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The Advanced LIGO/Virgo interferometers have observed ∼100 gravitational-wave transients enabling
new questions to be answered about relativity, astrophysics, and cosmology. However, many of our current
procedures for computing these constraints will not scale well with the increased size of future transient
catalogs. We introduce a novel hybrid sampling method in order to more efficiently perform parameterized
tests of general relativity with gravitational-wave signals. Applying our method to the binary black hole
merger GW150914 and simulated signals we find that our method is approximately an order of magnitude
more efficient than the current method with conservative settings for our hybrid analysis. While we have
focused on the specific problem of measuring potential deviations from relativity, our method is of much
wider applicability to any problem that can be decomposed into a simple and more complex model(s).
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I. INTRODUCTION

General relativity (GR) is currently our most successful
theory of gravity. Previous observations of sources within
our solar system, including the Gravity Probe B experiment
and time-delay measurements with the Cassini space probe,
have placed constraints on deviations from general rela-
tivity in the nondynamical, weak-field regime [1]. These
tests have been replicated and expanded with radio obser-
vations of pulsars, which probe similarly slow-motion, but
strong-field gravitational physics [2,3] through measure-
ments of the orbital decay rate of the first discovered binary
pulsar system [4] to modern constraints on dipolar gravi-
tational-wave emission constructed with multiple such
systems [5]. Simultaneously, probes of large-scale cosmo-
logical structure including weak gravitational lensing and
the cosmic microwave background have provided compli-
mentary weak-field tests of general relativity across cosmic
epochs and length scales [6]. Over the past decade new
observations have unlocked the strong-field regime for tests
of general relativity, including measurements of two super-
massive black hole shadows [7–9] and gravitational waves
from stellar-mass compact object mergers observed by

Advanced LIGO [10] and Advanced Virgo [11], using both
single observations [12,13] and the burgeoning population
of gravitational wave transients [14–17]. To date, none of
these experiments have found significant disagreement
with the predictions of general relativity.
However, alternative theories of gravity that could

emerge in the strong-field regime may be relevant to
constructing unified field theories or the understanding
of unexplained phenomena like dark energy (e.g. in scalar-
tensor theories, among others [18]). Modern developments
in theoretical physics have generated testable predictions of
modifications to gravitational-wave emission from compact
binary coalescence under alternative formulations of grav-
ity, both analytically [19–25] and numerically [26–33],
further enabling tests of general relativity in the most
extreme gravitational environments yet accessible to us.
The number of observed mergers will only continue to

grow, and our gravitational-wave detectors will continue to
become more sensitive, further enhancing our resolution on
potential deviations from general relativity. However, this
also necessitates that our statistical and computational
techniques improve to support larger and more complex
analyses. Since the first observation of gravitational waves
from a compact binary merger, the TIGER (Test
Infrastructure for General Relativity) formalism and related
methods have been some of the flagship analyses
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performed by the LIGO-Virgo-KAGRA scientific collab-
orations [13–17,34–36]. These methods require performing
many independent, but largely identical, analyses for each
potential deviation from relativity as the parameters
describing the GR signal must be inferred from scratch.
The goal of this work is to improve this analysis procedure
with a new method for parameter estimation: hybrid
sampling. Here, our hybrid approach uses an analysis
assuming that general relativity is correct to initialize the
inference of deviations from general relativity. This method
is more computationally efficient, allowing us to scale our
analysis as the population of observed mergers grows, and
further constrain deviations in gravitational-wave signals
predicted by general relativity.
The remainder of the paper is structured as follows.

In Sec. II, we provide relevant background and introduce
our hybrid sampling method. After this, we provide a
demonstration of our method on a simple toy model in
Sec. III. We then describe our model for observed gravi-
tational waves according to general relativity and the
parametrized deviations we consider in Sec. IV. In
Sec. V, we apply our hybrid sampling method to simulated
and real gravitational-wave signals. Specifically, we dem-
onstrate that our method returns equivalent results to the
previous method at a fraction of the computational cost and
introduce an extension to the previous method. Finally, we
provide closing thoughts in Sec. VI.

II. METHODS

A. Bayesian inference for gravitational-wave transients

We begin with a brief review of Bayesian inference in the
context of gravitational-wave astronomy. In Bayesian
inference, we wish to infer a set of parameters θ of a
modelM given some data d; formally, we want to construct
the posterior distribution pðθjd;MÞ. For example, in this
work, we will have a set of parameters that include
properties of binary black hole systems (e.g. mass and
spin), with additional parameters to denote deviations from
the predictions of general relativity that we wish to infer
from observations of gravitational-wave transients. For
additional details, see, e.g. [37].
Bayesian inference allows us to construct the posterior

distribution via Bayes’ theorem,

pðθjd;MÞ ¼ Lðdjθ;MÞπðθjMÞ
ZðdjMÞ ; ð1Þ

where Lðdjθ;MÞ is the likelihood of observing the data
given parameter values, and πðθjMÞ is the prior distribu-
tion, which encodes our assumptions about the Universe
before considering the data. The normalization factor
ZðdjMÞ is known as the evidence and is the probability
of observing the data given the parametric model we
choose

ZðdjMÞ≡
Z

dθLðdjθ;MÞπðθjMÞ: ð2Þ

We may suppress the model M in subsequent expressions,
however, everything is conditioned on a model.
When analyzing gravitational-wave transients we

assume that the noise in each of our interferometers is a
stationary Gaussian process described by a power spectral
density S in the frequency domain. Additionally, our
analysis is triggered by matched filter search pipelines
that tell us a coherent non-Gaussian transient that is
most likely an astrophysical signal is present in the data.
To model this, we use the Whittle likelihood approximation
[38] for the residual noise after subtracting the response of
each detector to our template h for the astrophysical signal

LðdjθÞ ¼
Y
i;j

1

2πSij
exp

�
−
4

T

jdij − hðθÞijj2
Sij

�
: ð3Þ

Here, the products run over the interferometers in the
network, and frequencies for the data in each interferometer
are (generally) assumed to be uncorrelated. We note that
our parameters only describe the astrophysical template and
the response of the detector; however, it is also possible to
construct parametrized models for the power spectrum [39].
The quantity T is the duration of data being analyzed and is
the inverse of the frequency resolution.
We observe that pðθjdÞ provides a distribution on the

entire (multidimensional) set of parameters θ. To extract
information on specific parameters of interest θi, we must
“marginalize,” i.e. integrate, over the rest of the parameters:

pðθijdÞ ¼
Z �Y

k≠i
dθk

�
pðθjdÞ: ð4Þ

This integration may be difficult to compute through
standard numerical methods, especially in a high-
dimensional parameter space. One common method to
approximate this integral is to utilize a Markov chain
Monte Carlo (MCMC) method [40,41], wherein a “walker”
explores the parameter space of θ under rules such that,
given enough iterations, the combined steps along its path
form a representative sample of the posterior distribution.
Another, more recent method is nested sampling [42,43],
which instead focuses on estimating the evidence Z, from
which the posterior distribution can then be calculated. In
this work, we will utilize both of these approaches and, in
turn, detail specific implementations of these methods in
the following subsections.

