boxes centered on each NS and
each employing seven levels of refinement. We employ an
additional set of nested boxes with seven levels of refine-
ment centered at the origin of the solution to reliably
resolve the BNS merger remnant. The outer grid boundary
is located at Rout ¼ 582.12 km ≈ 38.4RNS and the half-side
length of the finest level around each star extends to
∼1.25RNS with each subsequent coarser level extending
to ηRNS where η ∈ ð1.7; 2.5; 5.8; 11.6; 23.2Þ. The finest-
level grid resolution is set to dxfin ≈ RNS=40, such that we
initially resolve each binary component with at least 40 grid
points along the radius. For test G2BNS, we consider both
an unmagnetized, and magnetized scenario, because not all
of the evolution codes considered can handle a constrained-
transport evolution of the magnetic field. In cases where a
magnetic field is also considered, we seed purely poloidal
fields which are confined to the interior of each NS, with
vector potential of the form Eq. (27), such that the initial
maximum field strength is Bmax ≈ 2.3 × 1015 G.
We simulate the system with the use of MIL and track the

evolution of the rest mass density ρb, fluid three-velocity vi,
and the magnetic field Bi, when relevant. We approximate
the merger time tmer by considering the time when the rest
mass density reaches a maximum during the evolution. We
compare to several other open-source codes in the liter-
ature, including the OIL, GRHydro, WhiskyTHC, and Spritz

codes. Similar to other tests, we employ all evolution codes
considered with the HLL/HLLE Riemann solver and PPM
reconstruction for a suitable comparison to IllinoisGRMHD.
WhiskyTHC case we use MP5 reconstruction [106]. We
also note that WhiskyTHC uses an internal rescaling of the

rest mass density, and as such the initial conditions
between WhiskyTHC and other cases is not identical.
However, this internal rescaling of the rest mass density
results in a maximal relative difference of less than 0.4%
between cases.

1. Unmagnetized BNS

In cases where we do not consider the evolution of the
magnetic field, we are free to compare the results provided
by all of the open-source GRHD codes considered, as they
are all able to handle an unmagnetized BNS system built
with a polytropic EOS. As such, we compare the results
of simulations using the MIL, OIL, GRHydro, WhiskyTHC,
and Spritz codes. We emphasize that the numerical grids,
initial data, reconstruction scheme, conservative-to-primi-
tive schemes, and flux treatment for all of these simulations
are chosen for maximum overlap, with the latter three likely
having differences in implementation between codes. The
comparison of results presented in this section was the
closest scenario to a one-to-one comparison between open-
source numerical codes that we could obtain.
In the left panel of Fig. 5 we show the maximum rest mass

density in the simulations for the unmagnetized case of test
G2BNS. We show results for the GRHydro (solid purple line),
OIL (dashed magenta line), MIL with and without3 the use
of the solvers within ConservativeToPrimitive
(dash-dotted golden and dotted orange lines, respectively),
Spritz (dash-dash-dotted line), and WhiskyTHC (blue dash-dash-
dot-dotted line) codes. We find that during the inspiral, all
codes behave qualitatively the same, with the maximum
rest mass density exhibiting oscillations of ≲2% for the first
t ≈ 5 ms of the inspiral. We find that the merger time for
these simulations all fall within 9.81� 0.1 ms, resulting in a
difference of at most 2%. On the other hand, we find
significant deviations of the simulation results after the
merger. Each code considered results in different size
oscillations of the rest mass density for the first 10 ms after
merger. The GRHydro code results in the largest postmerger
oscillations in ρb;max, and is the only case where ρb;max shows
a tendency to grow. In all cases besides GRHydro, the
evolution of ρb;max is qualitatively similar, and the post-
merger value of ρb;max oscillates between 0.9ρb;maxð0Þ−
ρb;maxð0Þ. We find qualitatively similar GW emission in all
cases, but the frequency corresponding to peak GWemission
shows a spread of at most ∼15% between cases. Given that
all codes use similar flux treatments (we note that in all other
tested codes, the closest Riemann solver to the HLL solver

3We consider an evolution with the MIL code that does not
employ the solvers within ConservativeToPrimitive,
and instead uses the original solvers within the OIL code. We
label this test as MILnoC2P in Fig. 5. The fact that the MILnoC2P
evolution proceeds identically to the OIL case ensures that other
changes made to the code (e.g., the changes that allow for passive
Ye advection) do not affect the dynamics.
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adopted in IllinoisGRMHD is the positivity-preserving HLLE
solver [98], which is what we adopt in evolutions with Spritz,
GRHydro, and WhiskyTHC) and reconstruction schemes (in the
case of WhiskyTHC, we use MP5 while in all other cases
PPM is used), along with identical numerical grid, initial
data, conservative-to-primitive error tolerance, and space-
time evolution scheme, it is unclear why the GRHydro code
deviates so strikingly from all other codes, and why there is a
general lack of quantitative agreement in the postmerger
evolution between most codes. Key differences between
codes may arise in the implementation of conservative-to-
primitive algorithms, which may be the chief reason for
discrepancies between codes. We leave the investigation of
algorithmic implementations within open-source GRHD
codes, and a more detailed code comparison, to future work.
In the right panel of Fig. 5 we show a measure of the

