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Considering a generalization of the Gibbons-Hawking-York covariant boundary action that depends
on both the extrinsic and the intrinsic geometry of the boundary, we derive boundary conditions for the
cosmological background and tensor perturbations in a closed universe with spacelike boundaries. We also
give a general method to reconstruct the covariant boundary action starting from a given set of boundary
conditions for the cosmological background. These results may be of special relevance in the context of
the path-integral formulation of quantum cosmology, where boundary terms contain essential physical
information of the system.
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I. INTRODUCTION

It is well known that the Einstein-Hilbert action needs to
be supplemented by an appropriate boundary action in
order to be functionally differentiable [1]. This ensures that
the variation of the total gravitational action gives the
Einstein field equations in the bulk, in combination with a
suitable set of boundary conditions. The best known
example in general relativity is the Gibbons-Hawking-
York (GHY) boundary action [2,3], which is defined for
spacelike and timelike boundaries as the integral of the
trace of the extrinsic curvature, and gives Dirichlet boun-
dary conditions for the metric on the boundary. However,
other boundary conditions are possible (e.g., Neumann,
Robin, and York’s mixed boundary conditions) and may be
better suited in certain physical scenarios [3–7]. Moreover,
the quasilocal charges of a bounded spacetime region are
known to depend on boundary conditions [6,8]. Therefore,
even if the equations of motion in the bulk do not depend
on these boundary terms, the latter encode key physical
information of the system.
In particular, boundary conditions on spacelike bounda-

ries are of great importance in quantum cosmology, as they
define the initial and final configurations of the spatial
geometry that enter in the definition of the path integral.
The best known examples of boundary conditions in
quantum cosmology are the “no-boundary proposal”1 [9]

and the “tunneling proposal” [10,11]. Also the functional
form of the boundary action is of central importance in
this context, since it contributes to the path integral
and may even lead to dramatic changes in its behavior.
In fact, in Ref. [12] it was shown that, by imposing Robin
boundary conditions in the Lorentzian path integral (as
defined rigorously in Ref. [13] using Picard-Lefschetz
theory), one obtains a stable saddle point geometry. This is
in stark contrast with the results obtained by imposing
Dirichlet boundary conditions, which predict unstable
perturbations on the final spatial geometry [14].
Different possibilities for boundary conditions in minis-
uperspace path integrals have been further examined in
Refs. [15,16]. For alternative proposals that try to con-
struct a framework that leads to damped perturbations on
the final surface, see also Refs. [17,18].
In this paper we consider a more general boundary action

defined on the spacelike boundary of a closed universe,
which involves an arbitrary function of both the extrinsic
and intrinsic curvatures. This allows us to reproduce all
known examples of boundary conditions that have been
considered in Lorentzian quantum cosmology. Moreover,
since we start from a covariant boundary action, this
approach enables us to derive the boundary conditions
for cosmological perturbations from the same action
principle as the background. In particular, we explicitly
carry out the derivation of boundary conditions for the
cosmological background and tensor perturbations, and our
results are valid for any matter fields that do not source
tensor modes (such as a scalar field or a perfect fluid).
Furthermore, we also give a general method to reconstruct
the precise functional form of the covariant boundary
action, given a set of boundary conditions for the
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1Note that, in the original Euclidean formulation of the

“no-boundary proposal,” there is only one boundary on which
the argument of the wave function is specified.
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cosmological background. In particular, this can be used to
check whether any given set of boundary conditions
prescribed for the cosmological background and perturba-
tions can be seen as arising from a given covariant
boundary action.
The remainder of the paper is organized as follows.

In Sec. II we give the boundary action and derive the
corresponding boundary conditions for a general spacetime
with compact space-like boundaries. In Sec. III we obtain
the boundary conditions for the cosmological background,
assuming the Friedmann-Lemaître-Robertson-Walker
(FLRW) geometry for a closed universe. In Sec. IV we
present the total action for the tensor perturbations, whose
variation leads to the corresponding equations of motion
and boundary conditions. The reconstruction method is
given in Sec. V. Finally, our results are reviewed in Sec. VI.
Conventions.—Weassume themetric signature ð−þþþÞ

and work in units where c ¼ 1. The gravitational coupling
constant is denoted as κ ¼ 8πG. Abstract indices for space-
time tensors are in latin, while greek letters are used for
three-dimensional spatial tensors.