B. Nested sampling

Nested sampling, as developed in [42,43], is an algo-
rithm to estimate the evidence Z and posterior probability
density by climbing up discrete contours on the likelihood
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surface and has been widely adopted in astrophysics
including gravitational-wave astronomy [44–47]. We direct
interested readers to [48] for a recent review. The core
insight of nested sampling is that the high dimensional
integral to compute the evidence Z can be approximated as
a one-dimensional integral over a quantity known as the
“prior mass” X. The prior mass corresponding to a like-
lihood value λ is the fraction of the volume that has a
likelihood greater than λ

XðλÞ ¼
Z
LðθÞ>λ

πðθÞdθ: ð5Þ

If the mapping from θ → X can be found, then the
evidence [Eq. (2)] can be rewritten as

Z ¼
Z

1

0

LðXÞdX: ð6Þ

The nested sampling algorithm constructs this mapping
numerically by gradually climbing the likelihood surface
and we approximate Z as a weighted sum of values
LðXÞ, e.g.,

Z ≈
XN
i¼1

wiLi ð7Þ

for some number of samples N, with the prior volume
associated with each likelihood isocontour wi. For a full
derivation of the functional form of wi, see, e.g., [43]. For
this work, we use the implementation of nested sampling in
DYNESTY [46].
Another widely used feature of nested sampling is that

the elements in the sum in Eq. (7) are the posterior weights
associated with nested sampling. We can therefore generate
samples from the posterior distribution by weighting the
nested samples according to a normalized version of that
quantity

pi ¼
Liwi

Z
: ð8Þ

We note that after a sufficient number of iterations, nested
sampling no longer produces additional posterior samples.
This is because the algorithm continually climbs the like-
lihood surface and eventually the reduction in prior volume
overcomes the increase in the likelihood and the posterior
weights begin to decrease. This means that the number of
posterior samples generated by a nested sampling analysis is
completely determined by the shape of the likelihood surface.
We note that the values of the Li are irrelevant to the

nested sampling algorithm, and that only their order
matters.1 Therefore, we are free to perform any monotonic

operation on the likelihood and can then trivially recompute
the evidence and generate samples from the posterior
distribution. In this work, we will focus on a specific
family of operations that change the effective inverse
“temperature” βT of the posterior distribution2

L → LβT ; ð9Þ

pi;βT ¼ LβT
i wi

ZβT

: ð10Þ

This “athermal” property of nested sampling has been
known since the first introduction of the algorithm but has
not been widely utilized.
In Fig. 1, we show the posterior weight pi;βT as a

function of iteration for various temperatures for a simple
model described in Sec. III. We note that, for the βT ¼ 1
case, we recover the usual posterior weights. As we
increase the temperature (decreasing βT) the posterior
weights peak earlier in the nested sampling chain.

C. Parallel-tempered Markov chain Monte Carlo
methods

In contrast with nested sampling, MCMC methods
directly explore the posterior and can be run as long as
necessary, continually generating additional samples from
the posterior distribution. Ensemble MCMC methods build
upon existing MCMC methods by replacing a single
walker, as used in traditional approaches [40,41], with
an ensemble of walkers that explore the parameter space in
parallel, e.g., [50]. A key feature of an ensemble approach
is that we can reduce the number of iterations we need to

FIG. 1. Posterior weights pi generated by DYNESTY, tempered
according to the default method described in [49]. As βT → 1, we
recover the original distribution of posterior weights. As βT → 0
we recover an exponential distribution, the result of choosing
nested samples according to Xi ¼ expð−i=NÞ.

1Strictly speaking, this is only true if one has an infinite chain
of nested samples.

2The temperature, in this case, is defined in analogy with
statistical physics which historically shares strong links with
Monte Carlo analyses.
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evolve the MCMC to accurately resolve the posterior
distribution, as ensembles of walkers have a far shorter
autocorrelation length, measuring the correlation between
sampling steps, than single walkers [50,51]. Additionally,
at any step, the state of our ensemble is a representative
estimate of the posterior distribution. For a recent review,
we direct the readers to [52]. In further contrast with nested
sampling techniques, we can choose the initial distribution
of points in our ensemble. Common initialization schemes
include drawing random samples from the prior distribution
and initializing samples around a maximum likelihood
estimate, however, the optimal initialization is a realization
of the target distribution.
Further, ensemble MCMC methods can be parallel-

tempered to explore the posterior distribution at arbitrary
temperatures [53]. A parallel-tempered ensemble MCMC
method then uses many walkers, in parallel, each exploring
a tempered posterior surface

pβT ðθjdÞ ¼
LβT ðdjθÞπðθÞ

ZβT ðdÞ
: ð11Þ

We note that this is a continuous version of Eq. (10). For
higher temperatures (smaller βT), the ensemble can more
easily explore the full prior volume, and by allowing
walkers to jump between different temperature ensembles
the convergence time of the βT ¼ 1 ensemble is greatly
reduced. In this work, we use the PTEMCEE implementation
of parllel-tempered ensemble MCMC method [49,51].
While MCMC methods may not always be as computa-

tionally efficient as nested sampling methods, once they
have reached a stationary state, they have a relatively high
computational efficacy; i.e. we can continually ask our
MCMC sampler for more samples, increasing our reso-
lution of the posterior as much as we desire. Therefore, if
we can initialize our MCMC ensembles to closely approxi-
mate the target distributions, we can achieve very large
efficiencies.

D. Hybrid sampling

We propose a hybrid sampling scheme to explore high-
dimensional, degenerate parameter spaces that uses the
exponential compression of the prior mass provided by
nested sampling to seed a set of parallel-tempered MCMC
ensembles. In particular, we seed each tempered ensemble
by rejection sampling the nested samples, weighted by the
tempered posterior weights defined by Eq. (10), which
approximates the tempered posterior distribution defined
by Eq. (11). In this work, we temper our MCMC
ensembles over the default temperature ladder used by
PTEMCEE, as detailed in Sec. 2.1 of [49]. In the case that
the nested sampling is unbiased, this procedure initializes
each ensemble from a realization of their target distribu-
tion. This is the optimal seeding for the MCMC ensem-
bles. We can then run the tempered ensembles to generate

an arbitrary number of samples from the target distribution
(in contrast to nested sampling which can only generate
a fixed number of samples, although dynamic nested
sampling has been provides another solution to this
problem [54]).
Our method can also be applied to more complex cases

where the MCMC evolution explores an extended param-
eter space compared to the nested sampling analysis. We
define two models M1 and M2 described by parameter sets
θ1 ⊆ θ2 with likelihoods L1 and L2. We denote the
extension parameters as θ̄; i.e. θ2 is the union of θ1 and
θ̄. We first perform a nested sampling analysis of the data
under model M1, generating the posterior distribution
pðθ1jd;M1Þ. Since M2 contains M1, there must exist some
value of θ̄ for which M2 reduces to M1, which we call θ̄0.
Therefore, pðθ1jd;M1Þ ¼ pðθ2jd;M2; θ̄0Þ, and we can
consider other realizations of pðθ2jd;M2Þ as an extension
of the distribution for which θ̄ ¼ θ̄0. So, the posterior
distribution for θ1 that we achieve via nested
sampling provides an efficient starting state for MCMC
ensembles sampling in θ2 under M2. For the parameters of
θ2 included in θ1, we seed each tempered ensemble as in
the case where M1 ¼ M2. In the remaining parameters θ̄,
we initialize our chains from narrow distributions centered
around θ̄0.
In the rest of this work, we will takeM1 to be a model of

the gravitational-wave signal from a binary black hole
merger in accordance with general relativity, andM2 to be a
model of the same phenomenon that allows for deviations
from GR. Then, θ̄ are parameters of these deviations, and θ̄0
is zero in each deviation parameter.