performance for each code. Specifically, we show the
amount of physical time produced per hour for each
simulation, using the same amount of computational
resources (specifically, 224 Intel Haswell V3 cores).
We find that, for this case study, the WhiskyTHC code
performs the fastest (producing around 0.07 ms=hour
throughout the inspiral and in the postmerger phase,
respectively), while the Spritz code performs the slowest
(producing around 0.03 ms=hour during the inspiral and
0.035 ms=hour in the postmerger phase, respectively). All
other codes perform similarly, with 0.05 ms=hour during
the inspiral and 0.07 ms=hour in the postmerger. We note

that the hierarchy suggested by the right panel of Fig. 5 is
not a final verdict on the performance of each code, and
only demonstrates the performance for the particular case
considered. We find that changes to the specific settings
governing the conservative-to-primitive inversion and
atmosphere control can significantly impact the perfor-
mance of the codes considered. For example, we find that
the conservative-to-primitive routines within Spritz often
perform as reliably as in other codes with the use of fewer
algorithmic iterations, which serves to speed up the code.

2. Magnetized BNS

In cases where we do consider a magnetic field for test
G2BNS, we compare the evolution provided by the MIL
code to that provided by the OIL and Spritz codes (note that
the Spritz code uses an implementation of the Noble solver
for polytropic EOSs). In the top panel of Fig. 6 we show
equatorial snapshots of the rest mass density for test
G2BNS at time t ≈ 7.3 ms, corresponding to first contact
between the binary components. From left to right in Fig. 6
we show snapshots for evolution with the OIL, MIL, and
Spritz codes. In the rightmost panel of Fig. 6 we also show a
snapshot corresponding to the MIL code in the case where
we use an alternative set of reconstructed variables to
calculate the specific enthalpy h (labeled MILb), as will be
discussed in further detail below. We find that all codes
considered produce very similar results as far as the merger

FIG. 5. Left panel: Maximum rest mass density ρb, scaled by the value at t ¼ 0, for an unmagnetized BNS assuming a Γ ¼ 2
polytropic EOS. We depict the results corresponding to the GRHydro (solid purple line), OIL (dashed magenta line), MIL with and
without the use of the solvers within ConservativeToPrimitive (dash-dotted golden and dotted orange lines, respectively), Spritz
(dash-dash-dotted line), and WhiskyTHC (blue dash-dash-dot-dotted line) codes. Right panel: Same format as the left panel, but instead
depicting the physical time produced by each simulation per hour of run time, across 224 Intel Haswell V3 cores. We use identical
initial data, grid structures, reconstruction schemes, conservative-to-primitive error tolerance, and computational resources in all cases,
as well as similar flux treatments. The tests presented here are as close as possible to a one-to-one comparison between codes that we
could achieve.
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time and features during inspiral are concerned. We find
that the merger times agree to within 2%, specifically
tmer ¼ 47.85tdyn, tmer ¼ 47.85tdyn, and tmer ¼ 49.04tdyn for
the OIL, MIL and Spritz cases, respectively. At a time close
to and preceding merger, pictured in the top panel of Fig. 6,
the main difference between the results of each code can be
observed in the region between the binary components,
likely due to how low density, near-atmosphere regions are
treated in the conservative-to-primitive solvers imple-
mented in each code.
In the lower panel of Fig. 6 we show snapshots of the

z-component of the magnetic field during the inspiral at
time t ≈ 3.54 ms. Moving from left to right, we again show
results for the OIL, MIL, and Spritz codes; the rightmost
panel corresponds to the MIL code with primitive
reconstruction that agrees with the OIL code [see Eq. (28)],
which we label MILb. Specifically, in OIL the calculation
of specific enthalpy in the flux computation uses an
analytic expression for ϵ, based on a Γ-law EOS. In the
case where the adiabatic index for the thermal component
of the EOS is Γth ¼ 2, the specific enthalpy becomes

h ¼ 1þ ϵðPrÞ þ
Pr

ρb;r
¼ 1þ 2Pr

ρb;r
; ð28Þ

where Pr and ρb;r are the reconstructed pressure and rest
mass density, respectively. On the other hand, the solution
within MIL and the Spritz codes calculate these specific
enthalpies based on the reconstructed values of ϵ