II. GENERALIZED BOUNDARY ACTION

We assume a globally hyperbolic spacetime ðM; gabÞ
foliated by compact spacelike Cauchy surfaces M3, i.e.,
M ≅ M3 × R. Using the usual 3þ 1 decomposition, we
introduce the spatial metric qab ≡ gab þ nanb, where na is
the normal one form to the leaves of the foliation. The
extrinsic curvature is defined as the Lie dragging of the
spatial metric Kab ≡ 1

2
£nqab, and its trace is denoted as K.

The Levi-Civita connection associated with qab is denoted
as Dc, the spatial Ricci tensor is Rab, and the spatial
curvature scalar is R.
Let us now consider a compact spacetime region Ω ⊂ M

with spacelike boundary ∂Ω¼Σ1 ∪Σ2, where Σ1;Σ2 ≅ M3.
The sets ðΣ1; qiab; K

i
abÞ and ðΣ2; qfab; K

f
abÞ can thus be,

respectively, regarded as the initial and final states of the
geometry of a closed universe. We also include matter
fields, schematically denoted as ψ ; for simplicity, we will
assume these to be minimally coupled to gravity. The action
of the system is then given by

S½gab;ψ � ¼
1

2κ

Z
Ω
d4x

ffiffiffiffiffiffi
−g

p
Rþ 1

κ

Z
Σ1

d3x
ffiffiffiffi
qi

q
F1ðKi;RiÞ

þ 1

κ

Z
Σ2

d3x
ffiffiffiffiffi
qf

q
F2ðKf ;RfÞ þ Sm½gab;ψ �;

ð2:1Þ

where the first term is the bulk Einstein-Hilbert action,
supplemented by general boundary terms (the second
and third terms), while the last term corresponds to the
matter action. The labels i and f denote geometric objects
corresponding to the initial Σ1 and final Σ2 spacelike leaves.
The functions F1 and F2 are completely general, and they
may be different. Their arguments are the trace of the
extrinsic curvature K and the spatial Ricci scalarR, so they
depend both on the intrinsic and extrinsic geometries of
the spacelike boundaries. Note that in the particular case
F1 ¼ −F2 ¼ K we recover the GHY boundary action [3],
while for constant F1 and F2 we obtain the boundary action
considered in Ref. [5]. In fact, higher-order curvature
invariants (such as, for instance, RabRab or KabRab)
may also be included in the functional dependence of F.
However, at the level of the homogeneous and isotropic
background model we will study, such generalizations are
completely equivalent to F ¼ FðK;RÞ. Therefore, for
simplicity, in the present work we will confine our attention
to the action (2.1). Also, even if in this paper we focus
specifically on spacelike boundaries, which are relevant
for cosmological applications, generalizations of the
action (2.1) with timelike boundaries are straightforward.
Varying the action (2.1) we obtain