III. HYBRID SAMPLING WITH A GENERALIZED
GAUSSIAN DISTRIBUTION

As a demonstration of our hybrid sampling framework,
we use a toy model where our reduced model in the
first step is the standard Gaussian distribution characterized
by mean μ and standard deviation σ and the complex model
in the second step is a generalized Gaussian distribution
characterized by mean μ, scale α, which can take alternative
shapes parametrized by β. For comparison, the probability
density function of the standard Gaussian is

Pðxjμ; σÞ ¼ 1ffiffiffiffiffiffiffiffi
πα2

p e−ðx−μÞ2=α2 ; ð12Þ

while that of the generalized Gaussian we employ is

Pðxjμ; α; γÞ ¼ β

2αΓð1=γÞ e
−ðjx−μj=αÞγ ; ð13Þ

where Γ is the Gamma function. For consistency with the
generalized model, we parametrize our Gaussian distribu-
tion with the parameter α ¼ ffiffiffi

2
p

σ. When the shape γ ¼ 1,
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we recover the Laplace distribution, while as γ → ∞, we
recover a tophat distribution on ðμ − α; μþ αÞ. When
γ ¼ 2, we recover the standard Gaussian distribution.
As an example of these two distributions, we show the

data used in the two examples considered in this section in
Fig. 2. In blue we show samples from the standard normal
distribution, while the orange shows samples from the
generalized distribution with γ ¼ 8. Thus, if the data follow
a distribution with γ ≠ 2, the value of α will be incorrectly
estimated. In the remainder of this section, we verify that
our hybrid sampling method can recover μ, α, and γ when
we correctly assume that the data follows a standard
Gaussian distribution during the first step of hybrid
sampling and when the underlying data do not follow a
Gaussian distribution. For our analyses, we use prior
distributions as described in Table I.

A. Well-specified initial model

First, we verify that hybrid sampling can recover model
parameters when the data follows a normal distribution
with μ ¼ 3 and α ¼ 5. Our data d are N ¼ 10000 random
samples from this distribution. In the first step of hybrid
sampling, we use DYNESTY to sample in fμ; αg, assuming
that the data follows a standard Gaussian distribution,
generating a posterior distribution we denote p1ðμ; σjdÞ
using 500 live points. Before the second step of hybrid
sampling, we prepare initial points fμ0; α0g for an

ensemble of 200 walkers at seven temperatures as
described in Sec. II D. We generate initial values of the
shape parameter γ0 by sampling from a standard Gaussian
distribution with a standard deviation of 0.01 and centered
on the value of γ assumed in the first hybrid step, γ ¼ 2. We
then evolve the ensemble using PTEMCEE for 128 iterations,
discarding the first 100 iterations as burn-in.
For comparison, we also analyze the data under the

generalized model with DYNESTY directly. In Fig. 3, we
compare the posterior generated by DYNESTY alone (blue)
to the one generated by hybrid sampling (purple). The
dashed black lines show the true values of the three
parameters. We see that both methods recover equivalent
posterior distributions indicating that the hybrid sampling
method is well converged.

B. Misspecified initial model

Next, we verify that hybrid sampling can recover model
parameters when the model likelihood used in the first step
has been inappropriately specified for the data. We repeat
the first step of hybrid sampling as in the previous section.
However, the input data we generate is not Gaussian.
Instead, we generate N ¼ 10000 random samples from a
generalized Gaussian distribution with μ ¼ 3, α ¼ 5, and
γ ¼ 8, shaped approximately like a tophat function. We
perform the same analyses as in Sec. III A, including the

FIG. 2. Realizations of samples from the standard Gaussian
distribution (blue) and generalized Gaussian distribution with
γ ¼ 8 (orange). The γ ¼ 8 case is closer to a tophat function that
the standard Gaussian.

TABLE I. Prior distributions for the parameters of the gener-
alized Gaussian model. We denote a uniform distribution over
½a; b� as Uða; bÞ. We note that the initial phase of the hybrid
sampling fixes γ ¼ 2.

Parameter Distribution

μ Uð0; 5Þ
α Uð0; 10 ffiffiffi

2
p Þ

γ Uð0; 10Þ

FIG. 3. Posteriors for μ, α, γ generated by our hybrid sampling
method with the model well-specified during the first step, shown
in purple, and DYNESTY sampling under a generalized Gaussian
distribution for verification, shown in blue. True parameter values
are shown in black. Contour level curves in this figure and all
following two-dimensional distribution plots denote, from inside
out, 39.3% (1-sigma level), 86.4% (2-sigma), and 98.8%
(3-sigma) of the distribution volume.
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discard of the first 100 iterations as burnin. In Fig. 4, we
show the posterior distributions estimated using our two
methods. Once again, we see that both methods recover
equivalent results.
We are additionally interested in understanding the

performance of the hybrid sampling stage. In Fig. 5 we
provide two-dimensional snapshots from the evolution. The
top and left-hand panels show the one-dimensional mar-
ginal distributions for γ and α at each iteration. The colors
are consistent between the panels and darker shades
correspond to later iterations of the evolution. We note
that α and γ are strongly correlated, specifically the
variance of the distribution

σ2 ¼ α2
Γð3γÞ
Γð1γÞ

ð14Þ

is approximately conserved. The orange curve is constant σ
intersecting the true values of α and γ. We note that the
parameters α and γ are correlated and so the evolution
follows the direction of the correlation. We observe that as
the ensemble evolves, it follows this curve of constant σ.
This is suggestive that ensemble sampling can readily
explore problems when the extended parameter space is
strongly correlated with the initial parameter space.
In Fig. 6, we show trace plots for μ, α, γ, and σ from the

second step of hybrid sampling. At each iteration, we show
the current state of the βT ensemble. The color at each
iteration matches the colors in Fig. 5. The dashed lines

indicate the true value of each parameter. We see that in this
case, the ensemble evolves from the initial state to the
stationary distribution containing the true value within
<100 iterations.

IV. GRAVITATIONAL WAVE SOURCE MODEL

A. Modeling gravitational waveforms from
black hole mergers

To infer the properties of the source of a gravitational-
wave signal, we require a model for the gravitational
waveform. A quasicircular binary black hole (BBH) merger
can be described by 15 source parameters, divided between
eight “intrinsic” parameters (the masses and spins of the
component black holes) and seven “extrinsic” parameters
(the location and orientation of the source with respect to an
observer). As these parameters describe the signal predicted
by general relativity, we refer to these as “GR parameters,”
later denoted θGR. When modeling the signal from a binary
black hole merger, the coalescence is typically broken
down into three temporally distinct regimes: the inspiral, an
intermediate phase, and the merger ringdown [16,34,55].
The inspiral begins when the black holes have formed a

binary system; however, we typically only model the
waveform after the emission has surpassed the lowest
sensitivity frequency of our instruments (typically 20 Hz
for current detectors). This regime is typically characterized

FIG. 4. Posteriors for μ, α, γ generated by our hybrid sampling
method with the model misspecified during the first step, shown
in purple, and DYNESTY sampling under a generalized Gaussian
distribution for verification, shown in blue. True parameter values
are shown in black.