h ¼ 1þ ϵr þ
Pðϵr; Ye;r; ρb;rÞ

ρb;r
; ð29Þ

where Pðϵr; Ye;r; ρb;rÞ is the pressure for a generic EOS
based on the reconstructed values of the specific internal
energy ϵr, electron fraction Ye;r, and rest mass density ρb;r.
In other words, the OIL code uses the reconstructed
pressure to calculate h, whereas the MIL and Spritz codes
use the reconstructed specific internal energy. The calcu-
lation of h based on Eq. (29) is required for self-consistency
among the fluid variables in the case of generic EOSs,
but in the case of analytic EOSs, it is preferable to proceed
with calculation of h based on Eq. (28) for accuracy. The
differences in use of reconstructed variables plays a role in
the preservation of the magnetic field structure. We find
that the OIL code tends to advect the magnetic field
structure accurately for longer times when compared to
the other tested codes. The MIL and Spritz evolutions all
produce similar features in the magnetic field near the low
density parts of the star. In particular, solutions employing
generic solvers, which are compatible with realistic EOSs,
produce “kinks” in the magnetic field structure, as high-
lighted by the arrows in the lower panel of Fig. 6. We note
that, despite the artifacts seen in the magnetic field structure
for solvers compatible with realistic EOSs, the magnetic
field is generally properly advected during inspiral in all
cases. Moreover, the sizes of the artifacts decrease (and the
time at which they appear increases) with the use of higher-
resolutions grids. The agreement of MIL with the well-
tested Spritz and OIL codes suggests that the fluid and
magnetic field solutions these codes provide are reliable for
highly dynamical systems. For the sake of consistency with
the OIL code, we adopt the same methods within MIL for
calculating specific enthalpies in cases where we consider
analytic EOSs. We find that this results in a field structure

FIG. 6. Top panel: Equatorial snapshots of the rest mass density ρb (scaled by the maximum value at t ¼ 0) for test G2BNS at
t ≈ 7.3 ms. From left to right we show results for the OIL, MIL, and Spritz codes. The rightmost panel depicts snapshots for an evolution
using the MIL code wherein we use an alternative calculation of the specific enthalpy h [see Eqs. (28) and (29)]. Bottom panel: Same as
the top panel, but showing the equatorial snapshots of the z-component of the magnetic field Bz (scaled by the maximum value at t ¼ 0)
for test G2BNSmag at t ≈ 3.54 ms. We point out common features that develop in the magnetic field structure using black arrows.
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that is conserved throughout more of the inspiral, as
illustrated by the disappearance of the “kinks” in the field
structure in the rightmost snapshot in Fig. 6, wherein we
use the same method for calculating specific enthalpies as
in the OIL code. In other words, moving forward, within
the MIL code we calculate h based on Eqs. (28) and (29) for
analytic and finite temperature EOSs, respectively.

F. LSBNS: Tests using a BNS with finite temperature
equations of state

In this section we consider the evolution of BNS systems
built using a finite-temperature EOS. Specifically, we
consider the LS220 EOS and construct initial data for an
unmagnetized, equal-mass BNS with ADM massMADM ¼
2.7M⊙, and initial separation of 45 km. Our evolution grid
extends to approximately 830 km at the outer boundary
and consists of three additional sets of six nested cubes
(corresponding to seven levels of refinement); we center
one set of cubes at the origin of the solution grid, and the
other two sets of cubes are used to track the center of each
neutron star during the inspiral. The grid resolution of each
nested cube is half that of the adjacent larger cube, and the
finest-level grid resolution is set such that each NS is
resolved with at least 50 grid points per radius during the
inspiral; generally, the grid resolution of a given refinement
level is dxl¼2ð7−lÞRNS=50, where l ¼ 7ð1Þ labels the finest
(coarsest) resolution grid and RNS ≈ 10.31 km. We note
that although these grid resolutions are lower than the
standard used for production-level runs, such grid reso-
lutions are routinely considered in the context of BNS
mergers as low-resolution simulations which are useful in
convergence studies [107,108]. We employ these grids
because we were predominantly interested in comparisons
of different code features. In the context of BNS mergers,
we leave comparisons using high-resolution simulations
and a full convergence study to future work, since each of
the codes we consider has been tested extensively for
convergence. The half-side length of the finest-resolution
grid is set to rHSL;7 ¼ 1.25RNS ≈ 12.95 km; generally, the
half-side length corresponding to a given refinement level
is rHSL;l ¼ 1.25RNS2

ð7−lÞ. In the case of the MIL code, we
use the HLL Riemann solver. In all other cases we use the
HLLE Riemann solver. We use PPM for primitive
reconstruction for all evolution codes considered except
WhiskyTHC, in which case we use MP5.
As a way to compare the different open-source GR(M)

