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Supposing the existence of dark fluid with a Chaplygin-like equation of state p ¼ −B=ρ (CDF) as a
cosmic background, we obtain a static spherically symmetric black hole (BH) solution to the Einstein
gravitational equations. We study the P − V critical behavior of an anti-de Sitter (AdS) BH surrounded by
the CDF in the extended phase space where the cosmological constant appears as pressure, and our results
show the existence of the van der Waals like small/large BH phase transition. Also, it is found that such a
BH displays a first-order low-/high-Φ BH phase transition and admits the same criticality with the van der
Waals liquid/gas system in the nonextended phase space, where the normalization factor q is considered as
a thermodynamic variable, while the cosmological constant is fixed. In both P − V and the newly proposed
q −Φ phase spaces, we calculate the BH equations of state and then numerically study the corresponding
critical quantities. Moreover, the critical exponents are derived, and the results show the universal class of
the scaling behavior of thermodynamic quantities near criticality. Finally, we study the shadow
thermodynamics of AdS BHs surrounded by the CDF. We find that there exists a positive correlation
between the shadow radius and the event horizon radius in our case. By analyzing the temperature and heat
capacity curves under the shadow context, we discover that the shadow radius can replace the event horizon
radius to demonstrate the BH phase transition process, and the changes of the shadow radius can serve as
order parameters for the small/large BH phase transition, indicating that the shadow radius could give us a
glimpse into the BH phase structure from the observational point of view.
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I. INTRODUCTION

Matter content of the Universe is still an unsolved
problem in the framework of modern cosmology. The
latest release of 2018 Planck full-sky maps about the
cosmic microwave background anisotropies [1] illustrates
that the baryon matter component is no more than 5% for
total energy density. By comparison, the invisible dark
components, including dark energy and dark matter, are
about 95% energy density in the Universe. The dominance
of the dark sector over the Universe makes the study of
black holes (BHs) surrounded by these mysterious field
well deserved. Quintessence is a possible candidate for
dark energy, which is characterized by the linear equation
of state p ¼ ωρ with ω a constant in the range of
−1 < ω < −1=3. Significant attention has been devoted
to the discussion of static spherically symmetric BH
solutions surrounded by quintessence matter and their
properties [2–10]. Besides the quintessence matter, many

authors have found exact BH solutions with some other
sources. The BH solutions with the existence of an Abelian
gauge field for which the density is given by a power of the
Maxwell Lagrangian have been introduced in Ref. [11].
The solutions of general relativity coupled with nonlinear
electrodynamics, consisting of Einstein-Born-Infeld solu-
tions in asymptotically flat space [12] and (anti-)de Sitter
[(A)dS] spaces [13,14], have been studied. The Yang-Mills
theory has been coupled to a gravitating system, and the
resulting various BH solutions using such a coupled theory
have been studied in Refs. [15,16]. Exact BH solutions with
string cloud backgrounds in general relativity have been
found in Ref. [17]. A study combining the dark matter in
the quintessence form with the cloud of strings was recently
proposed for a charged AdS BH [18].
With regard to the Universal dark sector, there exists

another possibility that the unknown energy component is a
unified dark fluid which mixes dark matter and dark energy.
Among the proposed unified dark fluid models, the
Chaplygin gas [19] and its generalized models [20,21]
have been widely studied in order to explain the accel-
erating Universe [22–24]. Therefore, it is interesting to
adopt (generalized) Chaplygin gas as a matter source to
construct BH solutions. Recently, we considered a model
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that charged static spherically symmetric BH is surrounded
by dark fluid with a Chaplygin-like equation of state
p ¼ −B=ρ (CDF) in the framework of Lovelock gravity,
the analytical BH solution was deduced, and the related
thermodynamic quantities were calculated [25]. Also, we
extended our study to the modified Chaplygin gas (MCG)
case, and special attention has been paid to the thermo-
dynamical stability of the MCG-surrounded BHs in
Einstein-Gauss-Bonnet gravity [26] and the Lovelock
theory of gravity [27]. Here, we should note that, though
the Chaplygin gas model is usually introduced in cosmo-
logical studies to account for the cosmological evolution,
its equation of state can be deduced naturally in string
theory. The equation of state p ¼ − B

ρ can be obtained
from the Nambu-Goto action for a d-brane moving in a
(dþ 2)-dimensional spacetime in light-cone parametriza-
tion [28,29], and the Chaplygin gas is verified to
admit a supersymmetric generalization [30]. Besides, the
Chaplygin gas manifests itself as the effect of the immersion
of our four-dimensional world into some multidimensional
bulk [31]. The Chaplygin equation of state also arises in
connection with the Randall-Sundrum model [32]. Thus, a
CDF could be a naturally existing substance, more than a
phenomenological model designed for cosmological appli-
cations. In this paper, we focus on the phase transitions and
critical behaviors of the static spherically symmetric AdS
BHs surrounded by CDF in the Einstein’s theory of gravity.
This paper is organized as follows. In Sec. II, for a CDF,

we deduce its stress-energy tensor, with the help of which
we obtain a static spherically symmetric solution to the
Einstein field equations. Further, we analyze the critical
thermodynamical behaviors of the newly derived BH
solution in P − V phase space in Sec. III. Also, we analyze
the q −Φ criticality of AdS BHs surrounded by CDF in
Sec. IV. In Sec. V, we examine the phase transitions of
CDF-surrounded AdS BHs by using shadow analysis.
Section VI gives the conclusion.
We use units which fix the speed of light and the

gravitational constant via 8πG ¼ c ¼ 1 and use the metric
signature (−;þ;þ;þ).

II. BH SOLUTIONS IN THE BACKGROUND
OF CDF

With regard to the case in which a static spherically
symmetric BH has an atmosphere composed of field with
an explicit Lagrangian, it is convenient to study the inter-
play between the BH spacetime and field by jointly solving
the gravitational field equations and equation of motion of
the concerned field [11–18]. However, if the nature of
atmosphere matter is unclear, e.g., quintessence dark
energy [2] and (generalized) Chaplygin gas [25–27], it is
essential to consider how to study the interaction between
the curvature in spacetime and the matter with only
knowing the equation of state of the matter fluid.

A. Cosmological dark fluid with equation
of state p = −B=ρ

Considering a static spherically symmetric spacetime,
we adopt the form for the metric

ds2 ¼ −fðrÞdt2 þ 1

gðrÞ dr
2 þ r2dΩ2; ð1Þ

where fðrÞ and gðrÞ are general functions depending on the
radial coordinate r and dΩ2 ¼ dθ2 þ sin2 θdϕ2 stands for
the standard element on S2.
The stress-energy tensor for a perfect fluid is

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð2Þ

where ρ and p are energy density and isotropic pressure,
respectively, as measured by an observer moving with the
fluid, and uμ is its 4-velocity. In this regard, the static
spherically symmetric solutions of Einstein’s equations for
perfect fluid source (dust, radiation, dark energy, or phantom
energy) with equation of statep ¼ ωp (ω is a constant) have
been studied by Semiz [33]. There is another scenario with
respect to the pressures of the fluid: the cosmological fluid
surrounding a BH could be anisotropic because of the
gravitational attraction near the central body. Along this
line, Kiselev [2] obtained a BH spacetime, which soon
became a remarkably popular toy model, by treating the
ambient quintessence matter as anisotropic fluid. For the
CDF, even its generatingmechanism, froma field theoretical
point of view, is not clearly identified, and there are several
likely candidates in the string theory context, which we
mentioned in the Introduction and in phenomenologically
cosmological studies. Confronting with the cosmological
evolution, the CDF is usually modeled by introducing a
scalar field φ and a self-interacting potential UðφÞ, with the
Lagrangian Lφ ¼ − 1

