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Ciudad de México, CDMX 04510, Mexico

Mikhail V. Beznogov
National Institute for Physics and Nuclear Engineering (IFIN-HH), RO-077125 Bucharest, Romania

and Instituto de Astronomía, Universidad Nacional Autónoma de México,
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Thermal evolution of neutron stars is studied in the fðRÞ ¼ Rþ αR2 theory of gravity. We first review
the equations of stellar structure and evolution for a spherically symmetric spacetime plus a perfect fluid at
rest. We then present numerical results for the structure of neutron stars using four nucleonic dense matter
equations of state and a series of gravity theories for α ranging from zero, i.e., general relativity, up to
α ≈ 1016 cm2. We emphasize properties of these neutron star models that are of relevance for their thermal
evolution as the threshold masses for enhanced neutrino emission by the direct Urca process, the proper
volume of the stellar cores where this neutrino emission is allowed, the crust thickness, and the surface
gravitational acceleration that directly impact the observable effective temperature. Finally, we numerically
solve the equations of thermal evolution and explicitly analyze the effects of altering gravity. We find that
uncertainties in the dense matter microphysics, such as the core chemical composition and superfluidity/
superconductivity properties, as well as the astrophysical uncertainties on the chemical composition of the
surface layers, have a much stronger impact than possible modifications of gravity within the studied
family of fðRÞ theories. We conclude that within this family of gravity theories, conclusions from previous
studies of neutron star thermal evolution are not significantly altered by modification of gravity theory.
Conversely, this implies that neutron star cooling modeling may not be a useful tool to constrain deviations
of gravity from Einstein theory unless these are much more radical than in the fðRÞ ¼ Rþ αR2 framework.
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I. INTRODUCTION

Neutron stars contain one of the densest forms of matter
and the strongest gravitational fields in the observable
Universe. Possibly higher densities have been reached in
relativistic heavy ion collisions but only in a short-lived
unstable form and with extremely high energy densities [1],
while the densest form of matter in the interior of black
holes is not observable. Neutron stars can also be copious
neutrino emitters [2,3] and some exhibit the strongest
known magnetic fields [4]. While the strongest gravita-
tional potentials are found near the horizon of black holes,
higher curvatures are present within neutron stars due to
their smaller radii [5]. As such, they are prime candidates to
study the interplay between the four fundamental forces of
Nature.
Immediately after A. Einstein presented his final for-

mulation of the field equations of general relativity (GR) in

1915 [6,7], D. Hilbert showed that these can be very
elegantly deduced from a minimal action principle assum-
ing a Lagrangian density given by the Ricci scalar R [8].
Such formulation would pave the way for exploring
alternative theories of gravitation to GR following a simple,
albeit powerful, formalism. For instance, the idea of
replacing R with a more general function fðRÞ can be
traced back to H. Weyl who already in 1918 proposed the
addition of an R2 term to the Lagrangian density [9], while
keeping gμν as the sole dynamic field generating gravity.
Removing this latter assumption proved to be a theoreti-
cally stimulating alternative to GR, possibly the most
famous example being that of Jordan-Brans-Dicke sca-
lar-tensor theory [10] (for a more complete story, see
Ref. [11]). From a purely theoretical point of view,
exploring alternate theories of gravitation emerge from
the attempts of merging gravity and quantum field theory.
A hint suggesting going beyond GR is necessary for this
task can be found, for instance, in the relative success of
incorporating higher-order powers of the scalar curvature R*mnava@astro.unam.mx
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in the Lagrangian density [12,13], although this approach is
still not exempt of limitations such as renormalization or
the physical scales of importance for these higher-order
terms [14–16]. From an experimental/observationnal point
of view probing gravity can be ordered from the so-called
strong gravitational regime, characterized by large values
of GhMi=c2hri (e.g. ∼0.17 for neutron stars) to systems
exhibiting a low value belonging to the weak gravitational
regime (e.g. ∼10−6 for the Sun, ∼10−7 for a typical disk
galaxy). Since within GR there exist marked differences
between both regimes, it is suspected the former one might
be the best arena to test the validity of GR by contrasting its
predictions with those from alternative theories of gravity.
It is in the not so weak field of the solar vicinity of the
Mercury orbit that deviations of gravitation from Newton
description were first evidenced and it is reasonable to
expect that inadequacies of Einstein gravity may be first
found in the strong field environment of neutron stars or
stellar mass black holes [5].
It is, however, in the galaxy level ultra weak field regime

that hints of the need of modification to the Newton/
Einstein description were found by the invocation of the
presence of dark matter in galaxy clusters [17] and within
galaxies through the anomalies in their rotation curve
[18,19]. In spite of extensive searches, dark matter has
so far eluded detection [20,21]. It was proposed that a
modification of the dynamics (“MOND”) could be an
alternative to the presence of this unidentified dark matter
[22] (see, e.g., for a review [23]) and these ideas have been
extended within the schemes of alternate theories of
gravitation [24–26]. On a wider cosmological scale alter-
nate theories of gravitation have been extensively invoked
[27,28] to provide a different explanation to the problems
of the late accelerated expansion and the early inflationary
phase of the Universe as, within GR, the existence of the
exotic dark energy (occupying nearly ∼70% of the total
energy-matter budget while remaining invisible) is neces-
sary to explain these phenomena. For example, fðRÞ
extensions of GR gained significant interest as a natural
explanation for either an early Universe inflationary phase
(as, e.g., fðRÞ ¼ Rþ αR2 [29]) or late Universe acceler-
ated expansion (as, e.g., fðRÞ ¼ R − μ4=R [30] or fðRÞ ¼
R − βR�½1 − expð−R=R�Þ� [31]), both considering gμν as
the only dynamical field generating gravity throughout its
interplay with ordinary baryonic matter. Consequently,
among the zoo of possible extensions of gravity theory
beyond GR [32], fðRÞ theories have remained popular as
they provide a conceptually simple scheme with minimal
departure from the very successful Einstein theory [33,34].
Going beyond fðRÞ ¼ R, however, has the enormous

cost that the field equations are not anymore of second
order. When dealing with the structure of a spherical star,
the result is that the Tolman-Oppenheimer-Volkoff equa-
tions of hydrostatic equilibrium, which are a simple set
of 3 first order ordinary differential equations in GR

(see, e.g., [35]) that are straightforward to integrate, are
now replaced by much more complicated equations.
Newtonian stars have been amply studied in the context
of the weak field limits solar system constraint (see, e.g.,
the reviews [27,28,32,33]. It was, however, initially sug-
gested [36] that in the case of relativistic stars, i.e., stars in
which the pressure P is of comparable magnitude to the
energy density ε, a curvature singularity may develop,
unless the theory’s parameters are very finely tuned, and
casted doubts on the overall viability of fðRÞ gravity
theories. This was apparently confirmed in Ref. [37]
who studied the textbook model of a uniform density
compact star and found that it could not sustain massive
enough such objects to describe a neutron star. However,
simple neutron star models built on a polytropic equation of
state were soon presented where no singularity appeared
[38–45], and even uniform density neutron star models
could actually be developed [46]. The possibility of the
existence of neutron star models in fðRÞ gravity was
definitely confirmed in works that employed realistic
equations of states [39,43] and presented the first M − R
diagrams: it was then demonstrated that equations of state
that may be ruled out within GR because they fail the test of
being able to sustain a 2M⊙ neutron star (the then highest
measured pulsar mass [47]) may pass this test within an
fðRÞ ¼ Rþ αR2 gravity theory [43]. Many further works
confirmed these first results as, e.g., [48–53]. In particular,
these results showed that “exotic” models of dense matter
as, e.g., matter containing hyperons that soften the equation
of state, which may not be able to sustain a 2M⊙ within GR
may be able to do it when gravity is described by an fðRÞ
theory [54] or variants of it as Eddington inspired Born-
Infeld gravity [55]. Subsequently, models of rotating
neutron stars were presented (see, e.g., [56,57]) as well
as neutron star in the presence of ultrastrong magnetic
fields (see, e.g., [58,59]). More recently, attention has been
drawn toward gravitational wave emission during neutron
star-neutron star mergers(see, e.g., [60–62]) and the pos-
sible existence of supermassive neutron stars in the light of
the GW190814 event [63].
More intimate properties of a system, beyond its ground

state properties, are revealed by its excitation levels that
manifest themselves at finite temperatures. Studies of the
thermal evolution of neutron stars open a window on such
finite temperature properties as transport coefficients,
neutrino emission, and specific heat [64–66]. For example,
the occurrence of fast neutrino emission by processes such
as the direct Urca one, in which neutrinos are emitted when
baryons undergo circular beta and inverse beta transforma-
tions, provides us with information about the details of the
chemical composition of the matter such as the proton
abundance [67,68] or the presence of constituents beyond
nucleons, such as meson condensates [69–71], hyperons
[72], or deconfined quark matter [73]. Moreover, the single
particle excitation spectrum of a baryonic constituent can
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be strongly modified by pairing, as, e.g., in neutron
superfluidity or proton superconductivity, with dramatic
consequences on the thermal evolution of the star (see,
e.g., [74]).
Our focus in the present work will precisely be the

interplay between the structure and evolution of neutron
stars and strong field gravity. We see it as a two way issue:
how can we use what we know and understand, mitigated
by what we do not know and/or do not understand, about
neutron stars to constrain strong field gravity and, recip-
rocally, how do uncertainties in our description of strong
field gravity limit our possibilities to constrain the proper-
ties of dense matter by studying neutron stars. We will
restrict ourselves to modified (compared to GR) gravity
theories with fðRÞ ¼ Rþ αR2. However, we consider that
the function fðRÞ does not necessarily have a single
analytical expression representing it in the whole possible
range of R values. We thus take the position that the simple
analytical expression fðRÞ ¼ Rþ αR2 represents fðRÞ in
the extreme environment of a compact star while a different
expression could describe it in the context of the Solar
system and on Earth, or at galactic and cosmological scales.
As such, constraints from cosmology, the Solar system or
the Eöt-Wash experiment [75], all in the context of R → 0,
are not expected to constrain the α of our fðRÞ.
As is well known [34,37,46,76], it is possible in principle

to rewrite the fðRÞ Lagrangian density as a scalar field
theory one by defining an auxiliary field Φaux ¼ df=dR
and an associated potential VðΦauxÞ. At that point, the
usage of conformal transformations becomes frequent
as it allows to (a) recast the Lagrangian density as
L ∼ R� þ LðΦ�

auxÞ, i.e., GR with an appropriate scalar
curvature R� and conformally transformed scalar-field
Φ�

aux, (b) deduce equations of motion which are, in some
sense, easier to handle numerically [32,52,57,77]. The turn-
back of this approach is the necessity of clarifying what we
must understand as physical equivalence of the field
equations and/or the observable quantities. Thus, we opt
for analyzing the original Lagrangian density, its equations
of motion and physical predictions without redefining
fields or using conformal transformations.
The structure of this paper is as follows: in Sec. II the

field equations of the αR2 theory are reviewed, considering
a perfect fluid and a static and spherically symmetric
spacetime. In Sec. III, the essential aspects of the energy
balance and heat transport equations are discussed. The
numerical implementation of the equations and the results
are given in Secs. IV and V. We discuss our results in
Sec. VI and briefly conclude in Sec. VII.