HD codes currently available, we consider the evolution of
this system with use of the MIL, WhiskyTHC, and GRHydro

codes. We present the maximum rest mass density for each
evolution in Fig. 7, using a purple solid line, orange dashed
line, and green dotted line for the case of MIL, WhiskyTHC,
and GRHydro, respectively.
We identify the merger time tmer as the time where

the l ¼ 2, m ¼ 2 mode of the dominant polarization of the
GW strain peaks; for reference, we show these GWs

(specifically the Newman-Penrose scalar ψ4 scaled by
the system ADM mass and extraction radius of r ¼
440 km) in the lower panel of Fig. 7. We find merger
times of tmer ¼ 13.57 ms, tmer ¼ 11.72 ms, and tmer ¼
12.14 ms in the case of the MIL, WhiskyTHC, and GRHydro

evolutions, respectively, which results in an approximately
13.6% relative difference, at most, in merger times between
cases. In Fig. 8 we show the characteristic strain [109]
extracted from the simulations in test LSBNS, assuming
a source at a distance of 10 Mpc. We find very similar
inspiral GW signals from all codes considered, with relative
differences in the phase of the gravitational wave strains of
at most ∼2%. We find that the largest discrepancy between
GW signals arises in the immediate postmerger environ-
ment. The postmerger environment is when the matter is in
a highly turbulent and dynamical state; in this stage of the
merger that the relative difference in the phase of the GW
strain can reach as high ∼20% (when comparing the MIL
and WhiskyTHC cases), but is typically closer to ∼10%. After
this highly dynamical state, as the remnant begins to settle,
all codes again produce very similar GW signals. The
frequency corresponding to peak postmerger GW emission
f2;2peak is similar between all codes, with the MIL, WhiskyTHC,

and GRHydro evolutions resulting in f2;2peak ¼ 3.11 kHz,

f2;2peak ¼ 3.06 kHz, and f2;2peak ¼ 3.13 kHz.
In the top, middle, and lower panels of Fig. 9 we show

snapshots of the rest mass density and temperature in the

FIG. 7. Top panel: Maximum rest mass density ρb;max as a
function of time for a BNS merger simulation using the LS220
EOS (test LSBNS). We depict the evolution of ρb;max in the case
of the MIL, WhiskyTHC, and GRHydro codes using solid purple,
dashed orange, and dotted green lines, respectively. Bottom
panel: Same as the top panel, but showing the dominant
component of the Newman-Penrose scalar as a measure of the
GWs, scaled by the ADM mass M and extraction radius
rex ¼ 440 km.
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equatorial plane at key points during the merger for the case
of MIL, WhiskyTHC, and GRHydro, respectively. For each
evolution code considered we depict four snapshots,
ordered by time from left to right at different stages of
the merger corresponding to times t ∈ ð4.25; 8.37; 12.70;
18.88Þ ms. In the left-most panels in Fig. 9 we depict the
system at a time during the inspiral. We generally find that
the binary components remain cold during the inspiral, with
typical temperatures inside the stars of T ≲ 1 − 2 MeV.
Temperatures of Oð1 MeVÞ within the stars are expected
during the inspiral [36], and may be due to the growth of
numerical error seeded at the level of initial data or
interpolation errors from the EOS tables. We find that
the stellar atmospheres become significantly warm as the
stars inspiral, reaching temperatures of Tatmo≈5−10MeV
before even the first orbit is complete (note that we
employ a density cutoff to define the atmosphere, such
that all matter with below ρb;atmo ≈ 6.17 × 107 g cm−3 ≈
10−7ρb;maxð0Þ is set to the atmosphere as detailed in
Sec. III B). This temperature profile (cold temperatures
of T ≈ 1 MeV within the stars and higher temperatures
Tatmo ≈ 10 MeV in the atmospheres) is maintained during
the entire inspiral up to merger, as depicted by the leftmost
panels in Fig. 9. We find that, during the inspiral, the
warmest temperatures develop in the case of the GRHydro

and WhiskyTHC evolutions, reaching as high as T ≈ 5 MeV
in the bulk of the star and Tatmo ≈ 15 MeV in the

atmosphere. These cases also exhibit warm, low-density
clouds which develop around the binary components
throughout the inspiral. However, the atmosphere is
dynamically unimportant.
In the second-from-left column in Fig. 9 we depict the