FIG. 5. Visualization of the evolution of the βT ¼ 1 ensemble
for our generalized Gaussian model during the MCMC sampling
stage. The different colored scatter plots and histograms corre-
spond to different iterations of the ensemble. The orange curve
shows a line of constant σ [Eq. (14)] which describes the
degeneracy between the α and γ. We note that the ensemble
approximately evolves along a curve of constant σ. We show the
full one-dimensional evolution in Fig. 6.
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using the post-Newtonian expansion [56] with higher-order
corrections tuned to numerical relativity simulations.
During the intermediate regime, the orbital frequency of
the binary increases to a point where the post-Newtonian
expansion breaks down and the binary “plunges” and the
horizons merge. This regime can only be accurately
described through numerical methods and is usually
modeled using a fit to numerical relativity simulations
(for example, public catalogs like [57]). Finally, after the
merger, the remnant black hole undergoes a “ringdown”
phase, in which gravitational-wave emission is modeled via
quasinormal modes [58,59]. This regime is well described
by analytical models and provides strong tests of the “no-
hair” theorem [60] and the black hole area law [61].

In this work, we use IMRPHENOMPV2, a computationally
efficient, phenomenological model of the gravitational
waveform [55,62–64]. For a given set of BBH source
parameters, IMRPHENOMPV2 returns a frequency-domain
representation of the gravitational wave signal, taking the
form

h̃ðfÞ ¼ AðfÞe−iΨðfÞ; ð15Þ

where h̃ðfÞ is the gravitational-wave strain as a function of
frequency, AðfÞ is the amplitude, and Ψ is the phase of the
signal. Both A and Ψ depend on the intrinsic and extrinsic
parameters of the BBH, although in general, the intrinsic
parameters have a larger impact on the phase, while the
extrinsic parameters primarily determine the amplitude. In
this work, we focus on modifications to the phase Ψ as the
first test of our hybrid sampling method for gravitational-
wave signals, as current detectors are more sensitive to the
phase of the signal [17].
During the inspiral regime, Ψ is approximated as a

modified version of the post-Newtonian expansion:

ΨinsðfÞ¼2πftc−ϕc−
π

4
þ 3

128ηv5
X7
i¼0

ðφiþφiL lnvÞvi

þ1

η

�
σ0þσ1fþ

3

4
σ2f4=3þ

3

5
σ3f5=3þ

1

2
σ4f2

�
:

ð16Þ

Here η ¼ m1m2=ðm1 þm2Þ2 is the symmetric mass ratio of
the binary, v ¼ ðπMfGc−3Þ1=3 is the dimensionless orbital
frequency of the system, the phase coefficients φi are
determined by the post-Newtonian expansion and the σj are
tuned to numerical relativity waveforms. Terms φiL are
those post-Newtonian coefficients leading ln v at order i.
Both φi and σj depend on the intrinsic parameters of the
source. The parameters tc and ϕc are the coalescence time
and the orbital phase at coalescence respectively.
In the intermediate phase, IMRPHENOMPV2 adopts the

following form for Ψ,

ΨintðfÞ ¼
1

η

�
β0 þ β1f þ β2 logðfÞ −

β3
3
f−3

�
; ð17Þ

where β0 and β1 are chosen to require a smooth continu-
ation of Ψ in the coalescence time and phase from the
inspiral to intermediate phases. The parameters β2 and β3
depend on the intrinsic parameters of the source.
Finally, in the merger-ringdown phase, IMRPHENOMPV2

adopts another parametrized form for Ψ,

FIG. 6. Trace plots showing the evolution of samples taken in μ,
α, γ, and σ during the second step of hybrid sampling for the first
32 steps of sampling, with black lines denoting the true values of
these parameters. The samples plotted at each iteration of
sampling are collated from each of the 200 walkers in the
ensemble at temperature βT ¼ 1. The color scheme matches the
state of the ensemble shown in Fig. 5. Throughout sampling, we
observe that γ and α achieve the correct values while not biasing
our correct estimate of μ from the first sampling step. Addition-
ally, we see that the convergence of σ follows the convergence of
the ensemble state in Fig. 5 around a line of constant σ.

ACCELERATING TESTS OF GENERAL RELATIVITY WITH … PHYS. REV. D 107, 104056 (2023)

104056-7



ΨMR ¼ 1

η

�
α0 þ α1f − α2f−1 þ

4

3
α3f3=4

þ α4tan−1
�
f − fRD
fdamp

��
: ð18Þ

As with the intermediate phase, α0 and α1 are chosen so that
Ψ continues smoothly from the intermediate phase to the
merger-ringdown phase, and α2–4 depend on the intrinsic
parameters of the source. The frequencies fRD and fdamp

describe the complex ringdown frequency and are com-
puted from the mass and spin of the remnant black hole
[64]. We note that the above discussion applies to the
aligned-spin IMRPHENOMD model; the IMRPHENOMPV2

phasing is obtained by “twisting-up” the IMRPHENOMD

phasing to account for precession of the orbital plane as
described in [64].

B. Generating beyond-GR waveforms

Following [12,15,16,34], we model deviations from
general relativity as fractional corrections to the parameters
described above, specifically, we define

pBGR ¼ ð1þ δpÞpGR ð19Þ

for pGR ∈ fφ1−4;φ5L;6L;φ6;7; α2−4; β2;3g. Since under GR
φ1 ¼ 0, we model δφ1 as an absolute rather than fractional
deviation. We note that the parameters describing global
phase and time shifts are not modified as any such
modification is indistinguishable from changes in phase
or time. In principle, any combination of these parameters
could have nonzero deviations, however, most previous
analyses modify just a single parameter at a time. We use
the implementation of IMRPHENOMPV2 provided by
LALSUITE [65], which allows us to apply these fractional
deviations when generating our waveforms.
Although these fractional deviations can take any real

value, we do not expect them to be large as at worst we
expect the general relativistic description of gravitational
wave emission to be “mostly” correct. Thus, we limit the
space of allowed deviations by limiting the allowed
deviation between a beyond-GR waveform we generate
with pi;BGR and the associated waveform generated with
pi;GR. We measure this deviation between waveforms via
the overlap O,

O ¼ max
ϕc

hh̃GRðfÞ; h̃BGRðfÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hh̃GRðfÞ; h̃GRðfÞihh̃BGRðfÞ; h̃BGRðfÞi

q : ð20Þ

Here h̃GR and h̃BGR are the GR frequency-domain wave-
form and associated beyond-GR waveform with the same
intrinsic parameters. We maximize over the merger phase
of the signal by taking the absolute value of the overlap
(e.g., [66]). One can similarly maximize over the merger

time. However, as detailed in Appendix D, we find that an
overlap cut maximized over the merger phase and time
introduces sufficient flexibility that the GR parameters can
deviate significantly from the corresponding value with no
beyond-GR deviation. Finally, h·; ·i denotes a discrete inner
product between the frequency-domain waveforms,
weighted by the detector spectral power density, as

hh̃1ðfÞ; h̃2ðfÞi ¼
4

T

XN
i

h̃1;ih̃
�
2;i

Si
; ð21Þ

between two generic frequency-domain waveforms h̃1 and
h̃2, where i enumerates N discrete sampling frequencies
spaced by 1=T. In practice, we use theþ polarization of the
waveform for computing the overlaps. The quantity S is the
harmonic sum of the power spectral densities for each of
the interferometers in the network. In this work, for some
cases of hybrid sampling, we enforce a cut on the priors of
δpi by enforcing that all beyond-GR waveforms we
generate must have an overlap O > 0.9 with their asso-
ciated GR waveform. This manifests in practice as a cut on
the prior bounds of the initial points provided to PTEMCEE,
as well as an added acceptance condition for MCMC
proposals, where any proposal with O < 0.9 is rejected.