II. THE f ðRÞ GRAVITY THEORY AND THE
STELLAR STRUCTURE EQUATIONS

To avoid ambiguities we first summarize our geometric
conventions. We adopt the metric signature ð−;þ;þ;þÞ
and take the Riemann tensor as

Rα
βμν ¼ ∂μΓα

βν − ∂νΓα
βμ þ Γα

σμΓσ
βν − Γα

σνΓσ
βμ ð1Þ

where ∂μ denotes partial derivation with respect to the
coordinate xμ and Γα

μν is the Levi-Civita connection

Γα
μν ¼

1

2
gαεð∂μgνε þ ∂νgμε − ∂εgμνÞ; ð2Þ

which serves to define the covariant derivative ∇μ for this
work as, e.g., for a rank two tensor Tα

β,

∇μTα
β ¼ ∂μTα

β þ Γα
σμTα

β − Γσ
μβTα

σ: ð3Þ

The contraction Rα
βαν ¼ Rβν is the Ricci tensor, its trace

R ¼ gαβRαβ is the scalar curvature and the combination

Gμν ¼ Rμν −
1

2
gμνR ð4Þ

is the Einstein tensor. Regarding the D’Alembertian oper-
ator applied to a scalar field ϕ, it is defined by

□ϕ ¼ ∇μ∇μϕ ¼ 1ffiffiffiffiffiffi−gp ∂ν½
ffiffiffiffiffiffi
−g

p
gμν∂μϕ�; ð5Þ

with g the determinant of the metric tensor. Finally, for
single-variable functions we employ either dfðxÞ=dx or f0
to denote derivation with respect to the argument x.
Regarded as an effective field theory for gravity, the

motivation for this theory consists in the replacement of the
standard Hilbert-Einstein Lagrangian density L ∝ R with a
function of the scalar curvature fðRÞ, which in order to be
ghost-free must satisfy [52]:

df
dR

≥ 0;
d2f
dR2

≥ 0: ð6Þ

Being an extension of GR, gravity is exclusively described
by the metric tensor, whose dynamics is enclosed in the
action functional which, for the particular choice of
fðRÞ ¼ Rþ αR2, is

S ¼
Z ffiffiffiffiffiffi

−g
p

d4x
1

c

�
c4

16πG
ðRþ αR2Þ þ LM

�
ð7Þ

where c is the speed of light in vacuum, G is Newton’s
constant, α a non-negative real number with dimensions
of length squared, and LM is the matter Lagrangian. By
performing a null variation with respect to gμν, i.e δS ¼ 0,
one arrives to the field equations [32,34,44,78]:

ð1þ 2αRÞGμν þ
αR2

2
gμν ¼ 2α½∇μ∇ν − gμν□�Rþ 8πG

c4
Tμν

ð8Þ
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where Tμν is the energy-momentum tensor [79]

Tμν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LMÞ
δgμν

ð9Þ

which, for this theory of gravity, still satisfies the con-
servation law

∇μTμν ¼ 0: ð10Þ

In contrast to GR, the trace T ¼ gμνTμν and the scalar
curvature R are related by a differential expression,

ð6α□ − 1ÞR ¼ 8πG
c4

T; ð11Þ

which constitutes an additional constraint for the variables
of the model.
To study nonrotating neutron stars, we model the metric

as static and spherically symmetric (SSS):

ds2 ¼ −e2ΦðrÞc2dt2 þ e2ΛðrÞdr2 þ r2dΩ2; ð12Þ

where dΩ2 ¼ dθ2 þ sin2 θdϕ2. The coordinates in this
metric have exactly the same interpretation as in GR.
The 2D metric on a surface (sphere) with r and t constant is
identical to the one in Euclidean space, in particular the area
of this sphere is SðrÞ ¼ 4πr2 and r can be called the “areal
radius.” The proper radial length, dl, measured by a local
observer at rest on the shell is related to dr by dl ¼
exp½ΛðrÞ�dr while their proper time interval dτ is given by
dτ ¼ exp½ΦðrÞ�dt. We also impose the condition that the
metric tends to Schwarzschild’s

ΛðrÞ þΦðrÞ ¼ 0;

e2ΦðrÞ ¼
�
1 −

2GM
c2r

�
−1
; ð13Þ

as r → ∞. Hence, t can be interpreted as the proper time of
an observer at rest at infinity andM the (total) gravitational
mass of the star.
For neutron stars, we are working under the assumption

that they are adequately described by a perfect fluid defined
by its pressure P and energy density ε providing a simple
energy momentum tensor

Tμν ¼ ðεþ PÞuμuν þ Pgμν; ð14Þ

with uμ the fluid rest-frame unitary 4-velocity, uμuμ ¼ −1.
By inserting this tensor and the SSS metric in the field
equations, we obtain the following set of second-order
nonlinear differential equations [78,80,81] as a generalized
set of TOV equations for hydrostatic equilibrium for a
spherically symmetric star

dΦ
dr

¼ 1

A1

�
4πGPre2Λ

c4
−
½A2e2Λ þ 2A3�

4r

�
; ð15Þ

dΛ
dr

¼ 1

A1

�
4πGεre2Λ

c4
þ ½A2e2Λ þ 2A3�

4r
þ αr

d2R
dr2

�
; ð16Þ

d2R
dr2

¼ 1

A6

�
A1A4e2Λ

6α
−
1

r

�
A5 −

A2e2Λ

2

�
dR
dr

�
; ð17Þ

where, for simplicity of notation, the following functions
have been defined:

A1 ¼ 1þ 2αRþ αr
dR
dr

; ð18Þ

A2 ¼ αr2R2 − 4αR − 2; ð19Þ

A3 ¼ 1þ 2αRþ 4αr
dR
dr

; ð20Þ

A4 ¼
8πG
c4

ð3P − εÞ þ R; ð21Þ

A5 ¼
4πG
c4

r2e2ΛðP − εÞ þ 1þ 2αR − 2αr
dR
dr

; ð22Þ

A6 ¼ 1þ 2αR: ð23Þ

From the r-component of the energy-momentum tensor
conservation law, Eq. (10), we deduce the differential
equation for the pressure,

dP
dr

¼ −ðPþ εÞ dΦ
dr

: ð24Þ

We thus have five structural functions, ΦðrÞ, ΛðrÞ, RðrÞ,
PðrÞ, and εðrÞ, and four equations, Eqs. (15), (16), (17),
and (24), which need to be completed by an EOS giving a
relationship of the form P ¼ PðεÞ [82]. Instead of ε it is
also customary to employ the mass density ρ such that
ε ¼ ρc2. Microscopic calculations of the EOS and astro-
physical processes in general are commonly phrased in
terms of baryons through their correspondent density n,
such that P ¼ PðnÞ and ε ¼ εðnÞ. For our study the
temperature dependence of the EOS can be neglected
and we do not need further equations to determine the
structure of the star, except for the outer layers of the
envelope as discussed below in Sec. VA.
For compact objects, the exterior is defined as the region

where both pressure and energy density are identically
zero. From the differential equations, it is clear that
these conditions do not imply a vanishing scalar cur-
vature outside the objects, but it is nevertheless possi-
ble to demand it as an asymptotic limit, recovering
Schwarzschild’s metric in the process, Eq. (13). Indeed,
from the differential equations for Λ and Φ we have
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dΦ
dr

þ dΛ
dr

¼ αr
A1

d2R
dr2

: ð25Þ

For the left hand side to vanish, d2R=dr2 ¼ 0, which
implies that R ¼ 0 is a possible asymptotic solution.
Aside from this fact, let us stress that the treatment of R
as an independent variable has the advantage of keeping a
second order system of equations instead of a fourth-order
one: applying the geometric definition R ¼ gμνRμν to the
SSS metric leads to R ∝ Φ00, hence R00 ∝ Φð4Þ. Notice that
in GR the scalar curvature is given by

RðGRÞ ¼ 8πG
c4

ðε − 3PÞ ð26Þ

and naturally vanishes outside the star. In the center of a
neutron star RðGRÞ can be positive or negative and values of
jRðGRÞj of the order of 10−12 cm−2 are found.
We will describe the boundary conditions needed to

solve these structure equations in details in Sec. IVA.

A. Terminology and notations

We will simply refer to this theory of gravity with
fðRÞ ¼ Rþ αR2 as the “αR2 theory” or as “αR2 gravity.”
For the parameter α, we adopt the following notation:

αX ¼
�
GM⊙

c2

�
2

× 10X−10 ¼ 2.18 × 10X cm2; ð27Þ

considering for this work the cases X ¼ 9; 10; 11; 12; 14,
and 16.