2
∂μφ∂

μφ −UðφÞ [31,34,35]. Also, the
fluid representation of the CDF can be recast under the form
of a tachyonic field T given by a Born-Infeld type
Lagrangian LT ¼ −VðTÞ½1þ ∂μT∂μT�1=2 with VðTÞ one
arbitrary function [36,37]. Otherwise, it is found that the
(modified) Chaplygin gas model can be reconstructed by
kinetic quintessence (k-essence) [38,39] and fermionic
k-essence (f-essence) [40]. Considering the presence of
kinetic terms in these viable theories and the fact that the
essential field of CDF depends only on the radial coordinate
in static spherical symmetry, the radial pressure of CDF
should be different from the tangential one. In this work, we
suppose the CDF to be anisotropic, and its stress-energy
tensor can be written in a covariant form [41] as

Tμν ¼ ρuμuν þ prkμkν þ ptΠμν; ð3Þ

where pr and pt are, respectively, the radial and the
tangential pressure; uμ is the fluid 4-velocity; and kμ is a
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unit spacelike vector orthogonal to uμ, with uμ and kμ
satisfying uμuμ ¼ −1, kμkμ ¼ 1, and uμkμ ¼ 0. Πμν ¼
gμν þ uμuν − kμkν is a projection tensor onto a 2-surface
orthogonal to uμ and kμ. Working in the comoving frame of
the fluid, one obtains that uμ ¼ ð− ffiffiffi

f
p

; 0; 0; 0Þ and
kμ ¼ ð0; 1= ffiffiffi

g
p

; 0; 0Þ. In this way, the stress-energy tensor
in Eq. (3) can be reexpressed as

Tμ
ν ¼ −ðρþ ptÞδμ0δν0 þ ptδμ

ν þ ðpr − ptÞδμ1δν1; ð4Þ
where the difference between radial and tangential pressures
pr − pt is known as anisotropic factor. In the limit of
pr ¼ pt, the stress-energy tensor reduces to the standard
isotropic form.
Now, we consider a matter fluid across an event horizon

described by the stress-energy form in Eq. (4). Inside the
horizon, since gtt > 0 and grr < 0, the coordinate r plays the
role of time; then, the energydensity yields−Tr

r ¼ −pr, and
the pressure along the spatial t direction should be Tt

t ¼ −ρ.
Considering this exchange of roles, the energy density and
pressure are continuous across the horizon only if pr ¼ −ρ.
In the case of pr ≠ −ρ and ρðrhÞ ≠ 0, the pressure must be
discontinuous at the horizon rh, and thus the solutionmust be
dynamical.Here,we requirepr ¼ −ρ in this study, so that the
CDF stays static and the energy density is continuous across
the horizon, which places a constraint on the solution. In fact,
anisotropy and pr ¼ −ρ are also the case for the static
Reissner-Nordström solution, power of Maxwell solu-
tion [11], Einstein-Born-Infeld solutions [12–14], Yang-
Mills solution [15,16], and string cloud solution [17]. For
cosmological fluid with a general form of equation of state
p ¼ pðρÞ, even it shows anisotropy in the gravitational field
generated by aBH, it should appear isotropic at cosmological
scale; thus, one can constrain the tangential pressure pt by
taking isotropic average over the angles and requiring
hTi

ji ¼ pðρÞδij, that is to say,

pt þ
1

3
ðpr − ptÞ ¼ pðρÞ; ð5Þ

where the relation hδi1δj1i ¼ 1
3
has been used. For the

quintessence matter with equation of state p ¼ ωρ
(−1 < ω < −1=3), the tangential pressure can be deduced
from Eq. (5) as pt ¼ 1

2
ð1þ 3ωÞρ, compatible with the radial

pressure pr ¼ −ρ, which is just the result obtained by
Kiselev [2].
In our case, the CDF has a nonlinear equation of state

p ¼ − B
ρ, where B is a positive constant. For pr ¼ −ρ, the

tangential pressure yields pt ¼ 1
2
ρ − 3B

2ρ. Thus, the stress-
energy tensor of the CDF can be expressed as

Tt
t ¼ Tr

r ¼ −ρ; ð6Þ

Tθ
θ ¼ Tϕ

ϕ ¼ 1

2
ρ −

3B
2ρ

: ð7Þ

As we shall see later, the anisotropy of the CDF fades away,
and the equation of state yields p ¼ −B=ρ at cosmologi-
cal scale.

B. Exact static spherically symmetric solution

Since we demand Tt
t ¼ Tr

r, without any loss of general-
ity, the relation between the metric components gðrÞ ¼
fðrÞ can be performed by an appropriate rescaling of time.
Then, the components of the Einstein tensor are given by

Gt
t ¼ Gr

r ¼ 1

r2
ðf þ rf0 − 1Þ; ð8Þ

Gθ
θ ¼ Gϕ

ϕ ¼ 1

2r
ð2f0 þ rf00Þ: ð9Þ

Combining Eqs. (6) and (7) and (8) and (9), one obtains
the gravitational equations:

1

r2
ðf þ rf0 − 1Þ þ Λ ¼ −ρ; ð10Þ

1

2r
ð2f0 þ rf00Þ þ Λ ¼ 1

2
ρ −

3B
2ρ

: ð11Þ

Here, we consider the presence of cosmological constant.
Thus, we have two unknown functions fðrÞ and ρðrÞ,
which can be determined analytically by the above two
differential equations. Now, by solving the set of differ-
ential equations (10) and (11), one first easily obtains the
solution for the energy density of CDF,

ρðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ q2

r6

s
; ð12Þ

where q > 0 is a normalization factor that indicates the
intensity of the CDF. Besides, Eq. (12) is also the direct
result of the conservation law for the stress-energy tensor
∇νTμν ¼ 0. We see that for the small radial coordinate (i.e.,
r6 ≪ q2=B), the CDF energy density is approximated by

ρðrÞ ≈ q
r3

; ð13Þ

indicating that the CDF behaves like a matter content
whose energy density varies with r−3. At large radial
coordinate (i.e., r6 ≫ q2=B), it follows that

ρðrÞ ≈
ffiffiffiffi
B

p
; ð14Þ

meaning that the CDF acts like a positive cosmological
constant at the large-scale regime. One can also observe
that pr → −

ffiffiffiffi
B

p
and pθ;ϕ → −

ffiffiffiffi
B

p
when r → ∞, indicating

that the CDF appears to be isotropic and its equation of
state recovers p ¼ −B=ρ at the cosmological scale.
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We note that, for a cosmological fluid with general equation
of state p ¼ pðρÞ, whose radial pressure satisfies pr ¼ −ρ
when surrounding a central BH, it always tends to be
isotropic at cosmological scale. As shown in Table I, the
anisotropic factor pr − pt for both the CDF and quintes-
sence matter in Kiselev’s solution [2] reduces to zero at
infinity.
Energy conditions are very useful tools to discuss

cosmological geometry [42] and BH spacetimes [43,44]
in both general relativity [45] and modified gravity [46].
The standard energy conditions include null energy con-
dition (NEC), weak energy condition (WEC), strong
energy condition (SEC), and dominant energy condition
(DEC), given as

NEC∶ ρþ pi ≥ 0 ði ¼ r; θ;ϕÞ;
WEC∶ ρ ≥ 0 & ρþ pi ≥ 0 ði ¼ r; θ;ϕÞ;
SEC∶ ρþ

X
i

pi ≥ 0 & ρþ pi ≥ 0 ði ¼ r; θ;ϕÞ;

DEC∶ ρ ≥ 0 & jpij ≤ ρ ði ¼ r; θ;ϕÞ: ð15Þ

Relevant quantities are deduced as

ρþ pr ¼ 0; ρþ pθ;ϕ ¼ 3

2

�
ρ −

B
ρ

�
;

ρþ pr þ pθ þ pϕ ¼ ρ −
3B
ρ
;