systems at a time near merger. At this point in the evolution
the first significant shock heating happens as the cores
of the two stars collide. In all cases, temperatures in the
shear layer between the two stellar cores can climb to
T ≈ 30 − 40 MeV. As the two cores continue to orbit and
merge, the warm shocked material is redistributed toward
the outside of the merger remnant, resulting in a warm
envelope of T ≈ 10 MeV surrounding the merged core
which can reach temperatures of T ≈ 40 MeV. We depict
such states in the third column of Fig. 9, which roughly
correspond to a few milliseconds after merger. Finally, in
the rightmost panels of Fig. 9 we show the state of the
merger remnants at a time corresponding to approximately
7–9 ms after merger. As the merger remnant settles, the
final configurations approach a warm central object with
temperatures T ≈ 10 MeV. We find that in all cases this
central object is surrounded by a distribution of matter
which resembles a ring of hot material (with temperatures
ranging T ≈ 40 − 50 MeV), which becomes cooler with
increased radial distance from the central configuration
(dropping to temperatures T ≈ 10 − 20 MeV). Neutrinos
are expected to play a significant role not only in determin-
ing the composition of the matter during BNS mergers, but
potentially also in determining the postmerger temperature
evolution. At temperatures above T ≈ 10 MeV, thermal
neutrinos are expected to be produced, and their energy
spectrum is affected by the local temperature and density,
which in turn determines the locations of neutrino decou-
pling [36,110]. Simulations employing state-of-the-art,
high-accuracy neutrino transport schemes suggest that
neutrinos could remain sufficiently trapped in regions near
and inside the remnant [111]. This results in a neutrino
trapped gas that converts thermal energy in the fluid into
radiation energy carried by the neutrinos [112], and could
result in an over 10% change in the temperature of dense
regions in the remnant, when compared to simulations that
employ lower-accuracy neutrino transport schemes [111].
Changes in the thermal profile in turn affect the mass
distribution of the remnant, which could have implications
for the GW spectrum associated with the postmerger
evolution [36]. Presently, MIL does not account for
neutrinos and as such we cannot capture these effects in
the simulations presented in this work. Future code devel-
opment of MIL is expected to include neutrino transport
beginning with neutrino leakage by interfacing with the
ZelmaniLeak code [113] and moving forward from
there to more accurate neutrino transport schemes.
We leave a full code comparison between different GR
(M)HD codes, including the effects of neutrino transport, to
future work.

FIG. 8. GW signals corresponding to test LSBNS. We depict
the characteristic strain at a distance of 10 Mpc from the source in
the case of the MIL, WhiskyTHC, and GRHydro codes using solid
purple, dashed orange, and dotted green lines, respectively. For a
better comparison, we use the same duration signals in all cases,
corresponding to times ranging from t ≈ 10 ms to t ≈ 20 ms
(with signal duration τsignal ≈ 10 ms), which allows us to focus on
the postmerger signals. The vertical lines of the same color and
pattern mark the peak frequency for each case.
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For a clear view of remnant properties, we consider rest
mass density cutoffs which allow us to identify regions
of the remnant. We identify the remnant itself and its
core as regions in the postmerger environment above ρb ≥
1013 g cm−3 and ρb ≥ 1014 g cm−3, respectively [10]. We
highlight the remnant and its core using dashed and solid
black lines in Fig. 9, respectively. We find that, in all cases,
immediately following the merger a dense core is formed
near the origin which typically extends to coordinate
distance of ∼15 km from the origin and is surrounded
by lower density material which extends to coordinate
distance ∼20 km. This HMNS remnant is surrounded by a
low-density, disklike structure.

The two key factors that determine the final fate of a
BNS merger remnant are the remnant rest mass and the
maximum rest mass of a uniformly rotating NS (i.e., the
“supramassive” limit mass) Msupra for the given EOS.
We note that, for hadronic EOSs like the ones considered
in this work, the value of Msupra is closely related to the
value of the maximum rest mass of a nonrotating starMTOV
and is expected to be about 20% larger Msupra ≈ 1.2MTOV

[101,114–117] (although generally this mass increase can
reach up to about 35% [118]); in the case of the LS220
EOS, Msupra ¼ 2.83M⊙, and the total system rest mass in
test LSBNS is Mb ¼ 2.89M⊙. One of the main sources of
support against gravitational collapse in BNS merger