III. THE STELLAR EVOLUTION EQUATIONS

The equations describing the thermal evolution of a
spherically symmetric star in the metric (12) depend only
on the form of this SSS metric and not on the particular
theory of gravity, within certain conditions (see last para-
graphs of this section). They are derived in all details,
within the GR framework, in Ref. [83,84] and summarized
in [85] and we here sketch their derivation to convince the
reader that the very same equations are still valid as long as
the SSS metric of Eq. (12) is employed.
Let TðrÞ be the temperature on the shell of areal radius r

and LðrÞ the diffusive luminosity at the same position. Both
T and L refer to the physical quantities measured by a local
observer at rest on the said shell [86]. In flat space-time L
can be assumed to be related to the gradient of T through
the Fourier law

L ¼ −4πr2K
dT
dr

ð28Þ

where K is the thermal conductivity in the shell (as it
would be measured by a local observer at rest). Still in

Minkowski space-time, energy conservation in this shell is
expressed by

dL
dr

¼ 4πr2
�
qh − qν − n

dðε=nÞ
dt

þ P
n
dn
dt

�
ð29Þ

where qν is the neutrino emissivity, i.e., the energy loss per
unit time and unit volume due to neutrino emission, and
similarly qh represents heat injection by such processes as
nuclear reactions, magnetic field decay, friction due to
differential rotation, etc. When transcribing these two equa-
tions to curved space-time, one has to consider that dr and dt
inEqs. (28) and (29) are proper quantities, i.e., they aredl and
dτ, respectively, and the derivative must thus we replaced as

d
dt

→
d
dτ

¼ e−ΦðrÞ d
dt

ð30Þ

and

d
dr

→
d
dl

¼ e−ΛðrÞ
d
dr

ð31Þ

while the factors 4πr2 remain without change since r is an
areal coordinate. A crucial point is that in the presence of
gravity conservation of energy must include the gravitational
energy and hence, in the space-time with metric (12) the
conserved energy is the redshifted energy. If EðrÞ is some
energy measured at r by some local observer at rest, the
corresponding redshifted energy is ẼðrÞ≡ exp½ΦðrÞ�EðrÞ. A
radial derivative dE=dr involves comparing the energies
Eðrþ δrÞ and EðrÞ: Eðrþ δrÞ must be moved from rþ δr
to r and become Ê ¼ exp½Φðrþ δrÞ −ΦðrÞ�Eðrþ δrÞ so
that the radial derivative becomes

dE
dr

→ lim
δr→0

Ê − EðrÞ
δr

¼ e−Λ
dðeΦEÞ

dr
: ð32Þ

This same rule applies to T in Eq. (28) since it represents the
energy of the diffusing particles that generate L. For the
derivative of L in Eq. (29), however, two redshift factors are
necessary because L is energy per unit time and time is itself
blue-shifted. With these consideration it is easy to verify that
the stellar evolution equations in the curved space-time
described by the SSS metric (12) are

dðeΦTÞ
dr

¼ −
1

K
eΦþΛL
4πr2

ð33Þ

and

dðe2ΦLÞ
dr

¼ 4πr2eΛ
�
e2Φqh−e2Φqν−eΦn

dðε=nÞ
dt

þeΦP
n

dn
dt

�
ð34Þ
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which have exactly the same form as in the well known GR
formulation. We will describe the boundary conditions
needed to solve these evolution equations in details in
Sec. VA.
WithinNewtonian thermodynamics a system is isothermal

when T is uniform within it which implies, by Eq. (28), that
L ¼ 0. In curved space-time we invert the argument and call
“isothermal” a star in which L ¼ 0 which then implies that
T̃ðrÞ≡ eΦðrÞTðrÞ is uniform, i.e., independent of r. T̃ðrÞ is
commonly called the redshifted temperature.
Apparently, the energy balance and heat transport equa-

tions are insensible to the gravity theory chosen. This holds
only if certain conditions are met: first, an equivalence
principlemust exist in the gravity theory under consideration.
Second, if additional fields (either scalar, vector or tensor
ones) are included in theLagrangian density (which is not the
case for the present work), it must be verified that no
thermodynamical consequences arise from their introduc-
tion. Finally, if conformal transformations are employed
(either to simplify the task of solving the field equations or to
invoke the analogy with a scalar field), both structure and
thermal differential equations must be solved in the same
frame. In the present work, all the equations and analysis are
carried out without invoking conformal transformations due
to the intricacy of constructing physical frames and the
interpretation of the emerging results from the variables
involved [33,34,87–89].

A. Physical ingredients

In the interior where matter is degenerate we can
simplify the term ndðε=nÞ=dt in Eq. (34) as

n
dðε=nÞ
dt

¼ cv
dT
dt

ð35Þ

with

cv ¼ n
dðε=nÞ
dT

ð36Þ
being the specific heat, per unit volume, at constant
volume. Notice that in degenerate matter there is no need
to distinguish cv from the specific heat at constant pressure
cP [90]. The microphysics ingredients, specific heat cv,
thermal conductivity K and neutrino emissivity qν, we
employ are standard and described in [91,92].
For completeness we briefly present in Table I the

dominant neutrino emission processes occurring in the
core that we consider with schematic expressions for their
emissivities and mark them as either “slow,” “medium,” or
“fast” to briefly qualify their efficiency. The direct Urca
(DUrca) process, being a highly efficient mechanism of
neutrino emission, plays a fundamental role in the cooling
of neutron stars [67,68,93]. This process is only possible
when the proton fraction is high enough, a criterium that
can simply be stated as

n1=3p þ n1=3e ≥ n1=3n ð37Þ

where nn, np, and ne are the (number) densities of neutrons,
protons, and electrons, respectively. This criterium is very
restrictive and is only satisfied at high densities above a
threshold density ρDU which is dependent on the EOS.
Of outmost importance in the cooling of neutron stars is

the occurrence of pairing, i.e., superfluidity/superconduc-
tivity, of baryons which results from the instability of the
Fermi surface under the formation of Cooper pairs in the
presence of an attractive interaction [94,95]. Various type of
pairing are possible depending on the spin and angular
momentum of the pairs, the most relevant ones being 1S0 (in
spectroscopic notation, i.e., corresponding to spin-singlet

TABLE I. Examples of neutrino emitting processes in neutron star coresa.

Name Process Emissivityb qν (erg cm−3 s−1)

Modified Urca nþ n → nþ pþ e− þ ν̄e ∼2 × 1021RT8
9

Slow
(neutron branch) nþ pþ e− → nþ nþ νe

Modified Urca pþ n → pþ pþ e− þ ν̄e ∼1021RT8
9

Slow
(proton branch) pþ pþ e− → pþ nþ νe

Bremsstrahlung nþ n → nþ nþ νν̄ ∼1019RT8
9

Slow
nþ p → nþ pþ νν̄
pþ p → pþ pþ νν̄

Cooper pair breaking and formationc nþ n → ½nn� þ νν̄ ∼5 × 1021RT7
9

Medium
pþ p → ½pp� þ νν̄ ∼5 × 1019RT7

9

Direct Urca n → pþ e− þ ν̄e ∼1027RT6
9

Fast
pþ e− → nþ νe

aTable from [65].
bT9 denotes T in units of 109 K and for each process the “control coefficient”R ¼ RðT=TcÞ is introduced to take

into account the extra temperature dependence due to pairing. Each process has its own corresponding R.
c½nn� and ½pp� denote neutron and proton Cooper pairs.
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with orbital angular momentum L ¼ 0 and total momen-
tum J ¼ 0) and 3P2 (corresponding to spin-triplet with
L ¼ 1 and J ¼ 2). We refer the reader to the reviews
[96,97] for extensive presentations of the topic. The first
important effect of pairing for our purpose is the appear-
ance of a gap at the Fermi surface in the single particle
excitation spectrum, once the temperature is below the
phase transition critical temperature Tc, that results in a
strong suppression, often as a Boltzmann-like exponential,
of all processes involving the paired component. This
possibly affects all microphysics ingredients as cv, K,
and qν. The second important effect is the opening of a new
neutrino emission channel in which the energy released in
the formation of a Cooper pair is emitted as a νν̄ pair. The
pairing phase transition, being of second order, implies the
continuous formation and breaking of Cooper pairs as T
drops below Tc which renders this process, dubbed the
“Cooper pair breaking and formation,” or PBF process,
very efficient. For the pairing critical temperature, among
the many published models, we choose a few representative
ones that we plot in Fig. 1. In our models, we include the
following channels: X ¼ 1S0 and Y ¼ 3P2 for neutrons, and
Z ¼ 1S0 for protons. For clarity in the discussion, we adopt
the notation ðX; Y; ZÞ for labeling the models.

IV. STELLAR STRUCTURE

We first here describe our numerical method to solve the
stellar structure equations and then examine several aspects

of this structure that have a potential direct impact on the
stellar thermal evolution.

A. Numerical implementation

The structure equations, Eqs. (15), (16), (17), and (24),
were solved employing a 4th order Runge-Kutta method of
adaptative stepsize, implemented in FORTRAN77 language
[105]. The radial interval was split into ½0; r�� and ½r�; rg�,
where r� is the radius of the star and rg is referred as the
gravitational radius. The first is formally defined as the
point where Pðr�Þ ¼ 0. Numerically, it translates into
Pðr�Þ ∼Oð10−27P0Þ, with P0 being the central pressure.
This implies that for r ∈ ½r�; rg� the system is solved by
employing ε ¼ P ¼ 0. Regarding rg, it is defined as the
coordinate where RðrgÞ ∼Oð10−30R0Þ beyond which the
Schwarzschild metric can be applied.
By demanding regularity of the equations at the

origin of coordinates, one obtains the boundary conditions
[44,60,80,106]

Λð0Þ ¼ 0;
dΛ
dr

				
r¼0

¼ dΦ
dr

				
r¼0

¼ dR
dr

				
r¼0

¼ 0: ð38Þ

Since ΦðrÞ is absent from the right-hand side of the
equations, a finite Φð0Þ can be chosen at the beginning
of the calculations, and at the end of them perform a re-
scaling ΦðrÞ → ΦðrÞ − ΛðrgÞ −ΦðrgÞ in order to recover
Schwarzschild’s solution for r ≥ rg.
There is no restriction on the initial condition on the

pressure, P0, which can be chosen arbitrarily, thus gen-
erating a family of solutions. The corresponding energy
density, ε0, or mass density, ρ0, are then obtained directly
from the EOS. In this paper we consider four core EOSs:
APR [107], arising from a nonrelativistic model with
relativistic corrections, and three EOSs, MS-A1, MS-B1,
MS-C1 which are built from relativistic mean field calcu-
lations [108,109]. These are completed by a low density
EOS for the inner crust from [110] and for the outer crust
from [111]. Our motivation for using the three EOSs MS-
A1, MS-B1, and MS-C1, instead of some more popular
EOSs as has been done in other works on neutron star
structure, is that these EOSs were specifically constructed
to comply not only with recent restrictions on the neutron
star radius deduced from both NICER and LIGO/Virgo
observations but, moreover, to display a broad range of
critical masses for the onset of the direct Urca process, a
critical issue for neutron star evolution not considered in
previous works restricted to the study of just neutron star
structure, going from 1.5 up to 1.9M⊙ (and reaching almost
2M⊙ once the APR EOS is included). We refer the reader to
Appendix A of Ref. [109] for details.
Given a central density ρ0, or central pressure P0, to find

R0 a combination of shooting and bisection methods was
implemented. Two examples of such integrations are shown

FIG. 1. Superfluidity/superconductivity critical temperature Tc
vs mass density ρ for the nucleon pairing gaps considered in this
work: SFB [98], WAP [99], GC [100], and T [101] for 1S0
neutrons; Min a [91], Cas A [102] and Ioffe 2NT [103] for 3P2

neutrons and CCDK [104] for 1S0 for protons.