ρ − jprj ¼ 0; ρ − jpθ;ϕj ¼ ρ −
���� 12 ρ −

3B
2ρ

����: ð16Þ

To examine the energy conditions of the CDF in our case,
we plot the unspecified quantities in Eq. (16) with respect
to the radial coordinate r in Fig. 1. It can be observed that
ρþ pθ;ϕ and ρ − jpθ;ϕj remain positive everywhere, while
the sign of ρþ pr þ pθ þ pϕ is converted from positivity
to negativity at r0 ¼ q1=3ð2BÞ−1=6, which is exactly the
transition point for the sign of pθ;ϕ, i.e., the point at which
the tangential pressure exhibits a transition from being
attractive into being repulsive. We conclude that the CDF
satisfies the NEC, WEC, and DEC well; however, it
violates the SEC. This is also the case for the quintessence
matter [2]. In fact, a violation of the SEC is equivalent to a
violation of the attractive character of gravity [47], as
shown by the dark energy which accelerates the expansion
of the Universe in cosmological studies [48], as well as the

matter content in the background of a regular BH whose
singularity replaced by a de Sitter core [49].
Substituting Eq. (12) into Eq. (10), we obtain the

analytical solution for fðrÞ,

fðrÞ ¼ 1 −
2M
r

−
r2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ q2

r6

s
þ q
3r

ArcSinh
qffiffiffiffi
B

p
r3

−
r2

3
Λ;

ð17Þ

whereM denotes the mass of the BH; here, we consider the
BH as a point mass BH, and thus M arises as a constant.
One can examine that this solution for fðrÞ satisfies
Eq. (11). To study the asymptotic behavior of fðrÞ, we
take r → ∞ and find that

fðrÞ → 1 −
r2

3
ð

ffiffiffiffi
B

p
þ ΛÞ; ð18Þ

which reveals that the asymptotic behavior of the solution is
determined by both the cosmological constant Λ and the
CDF parameter B. In this work, we are concerned with the
AdS BH; thus, we constrain Λ < −

ffiffiffiffi
B

p
. The dependencies

of the metric function fðrÞ on the parameters q and B are
depicted in Fig. 2.

C. Thermodynamics of AdS BH surrounded by CDF

Solving the equation fðrhÞ ¼ 0, one can obtain the event
horizon radius rh, with which the mass of the BH can be
expressed as

TABLE I. CDF and quintessence matter in the spacetime of Einstein(-AdS) BH.

Anisotropic fluid Equation of state pr pt ρ Asymptotic behavior at infinity

Quintessence matter [2] p ¼ ωρ (−1 < ω < −1=3) −ρ 1
2
ð1þ 3ωÞρ − a

2
3ω

r3ðωþ1Þ ρ → 0, pr → 0, pt → 0

CDF p ¼ − B
ρ (B > 0) −ρ 1

2
ρ − 3B

2ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ q2

r6

q
ρ →

ffiffiffiffi
B

p
, pr → −

ffiffiffiffi
B

p
, pt → −

ffiffiffiffi
B

p

FIG. 1. The variation of ρþ pθ;ϕ, ρ − jpθ;ϕj and ρþ pr þ pθ þ
pϕ vs r for the CDF taking q ¼ 1.0 and B ¼ 0.2.
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M ¼ rh
2
−
r3h
6
Λ −

r3h
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ q2

r6h

s
þ q

6
ArcSinh

qffiffiffiffi
B

p
r3h

: ð19Þ

The Hawking temperature can be derived as

T ¼ f0ðrhÞ
4π

¼ 1

4π

�
1

rh
− rh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ q2

r6h

s
− rhΛ

�
: ð20Þ

It can be confirmed through numerical methods that, with
fixed values of q, B, and Λ, the Hawking temperature has
only one zero crossing, which corresponds to the extremal
BH case. Since the physical temperature should be non-
negative, the mass of a BH must be equal to or greater than
the mass of corresponding extremal BH. We plot the
extremal BH mass with varying q and B in Fig. 3. The
entropy can be calculated as

S ¼
Z

rh

0

1

T

�
∂M
∂rh

�
drh ¼ πr2h: ð21Þ

Equation (21) shows that the entropy does not depend on
the CDF parameters directly, whereas the CDF contributes
to the entropy by affecting the horizon radius rh.
In the extended phase space, one can treat the cosmo-

logical constant as thermodynamic pressure and its con-
jugate quantity as thermodynamic volume. The definitions
are as follows:

P ¼ −Λ; ð22Þ

V ¼
�
∂M
∂P

�
S;q
: ð23Þ

With Eq. (22), the mass can be reexpressed as

M ¼ rh
2
þ Pr3h

6
−
r3h
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ q2

r6h

s
þ q

6
ArcSinh

qffiffiffiffi
B

p
r3h

: ð24Þ

Utilizing Eqs. (23) and (24), one can obtain the thermo-
dynamic volume as

V ¼ r3h
6
: ð25Þ

Comparing Eqs. (21) and (25) with those of Reissner-
Nordstrom (RN-)AdS BHs [50] and charged AdS BHs with
quintessence dark energy [51] reflects again that the

FIG. 2. Left panel: the behavior of fðrÞwith varying q and fixing B ¼ 0.2. Right panel: the behavior of fðrÞwith varying B and fixing
q ¼ 1.0. For both panels, we have set M ¼ 2.0 and Λ ¼ −1.0.

FIG. 3. The extremal BH mass with varying q and B. Here, we
set Λ ¼ −1. For a physical BH with given q, B, and Λ, its mass
should be equal to at least the extremal BH mass.
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expressions for both the entropy and the volume of the BH
are not affected by the existence of matter content.
Since the thermodynamical behavior of a BH is highly

affected by the variation of q, it is reasonable to treat it as a
variable in the first law of thermodynamics and the Smarr
relation. With the newly defined thermodynamic quantities,
the first law of BH thermodynamics in the extended phase
space can be written as

dM ¼ TdSþ VdPþΦdq; ð26Þ

where Φ is the physical quantity conjugate to the normali-
zation factor q of CDF, and it is introduced to make the first
law consistent with the Smarr relation, and its physical
meaning needs further investigation. Utilizing Eqs. (24)
and (26), one can obtain

Φ ¼
�
∂M
∂q

�
S;P

¼ 1

6
ArcSinh

qffiffiffiffi
B

p
r3h

: ð27Þ

Considering the dimensional analysis, ½M� ¼ 1,
½Λ� ¼ −2, ½S� ¼ 2, ½B� ¼ −4, and ½q� ¼ 1, the Smarr
relation can be derived by using the Euler’s theorem as

M ¼ 2TS − 2VPþΦq: ð28Þ

III. P−V CRITICALITY OF AdS BHs
SURROUNDED BY CDF

As shown by Kubiznak and Mann [50], if one treats the
cosmological constant as a thermodynamic pressure, a
charged AdS BH displays analogical critical behavior with
the van der Waals liquid/gas system. This kind of P − V
criticality is maintained in the AdS BHs with the presence
of Born-Infeld field [52], power Maxwell source [53],
power Yang-Mills field [54], and quintessence dark
energy [51] as well as joint occurrence of Maxwell and
Yang-Mills fields [55], Born-Infeld field and quintes-
sence [56], coupled dilaton field and Maxwell field [57],
and quintessence and cloud of strings [58]. For the CDF-
surrounded AdS BHs presented in the current paper, it is
attractive for us to examine its thermodynamical phase
transition by using P − V criticality.