δS ¼ 1

2κ

Z
Ω
d4x

ffiffiffiffiffiffi
−g

p ðGab − κTabÞδgab

þ
Z
Σ1

d3x
ffiffiffiffi
qi

q �
1

κ
Bi;grav þ Bi;matter

�

þ
Z
Σ2

d3x
ffiffiffiffiffi
qf

q �
1

κ
Bf;grav þ Bf;matter

�
; ð2:2Þ

where Tab ≡ − 2ffiffiffiffi−gp δSm½ψ �
δgab

is the stress-energy tensor and we

have defined the boundary terms as

Bi;grav ≡
�
−1þ ∂F1

∂K

�
qabi δKi

ab þ
�
1

2
F1qabi þ

�
1

2
−
∂F1

∂K

�
Kab

i −
∂F1

∂R
Rab

i þDaDb ∂F1

∂R
þ qabi DcDc

∂F1

∂R

�
δqiab ¼ 0; ð2:3Þ

Bf;grav ≡
�
1þ ∂F2

∂K

�
qabf δKf

ab þ
�
1

2
F2qabf −

�
1

2
þ ∂F2

∂K

�
Kab

f −
∂F2

∂R
Rab

f þDaDb ∂F2

∂R
þ qabf DcDc

∂F2

∂R

�
δqfab ¼ 0; ð2:4Þ

which must be vanishing for the variation of the action to be well defined. Note that the quantities Bi;grav and Bf;grav also
include the boundary contribution arising from the variation of the Einstein-Hilbert action.2 The matter contributions to

2The different signs in front of the first term in Eqs. (2.3) and (2.4) are due to the orientation of the spacelike boundaries, see,
e.g., Ref. [3].
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the boundary terms must also vanish, and the equations
Bi;matter ¼ 0 and Bf;matter ¼ 0 thus represent the matter
boundary conditions. Their precise form depends on the
matter type, but we will not be concerned with these terms
and leave the matter content completely general. We stress
that the matter action does not contribute to the boundary
conditions for the gravitational field (2.3)–(2.4) due to the
fact that we have assumed matter fields to be minimally
coupled. This would no longer be the case for nonminimal
couplings (for instance, in the presence of dilaton cou-
plings). Finally, we would like to point out that there are no
corner terms in the variation (2.2) since we are assuming
that ∂Ω has no boundary.
The standard GHY term leads to Dirichlet boundary

conditions for the spatial metric δqiab ¼ δqfab ¼ 0, as can
be straightforwardly checked by inserting F1 ¼ −F2 ¼ K
in (2.3)–(2.4). However, our more general boundary con-
ditions (2.3)–(2.4) involve both the intrinsic and the
extrinsic geometry of the boundaries. For instance, we
can also obtain the boundary conditions of Ref. [5] by
considering that either F1 or F2 are constant. For instance,
in the case F2 ¼ constant, from Eq. (2.4), we find the
boundary condition

Bf;grav ¼ qabf δKf
ab þ

1

2
ðF2qabf − Kab

f Þδqfab ¼ 0: ð2:5Þ

Before closing this section, we remark that the boundary
conditions (2.3)–(2.4) may also be expressed in terms of
the canonical Arnowitt-Deser-Misner momentum, defined

as πab ¼
ffiffi
q

p
2κ ðKab − KqabÞ. In the canonical formulation

of general relativity, πab would be the natural variable to
consider instead of Kab. The translation of our results from
the ðqab; KabÞ variables to ðqab; πabÞ is straightforward.

III. BOUNDARY CONDITIONS FOR THE
COSMOLOGICAL BACKGROUND

Let us now assume the closed FLRW geometry for the
cosmological background. Thus, in this case, the compact
spatial manifold M3 is the three-sphere. In a generic time
gauge the metric reads

ds2 ¼ −N2ðtÞdt2 þ r20a
2ðtÞðdχ2 þ sin2 χðdθ2 þ sin2 θdϕ2ÞÞ;

ð3:1Þ

where a is the scale factor, N is the lapse, and r0 is the
radius of the three-sphere. The Hubble rate is defined
as H ≡ _a=ðNaÞ, with the dot denoting a derivative
with respect to t. The spatial curvature is given by
R ¼ 6=ðr0aÞ2, and the trace of the extrinsic curvature is
K¼3H. Therefore, the function Fj¼FjðK;RÞ, for
j¼1, 2, can be regarded now as a function of the scale
factor and the Hubble rate, i.e., Fj ¼ Fjða;HÞ.