PROBING STRONG FIELD fðRÞ GRAVITY AND … PHYS. REV. D 107, 104057 (2023)

104057-7



in Fig. 2 that illustrate the cause of the numerical subtleties
needed to find the correct solution: the solution that leads to
the Schwarzschild metric at infinity is a bifurcation point
(see, e.g., [46,80,112]). This figure also shows that for
small values of α such as α9 the Schwarzschild limit is
reached already a few kilometres above the stellar surface

while for extreme cases such as α14 it is only at distances of
several thousands of kilometres that this limit is numeri-
cally obtained. Obtaining a value of the central R0 as close
as possible to the exact one is important to describe the
metric outside the star, however, as the lower panels of this
figure illustrate, the ρ profile is much more stable that R

FIG. 2. Scalar curvature R (upper panels), mass function m (middle panels) and density ρ in the outer layers (lower panels) for a
neutron star model built with the APR EOS and central density ρ0 ¼ 1.55 × 1015 g cm−3 in α9R2 (left panels) and α14R2 (right panels)
gravity with the respective locations of their stellar, r�, and gravitational, rg, radii. In each panel the three curves show the values
corresponding to the central value of R, R0, that leads to the Schwarzschild metric beyond rg and slightly modified values, 0.99R0 and
1.01R0, that exhibit the divergent behavior of the solutions.

NAVA-CALLEJAS, PAGE, and BEZNOGOV PHYS. REV. D 107, 104057 (2023)

104057-8



one. In order to overcome these issues, we demanded the
bisection method to stop when the length of the interval for
seeking R0 was inferior to 10−27 cm−2. This stiff condition
allowed us to obtain variations below 0.05% for both the
final masses mðrgÞ and radii r� (sees Sec. IV B for the
precise meaning of masses), although the stability of the ρ
profile guarantees even smaller variations of density in this
stiff scenario. Taking advantage of an EOS-independent,
parabolic-shape relation between Rð0Þ and RGRð0Þ, as
illustrated on Fig. 3, it becomes easier to generate families
of models when varying ρ0 once a first solution has
been found.
Finally, it is important to notice that given the values of R

found after integrations, for the whole range of α we have
explored and as illustrated in Fig. 3, αR is always smaller
than 10−2, i.e., the term αR2 always results to be a small
correction to R in the Lagrangian density L. Increasing
values of α actually force smaller values of R when the
structure equations are solved: while RðGRÞ is always
∼10−12 cm−2 in the center of a neutron star, in αR2 gravity
R0 is significantly reduced. A consequence of this, as we
will show below, is that when values of α beyond 1014 cm2

are considered the resulting structure of a neutron star
remains almost identical to the α14 case, i.e., there is a clear
saturation of the effects of αR2 gravity at large α. However,
when considering the shape of the metric outside the star,
increasing values of α beyond α14 still imply increasing
values of rg.

B. Gravitational and baryonic masses

Three separate gravitational mass concepts appear in αR2

modified gravity: the surface and the total ones [60,106]. In
contradistinction, in GR the surface and total gravitational
masses coincide.
In analogy to the Schwarzschild metric, we can introduce

a mass function, mðrÞ, by writing

expð2ΛÞ ¼ 1

1 − 2GmðrÞ=rc2 : ð39Þ

Under the condition that we recover the Schwarzschild
metric in the limit r → ∞ we obtain the total gravitational
mass of the star as

M≡Mtot ≔ lim
r→∞

mðrÞ: ð40Þ

We will also consider a surface gravitational mass as
Msurf ¼ mðr ¼ r�Þ that will be of importance when study-
ing the surface gravitational acceleration in Sec. IV F. In
practice we use Mtot ¼ mðr ¼ rgÞ and will often omit the
“tot” subindex, so that M will always refer to the total
gravitational mass. Another mass concept frequently
encountered is the baryonic mass, Mbar, defined through
the total baryon number of the star, Nbar, as

Mbar ≡mBNbar ¼ mB

Z
r�

0

4πr2nðrÞeΛðrÞdr; ð41Þ

where the eΛðrÞ factor corrects for the proper radial length
from the areal radius r, and mB is the “baryon mass” taken
as the nucleon mass. These concepts are necessary to
understand both the cooling setup and results: the surface
gravitational mass is the value we shall employ to define the
surface gravity (see Eq. (48) below), while the total
gravitational mass is the value measured in the case of
binary systems. The baryonic mass is just a reference mass
and is not a measurable quantity but is a useful conserved
value in some contexts.
For any given EOS, and a chosen gravity theory, we can

calculate a family of neutron star models by varying the
central density ρ0. In the left panel of Fig. 4 we compare the
gravitational mass in GR and the total and surface gravi-
tational masses in αR2 gravity for various values of α as
function of the baryonic mass when using the APR EOS,

FIG. 3. Scalar curvature at the star’s center for α9R2 (left panel) and α14R2 (right panel) gravity, as a function of its GR counterpart,
using four EOSs to build the neutron star models.
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while in the right panel we consider our four EOSs and
the GR and α14R2 gravity cases. We first notice that for
all four EOSs and all α considered, Mtot in αR2 gravity is
close but always smaller than the corresponding GR M
for a given Mbar: in spite of a 7 orders of magnitude
variation in α we find that Mtot is at most 5% smaller
than the corresponding GR M. However, when consid-
ering Msurf , it can be significantly smaller than Mtot, and
the GR M, the difference being a strong function of α.
Most interesting here is to notice that the difference
between Mtot and Msurf is almost constant, i.e., indepen-
dent of Mbar, in the range of observed valued of Mtot, i.e.,
between 1.2 and 2M⊙.
With the same procedure of varying ρ0 we can generate

M − r� and M − ρ0 curves which we present in Figs. 5
and 6. In agreement with previous works on the subject
[52,53,78,81,106], we find thatMtot can reach larger values
in the αR2 theory than in GR. [113] The left panel of Fig. 5
shows that there is always a crossing of the M − r� curves

of GR and any αR2 theory and that at masses below the
crossing point αR2 neutron star models have smaller radii
while above this point they have larger radii than GR
models of the same total gravitational mass. (For small
values of α, as α9 and α10, there appears a second crossing
point a M close to the maximum mass.) On the right panel
of Fig. 5 we also find a crossing point on the M − ρ0
curves: significant differences in the predicted total gravi-
tational masses, for a given ρ0, between GR and αR2

theories with large α appear above this crossing point while
at lower central densities the differences are much smaller.
We can also notice that the central density for the maximum
mass is progressively lower as α grows in the case of the
APR EOS.
These considerations are also valid in the case of the

other three EOSs we consider as shown in Fig. 6. Finally,
we see that α14 and α16 results are almost identical and
illustrate the saturation of the αR2 effects of which we will
find more examples below.

FIG. 4. Total and surface gravitational masses versus baryonic mass, in GR and various αR2 gravity. In the left panel we consider a
range of αX ’s and a fixed EOS, the APR one. In the right panel we explore our four EOSs for the extreme α14.

FIG. 5. Total gravitational mass versus: (left panel) stellar radius r�; (right panel) central density, considering the APR EOS and both
GR and αR2 theories and various αX’s as labeled.
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C. Stellar proper volume and heat capacity

The proper volume of a star is naturally defined as

V ¼
Z

r�

0

4πr2eΛðrÞdr; ð42Þ

where the eΛðrÞ factor corrects for the proper radial length
from the areal radius r. On Fig. 7, the stellar proper volume
of the objects is plotted against the total gravitational mass.
There is a clear EOS-independent trend that at high masses,
higher than about 1.4 − 1.5M⊙ depending on the EOS, the
proper volume of the star in αR2 gravity is larger than in GR

for α14 while at lower masses the effect is inverted. This
effect parallels the relative variation in radii exemplified in
the left panel of Fig. 6.
The stellar volume is clearly not directly measurable.

However, the total stellar heat capacity, which is propor-
tional to the stellar volume, is potentially measurable
through the overall neutron star temperature change under
heating from a strong outburst of accretion in a binary
system [114]. Recent results in the case of the neutron star
in the HETE J1900.1-2455 system [115] have shown that,
after a ten year long accretion outburst, constraints on its
heat capacity may be getting close to the theoretically
predicted value.
In Fig. 8 we explore the effect of gravity theory on

the expected values of the total stellar core heat capacity
Ccore taken at a fiducial uniform redshifted temperature
T̃ ¼ 108 K. In the left panel of this figure one can see an
increase in Ccore with increasing values of α which, for the
range of plotted masses, parallels the increase in stellar
volume. However, in the right panel we show that this small
increase of Ccore, even in the extreme case of α14R2 gravity,
is smaller that the variability resulting from uncertainties on
the EOS.

D. The DUrca critical mass and volume

The allowance of the DUrca process has a dramatic
effect on the cooling of a neutron star [93] and while it
is clear that ρDU is independent of the gravity theory,
depending only on the EOS, the critical stellar mass MDU
at which the DUrca process becomes allowed does
depend on the gravity theory. Specifically, the values of
ρDU are 7.41 × 1014, 9.13 × 1014, 1.33 × 1015 and 1.53 ×
1015 g cm−3 for the MS-A1, MS-B1, MS-C1 and APR
EOS, respectively [109]. Similarly, the proper volume of
the inner core where the DUrca process is allowed is of
importance. This quantity is defined as

FIG. 6. Gravitational mass for the labeled EOSs, in GR and α14R2 gravity, against: (left) stellar radius r�; (right) central density. The
four vertical lines in the right panel mark the DUrca critical densities, ρDU, for MS-A1, MS-B1, MS-C1 and APR, by order of increasing
density.

FIG. 7. Proper stellar volume, considering our four EOSs, in
GR versus α14R2 gravity as a function of the total gravitational
mass of the star.
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VDU ¼
Z

rDU

0

4πr2eΛðrÞdr; ð43Þ

with rDU being the last radial coordinate where the
criterium of Eq. (37) is satisfied, i.e., where ρDU is reached.
In the left panel of Fig. 9 we show how VDU grows

with M for the APR EOS in GR and in 6αR2 theories. One
sees that the thresholdmassMDU increases significantly as α
is increasing while the maximum VDU, reached at the
maximum mass, is smaller in αR2 gravity than in GR and
has a nonmonotonic behaviorwith respect toα. However, the
details of this behavior are EOS dependent. When consid-
ering other EOSs, in the right panel of Fig. 9, the same
behavior, increase ofMDU in α14 gravity compared to GR, is
seen for the EOS MS-C1 while for MS-B1 there is little
change inMDU and forMS-A1 the contrary happens,MDU is
lower inα14 gravity than inGR.The reason for this difference
is simple when one considers the crossing point of the

M − ρ0 curves seen in the right panels of Fig. 5 and 6: ρDU for
MS-A1 and MS-B1 is close to the crossing point, i.e., in the
density regime where theM − ρ0 curve is little affected by α
while for the EOSs MS-C1 and APR, ρDU is much higher
than the crossing point and changes in α have a large impact.