A. P−V criticality

With Eqs. (20) and (22), the Hawking temperature can be
reexpressed as

T ¼ 1

4π

�
1

rh
þ Prh − rh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ q2

r6h

s �
: ð29Þ

From Eq. (29), one can easily derive the equation of state of
the BH as

P ¼ 4π

rh
T −

1

r2h
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ q2

r6h

s
; ð30Þ

where the event horizon rh is related to the thermodynamic
volume V by Eq. (25). The third term in the above
expression for P reflects the effect of the CDF. Note that
the pressure P in the extended phase-space thermodynam-
ics of asymptotically AdS BHs is entirely due to the
variable cosmological constant, according to Eq. (22); thus,
the pressure of the matter fluid should appear in the
equation of state of the BH. This is different from the
case in the horizon thermodynamics context [59], where P
is identified with the total pressure of all matter in the
spacetime, including the cosmological constant.
The critical point can be derived through the following

conditions:

∂P
∂rh

����
T¼Tc

¼ 0; ð31Þ

∂
2P
∂r2h

����
T¼Tc

¼ 0: ð32Þ

Utilizing Eqs. (30) and (31), one can obtain

Tc ¼
1

2πrc
−

3q2

4πρðrcÞr5c
; ð33Þ

where Tc and rc denote the critical Hawking temperature
and critical event horizon radius, respectively, and ρðrcÞ
denotes the function value of ρðrÞ at r ¼ rc. Utilizing
Eqs. (30), (32), and (33), the condition that rc satisfies can
be derived as

6q4 þ 15Bq2r6c − 2ρðrcÞ3r10c ¼ 0: ð34Þ

By using Eqs. (30) and (33), one can obtain the critical
pressure as

Pc ¼
1

r2c
−

3q2

ρðrcÞr6c
þ ρðrcÞ: ð35Þ

To study the dependencies of the critical physical
quantities on the CDF parameters, we appeal to the
numerical method for help. To observe the influence of
the parameters B and q respectively, one can let one
parameter vary while keeping the other one fixed. For
specific values of parameters, Eq. (34) can be solved
numerically byMathematica programming, and the critical
horizon radius can be derived. Then, the critical temper-
ature can be obtained through Eq. (33), and the critical
pressure can be derived through Eq. (35).
The corresponding critical physical quantities are shown

in Table II. Fixing B ¼ 0.2 and varying q from 0.8 to 1.2,
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one finds that the critical volume (positively related to rc)
increases with q, while both the critical Hawking temper-
ature Tc and critical pressure Pc decrease with it. We set
q ¼ 1 and let B vary from 0.2 to 0.4, finding that rc
decreases with B while both Tc and Pc increase with it. For
the ratio Pcrc

Tc
, it does not keep constant as the charged AdS

BH does [50], and one can observe from Table II that the
ratio increases with q as well as B. This phenomenon
reflects the effects of the CDF.
To observe the behavior of Pmore intuitively, its curve is

plotted under different temperature. As shown in the left
panel of Fig. 4, the two upper lines for T > Tc correspond
to the “ideal gas” one-phase behavior; thus, no phase
transition occurs. The critical isotherm at T ¼ Tc has an
inflection point, indicating the occurrence of a second-
order phase transition. The isotherm corresponding to the
temperature less than the critical temperature can be
divided into three branches. Both the small radius branch
and the large radius branch are stable, while the medium
radius branch is unstable. There is a first-order phase
transition between the small BH and the large BH. As
discussed in Ref. [50], to describe this phase transition, one
has to replace the “oscillating” part of the isotherm by an
isobar. It has been demonstrated that Maxwell’s equal area
law is valid for the P − V diagram [60], yielding

I
VdP ¼ 0; ð36Þ

or equivalently reexpressed as

Z
Vl

Vs

PdV ¼ P�ðVl − VsÞ; ð37Þ

where P� denotes the pressure at which the phase transition
occurs and Vl and Vs denote the thermodynamic volumes
of large BH and small BH, respectively. Maxwell’s equal
area is an effective tool to find this coexistence pressure or
to calculate the change of the volume between the two
phases of small and large BHs, i.e., ΔV ¼ Vl − Vs. With
the help of Eq. (37), we numerically plot the coexistence
curve and the ΔV − T curve in Fig. 5. The critical point is
highlighted by a small circle at the end of the coexistence
line. ΔV is a monotone decreasing function of T; it
decreases to zero at the critical temperature Tc.
To understand this phase transition more deeply, one can

analyze the behavior of Gibbs free energy. In the extended
phase space, the mass is interpreted as enthalpy. So, the
Gibbs free energy can be derived as

G ¼ H − TS ¼ M − TS

¼ rh
4
−
Pr3h
12

þ r3h
12

ρðrhÞ þ
q
6
ArcSinh

qffiffiffiffi
B

p
r3h

: ð38Þ

The behavior of Gibbs free energy is depicted in the second
panel of Fig. 4. The classical swallow-tail phenomenon

TABLE II. Numerical solutions for the critical physical quantities and coefficients Ai in P − V criticality.

B q rc Pc Tc
Pcrc
Tc A1 A3 A5

0.2 1.0 1.98018 0.61349 0.06353 19.1236 0.65711 −0.21904 −0.01798
0.3 1.0 1.88657 0.73135 0.06676 20.6663 0.60806 −0.20269 −0.01685
0.4 1.0 1.82257 0.82950 0.06916 21.8586 0.57490 −0.19163 −0.01606
0.2 0.8 1.76045 0.65626 0.07121 16.2247 0.77452 −0.25817 −0.02048
0.2 1.2 2.17761 0.58527 0.05789 22.0144 0.57082 −0.19028 −0.01596
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FIG. 4. Left panel: the behavior of isothermal P − VðrhÞ. Right panel: the behavior of isobaric G − T. The swallow-tail shape appears
when P < Pc.
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observed in the G − T curve below the critical pressure
implies the existence of the first-order phase transition.

B. Critical exponents for P−V criticality

Critical exponents are often used to describe the critical
behavior near the critical point. It is convenient to introduce
the notations

t ¼ T
Tc

− 1; ϵ ¼ V
Vc

− 1; p ¼ P
Pc

; ð39Þ

where the critical thermodynamic volume Vc is related to

the critical event horizon radius rc by Vc ¼ r3c
6
. The

definitions of critical exponents are as follows:

CV ∝ jtj−α; ð40Þ

η ∝ jtjβ; ð41Þ

κT@hP−Vi ∝ jtj−γ; ð42Þ

jP − Pcj ∝ jV − Vcjδ: ð43Þ

α describes the behavior of specific heat when the
volume is fixed. From Eq. (21), it is not difficult to draw
the conclusion that the entropy S is independent of the
Hawking temperature T, so

CV ¼ T

�
∂S
∂T

�
V
¼ 0; ð44Þ

from which one can derive that α ¼ 0.
β characterizes the behavior of the order parameter η.

Near the critical point, the equation of state can be
expanded into

p ¼ 1þA1tþA2ϵþA3tϵþA4ϵ
2 þA5ϵ

3

þOðtϵ2; ϵ4Þ; ð45Þ

where

A1 ¼
4πTc

Pcrc
; ð46Þ

A2 ¼ A4 ¼ 0; ð47Þ

A3 ¼ −
4πTc

3Pcrc
; ð48Þ

A5 ¼ −
56πTc

81Pcrc
þ 40

81Pcr2c
−

q2A
2ρðrcÞ5Pcr18c

; ð49Þ

with A ¼ 2q4 þ 5Bq2r6c þ 4B2r12c . The dependencies of
coefficients Ai on parameters B and q can be found by the
numerical results presented in Table II.
Since the pressure keeps constant during the phase

transition, one can obtain

1þA1tþA3tϵlþA5ϵ
3
l ¼ 1þA1tþA3tϵsþA5ϵ

3
s : ð50Þ

On the other hand, one can apply Maxwell’s equal area law

Z
ϵs

ϵl

ϵ
dp
dϵ

dϵ ¼ 0; ð51Þ

with

dp
dϵ

¼ A3tþ 3A5ϵ
2; ð52Þ

and obtain

A3tðϵ2s − ϵ2l Þ þ
3

2
A5ðϵ4s − ϵ4l Þ ¼ 0: ð53Þ

Critical Point
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FIG. 5. Left panel: coexistence curve of small/large BH phase transition in the P − T plane. Right panel: The ΔV as a function of
temperature T. The fitting ΔV − T curve near the critical temperature is magnified into view.
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From Eqs. (50) and (53), one can obtain