Excluding the matter contribution Sm and integrating by
parts to remove second-order derivatives, for this metric,
the action (2.1) reduces to

S½a� ¼ 3

κ

Z
Ω
d4x

ffiffiffi
γ

p
aN

�
1

r20
−

_a2

N2

�

þ
X2
j¼1

1

κ

Z
Σj

d3x
ffiffiffi
γ

p
a3ðFj þ 3ð−1ÞjHÞ; ð3:2Þ

with γ being the determinant of the metric of the three-
sphere, which will be explicitly defined below. In turn, the
boundary conditions (2.3)–(2.4) take now the simpler form�
ð−1Þj þ 1

3

∂Fj

∂H

�
δHþ

�
Fj þ

1

3
a
∂Fj

∂a
þ ð−1ÞjH

�
δa
a
¼ 0:

ð3:3Þ

Note that the variables ða;HÞ are evaluated on the
boundaries Σ1 and Σ2 for j ¼ 1 and j ¼ 2, respectively.
In principle, all these quantities should carry a j label to
denote the boundary where they are evaluated. However, in
order to make the notation lighter, we will omit it, except
for the function Fj, since the initial and final boundary
Lagrangians are not necessarily the same.
The boundary conditions (3.3) are manifestly gauge

invariant under time reparametrizations (in that they do
not involve the lapse) and represent a generalization of the
standard Dirichlet boundary conditions ðδa ¼ 0Þ obtained
from the GHY boundary action for cosmology. In Sec. V
we will give a general procedure to reconstruct the func-
tional form of Fj from any given boundary conditions
obeyed by the cosmological background.

IV. TENSOR PERTURBATIONS

If one considers tensor perturbations hαβ propagating on
the background given by the FLRW universe presented
above, up to linear order in hαβ, the metric takes the form

ds2 ¼ −N2ðtÞdt2 þ a2ðtÞðγαβðxγÞ þ hαβðt; xγÞÞdxαdxβ;
ð4:1Þ

where

γαβdxαdxβ ¼ r20ðdχ2 þ sin2 χðdθ2 þ sin2 θdϕ2ÞÞ ð4:2Þ

denotes the metric on the three-sphere. Note that, at the
level of the background geometry, the spatial metric qαβ
and γαβ are conformally related, qαβ ¼ a2γαβ. In the
following, as it is usual in cosmological perturbation
theory, we will use γαβ to raise the spatial (greek) indices.
By definition, tensor perturbations are transverse and
traceless,
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γαβhαβ ¼ 0; hαβ jβ ¼ 0; ð4:3Þ

where the vertical bar denotes the covariant derivative
compatible with the metric γαβ, i.e., γαβjλ ¼ 0.

A. Action for tensor perturbations

The boundary conditions obeyed by the tensor pertur-
bations are completely fixed by the covariant action (2.1).
In order to obtain such conditions, we will first derive the
total action for the perturbations that, upon variation, will
provide the sought-for boundary conditions. Our aim in this
section is thus to compute the total action for the pertur-
bations, including both the bulk and boundary contribu-
tions. This will be given by the second-order variation of
the background action. Therefore, we first need to expand
all relevant quantities that characterize the intrinsic and
extrinsic geometry up to second order (that is, quadratic
terms) in the perturbations.
The spatial metric and extrinsic curvature obtained from

the perturbed metric (4.1) read as

qαβ ¼ a2ðγαβ þ hαβÞ;

Kαβ ¼ a2
�
Hðγαβ þ hαβÞ þ

1

2N
_hαβ

�
; ð4:4Þ

respectively, which, given the metric (4.1), are exact
expressions. Up to quadratic terms in the perturbations,
the inverse spatial metric is given by

qαβ ≃ a−2ðγαβ − hαβ þ hαγhγβÞ; ð4:5Þ

while for the spatial Ricci scalar we have

R ≃
6

a2r20
−

1

a2

�
1

r20
hαβhαβ − hαβhαβ jλjλ

þ 1

2
hαλjβhαβjλ −

3

4
hαβjλhαβjλ

�
; ð4:6Þ

and the volume element is

ffiffiffiffiffiffi
−g

p
≃ Na3

ffiffiffi
γ

p �
1 −

1

4
hαβhαβ

�
: ð4:7Þ

Making use of the Gauss-Codazzi relations, the four-
dimensional Ricci scalar can be written in a generic gauge
as follows:

R¼RþKabKab −K2 þ 2∇aðna∇cnc − nc∇cnaÞ; ð4:8Þ

Note that, in this expression, one needs to use the full four-
dimensional metric to raise and lower indices, and this is
the reason for using latin indices here. In the gauge defined

by Eq. (4.1), the normal vector is na ¼ 1
N ð ∂∂tÞa, whose

acceleration vanishes, nc∇cna ¼ 0,3 which simplifies the
above relation. Therefore, after integration by parts, we get
that the Einstein-Hilbert actions reads

SEH ¼ 1

2κ

Z
Ω
d4x

ffiffiffiffiffiffi
−g

p ðRþ KabKab − K2Þ

þ
X
j

ð−1Þj
κ

Z
Σj

d3x
ffiffiffi
q

p
K; ð4:9Þ

where, as in the previous section, j ¼ 1, 2 stands for the
initial and final surface, respectively. Substituting the
expansions obtained above for the different objects that
appear in this action, and retaining only terms that are
quadratic in the tensor perturbations, we obtain, after
integrating by parts once again and some straightforward
manipulations,

Sð2ÞEH½hab�

¼
Z
Ω
d4x

ffiffiffi
γ

p
8κ

Na

��
a
N

�
2
_hαβ _h

αβ − hαβjλhαβjλ

−
2

r20
hαβhαβ − 2a2

�
3H2 þ 2

N
_H þ 1

a2r20

�
hαβhαβ

�

þ
X
j

ð−1Þjþ1

2κ

Z
Σj

d3x
ffiffiffi
γ

p
a3
�
1

N
_hαβhαβ þ

H
2
hαβhαβ

�
;

ð4:10Þ

where
ffiffiffi
γ

p ¼ r3o sin2 χ sin θ. In addition, assuming a vanish-
ing anisotropic stress, the second-order expansion of the
matter action leads to the contribution

Sð2Þm ½hab;ψ � ¼ −
1

4

Z
Ω
d4x

ffiffiffi
γ

p
Na3hαβhαβp̄; ð4:11Þ

where p̄ is the pressure.4 Using the background field
equations, the term (4.11) exactly cancels the term that
multiplies hαβhαβ inside the bulk integral in Eq. (4.10).
On the other hand, the contribution from the boundary

action (2.1) can be easily computed,

Sð2ÞB ½hab� ¼
X2
j¼1

Z
Σj

d3x
ffiffiffi
γ

p
κ

��
−
1

4
a3Fj þ

a
2r20

∂Fj

∂R

�
hαβhαβ

−
a
4
hαβjλhαβjλ

∂Fj

∂R
−

a3

2N
_hαβhαβ

∂Fj

∂K

�
; ð4:12Þ

3This is because we have nc∇cna ¼ Da logN ¼ 0, where Da
denotes the Levi-Civita connection of the spatial metric qab (see,
e.g., Ref. [19]), and the last step follows from the fact that N does
not depend on the spatial coordinates in the chosen gauge.

4Pressure is defined as usual: the spatial components of the
matter stress-energy tensor are all equal at the background level
and given by T̄α

β ¼ p̄δαβ [20].
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where the overbar denotes quantities evaluated on the background.
Finally, combining Eqs. (4.10) and (4.12), we obtain the bulk and boundary action for the tensor perturbations:

Spertbulk½hab� ¼
1

8κ

Z
Ω
d4x

ffiffiffi
γ

p
Na

��
a
N

�
2
_hαβ _h

αβ − hαβjλhαβjλ −
2

r2o
hαβhαβ

�
; ð4:13Þ

Spertboundary½hab� ¼ −
1

κ

X2
j¼1

Z
Σj

d3x
ffiffiffi
γ

p ��
ð−1Þj a

3H
4

þ 1

4
a3Fj −

a
2r20

∂Fj

∂R

�
hαβhαβ þ

a
4
hαβjλhαβjλ

∂Fj

∂R

þ a3

2N

�
ð−1Þj þ ∂Fj

∂K

�
_hαβhαβ

�
: ð4:14Þ

B. Boundary conditions

We can now take the variation of the total action for
tensor perturbations Spert½hab� ¼ Spertbulk½hab� þ Spertboundary½hab�,
which leads to the equations of motion