FIG. 9. Top row: Equatorial snapshots of the rest mass density (left half) and temperature (right half) for test LSBNS, in the case of
evolution with the MIL code. From left to right we depict snapshots at times t ¼ 5.32 ms, t ¼ 8.37 ms, t ¼ 12.70 ms, and
t ¼ 18.88 ms, respectively. The top (bottom) colorbar corresponds to the rest mass density (temperature). Middle row: same as top tow
but in the case of evolution with the WhiskyTHC code. We outline regions above which the rest mass density takes on values of
ρb ¼ 1013 g cm−3 and ρb ¼ 1014 g cm−3 using dashed and solid black contours, respectively. Bottom row: same as top row but in the
case of evolution with the GRHydro code.
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remnants comes from the large amounts of differential
rotation in the system (thermal support can also contribute
significantly against gravitational collapse [36]). Differential
rotation can greatly increase the maximum mass a star can
support [119–121], but, as differential rotation is removed
from the system (for example, via braking by magnetic
fields [11,122]), the remnant will approach a uniformly
rotating NS. If the total remnant mass is below Msupra for a
given EOS, we may expect a long-lived NS remnant [123].
On the other hand, for systems with Mtot > Msupra, we may
expect collapse. In all cases, we observe a transient HMNS
remnant, as expected for this total binary mass and EOS. A
key difference in the postmerger evolution for the simu-
lations we consider is in the survival time of the HMNS
remnant. In the MIL case, we find that the remnant does not
collapse to a black hole (BH) by the end of evolution
(tfin ∼ 40 ms). On the contrary, the remnant collapses after
tcoll ≈ 21.6 ms and tcoll ≈ 25.2 ms in the case of the
WhiskyTHC and GRHydro evolutions, respectively (demon-
strated by the sharp rise in the rest mass density in Fig. 7
and corroborated by the collapse of the lapse function α in
both cases).
The remnant survival time τremnant is an important

quantity which significantly affects several observables
associated with BNS mergers. For instance, neutrino
irradiation from a metastable HMNS may affect
ejecta properties, which would in turn affect the KN
signal [123–125]. Additionally, τremnant is expected to
affect the nucleosynthesis in accretion disk outflows, with
shorter HMNS lifetimes resulting in relatively low lan-
thanide and actinide abundances [126] due to the shorter
neutrino irradiation times [124,127–129]. The significant
differences in remnant survival times τremnant exhibited
by each code suggests that additional studies must be
carried out which rely on the value of τremant extracted
from NR simulations. The remnant survival time may
sensitively depend on the EOS [130,131], neutrino treat-
ment (relevant for cooling and emergent viscous effects)
[132–134], magnetic field treatment (relevant for angular

momentum transport) [11,122,134,135], and (as sug-
gested by the tests presented here) differences in the
implementation of algorithmically equivalent numerical
methods. Additional, in-depth studies remain to be carried
to systematically understand all of the aforementioned
effects on τremnant.
The survival time of the remnant can also play a role

in the development of different fluid instabilities. Fluid
instabilities that uniquely develop in the postmerger envi-
ronment—such as the one-arm spiral instability and mag-
neto-rotational instability (MRI)—would be arrested upon
gravitational collapse to a black hole. For instance, a
potential observable signature which arises from the one-
arm spiral instability [136,137] is the long-lived, sustained
powering of the l ¼ 2, m ¼ 1 GW mode [138], which
typically has half the characteristic frequency of the
initially dominant but decaying l ¼ 2, m ¼ 2 GW mode
[138,139]. Over relatively long timescales, and as long as
the postmerger massive neutron star remnant has not
collapsed to a black hole, the one-arm spiral mode can
continuously power the emission of the l ¼ 2, m ¼ 1 GW
mode [138]; simulations which produce shorter remnant
survival times may not allow the one-arm spiral insta-
bility to develop. In Fig. 10 we show the l ¼ 2, m ¼ 2
(using solid lines) and l ¼ 2, m ¼ 1 (using dashed lines)
GW modes for test LSBNS. In all simulations we see
increased emission of the m ¼ 1 mode at a time close to
merger, suggesting the potential early development of the
one-arm spiral instability. In the WhiskyTHC and GRHydro

evolutions, the amplitude of the m ¼ 1 mode remains
roughly constant until collapse, at which point the
emission in this mode ceases. However, in the case of
the MIL evolution, which has not collapsed by the end of
simulation, GW emission in the m ¼ 1 mode continues
and is further amplified, while emission in the m ¼ 2
mode decays. Due to the different remnant collapse times,
the m ¼ 1 mode is allowed to continue growing in the
MIL evolution, but not in the WhiskyTHC and GRHydro

evolutions.

FIG. 10. Dominant coefficients of the spin-weighted decomposition of the Newman-Penrose scalar Ψ2;m
4 (scaled with the extraction

radius rex and ADM mass M) as a function of retarded time tret (shifted by the time of merger tmer) for the l ¼ 2, m ¼ 1 (dashed lines)
and l ¼ 2, m ¼ 2 (solid lines) GW modes for test LSBNS. In the left, center, and right panels we show results for evolution with MIL
(purple lines), WhiskyTHC (orange lines), and GRHydro (green lines), respectively.
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Another set of instabilities that is relelvant in the post-
merger environment, and are thereby affected by the remnant
collapse time, are magnetic instabilities. In particular, the
MRI can develop in the strongly differentially rotating
environments following a BNS merger [9,140–144]. As
long as differential rotation with an appropriate profile is
sustained in a massive neutron star postmerger remnant, the
MRI may develop and produce exponential magnetic field
amplification (see [32,145] and references therein). To
consider the amount of differential rotation in the postmerger
remnants depicted in Fig. 9 we calculate the approximate
angular velocity in the orbital plane Ω ¼ vϕ, using Eq. (24).
In Fig. 11 we show the radial profile of the angular velocity
ΩðϖÞ, averaged along the azimuthal direction and in time,
for test LSBNS in the case of evolution with the MIL code
(depicted using purple lines and contours) and the GRHydro