ϵl ¼ −ϵs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−
A3

A5

t

s
; ð54Þ

where the argument under the square root function remains
positive, considering that the small/large BH phase tran-
sition occurs when T < Tc and A3 has the same sign
with A5 according to the numerical results presented in
Table II. So,

η ¼ Vl − Vs ¼ Vcðϵl − ϵsÞ ¼ 2Vcϵl ∝
ffiffiffiffiffi
−t

p
; ð55Þ

yielding β ¼ 1=2. This behavior of Vl − Vs near the critical
point can also be revealed by the magnified view ofΔV − T
curve near Tc in the right panel of Fig. 5.
γ describes the behavior of isothermal compressibility

κT@hP−Vi, which can be derived as

κT@hP−Vi ¼ −
1

V
∂V
∂P

����
Vc

¼ −
1

Pc

1
∂p
∂ϵ

����
ϵ¼0

∝
rc
Tc

t−1; ð56Þ

which yields γ ¼ 1.
δ characterizes the behavior described in Eq. (43) on the

critical isotherm T ¼ Tc. Substituting t ¼ 0 into Eq. (45),
one can obtain

jP−Pcj ¼Pcjp−1j ¼PcjA5ϵ
3j ¼PcjA5j

V3
c

jV−Vcj3; ð57Þ

yielding δ ¼ 3.
From the above derivations, we can see clearly that four

critical exponents are exactly the same as those obtained
before for charged AdS BHs [50]. This implies that the
CDF does not change the critical exponents, just like the
quintessence dark energy [51]. The universality of van der
Waals like phase transition, as well as the values of critical
exponents, for AdS BHs, has been further verified.

IV. CRITICAL BEHAVIOR OF AdS BHs
SURROUNDED BY CDF IN q −Φ PHASE SPACE
WITH A FIXED COSMOLOGICAL CONSTANT

Niu et al. [61] studied the phase transitions and critical
phenomena for the RN BH in (nþ 1)-dimensional AdS
spacetime and found that near the critical point the Q −Φ
diagram shares the same shape as that of P − V diagram for
a van der Waals liquid/gas system, which strongly suggests
a remarkable analogy between these two thermodynamic
systems. Zhou and Wei [62] studied the charge-electric
potential criticality for the charged AdS BHs with carefully
investigating the equal area law. Very recently, Hendi and
Jafarzade [63] found that charged AdS BHs surrounded by
quintessence admit the same criticality and van der Waals–
like behavior, by considering the normalization factor

which indicates the intensity of the quintessence field, as
a thermodynamic variable. For an AdS BH surrounded by
CDF, we have shown there exists a small/large BH phase
transition in P − V phase space, analogous to the liquid/gas
phase transition of van der Waals fluids. It will be
interesting to probe the phase transition and critical
behavior by treating the normalization factor q as a
thermodynamic variable and keeping the cosmological
constant as a fixed parameter.

A. q−Φ criticality with a fixed cosmological constant

In this subsection, we consider the normalization factor q
as a thermodynamic variable and study the critical behavior
of the system under its variation. We start by rewriting the
relation of temperature. Inserting Eq. (27) into Eq. (29), one
obtains

T ¼ 1

4π

�
Pq1=3

ΞðΦÞ þ
ΞðΦÞ
q1=3

−
q1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ ΞðΦÞ6

p
ΞðΦÞ

�
; ð58Þ

with ΞðΦÞ≡ B1=6ðSinh6ΦÞ1=3. Solving q from the above
equation, we obtain two solutions for the BH equation of
state,

q1 ¼
�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64π2T2 þ 8ϒðΦÞ

p
− 8πT

2ϒðΦÞ ΞðΦÞ
�3

; ð59Þ

q2 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

64π2T2 þ 8ϒðΦÞ
p

− 8πT
2ϒðΦÞ ΞðΦÞ

�3

; ð60Þ

with ϒðΦÞ≡ −2Pþ 2
ffiffiffiffi
B

p
Cosh6Φ. So, q is a double-

valued function of Φ, while q1 and q2 are single-valued
functions. Moreover, q1 and q2 meet each other at

Φ0 ¼
1

12
ArcCosh

�
2ð−Pþ 4π2T2Þ2

B
− 1

�
;

q0 ¼
�
ΞðΦ0Þ
2πT

�
3

; ð61Þ

when T < 1
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P −

ffiffiffiffi
B

pp
, while they meet at

Φ0 ¼ 0; q0 ¼ 0; ð62Þ

when T > 1
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P −

ffiffiffiffi
B

pp
.

In Fig. 6, we plot q as a function of Φ with fixing P. It is
obvious that q1 always increaseswithΦ, while for q2, it has a
different behavior. If the temperature T < Tc, q2 decreases

with Φ. However, when Tc < T < 1
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P −

ffiffiffiffi
B

pp
, q2 first

decreases, then increases, and finally decreaseswithΦ, while

when T > 1
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P −

ffiffiffiffi
B

pp
, q2 first increases and then

decreases with Φ. As a result, an isotherm for T > Tc in
the q −Φ plane has a local maximum and a minimum,
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between which there is a segment similar to the oscillating
part of the isotherm for T < Tc in the P − V plane, thus
indicating the existence of a first-order phase transition
between low-Φ and high-Φ BHs. The G − T curves for
varying normalization factor in q −Φ criticality are also
depicted in Fig. 6, and the emergent swallow tail for q < qc
also denotes the existence of van der Waals–like phase
transition.
When we consider the critical point in the q −Φ plane, it

is natural to use Eq. (60) and the concept of the inflection
point to characterize the critical point by

∂q2
∂Φ

����
Φ¼Φc;T¼Tc

¼ 0 &
∂
2q2
∂Φ2

����
Φ¼Φc;T¼Tc

¼ 0: ð63Þ

However, one finds that it is difficult to tackle with these
equations and obtain analytical solutions for the critical
quantities. Given that the Gibbs free energy characterizes
the phase structure of a thermodynamic system, variations
in both P and q can impact the system’s behavior in the
G − T domain, thereby influencing the phase structure. A
one-to-one correspondence between the critical quantities
in the P − V criticality and the q −Φ criticality should
exist. That is to say,

B; q; Pc; rc; Tc

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{P−V criticality

⇔ B;P; qc;Φc; Tc

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{q−Φ criticality

: ð64Þ

The critical normalization factor and temperature corre-
sponding to B ¼ 0.2 and P ¼ 1.0 are numerically calcu-
lated as qc ¼ 0.31829 and Tc ¼ 0.11548; the q −Φ plot
and G − T plot in Fig. 6 verify the correlation discussed
above. This conclusion can also be confirmed by observing
the heat capacity of the system in both phase spaces.
The heat capacity in P − V criticality with fixed q is
calculated as

Cq ¼ T

�
∂S
∂T

�
q
¼ T

�
∂S
∂V

∂V
∂T

�
q

¼ πr2hIðrhÞð2rh þ 2Pr3h − 2IðrhÞÞ
2q2 − Br6h þ rhð−1þ Pr2hÞIðrhÞ

; ð65Þ

with IðrhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ Br6h

q
, and the heat capacity in q −Φ

criticality with fixed cosmological constant is expressed as

CP ¼ T

�
∂S
∂T

�
P
¼ T

�
∂S
∂Φ

∂Φ
∂T

�
P

¼ 2πJ ðΦÞCosh6ΦðCsch6ΦÞ2=3
B5=6ð−2þ Cosh12ΦÞ −KðΦÞCosh6Φ ; ð66Þ

with

J ðΦÞ ¼ Pq2=3 −
ffiffiffiffi
B

p
q2=3Cosh6Φþ ΞðΦÞ2;