V. HYBRID SAMPLING IN GRAVITATIONAL
WAVE SIGNALS

We now apply our method to real and simulated
gravitational-wave signals. We follow the procedure
described in Sec. II to jointly infer θGR and each of the
δp parameters. For each analyzed signal, we first analyze
the data using DYNESTY under the GR model.3 Unless
otherwise specified, we then perform 28 subsequent analy-
ses with PTEMCEE, two each allowing one of the δp
parameters to vary either applying the condition that
O > 0.9 or no overlap cut. For all analyses, we numerically
marginalize the likelihood over distance and the coales-
cence phase using standard methods [37]. Full details of the
sampler configurations can be found in Appendix B.
The prior distribution we use for θGR is given in Table II.

We note that throughout we work with detector-frame mass
quantities which differ from the source mass by a distance-
dependent factor due to cosmological redshifting. For the
PTEMCEE stage, we initialize the θGR from the tempered
posterior distribution obtained with DYNESTY. The prior and
initialization distributions for the δp are shown in Table III.

3We note that, in practice, this analysis is typically performed
by the LIGO/Virgo/Kagra collaboration and so would not be
required in production scenarios if the nested samples are
released for future analyses.
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A. Analysis of a real signal—GW150914

First, we apply our hybrid sampling method on
GW150914, the first observed gravitational-wave signal
[67]. This signal was produced by the coalescence of a
binary black hole system with a detector-frame chirp mass
of M ∼ 30M⊙ and a network signal-to-noise ratio of ∼25.
These properties mean it is still one of the highest SNR
signals to date and also lies at the mode of the observed
binary black hole mass distribution [68] making it an
excellent representative test case. Following [67], we
analyze 8s of data ending 2s after the trigger time produced
by matched-filter search pipelines for both of the Advanced

LIGO interferometers. We use the power spectral densities
and calibration envelopes used in the LIGO/Virgo collabo-
ration analyses available at [69]. Marginalizing over
uncertainty in the detector calibration adds 40 free param-
eters to the analysis, and we use the same prior distribution
for those parameters as [70]. We downsample the data to
2048 Hz and analyze the data from 20–1024 Hz.
In Fig. 7, we show the posterior distributions for each of

the δp obtained with (purple) and without (magenta) a cut
in the GR vs non-GR overlap, respectively. We also overlay
the results from the LIGO/Virgo collaboration analysis in
blue obtained with LALINFERENCE [15,44]. The differences
between the blue and magenta are likely due to sampler
differences.
We note that for the inspiral deviation parameters the

requirement that O > 0.9 imposes a significant constraint
compared to the constraining power of the data. This is
because the inspiral deviation parameters are strongly
degenerate with the chirp mass, and also show correlations
with the mass ratio as can be seen in Fig. 8. However, for
the δα and δβ parameters, the posteriors are unaffected by
the requirement that O > 0.9. This is because these
parameters are not strongly correlated with the GR param-
eters and so an equivalent waveform cannot be obtained by
changing, e.g., the black hole masses and δα2.
In Fig. 8, we show joint posterior distributions on the

beyond-GR deviation parameters δφ2, intrinsic parameters
chirp mass M and mass ratio q, and the extrinsic sky
parameters right ascension and declination from our esti-
mation of δφ2 when enforcing an overlap cut of
O > 0.9 (purple) as well as enforcing no overlap cut
(magenta). We also compare these distributions to the
posteriors in M, q, right ascension, and declination
generated during the first step of hybrid sampling, where
we do not yet sample in deviations from general relativity.
From the construction of the post-Newtonian inspiral phase
coefficients, we expect deviations from φ2 to be correlated
with changes in the mass parameters, particularly M, and
we can observe this correlation in both results. Since the
extrinsic parameters do not affect the phase evolution of the
signal, we do not expect a correlation between δφ2 and the
extrinsic parameters. As expected, we do not see a
correlation between δφ2 and the extrinsic sky parameters.
We also observe the effect of the overlap cut, which
prevents our ensemble from exploring far away from the
GR solution for the mass parameters.
In Fig. 9, we examine the evolution of the ensemble

sampler for our analysis allowing δφ2 to vary with no
minimum allowed overlap. We show the distribution of M
and δφ2 at various iterations of the PTEMCEE analysis. As in
Sec. III B, the hybrid analysis method is well able to
capture the correlation between chirp mass and the new
parameter added in the second stage of our hybrid analysis.
We find that, by iteration 1024, the ensemble has converged
to the correct solution. In Appendix C, we provide

TABLE II. Prior distributions for θGR used in both steps of
hybrid sampling to estimate the source properties of the gravi-
tational-wave signals we consider. We denote a uniform distri-
bution over ½a; b� as Uða; bÞ, Pðα; a; bÞ is a power-law
distribution with spectral index α over the same domain. The
sine distribution for a quantity x is equivalent to a uniform
distribution of cosðxÞ. The notation ½a; b� denotes a parameter that
is constrained to lie within that interval with the functional form
defined in terms of other parameters. The prior for the coales-
cence time is centered on either the trigger time from the matched
filter search pipelines for GW150194 or the known injection time
for simulated signals. Parameter definitions follow [47].

Parameter Distribution Unit

m1; m2 Uð1; 1000Þ M⊙
M [21.418, 41.974] M⊙
q [0.05, 1.0] –
a1, a2 Uð0; 0.99Þ –
θ1; θ2; θJN; κ Sin rad
ϕ12;ϕjl;ϕc; ϵ Uð0; 2πÞ rad
ψ Uð0; πÞ rad
tc Uðt0 − 0.1; t0 þ 0.1Þ s
dL Pð2; 10; 104Þ Mpc

TABLE III. Prior (center) and initialization (right) distributions
for the post-Newtonian deviation parameters δpi used in the
PTEMCEE step of hybrid sampling for GW150914. The prior
distributions were chosen to fully include the δpi posteriors for
GW150914 in [12]. The initialization distributions were chosen
to be narrower than the expected posterior distributions. Here,
Uða; bÞ denotes a uniform distribution in ½a; b� and N ðμ; σÞ a
normal distribution with mean μ and standard deviation σ.