E. Crust thickness

Again in the case of transiently accreting neutron stars in
binary systems, the thermal response of the crust has now
being monitored in several cases (see, e.g., [116] for a brief
review). The basic physical property setting the conditions
for this response is the thickness of the crust, thermal
timescales being proportional to the square of the length-
scale of the evolving region.
Let rcc be the radial coordinate of the crust-core transition,

assumed in the present work to occur at a density ρcc ¼
1.4 × 1014 g cm−3 [117]. The crust thickness is simply
calculated as

FIG. 8. Total heat capacity of an isothermal core, at a uniform redshifted temperature T̃ ¼ 108 K, as a function of the stellar mass in
GR and various αR2 gravity. Left panel: APR EOS in GR and six αX’s. Right panel: our four chosen EOSs in GR and α14 gravity.

FIG. 9. Proper volume of DUrca process against total gravitational mass in GR versus αR2 gravity Left panel: APR EOS in GR and six
αX’s. Right panel: our four chosen EOSs in GR and α14 gravity.
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Δr ¼
Z

r�

rcc

eΛðrÞdr ð44Þ

with again an eΛðrÞ factor to correct from the areal radius to
the proper radius. On the left panel of Fig. 10 we can notice
that at masses below 1.8M⊙ the crust thickness gradually
diminishes as α increases while it slightly increases at
M ≳ 1.8M⊙. This reduction in Δr is very significant at
low masses while in the relevant mass range 1.2 − 2.2M⊙
changes inΔr are effectively minor. It is interesting to notice
that at 0.5M⊙ the radius of the star shrinks by 1 km when
comparing GR and α14 models (see Fig. 5) which appears to
be almost totally due to the shrinking of the crust that is also
of the order of 1 km. In contradistinction, at largermasses the
change in r� ismuch larger that the change inΔr, i.e.,most of
the changes are occurring in the core. The right panel of
Fig. 10 shows that these effects are quite independent of the
employed EOS.

F. Surface gravity

The last structural characteristic with an impact on
thermal evolution that we consider is the surface gravita-
tional acceleration gs. This quantity affects several impor-
tant observable properties as, e.g., the shape of the thermal
spectrum observable in the soft x-ray band (see, e.g., for
[118–120]) and the thickness of the envelope that relates
the surface temperature to the interior one (see, e.g., [121]
and Sec. VA).
In general relativity, near the surface of the star the

hydrostatic equilibrium equation reduces to

dP
dr

¼ −gsρ; ð45Þ

where gs is the local surface gravity defined by

gs ≔ gðrÞjr¼r� ð46Þ

FIG. 10. Crust thickness Δr as a function of the total gravitational mass, in GR and various αR2 gravity. Left panel: APR EOS in GR
and six αX’s. Right panel: our four chosen EOSs in GR and α14 gravity.

FIG. 11. Gravitational acceleration at the surface of neutron star models built with GR versus αR2 gravity. Left panel: percent
difference between gs and gðrÞ at densities close to the surface of the star, considering a model using the APR EOS with ρ0 ¼
1.5 × 1015 g cm−3 in both GR and six αX’s. Right panel: local surface gravity for the APR EOS and the indicated αX’s as functions of the
total gravitational mass.
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with

gðrÞ ¼ c2e−ΛðrÞ
dΦ
dr

: ð47Þ

We, thus, obtain a simple expression for the surface gravity
in GR as

gðGRÞs ¼ GM
r2�

�
1 −

2GM
c2r�

�
−1=2

: ð48Þ

with M being the total gravitational mass. Within the αR2

theory it is trivial to verify that Eqs. (45), (46), and (47),
also hold. To verify that Eq. (48) holds let us define

e½gs�% ¼ 100

				 gs − gðrÞ
gs

				 ð49Þ

where gs is calculated from Eq. (48) with M → Msurf and
gðrÞ from Eq. (47). This quantity is plotted in the left panel
of Fig. 11 which proves that employing Eq. (48) for gs is
accurate to within 1% within αR2 models as well as in GR.
It is, hence, acceptable to keep gs as defined above but with
M ¼ Msurf :

gðαR
2Þ

s ¼ GMsurf

r2�

�
1 −

2GMsurf

c2r�

�
−1=2

: ð50Þ

On the right panel of Fig. 11 it is clear that αR2-stars have
lower values of gs in comparison with their GR counter-
parts for the same (total) gravitational mass, a direct effect
of reduction of Msurf with respect to Mtot.

V. THERMAL EVOLUTION

A. Numerical implementation and envelope models

For simulating the thermal evolution of neutron stars, the
fully relativistic 1-D code NSCOOL was employed [122]. As
is traditional in neutron star cooling modeling, the star is
split in two parts: the interior where the EOS is treated as
temperature independent, and a low density outer region,
the envelope, where the EOS is T-dependent. In the interior
the Eqs. (33) and (34) are solved with a fully implicit
Heyney scheme with the inner boundary condition

Lðr ¼ 0Þ ¼ 0 ð51Þ

and an outer boundary condition, at a density ρb, provided
by an envelope model. In such a scheme the hydrostatic
structure of the interior does not change with time and is
only calculated once at the beginning of the simulation. For
the core EOS we consider the same 4 models as in Sec. IV.
In an envelope model for the outer boundary condition it

is assumed that (1) there are no significant energy sources
or sinks within it and (2) the thermal timescale of this thin
layer is much shorter than the one of the interior. Thus, the

time derivatives in Eq. (34) are neglected and, as a result, in
the envelope the luminosity is uniform, i.e., LðrÞ ¼ L�
where L� is the surface luminosity, and only the heat
transport equation (33) needs to be solved. The integration
starts with choosing a surface or effective temperature, Te,
defining the luminosity as

L� ¼ 4πr2�σSBT4
e ð52Þ

in analogy with the blackbody flux F ¼ σSBT4, σSB being
the Stefan-Boltzmann constant. Using a photospheric
boundary condition (typically the Eddington condition,
see, e.g., [123]) the density ρe and pressure Pe correspond-
ing to Te are obtained and from this Eq. (33), and the
simplified version of the hydrostatic equilibrium (45)
adequate for a thin envelope, are integrated inward until
ρ reaches ρb with a temperature Tb. Notice that, once taken
into account the trivial adjustment of gs from Eq. (48) to
Eq. (50), the equations to be solved, Eq. (33) and (45), are
the same as in GR and thus all envelope models calculated
within GR automatically apply within αR2 gravity. For a
given gs, by varying Te one gets a family of models
generating what is commonly referred to as a “Te − Tb
relationship,” Te ¼ TeðTb; gsÞ, which we take as our outer
boundary condition: at ρb the temperature Tb and lumi-
nosity Lb must be such that

Lb ¼ L� ¼ 4πr2�σSBTeðTb; gsÞ4: ð53Þ

It turns out there is a simple scaling of Te in terms
of gs [124] as TeðTb; gsÞ ¼ g1=4s14TeðTb; gs14 ¼ 1Þ where
gs14 ¼ gs=1014 cm s−2. This envelope acts as a thermal
insulator between the hot interior and the surface and a
lower gs allows for a thicker envelope, hence a more
efficient insulation, resulting in a lower Te, for a given Tb,
as described by this scaling. One frequently encounters the
redshifted effective temperature and we will follow stan-
dard notations and write it as T∞

e ≡ eΦðr�ÞTe.
Various types of envelope models have been presented

considering variations in the strength and geometry of the
magnetic field [125] and the chemical composition [126]. It
turns out that, excluding the case of magnetar size magnetic
fields, the effects of the chemical composition are much
more significant than the magnetic ones [127] and we will
here neglect the latter. Variation in the chemical compo-
sition range from the presence of low-Z elements such as
4He and 12C up to iron-like ones. Low-Z material having
higher thermal conductivity that high-Z ones, their pres-
ence in the envelope will result in an increase of Te, for a
given Tb, compared to the case of an envelope made of the
latter. This effect is accounted in the Te − Tb relationship
through the adimensional parameter

η ¼ g2s;14
ΔML

Msurf
¼

�
PL

1.193 × 1034 dyn cm−2

�
; ð54Þ
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where ΔML is the mass of this light element layer, Msurf is
the surface gravitational mass of the star, and PL is the
maximum pressure at which low-Z nuclei exist. When the
outer layers of a newborn neutron star are formed at very
high temperatures it is natural to expect that matter will
reach its ground state, commonly called “catalyzed matter,”
that consist of iron-peak nuclei (see, e.g., Sec. 3.1 in [128]).
However late fall-back after the supernova explosion or
posterior accretion may, or may not, deposit light elements
at the surface and this results in a large uncertainty in η that
is an inherent aspect of the cooling theory. There is to date,
unfortunately, no known way of determining the thickness
of this light element layer.
Some insight on the basic issues of neutron star cooling

can be gained by considering simplified models that allow
for illustrative analytical solutions as presented, e.g., in the
reviews of Refs. [74,91,129].
After briefly reviewing observational data in the next

subsection V B we will present our results by first con-
sidering, in Sec. V C, simple cooling models that empha-
size the difference between Mtot and Msurf and in Sec. V D
consider more realistic models that include pairing and
uncertainties in the envelope composition. Finally we
focus on two particular stars, “Cas A” in Sec. V E and
“NS 1987A” in Sec. V F, that are the two youngest known
neutron stars and present interesting features.

B. Observational data on isolated cooling neutron stars

One of the Holy Grails of early x-ray astronomy was
direct observation of the surface of a neutron star, i.e.,
detection of its thermal emission. Observations by the
ROSAT satellite in the late 1980s finally reached this goal in
the case of three nearby pulsars (see, e.g., the argumenta-
tion presented by H. Ögelman in [130]). Three decades
later, data on the surface temperature of isolated cooling
neutron stars are available for about fifty objects and we
display in Fig. 12 the latest compilation from [131]. Wewill
not here get into the tricky description and discussion of the
numerous source of error and uncertainty in these data but
simply refer to [131] (earlier similar content can be found,
e.g., in [91,92,132]) and will only mention a few key points
(and a few key bibliographic references). The first choice to
be made when analyzing soft x-ray data likely to be thermal
photons from the neutron star surface is the model spectrum
to be applied: is a simple blackbody adequate or is a
detailed atmosphere model needed [133]? This choice is
related to the total absence of direct information, e.g., from
spectral lines, about the chemical composition of the stellar
atmosphere: is it made of iron-like nuclei as in a textbook
neutron star [35], in which case a blackbody spectrum is a
reasonable first approximation, or have light elements been
deposited at the surface after the birth of the neutron star?
Fitting with light element atmosphere models commonly
lead to inferred surface temperatures that are about twice
lower than the one inferred from a blackbody fit [134].