KðΦÞ ¼ −PB1=3 þ ðq−1BSinh6ΦÞ2=3: ð67Þ

The behaviors of the heat capacity in P − V criticality and
q −Φ criticality are depicted in Fig. 7. As is well known,
the heat capacity provides the information related to the
thermal stability and phase transition of a thermodynamic
system. The sign of heat capacity determines thermal
stability/instability of BHs. The positivity (negativity) of
this quantity indicates a BH is thermally stable (unstable).
What is more, the phase transition points are where heat
capacity diverges, and the divergence, or to say disconti-
nuity, disappears exactly when the pressure (in P − V
criticality) or normalization factor (in q −Φ criticality)
reaches its critical value. One can observe from Fig. 7 that
the critical quantities in one phase space can lead to critical
quantities in the other one. Based on the one-to-one
correlation between the critical quantities in P − V and
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FIG. 6. Left panel: the behavior of isothermal q −Φ. The dashed and solid lines are for q1 and q2, respectively. The thin green line
denotes the connection point ðΦ0; q0Þ of the curves q1 and q2. Right panel: Gibbs free energy G as a function of temperature T for fixed
q. The swallow-tail shape appears when q < qc. The critical quantities corresponding to B ¼ 0.2 and P ¼ 1.0 are Φc ¼ 0.09751,
qc ¼ 0.31829, and Tc ¼ 0.11548.
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q −Φ phase spaces, as discussed above, the effects of the
parameters B and P on critical quantities in the q −Φ phase
space can be studied numerically. The numerical results in
Table III show that qc increases with B, while decreases
with P; both Φc and Tc decrease with B while increasing
with P. To describe the low-/high-Φ phase transition which
is of first order and find its terminating point, let us first
rewrite the first law expressed in Eq. (26) via a Legendre
transformation:

dG ¼ −SdT þ VdPþΦdq: ð68Þ

Note that a first-order transition in the q −Φ phase space
occurs at a fixed temperature and normalization factor, and
both the coexistence phases have the same Gibbs free
energy. Thus, one has

0 ¼ VdPþΦdq: ð69Þ

If one works in a canonical ensemble with fixed P, then the
condition in Eq. (69) leads to the equal area law in the
q −Φ plane:

I
Φdq ¼ 0: ð70Þ

To change the integral variable from q toΦ in Eq. (70), one
should keep in mind that q is a double-valued function of

Φ. By using the techniques developed by Zhou and Wei
in Ref. [62], the equal area law in Eq. (70) can be
reexpressed as

Z
ΦH

ΦL

q2dΦ ¼ q�ðΦH −ΦLÞ; ð71Þ

near the critical point and

Z
Φ0

ΦL

q1dΦþ
Z

ΦH

Φ0

q2dΦ ¼ q� ðΦH −ΦLÞ ð72Þ

far from the critical point, where q� denotes the coexistence
normalization factor at which the first-order phase tran-
sition occurs and the subscripts H and L represents the
high-Φ and low-Φ BHs, respectively. By using the equal
area law expressed in Eqs. (71) and (72), we numerically
plot the coexistence curve of low-/high-Φ BH phase
transition as well as the ΔΦ − T curve in Fig. 8.
Although the equal area laws have two different expres-
sions near the critical point and far from the critical point,
their coexistence curves are smoothly connected. ΔΦ is a
monotone increasing function of T; this is due to the fact
that the first-order low-/high-Φ BH phase transition occurs
when T > Tc.
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FIG. 7. The behaviors of the heat capacity in P − V criticality (left panel) and q −Φ criticality (right panel). The critical normalization
factor in the q −Φ criticality, qc ¼ 1.0 when B ¼ 0.2 and P ¼ 0.61349, corresponds to the critical pressure in the P − V criticality,
Pc ¼ 0.61349, when B ¼ 0.2 and q ¼ 1.0.

TABLE III. Numerical solutions for the critical physical quantities and coefficients Bi in q −Φ criticality.

B P Φc qc Tc B1 jB2j B3 jB4j B5

0.2 1.0 0.09751 0.31829 0.11548 −9.50686 <10−10 14.68550 <10−10 −0.24436
0.3 1.0 0.07481 0.41852 0.10462 −10.40520 <10−10 16.52530 <10−10 −0.28901
0.4 1.0 0.06074 0.54486 0.09439 −10.90300 <10−10 17.58190 <10−10 −0.31421
0.2 0.9 0.08513 0.38250 0.10461 −10.00730 <10−10 15.69950 <10−10 −0.26907
0.2 1.1 0.11035 0.27410 0.12536 −8.97503 <10−10 13.63780 <10−10 −0.21860
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B. Critical exponents for q−Φ criticality

Now, we aim to calculate the critical exponents for q −Φ
criticality. We first introduce the relations

CΦ ∝ jtj−λ; ð73Þ

ϑ ∝ jtjχ ; ð74Þ

κT@hq−Φi ∝ jtj−σ; ð75Þ

jq2 − qcj ∝ jΦ −Φcjι; ð76Þ

where the critical exponents λ, χ, σ, and ι describe the
behaviors of specific heat CΦ, the order parameter ϑ, the
isothermal compressibility κT@hq−Φi, and behavior on
the critical isotherm T ¼ Tc, respectively. To find the critical
exponent, we define the following dimensionless quantities:

ξ ¼ q2
qc

; ζ ¼ Φ
Φc

− 1; t ¼ T
Tc

− 1: ð77Þ

With the above definition, the physical quantities can be
expressed as

q2 ¼ ξqc; Φ ¼ ð1þ ζÞΦc; T ¼ ð1þ tÞTc: ð78Þ

We rewrite the entropy in terms of T and Φ as

SðT;ΦÞ ¼ πq2=3

ΞðΦÞ2 ; ð79Þ

which is independent of temperature. So, we find that

CΦ ¼ T
∂S
∂T

����
Φ
¼ 0; ð80Þ

and hence λ ¼ 0. By using Eq. (78), one can expand
Eq. (58) near the critical point as

ξ ¼ 1þ B1tþ B2ζ þ B3ζtþ B4ζ
2 þ B5ζ

3

þOðtζ2; ζ4Þ; ð81Þ

where

B1 ¼ −
6πTc

B1

; B2 ¼
3B1=6B4ΦcðCsch6ΦcÞ2=3

2B1B2q
1=3
c

;

B3 ¼
6πB7ΦcTc

B3
1B

2
2qc

; B4 ¼
3B1=6B11Φ2

c

16B2
2q

2=3
c

;

B5 ¼
B18Φ3

c

64B5
1B

3
2q

2=3
c

; ð82Þ

within which the expressions for Bi are at some level
redundant; thus, we list them in Appendix.
Our numerical analysis in Table III shows that the

coefficients B2 and B4 are very small and can be considered
as zero. So, Eq. (81) reduces to

ξ ¼ 1þ B1tþ B3ζtþ B5ζ
3: ð83Þ

Differentiating Eq. (83) with respect to ζ for a fixed t,
we get

dq2 ¼ qcðB3tþ 3B5ζ
2Þdζ: ð84Þ

Now, using the fact that the normalization factor remains
constant during the phase transition and employing
Maxwell’s area law (70), we have the following two
equations:

ξ − 1 ¼ B1tþ B3ζHtþ B5ζ
3
H ¼ B1tþ B3ζLtþ B5ζ

3
L;

0 ¼
Z

ζH

ζL

ζðB3tþ 3B5ζ
2Þdζ: ð85Þ

Equation (85) has a unique nontrivial solution given by
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FIG. 8. Left panel: coexistence curve of low/high-Φ BH phase transition in the q − T plane. Right panel: the ΔΦ as function of
temperature T.
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ζH ¼ −ζL ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−
B3

B5

t

s
: ð86Þ

According to the numerical results for B3 and B5 in
Table III, the argument under the square root function
remains positive, considering that the low-/high-Φ BH
phase transition occurs when T > Tc. From Eq. (86), one
can find that

ϑ¼ΦcðζH −ζLÞ¼ 2ΦcζH ¼ 2Φc

ffiffiffiffiffiffiffiffiffiffiffi
−
B3

B5

t

s
⇒ χ¼ 1

2
: ð87Þ

Now, we can differentiate Eq. (83) to calculate the
critical exponent σ as

κT@hq−Φi ¼ −
1

Φ
∂Φ
∂q2

����
Φc

¼ −1
B3qc

t−1 ⇒ σ ¼ 1: ð88Þ

Finally, the shape of jq2 − qcj at the critical isotherm
t ¼ 0 is given by

jq2−qcj ¼ qcjξ−1j ¼ qcjB5ζ
3j ¼ qcjB5j

Φ3
c

jΦ−Φcj3; ð89Þ

thus, we have ι ¼ 3.
The obtained results show that the critical exponents in

this new approach (with fixed Λ and variable q) are the
same as those obtained in the former section (with variable
Λ and fixed q) and coincide with the van der Waals fluid
system [50]. For fixed dimensionality and range of inter-
actions, the critical exponents are independent of the details
of a physical system, and therefore one may regard them as
quasiuniversal.