Parameter Prior Initialization

δφ0 Uð−1; 1Þ N ð0; 10−2Þ
δφ1 Uð−2; 2Þ N ð0; 10−1Þ
δφ2; δφ3; δφ4; δφ5l Uð−5; 5Þ N ð0; 1Þ
δφ6 Uð−10; 10Þ N ð0; 1Þ
δφ6l; δφ7 Uð−30; 30Þ N ð0; 5Þ
δα2; δα3; δα4 Uð−5; 5Þ N ð0; 1Þ
δβ2; δβ3 Uð−5; 5Þ N ð0; 1Þ
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additional plots showing the evolution of the βT ¼ 1
ensemble for each of the analyses of GW150914. In
general, we find ∼1000 iterations are sufficient to ensure
convergence of the algorithm.
We now assess whether our hybrid sampling method

is more computationally efficient than the previously
employed direct sampling method. To do this, we compare

the number of likelihood evaluations needed to produce
well-converged results. The computational cost for hybrid
sampling scales linearly with the number of extensions to
the base model. A fixed number of likelihood evaluations
are necessary for the first step of sampling with DYNESTY,
followed by additional evaluations for each second step
analysis performed with PTEMCEE. Using DYNESTYalone in
a “standard” methodology also scales linearly without an

FIG. 7. Violinplot, showing the posterior distributions on each post-Newtonian deviation parameter δpi, comparing the results of [15]
with the results of our hybrid sampling method in the “overlap cut” (purple, O > 0.9) and “no overlap cut” (magenta) cases. These
results were obtained through 14 independent analyses, in each case, we vary only one deviation parameter at a time. Colored horizontal
bars denote the 5th and 95th percentiles of the posteriors.

FIG. 8. Joint posterior distributions on chirp mass M, mass
ratio q, right ascension, declination, and deviation δφ2 during our
estimation of δφ2 in GW150914 with hybrid sampling. In
magenta, we plot the posteriors with no overlap cut enforced,
whereas in purple we enforce an overlap cut of O > 0.9. In blue,
we show posteriors for M and q from the first step of hybrid
sampling, with no deviations from general relativity. In both
hybrid results, we see a correlation between δφ2 and the intrinsic
parameters, particularly M, and no correlation between δφ2 and
the extrinsic sky parameters. We also observe the prior boundary
imposed by the overlap cut that prevents our sampler from
exploring values of the mass parameters more distant from the
initial, general relativity-only result.

FIG. 9. Snapshots of the βT ¼ 1 ensemble of our parallel-
tempered ensemble MCMC analysis at various iterations for our
analysis of GW150914 allowing the inspiral deviation parameter
δφ2 to vary. We display chirp mass M against inspiral phase
deviation coefficient δφ2 with marginal distributions forM in the
right column and those for δφ2 in the top row. In pink, we show
the state of the ensemble after the first MCMC step, near its
initialization from the posterior generated with DYNESTY. As the
ensemble evolves, represented with darkening shades of purple,
the posterior expands to fill the extended posterior space. We note
that the analysis correctly captures the expected correlation
between the two parameters. In this analysis, we do not apply
any condition on the overlap between the beyond-GR waveform
and the corresponding GR waveform.
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initial fixed cost but, in general, each analysis with
DYNESTY is more expensive than the same second-step
hybrid analysis. Thus, if we only seek to estimate a small
number of δpi, using DYNESTYalone may be more efficient,
but we expect hybrid sampling to be more efficient
after some break-even number of deviation parameter
estimations.
We summarize the computational cost of each of the

analyses we performed for our analysis of GW150914 in
Table IV. For the initial GR-only inference we required
23.6 million likelihood evaluations and each PTEMCEE

analysis required <3 million likelihood evaluations. We
do not have access to the computational cost for the LIGO/
Virgo analysis, however, we can conservatively estimate
that direct DYNESTY sampling for each non-GR parameter
will be at least as expensive as the GR-only analysis.
Additionally, in Appendix A, we directly sample in the GR
parameters plus one non-GR parameter using PTEMCEE

initialized at the maximum likelihood point, as well as with
random samples from the prior, and find that these analyses
had not converged after >6 million likelihood evaluations.
We can therefore estimate that our hybrid sampling scheme
is between ∼2 and ∼10× more efficient than the direct
MCMC sampling method for this event.

B. Simulated non-GR signals

Analyses of real gravitational-wave transients have not
revealed significant deviations from relativity, however, it is
important to test whether our method will be sensitive to
such effects if they are present. To accomplish this, we
analyze a simulated signal with a nonzero value of δφ2 with

our hybrid method; the specific injection parameters are
described in Table V. We add this signal to the Advanced
LIGO Livingston and Hanford interferometers assuming
their design sensitivities [71] resulting in an injection with a
network signal-to-noise ratio SNR ≈ 370.
We follow the same hybrid sampling procedure as in our

analysis of GW150914, and with the sampler settings
found in Appendix B, Table VI. We also perform the
beyond-GR analyses with DYNESTY without imposing an
overlap cut to compare the results between the two
methods.
In Fig. 10 we show the one- and two-dimensional

marginal posterior probability distributions for three
parameters for this simulated signal. From left to right
(top to bottom) these are a non-GR deviation parameter δφ2

and two intrinsic binary parameters, the chirp mass and
mass ratio. We note again that the deviation parameter is
correlated with the intrinsic parameters.
In Fig. 11, we consider snapshots of the βT ¼ 1

ensemble at various stages of the PTEMCEE analysis. For
this analysis, the injected chirp mass is strongly excluded
from the posterior distribution obtained after the first,

TABLE IV. The number of likelihood evaluations required to
estimate δpi in GW150914 using hybrid sampling. For reference,
we include the number of likelihood evaluations required for the
initial GR analysis. With the (optimistic) assumption that
performing nested sampling to infer the δpi requires the same
number of likelihood evaluations as with the GR model, our
method is ∼8× more efficient.

Parameter nlikelihood

GR 23,200,000
δφ0 2,955,000
δφ1 2,952,500
δφ2 2,952,500
δφ3 2,952,500
δφ4 2,911,250
δφ5l 2,951,250
δφ6 2,953,750
δφ6l 2,951,250
δφ7 2,490,000
δα2 2,951,250
δα3 2,952,500
δα4 2,951,250
δβ2 2,951,250
δβ3 2,952,500

TABLE V. Parameters of the simulated signal injected into the
Advanced LIGO gravitational wave detector network.

Parameter Value Unit

M 30 M⊙
q 0.8 � � �
a1; a2 0 � � �
θ1; θ2;ϕ12;ϕjl; θJN;ϕc;ψ 0 rad
right ascension 1.35 rad
declination −1.21 rad
δφ2 0.2 � � �
other δp 0 � � �
tc 0 s
dL 100 Mpc

TABLE VI. Sampler arguments for hybrid sampling used in our
analysis of injected signals as defined for the BILBY implemen-
tations of DYNESTYand PTEMCEE. For the DYNESTY-only analyses
of injected signals, we also use DYNESTY sampler settings in this
table. The variables in this table must be lower case and are
shown here upper case to satisfy journal policy.

Sampling Argument Value

DYNESTY

NLIVE 500
SAMPLE “RWALK”
WALKS 50
NACT 10

PTEMCEE

NTEMPS 5
NWALKERS 250
BURN_IN_FIXED_DISCARD 2000
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GR-only, analysis (pink) due to correlations between M
and δφ2. As in Fig. 5, the ensemble of walkers evolves to
explore the extended parameter space and converge on the
correct solution. As with our analysis of GW150914,
∼1000 iterations are required until the ensemble converges.
In Fig. 12, we show the posteriors for δpi for our

simulated signal. Despite the deviation only being nonzero
for δφ2, the posterior distributions for all of the inspiral and
intermediate deviation parameters are inconsistent with
zero at high significance. For the merger-phase deviation
parameters, the deviations from zero are less pronounced.
This is consistent with previous work that has demonstrated

that deviations at one post-Newtonian order can be iden-
tified with other deviation parameters [36,72] due to
correlations between the parameters [73].
Additionally, in Fig. 13, we note that the posterior

distributions for chirp mass we obtain while estimating δpi
are only consistent with the injected value when allowing

FIG. 10. Corner plot, displaying marginal and joint posterior
distributions on the inspiral regime deviation parameter δφ2,
chirp mass M, and mass ratio q from our injected signal
generated by hybrid sampling with an overlap cut of O > 0.9.
As in Fig. 8, we note that δφ2 is correlated with the intrinsic mass
parameters.