1

Na
d
dt

�
a3

N
_hαβ

�
− hαβjλjλ −

2

r20
hαβ ¼ 0; ð4:15Þ

along with the boundary conditions

Aαβδhαβ þ Bαβδ _hαβ ¼ 0; ð4:16Þ

where we have defined

Aαβ ≡ −
�
ð−1Þj H

2
þ Fj

2
−

1

a2r20

∂Fj

∂R

�
hαβ þ 1

2a2
∂Fj

∂R
hαβ jλjλ

−
1

2N

�
1

2
ð−1Þj þ ∂Fj

∂K

�
_hαβ; ð4:17Þ

Bαβ ≡ −
1

2N

�
ð−1Þj þ ∂Fj

∂K

�
hαβ: ð4:18Þ

Recall again that j ¼ 1, 2 stands for the initial and final
surfaces, respectively, and the overbar indicates that the
corresponding magnitude should be evaluated at the back-
ground level. Therefore, the derivatives of Fj with respect
to K andR can also be rewritten as derivatives with respect
to a and H. In summary, the boundary conditions (4.16)
obeyed by the tensor perturbations, along with the total
perturbative action, which includes both the bulk (4.13) and
boundary (4.14) contributions, constitute the main results
of this section.

V. RECONSTRUCTION METHOD

At the end of the previous section we have derived
Eq. (4.16), which expresses the boundary conditions for
tensor perturbations obtained from the action (2.1). As
already commented above, boundary conditions for the
perturbations cannot be prescribed in an independent way

from the boundary conditions for the cosmological
background: once the functions Fj are fixed, Eqs. (3.3)
and (4.16) provide the background and linearized boundary
conditions, respectively.
However, starting from certain background boundary

conditions Uða;HÞ ¼ c, as it is done in some studies about
the path-integral approach to quantum cosmology (see,
e.g., Ref. [15]), it is unclear how to obtain the functional
form of Fj. In this section we will present a general method
that, given the symmetry-reduced boundary conditions
Uða;HÞ ¼ c, will provide the functional form of Fj, which
will in turn unambiguously define the full covariant action
principle (2.1) and the boundary conditions (4.16) obeyed
by the tensor perturbations. Conversely, given a set of
boundary conditions for the background and tensor per-
turbations, it will be possible to check whether they arise
from one and the same boundary action of the form (2.1).

A. General method

Let us now consider, for the symmetry reduced back-
ground, boundary conditions of the general form

Uða;HÞ ¼ c; ð5:1Þ
where c is a constant, and its differential form δU ¼ 0
defines the variation. Physically, the quantity U corre-
sponds to a certain combination of a and H that is kept
fixed on the boundary when the action is varied. In
particular, all known boundary conditions in cosmology,
including the familiar examples of Dirichlet Uða;HÞ ¼ a,
Neumann Uða;HÞ ¼ a2H, and Robin Uða;HÞ ¼ αan þ
βaH boundary conditions, as well as the generalizations
discussed in Ref. [15], can be recast in the form (5.1).
Our goal is thus to obtain the function Fj, from the

condition (3.3), for a given form of the combination
U ¼ Uða;HÞ. At this point, it turns out to be convenient
to perform a change of coordinates from ða;HÞ to ðU;ϕÞ,
where ϕ ¼ ϕða;HÞ is an arbitrary function subject to the
only requirement that the Jacobian of the transformation,

J ≡ ∂U
∂a

∂ϕ

∂H
−
∂U
∂H

∂ϕ

∂a
; ð5:2Þ
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is nontrivial. Taking into account the identities between the different derivatives,