V. PHASE STRUCTURES OF AdS BHs
SURROUNDED BY CDF USING

SHADOW ANALYSIS

The images of the supermassive BHs in the galaxies
M87� [64] and SgrA� [65] given by the event horizon
telescope, displaying a dark part surrounded by a bright
ring, are direct supports of the existence of the BH in the
Universe. If light passes close to a BH, the rays can be
deflected very strongly and even travel on circular orbits.
This strong deflection, together with the fact that no light
comes out of a BH, has the effect that a BH is seen as a dark
disk in the sky; this disk is known as the BH shadow. The
BH shadow is a useful tool to understand the fundamental
properties of the BH and reveal physical constrains on the
gravitational theories. Recently, people have been inter-
ested in studying the relation between the shadow and the
thermodynamical phase transition for AdS BH. Zhang and
Guo [66] found that the phase structure can be reflected by
the shadow radius for the spherically symmetric BH and

that the shadow size gives correct information but the
distortion of the shadow gives wrong information of the
phase structure for the axially symmetric BH. Belhaj
et al. [67] studied the relations between the BH shadow
and charged AdS BH critical behavior in the extended
phase space. Hendi and Jafarzade [63] investigated the
relations between shadow radius and phase transitions for
charged quintessence-surrounded AdS BH and calculated
the critical shadow radius where the BH undergoes a
second-order phase transition. Guo et al. [68] structured
the dependence of the regular Bardeen-AdS BH shadow
and thermodynamics. Du et al. [69] investigated the
relationship between the shadow radius and the first-order
phase transition for the nonlinear charged AdS BH in the
frame of the Einstein-power-Yang-Mills gravity.
We dedicate this section to investigating the relation

between shadow radius and phase transitions for the AdS
BHs surrounded by CDF. We employ the Hamilton-Jacobi
method for a photon in the BH spacetime. The Hamilton-
Jacobi equation is expressed as [70]

∂S
∂σ

þH ¼ 0; ð90Þ

where S and σ are the Jacobi action and affine parameter
along the geodesics, respectively. The Hamiltonian of
the photon moving in the static spherically symmetric
spacetime is

H ¼ 1

2
gμν

∂S
∂xμ

∂S
∂xν

¼ 0: ð91Þ

Because of the spherically symmetric property of the
BH, one can consider a photon motion on the equatorial
plane with θ ¼ π

2
. So, Eq. (91) reduces to

1

2

�
−

1

fðrÞ
�
∂H
∂_t

�
2

þfðrÞ
�
∂H
∂_r

�
2

þ 1

r2

�
∂H

∂ _ϕ

�
2
�
¼ 0: ð92Þ

Regarding the fact that the Hamiltonian does not depend
explicitly on the coordinates t and ϕ, one can define

∂H
∂_t

¼ −E and
∂H

∂ _ϕ
¼ L; ð93Þ

where constants E and L are, respectively, the energy and
angular momentum of the photon. Using the Hamiltonian
formalism, the equations of motion are obtained as

_t ¼ dt
dσ

¼ −
1

fðrÞ
�
∂H
∂_t

�
; ð94Þ

_r ¼ dr
dσ

¼ −fðrÞ
�
∂H
∂_r

�
; ð95Þ

_ϕ ¼ dϕ
dσ

¼ 1

r2

�
∂H

∂ _ϕ

�
: ð96Þ
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By using the radial equation of motion

_r2 þ VeffðrÞ ¼ 0; ð97Þ

the effective potential of the photon can be obtained as

VeffðrÞ ¼ fðrÞ
�
L2

r2
−

E2

fðrÞ
�
: ð98Þ

Figure 9 depicts the behavior of the photon’s effective
potential for E ¼ 1with various L. As we see, there exists a
peak of the effective potential which increases with
increasing L. Because of the constraint _r2 ≥ 0, we expect
that the effective potential satisfies Veff ≤ 0. So, an ingoing
photon from infinity with the negative effective potential
falls into the BH inevitably, whereas it bounces back if
Veff > 0. For small L, the photon can fall into the BH from
a place with large r. However, for large L, the peak of the
potential will be above zero, and then the photon will be
reflected before it falls into the BH. Between the two cases,
there exists a critical case described by the purple solid line
(with medium thickness), L ¼ Lp (Vmax;eff ¼ 0). At its
peak point r ¼ rmax;Lp

, the photon has zero radial velocity
and acceleration. So, the photon will round the BH at that
radial distance. For a static spherically symmetric BH, it
corresponds to the photon sphere with radius rp ¼ rmax;Lp

.
From what was expressed, one can find that the photon
orbits are circular and unstable associated to the maximum
value of the effective potential. To obtain such a maximum
value, we use the following conditions, simultaneously

VeffðrÞjr¼rp ¼ 0;
∂VeffðrÞ

∂r

����
r¼rp

¼ 0; ð99Þ

determining the critical angular momentum of the photon
sphere (Lp) and the photon sphere radius (rp), respectively,
resulting in the following equation:

fðrpÞ
�
6M − 2rp − qArcSinh

qffiffiffiffi
B

p
r3p

�
rp ¼ 0: ð100Þ

Since the photon sphere radius should be larger than the
event horizon radius for a BH, the photon sphere radius
satisfies fðrpÞ > 0. Then, Eq. (100) leads to

6M − 2rp − qArcSinh
qffiffiffiffi
B

p
r3p

¼ 0: ð101Þ

It follows that the photon sphere radius does not depend on
the cosmological constant. For the circular orbit of the
photon, we also have the constraint

∂
2VeffðrÞ
∂r2

����
r¼rp

< 0; ð102Þ

to ensure that the photon orbits are unstable.
The orbit equation for the photon is obtained in the

following form:

dr
dϕ

¼ _r
_ϕ
¼ r2fðrÞ

L

�
∂H
∂_r

�
: ð103Þ

The turning point of the photon orbit is expressed by the
following constraint:

dr
dϕ

jr¼R ¼ 0: ð104Þ

Using Eqs. (92) and (104), one gets

dr
dϕ

¼ �r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ

�
r2fðRÞ
R2fðrÞ − 1

�s
: ð105Þ

Considering a light ray sending from a static observer
placed at ro and transmitting into the past with an angle α
with respect to the radial direction, one can write [66]

cot α ¼
ffiffiffiffiffiffi
grr

p
gϕϕ

dr
dϕ

����
r¼ro

: ð106Þ

Hence, the shadow radius of the BH can be obtained as

rs ¼ ro tan α ≈ ro sin α ¼ R

ffiffiffiffiffiffiffiffiffiffiffi
fðroÞ
fðRÞ

s ����
R→rp

; ð107Þ

where ro is the position of the observer. We mention that
the approximation implemented in Eq. (107) is valid only
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FIG. 9. Effective potential Veff as a function of r for E ¼ 1.0,
M ¼ 1.0, Λ ¼ −1, and various L. Here, the critical angular
momentum Lp ¼ 2.12318. The gray points are related to the
positions of the inner and outer horizons, where Veff ¼ −1.0.
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for small value of α. Since Eqs. (101) and (107) are
complicated to solve analytically, we employ numerical
methods to obtain the radius of the photon sphere and
shadow. With the help of Eq. (19), the behaviors of the
shadow radius as the function of the BH horizon radius can
be numerically obtained and are exhibited in Fig. 10. We
observe that there exists a positive correlation between the
shadow radius and the event horizon radius, indicating that
the shadow radius could be a fine quantity reflecting the
phase structure of the static spherically symmetric AdS BH
surrounded by CDF. Now, we are interested in examining
the relations between the shadow radius and phase tran-
sitions. According to Refs. [66–69,71,72], there is a close
connection between BH shadows and the BH thermody-
namics. The heat capacity is one of the interesting thermo-
dynamic quantities which provides the information related
to the thermal stability and phase transition of a

thermodynamic system. The sign of heat capacity deter-
mines thermal stability/instability of BHs. The positivity
(negativity) of this quantity indicates a BH is thermally
stable (unstable). Besides, the discontinuities in heat
capacity could be interpreted as the possible phase tran-
sition points. According to Eq. (65), heat capacity can be
written as