FIG. 11. We plot the evolution of the second step of our hybrid
analysis of the injected signal, with an overlap cut of O > 0.9
imposed on waveform generation. We display chirp mass M
against inspiral phase deviation coefficient δφ2 with marginal
distributions for M in the right column and those for δφ2 in the
top row. In pink, we show the state of the ensemble after the first
MCMC step, near its initialization from the posterior generated
with DYNESTY. As the ensemble evolves, shown with darkening
shades of purple, it evolves a tight correlation between M and
δφ2 at a roughly constant overlap. The ensemble converges to
correct values for δφ2 and M, inconsistent with the initial
estimate of M from the first step of hybrid sampling.

FIG. 12. Violinplot, showing the posterior distributions on each post-Newtonian deviation parameter δpi for our injected signal,
generated by hybrid sampling in the “no overlap cut” and “overlap cut” cases, with an additional solid-color posterior generated by using
DYNESTYalone to check our results. Colored horizontal bars denote the 5th and 95th quantiles of the posteriors. In light gray, the injected
value of δpi ¼ 0 is noted on each posterior with a dashed line, with a dark gray dashed line denoting the injected value of δφ2 ¼ 0.2. We
observe that our hybrid sampling analysis agrees with DYNESTY-only analyses in all cases. Further, we observe that posteriors for δφ2

generated by both methods are consistent with the injected value of 0.2, but those posteriors for other parameters are incorrectly
inconsistent with 0.
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one of the inspiral phase deviation coefficients δφi to vary.
In general, corrections at similar post-Newtonian orders are
more strongly correlated, and this is visible from our
results. Thus, if we receive a signal whose phase evolution
is inconsistent with general relativity we cannot trust our
estimate of the chirp mass and require a model with
additional degrees of freedom to capture the mass term
accurately.
Comparing the number of likelihood evaluations for

each analysis, we find that each DYNESTY analysis requires
∼107 likelihood evaluations and each PTEMCEE analysis
requires ∼3 × 106 likelihood evaluations. For each
DYNESTY analysis we use only 500 live points in this case,
compared to 2000 for our analysis of GW150914 and so we
expect the DYNESTY analysis to require a factor of four
fewer likelihood evaluations. Taking this into account,
we see a comparable (or even larger) computational
saving with our hybrid method as for our analysis of
GW150914.

VI. CONCLUSIONS

In this work, we introduced a novel hybrid
sampling method for exploring models that can be
described as extensions of a simpler underlying model.
By seeding a parallel-tempered ensemble MCMC with
initial posterior estimates generated by performing nested
sampling on a base model, hybrid sampling efficiently
explores the extended parameter space of a more complex
model. While previous methods have employed similar
hybrid sampling methods, e.g., [74,75], we exploit the
athermal property of the nested sampling algorithm
to optimally seed the ensembles of walkers at each
temperature.
First, we demonstrated our framework with a toy model,

using hybrid sampling to estimate the parameters of a
generalized Gaussian distribution. We saw that we are
able to successfully recover the parameters of the true
model, even when the base model is misspecified and the

parameters of the extended model are correlated with those
of the base model.
Following this, we applied our method to a widely

performed test of general relativity with gravitational-wave
transients: parametrized deviations from the waveform
predicted by general relativity. Using our method, we
accurately reproduced the tests of general relativity using
GW150914 as performed by the LIGO/Virgo scientific
collaborations and estimate that our method is approxi-
mately an order of magnitude more efficient than the
current direct sampling method [12]. Finally, we analyzed
a simulated signal with a measurable deviation from the
prediction of relativity. We found that the efficiency of our
hybrid sampling method is still far superior to direct
sampling in this case.
Previous analyses have suffered from large computa-

tional costs as the parameters describing the waveform
predicted by relativity are strongly correlated with the
deviation parameters. In order to mitigate this, we intro-
duced a “closeness” criterion between the non-GR wave-
form being considered and the corresponding GR signal.
Specifically, this is implemented as a minimum overlap
threshold between the two signals. This acts as an addi-
tional prior constraint that the signal must be similar to the
GR prediction, given the previous success of relativity. This
is particularly beneficial for lower signal-to-noise ratio
systems where the data are less informative.
For the signals that we analyzed, we determined their

consistency with GR by visual inspection of the marginal
posteriors of each GR-deviation parameter returned by our
hybrid analysis. Although beyond the scope of this work,
one quantitative test of the consistency of our results with
GR is Bayesian model selection, wherein one would
compare the evidences assuming no deviations from GR
and allowing a deviation from GR. The evidence from
hybrid sampling is the evidence associated with the
posterior generated by PTEMCEE; this code computes
the evidence via thermodynamic integration [76,77] of
the mean log-likelihood of each tempered chain [49]. In this

FIG. 13. Violinplot, showing the posterior distributions on chirp mass generated while estimating each post-Newtonian deviation
parameter δpi for our injected signal, generated by hybrid sampling in the “overlap cut” case. Colored horizontal bars denote the 5th and
95th quantiles of the posteriors. In dark gray, the injected value ofM ¼ 30M⊙ is noted on each posterior with a dashed line. We observe
that our posterior distributions are only consistent with the injected value when varying inspiral phase coefficients φi, which follows
from their definition as degenerate with the mass of the system. This indicates that, if we were to receive a signal whose phase evolution
disagreed with that predicted by general relativity, then we would require a waveform model that admits deviations in δpi degenerate
with the mass of the system.

ACCELERATING TESTS OF GENERAL RELATIVITY WITH … PHYS. REV. D 107, 104056 (2023)

104056-13



work, we only used five temperatures; however, an accurate
calculation of the evidence would likely require more
temperatures. With accurate estimation of the evidences,
one could compute a Bayes factor between the GR and
beyond-GR waveform models.
While we have focused on a narrow application of

measuring single additional parameters describing devia-
tions from relativity, the method presented here can be used
for more exploratory analyses that allow multiple non-GR
parameters simultaneously that otherwise have exploding
computational costs due to the number of possible combi-
nations of parameters to vary simultaneously. More generi-
cally, this method can be applied to any case where
importance sampling to include a more physically realistic,
but expensive model breaks down. For example, measuring
eccentricity in compact binary mergers [78], estimating
the impact of calibration uncertainty on inference [79],
and analyzing pairs of potentially gravitationally lensed
events [80].
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APPENDIX A: COMPARISON OF
INITIALIZATION METHODS