code (depicted using green lines and contours). We time-
average over a time window of approximately 2 ms ranging
from t ≈ 22 ms to t ≈ 24 ms for both simulations. We focus
on a fixed time window leading up to the gravitational
collapse of the GRHydro model. We find that the remnants
produced in each simulation still exhibit significant amounts
of differential rotation well after the time of merger.
The supramassive limit for EOS LS220 falls below the total
system mass. Therefore, we may reasonably expect a

delayed collapse once the configuration is no longer sup-
ported by differential rotation. The timescale on which
differential rotation is removed in BNS merger remnants
is typically ∼Oð100 msÞ [12,146], which is significantly
longer than the timescales probed by our dynamical simu-
lations. However, such arguments assume that typically a
large fraction of the angular momentum must be lost or
transport for collapse to proceed, which is not generally the
case. Therefore, although we may expect the same final
remnants—a black hole—in all of our simulations for test
LSBNS, the timescales over which this happens varies
significantly across codes. We note that similar amounts
of differential rotation are observed in the GRHydro case,
suggesting that it was not the lack of differential rotation
support which led to the collapse of the postmerger remnants
in that case. As the massive NS remnants for both the MIL
and GRHydro cases exhibit a significant amount of differential
rotation until the time of collapse in the GRHydro case, we
may expect the MRI to develop, if sufficiently resolved, in
analogous simulations which include magnetic fields.
However, our results suggest that the MRI could have a
significantly longer time to develop in evolutions with the
MIL code, due to a potentially significantly longer remnant
lifetime than we can probe. On the other hand, the magnetic
field can also reduce or prolong the lifetime of the remnant.
The comparison cases presented in this section suggest
that understanding the error introduced by using different
numerical methods in NR simulations of BNS mergers is
crucially important to the questions of magnetic field
amplification mechanisms, fluid instabilities, and observ-
ables associated with such systems. Finally, we note that grid
resolution can significantly impact the survival times of
remnants (see [40] and references therein). We leave a full
investigation of the effect of magnetic fields, grid resolution,
and numerical schemes to future work.

V. CONCLUSION AND OUTLOOK

In this work we have demonstrated the capabilities of the
MIL code, a code which builds upon the current open
source version of IllinoisGRMHD by including necessary
changes for microphysical EOS compatibility. We outlined
the algorithmic structure of IllinoisGRMHD and expanded on
the additions that MIL provides. Specifically, we discussed
the implementation of the electron fraction advection
equation and the implementation of new state-of-the-art
conservatives-to-primitives solvers within the code. The
main products of these aforementioned additions are the
MIL code itself and a new standalone thorn from primitives
recovery, ConservativeToPrimitive, which is in
principle able to interface with any GR(M)HD code that
uses the Cactus infrastructure. Over a barrage of tests we
established that the MIL code works as well as other
publicly available GR(M)HD codes with similar capabil-
ities. Crucially, for the systems considered, the MIL code

FIG. 11. Time-averaged, azimuthally-averaged angular veloc-
ity as a function of radial distance on the equatorial plane for the
case where we use the MIL (purple solid line) and GRHydro
(dashed green line) codes in test LSBNS. We time-average over a
period of approximately 2 ms, ranging from simulation times of
t ≈ 22 ms to t ≈ 24 ms. The purple and green contours depicts
the range of values for the instantaneous angular velocity in the
time window we consider for the MIL and GRHydro evolutions,
respectively. The profiles indicate that the remnant is differ-
entially rotating at the time leading up to gravitational collapse.
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agrees to a large extent with the Spritz code GRHydro, and
WhiskyTHC codes.
Throughout the work we considered the numerical sol-