Cq ¼ T

�
∂S
∂rh

∂rh
∂T

�
q
: ð108Þ

By using the fact that ∂S
∂rh

> 0, the sign of Cq is directly

inducted from ∂T
∂rh
, which can be rewritten as

∂T
∂rh

¼ ∂T
∂rs

∂rs
∂rh

: ð109Þ

Since the shadow radius is positively correlated with the
event horizon radius, i.e., ∂rs

∂rh
> 0, one can draw a con-

clusion that the sign of Cq is controlled by ∂T
∂rs
, which leads

us to the study the behaviors of temperature and heat
capacity with respect to rs by using a numerical technique.
The isobar curves on the T − rs and Cq − rs panels are
displayed in Fig. 11. As we see, Cq − rs curves exhibit
similar behaviors as Cq − rh curves (shown in the left panel
of Fig. 7) for P > Pc, P < Pc and P ¼ Pc. For P > Pc, the
temperature is only a monotone increasing function of rs
without any extremum (see the dot-dashed line in the left
panel of Fig. 11). The heat capacity is also a continuous
function for variable rs (see the dot-dashed line in the right
panel of Fig. 11). For the case P < Pc, a nonmonotonic
behavior appears for temperature with one local maximum
and one minimum (see the dashed line in the left panel of
Fig. 11), which indicates the existence of first-order phase
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FIG. 10. The variation of shadow radius rs in terms of the event
horizon radius rh; here, we have set Λ ¼ −1 and ro ¼ 100. The
extremal point corresponds to the horizon radius rext ¼ 0.68666,
at which the inner and outer horizons coincide.
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FIG. 11. Hawking temperature (left panel) and the heat capacity (right panel) with respect to the BH shadow radius rs for an observer
at ro ¼ 100. The blue (dashed), orange (solid), and red (dot-dashed) curves correspond to the curves with P ¼ 0.98Pc, P ¼ 1.00Pc, and
P ¼ 1.02Pc, where Pc ¼ 0.02441. Also, the blue (dashed) line corresponds to the location of the first-order phase transition, while the
orange (solid) line corresponds to the second-order one. T� in the T − rs panel represents the coexistence temperature.
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transition. According to the definition of heat capacity,
these extrema points of T coincide with divergence points
(see the dashed line in the right panel of Fig. 11) of Cq.
Evidently, a change of signature occurs at these points.
To be more specific, it changes from positive to negative at
the first divergency, and then it becomes positive again at
the second one. So, three branches of BHs are thermo-
dynamically competing. The BHs with shadow smaller
than the first divergency of heat capacity are stable; The
region after the second divergency of heat capacity is
related to BHs which are also thermally stable. For an
intermediate range of shadow, the BHs are thermodynami-
cally unstable.
One should note that the intermediate shadow domain

between the two divergence points in specific heat diagram
does not coincide exactly with the coexistence area of the
small/large BH phase transition. To describe the phase
transition more precisely in the T − rs plane, one has to
replace the oscillating part of the isobar by an isotherm. To
accomplish this, one should first acquire the coexistence
temperature T� by using the Maxwell equal area law in the
P − V plane, then determine the horizon radii by equating
Tðrs;lh Þ ¼ T�, and finally calculate the shadow radii rss=rls
for small/large BHs by utilizing Eqs. (101) and (107). We
depict the changes of the shadow radius (Δrs ¼ rls − rss) as
a function of coexistence temperature in Fig. 12. We see
that Δrs has similar behavior with ΔV (shown in the right
panel of Fig. 5) and it is a monotone decreasing function of
T. At P ¼ Pc, the small BH and the large BH merge into
one, squeezing out the unstable BH.Δrs approaches to zero
at T ¼ Tc, which is exactly the coexistence temperature at
P ¼ Pc for the T − rs relation in Fig. 11, where the first-
order phase transition becomes a second-order one. Such
behavior of temperature is very similar to van der Waals
liquid/gas system, which undergoes a second-order phase
transition at T ¼ Tc. Through the above analysis, we
conclude that we can detect whether there is a phase
transition by measuring the shadow radius of the BH. If one

observes a sudden change of rs, then the BH system must
experience a first-order phase transition; if a T − rs curve
deflection point is observed, then the BH system experi-
ences a second-order phase transition.

VI. CONCLUSION

Dark fluids, including dark matter and dark energy,
contribute most to the ingredients of the Universe. A
cosmological dark fluid with Chaplygin-like equation of
state p ¼ − B

ρ could be a naturally existing substance,
considering its amusing connection with string theory.
Motivated by this, we have derived an exact static spheri-
cally symmetric AdS BH solution endowed with CDF
background. The energy density and radial and tangential
pressures of the CDF have also been calculated. We have
examined the classical energy conditions for the CDF and
found that it admits the null, weak, and dominant energy
conditions, while it violates the strong energy condition.
The first law of thermodynamics and the Smarr relation
have been constructed. Interestingly, the thermodynamic
quantities, consisting of the mass (interpreted as enthalpy),
temperature, specific heat, and Gibbs free energy are
corrected, while the thermodynamic volume and entropy
are not directly affected by the CDF.
In turn, we have investigated the extended phase space of

thermodynamics and studied the critical phenomena of the
AdS BHs surrounded by CDF by treating the cosmological
constant as a thermodynamic pressure. We have found a
first-order small/large BH phase transition, which is analo-
gous to the liquid/gas phase transition in van der Waals
fluid. The critical exponents coincide with those of the van
der Waals fluid. We have found that rc, Pc, and Tc depend
differently on q and B, and the ratio Pcrc

Tc
does not remain

constant as the charged AdS BH does; this phenomenon
reflects again the effects of the CDF.
In the nonextended phase space with variable value of

normalization factor q and fixed cosmological constant Λ,
to deduce the equation of state of the BH, q has been solved
as a double-valued function of Φ and T. It has been found
that such a BH admits a van der Waals–like first-order
low-/high-Φ BH phase transition and possesses the same
critical exponents with van der Waals fluids. Also, the
effects of the parameters B and P on critical quantities, Φc,
qc, and Tc, have been numerically studied.
Finally, we have studied the shadow thermodynamics of

AdS BH surrounded by CDF. It has been found that the
shadow radius and the event horizon radius display a
positive correlation. By analyzing the phase transition
curves under the shadow context, we have found that
the shadow radius can replace the event horizon radius to
present the BH phase transition process, and the phase
transition grade can also be revealed by the shadow radius,
indicating that the shadow radius may serve as a probe for
the phase structure in our case.
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FIG. 12. The Δrs as function of the coexistence temperature T;
here, we have set ro ¼ 100.
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APPENDIX: EXPRESSIONS FOR Bi
PARAMETERS IN EQ. (82)

The expressions for Bi are listed in Table IV.
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