Hybrid sampling uses a posterior generated via nested
sampling to initialize a set of tempered-ensembles of
MCMC walkers, however, it is also possible to initialize
MCMC walkers near the parameters that yield the maxi-
mum likelihood. Here, we repeat the analysis of
GW150914 allowing δφ2 to vary with no overlap cut,
using PTEMCEE initialized with two common methods of
MCMC initialization. In the “prior” method, we initialize

our ensembles with random samples drawn from the prior
distributions detailed in Tables II and III. In the “maximum
likelihood” method, we initialize our ensembles near the
maximum likelihood point, which we compute here as the
peak of the likelihood function in our GR-only analysis of
GW150914 using DYNESTY. For the initial values of δφ2 in
this run, we sample from a narrow truncated Gaussian
distribution centered on zero. With both methods, we again
employed 250 walkers at five temperatures, as in our hybrid
analysis of GW150914.
So that the lowest-temperature βT ¼ 1 ensemble may

more efficiently explore the entire target distribution,
PTEMCEE proposes swaps between ensembles of different
temperatures throughout their evolution. While technically
unlikely, this means in principle that swaps can occur

FIG. 14. The logarithm of the posterior probability averaged
over all walkers at each temperature, hlnpðθjdÞi, offset by an
arbitrary value to simultaneously show hlnpðθjdÞi at each
temperature. From left to right, we show hlnpðθjdÞi for the
tempered-ensembles initialized with random samples from the
prior, near the maximum likelihood point, and with our hybrid
initialization method. We observe that only the hybrid initialized
ensembles achieve convergence across all temperatures.
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between relatively hot and cold ensembles. Therefore, to
formally consider a set of tempered ensembles converged,
the ensemble at each temperature must be converged, or
else swaps between ensembles of different temperatures do
not satisfy detailed balance (see Ref. [49] and references
therein for additional discussion). In Fig. 14, we show the
mean logarithm of the posterior probability density,
hlnpðθjdÞi, at each MCMC iteration and each temperature.
Generally, if hlnpðθjdÞi for a particular ensemble appears
to be in a steady state, we expect that ensemble to have
converged. With this perspective in mind, Fig. 14 indicates
that the high-temperature (low βT) ensembles initialized
from the prior distribution or near the maximum likelihood
point have failed to converge in over 4000 iterations. In half
that time, the ensembles initialized with our hybrid meth-
odology have converged at every temperature.
The convergence of these sets of tempered ensembles

has direct consequences for the posterior distributions that
they yield. In Fig. 15, we compare the posterior distribu-
tions generated with each method for initializing PTEMCEE.
While the results obtained with each method are generally
consistent, the ensembles initialized from the prior (pink)
appear not converged with respect to the hybrid initializa-
tion (purple), particularly when looking at the marginal
posteriors on declination. This particular result can be
explained by the uniform priors adopted for the sky

position parameters, as the MCMC ensembles initialized
from the prior generally had a much larger distance to travel
across the likelihood surface compared to the ensembles
initialized with our hybrid method, or even near the
maximum likelihood point. In total, we can conclude that
our method yields results consistent with these standard
methods of MCMC initialization while achieving conver-
gence of the entire set of tempered MCMC ensembles in
less than half the number of iterations.

APPENDIX B: SAMPLER SETTINGS

To enable reproducibility of our results, we provide the
settings used during each stage of our hybrid sampling
algorithm. These are listed in Table VI. All of the
parameters are as defined in the BILBY implementation
of the respective sampling code. Additionally, configura-
tion files can be found at Ref. [88]. We note that for our
analysis of GW150914, we used NLIVE ¼ 2000 rather than
500 as for the simulated signals.

APPENDIX C: FURTHER RESULTS FOR
GW150914 ANALYSIS

In this appendix, we provide trace plots showing the
evolution of the βT ¼ 1 ensemble for the deviation param-
eters δp for our analysis of GW150914. In Fig. 16, we
show the results of analyses without (left) and with (right)
the requirement that O ≥ 0.9, respectively. In general, the
sampler has converged to a steady-state after ∼1000
iterations and always after 2000 iterations. We note that
in most cases implementing our overlap condition reduces
the number of iterations required for the ensemble to
converge to a steady state.

APPENDIX D: EFFECT OF TIME-MAXIMIZED
OVERLAP CUT

In Sec. IV B, we introduced the overlapO to measure the
deviation in a waveform induced by a beyond-GR
deviation, maximized over the merger phase of the signal.
Changing the merger time tc introduces a frequency-
dependent shift in the phase of the signal that is degenerate
with a beyond-GR deviation; thus, some parametric tests of
general relativity maximize tc as well when calculating the
overlap (see, for example, [24]). In Fig. 17, we present
posterior distributions on the chirp mass, mass ratio, and
the inspiral deviation parameter δφ2 during our estimation
of δφ2 in GW150914, similar to the results presented in
Fig. 8. Here, however, we have maximized O over both the
merger phase and time. This reduces the cut on the prior for
δφ2 imposed by requiring O > 0.9, as a larger range of
deviations in the waveform induced by δφ2 can be
accounted for by varying the merger time. In turn, time
maximization allows the mass parameters, in particular the
chirp mass, to vary more widely as well, reducing the
efficacy of an overlap cut.

FIG. 15. The posterior distributions generated via PTEMCEE

initialized with random samples from the prior (pink), near the
maximum likelihood point (blue), and with our hybrid initial-
ization method (purple). We observe that the results obtained with
each initialization method are consistent with one another,
however, the “prior” posterior distribution does not appear
converged, consistent with the leftmost panel of Fig. 14.
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FIG. 16. Trace plots showing the evolution of samples taken in a subset of post-Newtonian deviation coefficients for GW150914 from
both the inspiral (δφ0, δφ1, δφ2, δφ4, δφ7) and postinspiral (δα2, δβ2) during the first 2000 steps of the second step of hybrid sampling.
Traces in the left column are generated without any overlap cut, whereas traces in the right column are generated while O > 0.9 is
imposed. The samples plotted at each iteration of sampling are collated from each of the 250 walkers in the ensemble at temperature
βT ¼ 1. The color scheme matches the state of the ensemble shown in Fig. 9. We observe that even in the most extreme case, when no
overlap cut is applied, all ensembles converge within ∼1000 iterations, with many converging far sooner particularly when an overlap
cut is applied.
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Forteza, and A. Bohé, Frequency-domain gravitational
waves from nonprecessing black-hole binaries. II. A
phenomenological model for the advanced detector era,
Phys. Rev. D 93, 044007 (2016).

[56] L. Blanchet, Gravitational radiation from post-Newtonian
sources and inspiralling compact binaries, Living Rev.
Relativity 17, 2 (2014).

[57] M. Boyle et al., The SXS Collaboration catalog of binary
black hole simulations, Classical Quantum Gravity 36,
195006 (2019).

[58] E. Berti, V. Cardoso, and A. O. Starinets, TOPICAL RE-
VIEW: Quasinormal modes of black holes and black branes,
Classical Quantum Gravity 26, 163001 (2009).

[59] M. Isi and W.M. Farr, Analyzing black-hole ringdowns,
arXiv:2107.05609.

[60] M. Isi, M. Giesler, W.M. Farr, M. A. Scheel, and S. A.
Teukolsky, Testing the No-Hair Theorem with GW150914,
Phys. Rev. Lett. 123, 111102 (2019).

[61] M. Isi, W. M. Farr, M. Giesler, M. A. Scheel, and S. A.
Teukolsky, Testing the Black-Hole Area Law with
GW150914, Phys. Rev. Lett. 127, 011103 (2021).

[62] S. Husa, S. Khan, M. Hannam, M. Pürrer, F. Ohme, X. J.
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