utions provided by MIL for a wide range of astrophysical
relevance. In particular, we consider several TOV and BNS
configurations, all of which provide stringent tests of the
MIL code. Where relevant, we compare with other open
source GR(M)HD codes. We find general agreement and
similar convergence properties to the GRHydro, Spritz, and
WhiskyTHC codes, as well as to the current open source
version of IllinoisGRMHD (referred to as OIL throughout the
work). In some cases we find improved performance for
MIL when compared to GRHydro (a property which is carried
over from the OIL code as explored in [56]). We find general
quantitative agreement between all codes considered in
scenarios where the matter remains at low temperatures
throughout the evolution. The largest differences observed
between the results of each code appear during highly-
dynamical scenarios such as during BNS mergers and in the
immediate postmerger evolution. Although we find agree-
ment in the postmerger peak frequency of the characteristic
strain, other quantitative differences arise in these highly
dynamical scenarios, likely due to the differences in the
implementation of conservative-to-primitive algorithms. For
example, some differences we highlight include: (1) the
GRHydro and WhiskyTHC codes leading to higher temperatures
than the MIL code in a BNSmerger scenario, typically by up
to ΔT ≈ 10 MeV; (2) merger times which differ by approx-
imately 10% between codes; (3) significantly different
survival times of the postmerger remnant; (4) large oscil-
lations in the rest mass density for GRHydro when comparing
to other codes, and general lack of quantitative agreement in
the postmerger evolution; and (5) better preservation of
the initial magnetic field structure and strength during the
inspiral in the OIL and MIL codes when compared to the
Spritz code.
Given that all codes considered allow some freedom in the

flux treatment and reconstruction scheme, we ensure in all
our tests that these two aspects of the codes have maximal
algorithmic overlap. However, even if two codes employ the
same algorithm, the implementation methods will be differ-
ent in each case. These differences in algorithmic imple-
mentation may lead to the quantitative differences noted
throughout the work. Despite the quantitative differences
highlighted, we emphasize that all codes nevertheless
produce qualitatively consistent (magneto)hydrodynamics
evolutions and result in quantitatively similar gravitational
waves. We note that the MIL code provides additional
freedom over GRHydro, Spritz, and WhiskyTHC in the primitives
inversion algorithm used during any given simulation
through the thorn ConservativeToPrimitive,
allowing for suitable comparisons with different codes
and the ability to use the optimal conservative-to-primitive
solver for the problem at hand. Additionally, the use of
several solvers within ConservativeToPrimitive for

a given simulation allows for a robust and efficient primitives
recovery solution in the case of finite temperature EOSs,
regardless of the variable space probed.
The updates included in MIL make possible the inves-

tigation of important, open questions surrounding BNS
mergers. In particular, MIL will allow us to investigate the
interplay between the effects of magnetic fields and micro-
physical and finite temperature EOSs in BNS mergers, the
calculation of nucleosynthesis yields associated with BNS
mergers, and provides the groundwork for the inclusion of
neutrino effects within IllinoisGRMHD. Future work utilizing
the full capabilities of MIL will investigate all of the
aforementioned phenomena. For instance, the tests pre-
sented in Sec. IV F will be expanded upon for a full
investigation of the interplay between magnetic field and
realistic EOS effects. Additionally, because the MIL code
provides a dynamical description of several fluid and
thermodynamic quantities—including the rest mass den-
sity, temperature, specific entropy, and electron fraction—
its output may be used with nuclear reaction network codes
such as SkyNet [147] which only require such quantities
as input. In turn, nuclear reaction networks provide insight
into the nucleosynthesis rates associated with different
stages of BNS mergers. Full GRMHD simulations of
BNS mergers with magnetic field constrained transport
have not received much attention in the context of nucleo-
synthesis, and this is now possible with MIL. Finally,
because the electron fraction is known at all times
during evolutions with MIL, the code may be expanded
further to include neutrino effects. For instance, one may
include neutrino leakage by interfacing MIL with the
ZelmaniLeak thorn [113], or include more accurate
descriptions of neutrino transport that move beyond leak-
age beyond leakage [26,148–151]. Such an extension to
MIL will help elucidate the combined effect of magnetic
and neutrino driven outflows after a BNS merger.
Specifically, neutrino effects are expected to have a
significant role on the electron fraction of the outflow
[151]. The constrained transport magnetic field evolution
and finite temperature description of MIL coupled with
accurate neutrino transport could provide some of the most
detailed insight into the physics following a BNSmerger. In
addition to the aforementioned changes, we also hope to
implement a refluxing scheme in MIL [152,153], or to
interface MIL with the Refluxing thorn4 as has been
done for the GRHydro and WhiskyTHC codes. Although
conservation of ADM mass and momentum is achieved
to within truncation error in IllinoisGRMHD [83], the imple-
mentation of a refluxing scheme could improve the con-
servation of relevant fluid quantities. We note that another
recent extension to IllinoisGRMHD similar to ours (albeit
using alternative methods and implementations) was
considered in [55]. A detailed comparison of the codes

4https://bitbucket.org/dradice/refluxing/src/master/.
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considered in this work along with the results presented in
[55] is a crucial step toward understanding systematic
errors in NR simulations of BNS mergers. We hope to
consider these and other investigations in future work with
the MIL code. We conclude the present work with a note
about the availability of the MIL code. The source code for
MIL, along with the supporting thorns, is publicly available
at https://github.com/pilambdaepsilon/UAThorns.We also
provide examples of parameter files, initial data, and
equation of state files for all of the examples considered
in this work.
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