In the presence of a strong magnetic field atomic structure
is dramatically altered resulting in significant changes in
the prediction of the spectral shape [135]. In that case, the
strength of the dipolar component of the magnetic field at
the surface of the star can be roughly estimated from the
pulsar spin-down, but the presence of strong multipolar

FIG. 12. The sample of observational data considered for this
work, taken from [131]. Error bars correspond to 1σ. Plotted
objects are: I weakly magnetized thermal emitters (1) 1E
0102.2 − 7219, (2) RX J0822.0 − 4300 (in Puppis A), (3) CXOU
J085201.4 − 461753 (in Vela Jr.), (4) 2XMM J104608.7 −
594306 (in Homunculus), (5) 1E 1207.4 − 5209, (6) 1RXS
J141256.0þ 792204, a.k.a. ’“Calvera”, (7) CXOU J160103.1−
513353, (8) 1WGA J1713.4 − 3949, (9) XMMU J172054.5−
372652, (10) XMMU J173203.3 − 344518, (11) CXOU
J181852.0 − 150213, (12) CXOU J185238.6þ 004020 (in Kes
79), (13) CXOU J232327.8þ 584842 (in Cas A), II ordinary
pulsars (14) PSR J0205þ 6449 (in 3C 58), (15) PSR
J0357þ 3205, a.k.a. “Morla”, (16) PSR J0538þ 2817, (17)
CXOU J061705.3þ 222127, (18) PSR J0633þ 0632, (19) PSR
J0633þ 1746, a.k.a. “Geminga”, (20) PSRB0656þ 14, (21) PSR
B0833 − 45 (in Vela), (22) PSR B1055 − 52, (23) PSR
J1357 − 6429, (24) PSR B1706 − 44, (25) PSR J1740þ 1000,
(26) PSR J1741 − 2054, (27) PSR B1822 − 09, (28) PSR
B1823 − 13, (29) PSR J1836þ 5925, (30) PSR B1951þ 32 (in
CTB 80), (31) PSR J1957þ 5033, (32) PSR J2021þ 3651, (33)
PSR B2334þ 61, III high-field pulsars (34) PSR J0726 − 2612,
(35) PSR J1119 − 6127, (36) PSR B1509 − 58, (37) PSR
J1718 − 3718, (38) PSR J1819 − 1458, IV “The Magnificent
Seven” (39) RX J0420.0 − 5022, (40) RX J0720.4 − 3125,
(41) RX J0806.4 − 4123, (42) RX J1308.6þ 2127, (43)
RX J1605.3þ 3249, (44) RX J1856.5 − 3754, (45) RX
J2143.0þ 0654, V neutron stars with only upper limits on thermal
emission (46) PSR J0007þ 7303 (in CTA 1), (47) PSR B0531þ
21 (in Crab), (48) PSR B1727 − 47 (in RCW 114), (49) PSR
J2043þ 2740, (50) PSR B2224þ 65 (in Guitar nebula). To help
the reader we also added, for several famous stars, their nickname
or, in parenthesis, the associated supernova remnant.
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components cannot be excluded [125]. Moreover, the
presence of a strong magnetic field results in a nonuniform
surface temperature distribution [136,137] obscuring the
relationship between a single value of surface temperature
obtained from the spectral fit and the effective temperature.
Almost complete lack of information about the massM and
radius r� of the observed neutron stars imply that their
values usually have to be guessed. M and r� determine the
surface gravity, that controls the atmosphere thickness, and
the redshift. The distance D and age t of the stars have
observational estimates but often with large uncertainties.
The soft x-ray spectrum is often contaminated by a harder
component whose origin is not always clear and, moreover,
it can be reprocessed by resonant scattering when the
photons have to pass through in the magnetosphere when
escaping from the surface [138]. Finally, a significant
fraction of the soft photons are absorbed by the interstellar
matter and their contribution to the original spectrum has to
be reconstructed from the distribution of the detected ones.
The reader can find complementary discussions in the
reviews [119,120,139,140].
This plethora of uncertainties means that the inferred

effective temperature, and age, of any isolated neutron star
has to be taken with caution. However, having now at hand
some 50 such values one can hope that they present a
credible overall picture of isolated neutron star cooling,
Fig. 12, and that the spread, at a given age, in deduced
temperatures is a real feature implying a broad range of
evolutions, likely related to a mass effect, and not a
cumulative result of the above described uncertainties.

C. Simple cooling models and impact
of local surface gravity

As a first step in our exploration we consider a neutron
star model with a total gravitational mass of 1.4M⊙ built
with the APR EOS, without superfluidity/superconductivity

effects and employing an envelope containing only heavy
elements. The cooling of such a star is shown in the left panel
of Fig. 13 comparing the GR case with five modified gravity
cases. We see a very rough agreement between the predicted
T∞
e and the observational data. Better agreement with the

data can be reached with more sophisticated models that will
be presented below.
In standard GR cooling, one distinguishes two different

eras, named according to the particle species that dominate
energy losses. Initially we have the neutrino cooling era
lasting till an age of ∼105−6 yrs at which time the slope of
the T∞

e − t curve significantly increases, indicating the
transition to the photon cooling era. These epochs are
clearly visible in the αR2 models as well. During the first
era we see that increasing α results in models with lower
T∞
e while during the second era this behavior slightly

inverts, yielding less steep slopes.
Notice that during the first few decades, the “plateau,”

very little evolution is seen as surface temperature is
completely controlled by the slow evolution of the crust,
region which is not yet sensitive to the temperature of the
deep interior. At ages ∼102 yrs, heat has had enough time
to flow from the crust into the core, thus provoking a rapid
surface temperature drop after which crust and core have
reached an isothermal state and, consequently, the surface
temperature is a direct reflection of core’s temperature.
These different evolutionary phases are described in more
details in, e.g., Ref. [65,92,129].
To understand the difference in cooling behavior appear-

ing in the left panel of Fig. 13 when gravity is modified, we
notice that it is unlikely due to a change in the deepest part
of the star since for the APR EOS and a 1.4M⊙ star the
central density practically does not change with gravity, as
seen in the right panel of Fig. 5. However, the left panel of
the same figure shows that the radius of the star signifi-
cantly increases with α which itself implies a decrease of

FIG. 13. Left panel: cooling curves of a simple 1.4M⊙ APR-neutron star model, within GR and αR2 gravity for five αX’s. Right panel:
same set of models but with the surface gravity gs fixed to the GR model’s value, 1.687 × 1014 cm s−2. In both panels superfluidity/
superconductivity is absent and the envelope is made of heavy elements.
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the surface gravity, exhibited in the right panel of Fig. 11.
This simple change of gs has an immediate effect on Te
through the thickening of the envelope [see paragraph
below Eq. (53)]. To illustrate this, in the right panel of
Fig. 13 we present the same models but where the value of
gs, as it enters the “Te − Tb relationship,” has been
artificially fixed to its GR value, demonstrating that change
in gs explains most of the effect of modified gravity in these
simple models.
Having explained the similarities and differences that

both gravity theories exhibit in simple cooling curves, in
Fig. 14 we compare a larger set of neutron star mass-
models for the MS-A1 EOS. Among the covered masses, in
GR the 1.4 and 1.5M⊙ models are below the critical mass
MDU and the dramatic effect of the DUrca process is clearly
seen in all more massive stars. During the early plateau T∞

e
is controlled by the crust and is not yet sensitive to the
cooling of the core and the effect of the DUrca process only
appears at the end of this phase. In the case of the α14
models, their behaviors are very similar to the GR case,
with the significant difference that the critical mass MDU is
lower than in GR resulting in the 1.5M⊙ model already
exhibiting fast DUrca cooling.

D. Realistic cooling models: Superfluidity/
superconductivity and light element envelopes

After the presentation of very simple models in the
previous section we are now in position to consider a case
study of realistic scenarios in which two additional essen-
tial ingredients are present, namely pairing which can
strongly suppress neutrino emission and the presence of
light elements in the envelope which significantly alters the
observable T∞

e . We will compare models in GR and in α14
built with the MS-A1 EOS, considering masses between
1.1 and 1.7M⊙ in steps of 0.1M⊙. In the GR case models up
to 1.5M⊙ have slow neutrino emission and only the 1.6 and
1.7M⊙ models have the DUrca process allowed, while in

the α14 case the 1.5, 1.6, and 1.7M⊙ models have the DUrca
process acting. Models with higher mass result in even
lower temperatures than the 1.7M⊙ ones and we do not
include them to avoid saturating the figures.
We present in Fig. 15 the cooling of these more complex

models where several distinct effects can be noticed. A first
look shows that the predicted range of T∞

e is broader than
those of the previous section (see Fig. 14), effectively
covering the inferred values of most of the 50 neutron stars
of our adopted dataset. This is in line with similar results
known for a long time [91,93]. For models with masses
below MDU, there is very little mass dependence and they
form bands in the log10 T∞

e − log10 t plots, different bands
corresponding to different assumed depths of the light
element layer in the envelope [parametrized by η, see
Eq. (54)]. For models with masses above MDU there is a
clear mass dependence determined by the size of the inner
core region where the Durca process is acting and, for a
given mass, we again have a broad range of predicted
log10 T∞

e depending on the assumed value of η.
The vertical spread of the cooling curves with models of

mass below MDU, which arises from the varying amount
of light elements in their envelopes, allows to fit the
hottest stars on the sample. On the other hand, models
with M ≥ MDU in which the fast neutrino emission of the
DUrca process has been controlled by pairing can explain
the colder objects.
Let us consider in more detail the effects of increasing

the amount of light elements in the envelope, parametrized
by η in Eq. (54), by considering the neutrino cooling era of
stars with masses below MDU. We have five bands of
cooling curves for the adopted five values of η, each band
encompassing masses from 1.1 to 1.5M⊙ in GR and 1.1 to
1.4M⊙ in α14: varying the mass has little effect, more
massive stars being only slightly cooler than less massive
ones, while increasing η significantly raises T∞

e because of
the higher thermal conductivity of light elements compared

FIG. 14. Cooling curves for the MS-A1 EOS, considering GR in the left panel and α14R2 gravity in the right panel. Superfluidity is
absent in both panels, and η is fixed to 10−20 (i.e., heavy elements envelope).
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to iron-peak ones. Within such a type of scenario the spread
of T∞

e in hot young neutron stars is a result of their having
accreted different amounts of matter in their past, either
when they were formed in a supernova explosion or during
their later evolution. Notice that during the neutrino cooling
era models with different values of η have identical internal
temperatures, since neutrino losses control this temper-
ature, and the ones with larger η just appears warmer at the
surface. When entering the photon cooling era the situation
in reversed: models with larger η will emit more photons
that result in a faster cooling. This inversion is clearly seen
in both in the GR and the α14 cases and one can also notice
that models with larger η and larger photon luminosity
naturally enter the photon cooling era earlier than models
with lower η.
The spectacular effect of suppression of the fast DUrca

neutrino emission is clearly seen by comparing Fig. 14 with
Fig. 15: in the first case, all models with the DUrca process
acting have T∞

e well below all observed values while once
the neutrino emission is controlled by pairing, T∞

e com-
parable to observed ones are easily obtained. Together with
the effects of the presence of light elements in the envelope,
we are able to generate families of models that easily
cover the range of T∞

e for the coldest observed young
neutron stars.
We emphasize that the neutron star mass range that

describes stars with ages below 105 years, depends on
the assumed EOS. In the case of the APR EOS, with
MDU ¼ 1.97M⊙, models with masses above 2M⊙ are
needed to produce cold stars in that age range.
For curiosity, there is an interesting effect that is clearly

visible in the 1.5M⊙ models within α14R2 gravity. After the
first temperature drop due to the thermal relaxation of the
crust at ages just above 101 yrs, there is a second, deeper,
temperature drop at ages just below 102 yrs: this second
temperature drop results from the thermal relaxation of the

core whose innermost part cools very rapidly from the
DUrca neutrino losses while the outer core’s thermal
energy flows into the inner core on a finite timescale
which turns out to be of the order of 102 years. This can be
visualized as a “cold front” propagating outward which
results in a drop in T∞

e when it reaches the surface of the
star. Similar behaviors have been described previously in
Refs. [141,142] This long timescale is due to the fact that in
this particular model the DUrca inner core is very small
as the central density is just barely higher than ρDU. The
1.6M⊙ and 1.7M⊙ models, in both GR and α14R2 gravity,
also exhibit the same effect but on a shorter timescale,
because they have a much larger inner core and thus thinner
outer core, which by superficial examination may be
confused with an extended crust relaxation.
Finally, comparing the two panels of Fig. 15, it is clear

that the small differences in cooling behaviors when
altering the gravity theory from GR to αR2 are much
smaller that the effects of either microphysical (as, e.g.,
pairing) or astrophysical (as mass or envelope composition)
ingredients.

E. The cooling of the Cassiopeia A neutron star

The neutron star in the Cassiopeia A supernova remnant
was discovered in the Chandra first light observation [144].
It is the youngest known neutron star, its supernova
remnant having a kinematic age of ∼340 yrs [145] that
is supported by a possible historical observation of the
supernova by J. Flamsteed on August 16th, 1684 [146]. Its
soft x-ray thermal spectrum is well described by a non-
magnetized carbon atmosphere model [147] implying a
surface temperature ∼2 × 106 K. Analysis of 10 years of
Chandra observations of the supernova remnant pointed to
a rapid cooling of the neutron star [148], its effective
temperature having apparently decreased by ∼4% during

FIG. 15. Cooling curves for the MS-A1 EOS, considering a range of stellar masses and several values of η and the indicated
superfluidity gaps. Left panel: GR. Right panel: α14R2 gravity. Models with masses above MDU are explicitly labeled. Dashed curve in
the left panel is a 1.55M⊙ model. See text for description of the various cooling curves.
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that time span. Analyses of another decade of observations
reached a similar conclusion [149,150] while a different
approach [151–153] found a much smaller decrease in T∞

e ,
if any at all.
We here accept the possibility of rapid cooling of this

neutron star and the interpretation of this evolution being
due to a recent sudden increase in the neutrino luminosity
resulting from the triggering of the PBF process at the
initiation of the neutron 3P2 superfluidity phase transition
[102,154]. In this scenario, protons became supercon-
ducting at an early time, suppressing neutrino emission
from all processes involving protons (modified Urca, n-p
and p-p bremsstrahlung, see Table I), thus slowing the early
cooling of the star. Due to this slow initial cooling, the core
of the neutron star reached the neutron 3P2 superfluidity
critical temperature Tc only very recently, from which it
was inferred that Tc must be of the order of ∼5 × 108 K
[102,154].
We display in Fig. 16 this model in GR and in α14

modified gravity considering a star with a total gravitational
mass of 1.4M⊙ and pairing gaps chosen to produce the
desired cooling behavior. The model in the left panel,
reproducing the results of [102], displays a rapid cooling at
ages around 300 yrs and an effective temperature T∞

e ≃
1.55 × 106 K at the present age of the neutron star. As seen
previously, α14 models are slightly colder than GR ones but
a simple adjustment in the depth of the light element layer
in the envelope can counteract this effect: with η ≃ 10−10

(see Eq. (54), compared to η ≃ 10−12 in the GR case) we
again can reproduce the observed T∞

e and have a rapid
cooling.

F. The cooling of NS 1987A

As a last case study we consider the possible recent
discovery of the neutron star NS 1987A produced by the

supernova SN 1987A, whose putative existence was
revealed by the presence of a blob of warm dust close
to center of explosion [109,155]. From the luminosity of
the blob a luminosity ∼1–3 × 1035 erg s−1 is inferred for
the neutron star. With an age of 28 yrs at the time of the
discovery observation, in 2015 by the ALMA observatory
[155], this very young object allows us to probe the thermal
evolution of a neutron star during the early plateau. This
stage of evolution is quite insensitive to the physics of the
core and the dominant characteristics that influence it are:
in the first place, the thickness of the crust which geomet-
rically determines the cooling timescale; secondly, the
extent of 1S0 neutron superfluidity in the inner crust which
can strongly reduce the specific heat and fasten the cooling,
and, finally, the thickness of the light elements layer in the
envelope which controls the emerging photon luminosity.
Within GR, this scenario was studied in detail in [109]

and we reproduce in Fig. 17 one set of models from that
work and compare them with their α14R2 gravity counter-
parts. This early evolution being dominated by crust
physics and since, as we showed in Fig. 10, the size of
the crust happens to be little affected by the change in the
gravity models for stars of mass ∼1.4M⊙, the only gravity
effect of relevance is the reduction of the surface massMsurf
which controls the thickness of the envelope and the light
element layer: comparing the two panels of Fig. 17 one sees
that the only significant difference is an almost uniform
reduction of the luminosity in the α14R2 models compared
to their GR counterparts, the same effect we have identified
as a reduction of T∞

e in § V C. As a result, the interpretation
of the warm dust blob as being a sign of the presence of NS
1987A is still sustainable within the αR2 theory. However,
an extreme modification as in the α14 case requires a
significantly thicker light element surface layer: in GR
gravity a light element layer reaching a density of ρL ∼
109 g cm−3 results is luminosities comparable to the lower

FIG. 16. Comparison of a 1.4M⊙ APR-neutron star model with several values of η in either GR (left panel) and α14R2 gravity (right
panel). The superfluidity/superconductivity gaps employed are indicated on each panel and were chosen to induce a rapid cooling of the
star at the age of the Cas A neutron star.
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requirement of L� ∼ 1035 erg s−1 while within the extreme
case of α14R2 gravity ρL ∼ 1010 g cm−3 is implied. However,
the analysis of Ref. [109] showed that, even if light elements
such as O may avoid destruction by nuclear burning to such
high densities as ρL ∼ 1010 g cm−3 in the hot environment of
a young neutron star envelope (see Fig. 3 of that paper),
how such a thick layer of light elements may have been
deposited is unclear. Even accretion at the Eddington rate
(i.e., at about 105 g cm−2 s−1) would have taken about 20 yrs
and the resulting luminosity, LEdd ∼ 1038 erg s−1, would
have exceeded observational upper limits on the luminosity
of that object [156]. Thus, extreme change in gravity within
the αR2 gravity scheme may present a challenge for this
interpretation of the ALMA observation revealing the
presence of the neutron star NS 1987A.

VI. DISCUSSION

In this work we have studied in detail how a shift in the
description of gravity from general relativity to an fðRÞ
type of theory, in the particular case of fðRÞ ¼ Rþ αR2,
modifies our description of the structure and thermal
evolution of neutron stars. Conversely, we also examined
the potentialities for constraining such modification of
gravity theory using neutron star observables.
With regard to the structure of dense matter above

1013 g cm−3 [157], due to the uncertainties on the nature
of strong interactions at high densities and the limitations of
many-body theory in this regime, we employed four
different EOSs that cover the present range of expectations
in the case this matter consists only of nucleons and leptons
[109,158]. Specifically, the EOSs MS-A1, MS-B1, and

MS-C1, were designed so that, together with the APR EOS,
the deduced radius of a 1.4M⊙ neutron star is between
11.6 and 13.2 km, as the latest observational constraints
indicate is the most likely range [159], and all four have a
maximum mass above 2.1M⊙ in agreement with the most
massive pulsar mass measurements, 1.97� 0.04M⊙ for
PSR J1614 − 2230 [47], 2.01� 0.04M⊙ for PSR J0348þ
0432 [160], and 2.17� 0.11M⊙ for PSR J0740þ 6620
[161]. We do not expect the consideration of EOSs with
more degrees of freedom, as, e.g., the inclusion of hyperons
or deconfined quarks, to have any significant impact on our
conclusions as we discuss below.
As a first step we studied global properties of neutron

stars, their mass and radius. Three different mass concepts
appear, the baryonic mass, Mbar, and the total and surface,
Mtot and Msurf , gravitational masses. The latter two are
obtained from the metric, Eq. (39), and are identical in GR
while Msurf < Mtot in αR2 theories. Neutron star mass
measurements are typically obtained from binary orbital
motion, i.e. in the regime r ≫ r�, and are thus providing us
with Mtot. For this reason we label all our neutron star
models with the total gravitational mass of the model. The
baryonic mass is not directly measurable but is an intrinsic
property of the neutron star that is independent of gravity,
being just its baryon number multiplied by the nucleon
mass. The surface gravitational mass is potentially meas-
urable as it should strongly affect the bending of photon
trajectories nearby the stellar surface [137,162,163] and
light curve modeling may be able to find differences
between Msurf and the binary motion inferred Mtot in the
case of very accurate modeling as possible with NICER
data (see, e.g., Ref. [164]). We found, see Fig. 4, that

FIG. 17. Cooling curves for a 1.4M⊙ APR neutron star model. Left panel: GR. Right panel: α14R2 gravity. In each panel the (red)
vertical bar marks the 1σ range of the inferred surface thermal luminosity of the putative neutron star NS 1987A (the lower extension of
the bar extends the range when taking into account preheating of the dust by 44Ti decay). In each case five families of cooling models are
presented that have different amount of light elements in their envelopes, ranging from no light elements and marked as “heavy” and
light elements present up to a density of ρL ¼ 10L g cm−3 with L ¼ 8, 9, 10, and 11, as labeled. Within each family, the linestyle
corresponds to a different assumed neutron 1S0 superfluid gap: continuous lines correspond to assuming inner crust neutrons are either
fully superfluid, labeled as “F” in the heavy element envelope case, or not superfluid at all, labeled as “N”, while the three other lines
have linestyle as in Fig. 1.
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the difference between Mtot and Msurf depends only on α
and almost nothing else for nonrotating stars, at least within
the range of measured gravitational masses and the pres-
ently restricted range of EOSs. This difference can reach
half a solar mass in the extreme case of α14R2 gravity
opening a promising road to confirm of refute such
modifications of gravity.
With respect to the effects of modified gravity on the

mass-radius and mass-central density relationships our
results, presented in the Figs. 5 and 6, confirmed results
of previous authors, e.g., [52,53,78,106].
The main effect is that, independently of the employed

EOS, larger gravitational masses are reachable within αR2

gravity theories. Stellar radii are larger, except for very low
mass stars, and central densities are lower, for high mass
stars, in αR2 gravity stellar models than in the correspond-
ing GR models with the same Mtot, but what is precisely
meant by “very low mass” and “high mass” is dependent on
the EOS.
We considered finer details of the internal structure, such

as the total proper physical volume of the star, Fig. 7, the
threshold mass for the direct Urca neutrino emission
process, Fig. 9, the thickness of the crust, Fig. 10, and
the surface gravitational acceleration gs, Fig. 11. In the
cases of the volume and crust thickness, we found no
difference between GR and αR2 gravity that we could
expect to lead to some clear observable signal. A reduction
of gs by up to a factor of two is possible and its
consequences are discussed below in the context of thermal
evolution. Regarding the direct Urca process, its occurrence
is determined by the matter density being above some EOS
dependent critical density ρDU and any star whose central
density ρ0 is above ρDU can undergo very fast neutrino
cooling. A possible observable, or observationally deduc-
ible, quantity would be the critical total gravitational mass
MDU at which ρ0 reaches ρDU. In the case ρDU is around or
below 1015 g cm−3, the difference in Mtot between GR and
αR2 gravity is quite small and thusMDU is not significantly
altered by this class of modified gravity. In contradistinc-
tion, in the case of an EOS for which ρDU is well above
1015 g cm−3, as in our two chosen EOSs APR and MS-C1,
MDU is increased by up to 0.2M⊙ in α14R2 gravity
compared to GR: at present time the actual value of ρDU
is uncertain, as exemplified by the range it covers in our
four chosen EOSs, but, being optimistic, future progress in
both dense matter theory to constrain ρDU and mass
measurements of some neutron stars undergoing fast
neutrino cooling could provide us with a handle to
constraint modifications to gravity theory in the case
ρDU turns out to be large. Fast neutrino emission through
some form of direct Urca process can also be the result of
the presence of deconfined quark matter, hyperons, or
charged meson condensates (see, e.g., [82] for a brief
description) and in all these cases there is also a corre-
sponding critical density so that the same considerations

apply. Evidence for fast neutrino cooling can be inferred
from neutron stars in transiently accreting binary systems
[132,165] for which mass measurements, or at least mass
estimates, are possible. At present time a few such systems
have been identified, as SAX J1808.4-3658 [166,167], 1H
1905þ 000 [168],MXB1659-29 [169], andHETEJ1900.1-
2455 [115], but none of them has mass measurement.
Turning now to the impact of modified gravity on the

cooling of neutron stars we first showed in Sec. III that the
thermal evolution equations retain the same from in αR2

gravity as they have in GR. This has the convenient
implication that a neutron star cooling code such as
NSCOOL [122] can be immediately used without any
change. In a first, very simple scenario, we exhibited in
Fig. 13 a trivial effect of αR2 gravity in that the reduction in
gs results in slightly lower surface temperatures during the
neutrino cooling era. However, even small changes in the
envelope chemical composition, as displayed, e.g., in
Fig. 15, can induce a rise in the surface temperature during
the neutrino cooling era that can bemuchmore important that
the small decrease due to theαR2 gravity reduction in gs. This
effect is thus completely hidden by the “noise” from the
uncertainty in the envelope chemical composition for which
we usually have almost no constraint. Considering a set of
stellar models covering a range of masses we showed Fig. 14
the immediate effect that a model, the 1.5M⊙ one in this
particular example, that undergoes slow neutrino cooling in
GR gravity because its mass is belowMDU ¼ 1.509M⊙, will
experience fast neutrino cooling in α14R2 gravity because its
mass is now above new value ofMDU which as decreased to
1.474M⊙. As long as nomassmeasurements are available for
isolated neutron stars such an effect is unfortunately only of
academic interest and, moreover, a small change in ρDU due
to a small change in the EOS properties can have the same
effect of modifying MDU, without any change in gravity
modeling.
After these first results, we considered three case studies

for a better evaluation of the magnitude of the impact of
modifying the gravity theory on our ability to infer proper-
ties of dense matter from such studies. In the first case we
revisited the scenario [93,170] in which fast neutrino
emission, which results in very cold neutron stars if
uninhibited, is controlled by pairing. This scenario is well
known [93,170] (see, also e.g., the reviews [64,65] and the
recent works [132,171]) to result in a wide range of
predicted effective temperatures that allow to interpret all
present data on isolated cooling neutron stars and we
showed in Fig. 15 that the same conclusion holds even
within the most extreme case of α14R2 gravity theory. Since
increasing α has no further noticeable effect compared to
α14 while at smaller α the modifications are even smaller,
we can conclude that the validity of this family of cooling
scenarios, fast neutrino emission controlled by pairing, is
not altered by modification of the gravity theory within the
αR2 scheme.
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In the second case we revisited the intriguing possible
observation of the cooling of an isolated neutron star in real
time, the neutron star in the supernova remnant Cassiopeia
A. We considered the specific scenario of sudden increase
of the star’s neutrino luminosity due to the very recent onset
of neutron 3P2 pairing in its core [102,154] and found, as
shown in Fig. 16, that a small increase in the assumed
thickness of the light element layer in its envelope, an
essentially unknown quantity, is sufficient to counterbal-
ance the effect of the change in gravity theory as already
mentioned in the above described simple models. As a
result, the underlying physical interpretation of the obser-
vation as due to the appearance of superfluidity is not
affected at all.
Our last case study is the analysis of the recent

identification of a likely first sign of the neutron star,
dubbed NS 1987A, created in the SN 1987A supernova
event [109,155]. A key point of the argumentation is that
the expected thermal luminosity of a ∼30 years old neutron
star is sufficient to energize the dust blob suspected to
conceal NS 1987Awhich needs an energy input of at least
1035 erg s−1. Producing such a high thermal luminosity was
shown to be possible, within GR gravity, in the case the
outer layer of the neutron star contain a significant amount
of light elements, as C or O [109]. In the case of αR2

gravity, as shown in Sec. V C, slightly lower thermal
luminosities are obtained with the consequences for NS
1987A, as shown in Fig. 17, that a thicker layer of light
elements is needed compared to the requirements of
analogous models in GR gravity. In the case of α14R2

gravity, light elements would need to be present up to a
density ρL ∼ 1010 g cm−3 that may be difficult to reach as
we discussed in Sec. V F. If the existence of NS 1987A, and
with such a high thermal luminosity, is confirmed, it may
offer us an interesting object to test gravity theory.
When finishing the present work we became aware of a

similar work by Dohi et al. [77] in the context of the very
similar theory fðRÞ ¼ Rþ R4=3. The difference between
both theories appears to be small and the differences in the
results are very small. In the case were cooling curves in
GR and αR4=3 gravity are compared, as in their Figs. 11, 13,
and 15, their results are in perfect agreement with ours.
These authors label their neutron star models using Msurf
instead ofMtot: as a result they find that the threshold mass
MDU can be much smaller in αR4=3 gravity than in GR.
However, once employing the total mass Mtot as we do,
considering this to be the measured one when a measure-
ment is available, the difference is actually much smaller. In
their conclusion, these authors mention that the crust
relaxation time, which they refer to as the “knee,” can
be affected by gravity theory and be used as a probe for it, a
claim we strongly disagree with: we found that the crust
thickness, a major ingredient in the crust relaxation time,
is little affected by gravity changes, at least with the
scheme we studied here. Moreover, there are many physical

ingredients in the crust that are still poorly determined
and have a much larger effect than changing the underlying
theory of gravity, as we have shown in our Figs. 13–17
and has been described with much detail within GR in,
e.g. [92].

VII. CONCLUSIONS

We have presented an extensive study of the structure
and evolution of isolated neutron stars within the fðRÞ ¼
Rþ αR2 extension of gravity theory beyond the GR case of
fðRÞ ¼ R. We found, as was already hinted by previous
authors who only studied the structure, that the deviations
from GR saturate in both the structure and the evolution
when α grows and theories with α ≥ 1014 cm−2 result in
essentially identical predictions. This result has the impor-
tant consequence that the whole range of predictions from
this family of gravity theories can thus be covered by
actually scanning only a finite range of values of α.
For a given high density EOS, predicted values for the

maximum mass and the radii of stars with masses above
about 1M⊙ are larger within αR2 gravity theories than
within GR gravity. However, the changes when going from
GR to αR2 gravity are comparable in size to changes that
are obtained within GR simply by considering different
EOSs. Thus, using neutron star mass and radius measure-
ments to constrain theories of gravity do not seem to be a
promising approach, as long as present uncertainties on
the high density EOS remain. Nevertheless we have been
able to identify one property, the surface gravitational
mass Msurf , which is potentially measurable through light
curve modeling, and differs in αR2 gravity from the total
gravitational mass Mtot that is measured from binary orbit,
while both masses are identical in GR gravity. Most
importantly, we have shown, see Fig. 4, that the difference
Mtot −Msurf depends only on α and turns out to be
almost independent of Mtot and of the high density EOS.
Measuring this difference would be a direct measurement
of α, within the αR2 gravity scheme.
Regarding the thermal evolution of neutron stars, many

physical and astrophysical ingredients beyond just the EOS
are needed for a realistic description. We have shown that
uncertainties in these many ingredients have stronger
impact in the models than the change in structure resulting
from a change in gravity theory, at least with the αR2

gravity scheme. By studying a few well-known cooling
scenarios we have shown that modified gravity within the
αR2 scheme alters neither their validity nor the conclusions
that may be derived from them regarding properties of
dense matter. We nevertheless found one case, the neutron
star NS 1987A in the remnant of SN 1987A, whose
deduced high thermal luminosity requires the presence
of a very thick layer of light elements at its surface: within
αR2 gravity with large α the presence of an unrealistically
thick layer of light elements may be required resulting in a
tension between such gravity theories and the interpretation
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of the ALMA detected warm blob of dust lumi-
nosity being due to the heating from the young neutron
star [109].
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