 
∂U
∂a

∂ϕ
∂a

∂U
∂H

∂ϕ
∂H

!
¼ J

 
∂H
∂ϕ − ∂H

∂U

− ∂a
∂ϕ

∂a
∂U

!
; ð5:3Þ

the boundary condition (3.3) is rewritten as

�
a

�
3ð−1Þj þ ∂F

∂H

�
∂U
∂a

−
�
3ð−1ÞjH þ 3F þ a

∂F
∂a

�
∂U
∂H

�
δϕ

þ −
�
a

�
3ð−1Þj þ ∂F

∂H

�
∂ϕ

∂a
−
�
3ð−1ÞjH þ 3F þ a

∂F
∂a

�
∂ϕ

∂H

�
δU ¼ 0: ð5:4Þ

Since we have defined the variation as keeping the combination U fixed, δU ¼ 0, it is clear from this expression that the
action principle will be well defined only if the coefficient of δϕ vanishes,

�
ð−1Þj þ 1

3

∂Fj

∂H

�
a
∂U
∂a

−
�
ð−1ÞjH þ Fj þ

1

3
a
∂Fj

∂a

�
∂U
∂H

¼ 0: ð5:5Þ

This provides the differential equation we were looking
for, and its solution will define Fj in terms of the chosen
combination U.
In order to obtain the general solution for the above

equation, one first replaces the derivatives acting on Fj to
derivatives with respect to ðU;ϕÞ by simply making use of
the chain rule, which leads to

ð−1Þj
�
a
∂U
∂a

−H
∂U
∂H

�
þ 1

3
J
∂Fj

∂ϕ
¼ ∂U

∂H
Fj: ð5:6Þ

After some straightforward manipulations, this can be
recast as

∂ða3FjÞ
∂ϕ

þ 3a2ð−1Þj ∂ðaHÞ
∂ϕ

¼ 0; ð5:7Þ

whose general solution is

Fjða;HÞ¼fðUða;HÞÞ
a3

þ3ð−1Þjþ1

a3

Z
dϕa2

∂ðaHÞ
∂ϕ

; ð5:8Þ

where f is an arbitrary function. This is the most relevant
result of this section and explicitly provides the function Fj

in terms of the combination Uða;HÞ, which is the back-
ground symmetry-reduced boundary condition. Once Fj is
obtained, the covariant boundary terms of the action of the
model are defined, which could be used for applications to
nonsymmetric configurations, and, in particular, the boun-
dary conditions obeyed by the tensor perturbations (4.16)
are fixed. Note that the integration function f only
contributes to the total action with an additive constant

fðcÞ (since, at the boundary, U ¼ c). However, the specific
form of the coefficients Aαβ and Bαβ of the perturbative
boundary conditions (4.16) will depend both on fðcÞ and
its first-order derivative f0ðcÞ.

B. Examples of noteworthy boundary conditions

In the following we examine some examples of relevant
boundary conditions that have been considered in the
literature, and reconstruct the corresponding Fj making
use of the reconstruction method explained above. In order
not to introduce further definitions, in all the cases we will
denote by f the free integration function and redefine it
whenever it is convenient.

1. Dirichlet boundary conditions

In this case the value of the scale factor is fixed at the
boundary

UðaÞ ¼ a: ð5:9Þ

Imposing δa ¼ 0 in the boundary condition (3.3), it simply
reads

ð−1Þj þ 1

3

∂Fj

∂H
¼ 0; ð5:10Þ

which can be readily solved,

Fj ¼ 3ð−1Þjþ1H þ fðaÞ; ð5:11Þ

where f is an arbitrary function of a. This solution can also
be obtained from the general form (5.8) by choosing, for
instance, ϕ ¼ H.
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The form of the boundary action can now be reexpressed
in a covariant fashion as a function of the intrinsic and
extrinsic curvatures of the background as

Fj ¼ ð−1Þjþ1K þ fðRÞ; ð5:12Þ

where the first term defines the standard GHY action and
the function f has been adequately redefined. Replacing
this form in the perturbative boundary conditions (4.16), it
is easy to see that the coefficient Bαβ is vanishing, which, in
general, also implies a Dirichlet problem for the perturba-
tions Aαβδhαβ ¼ 0.

2. Fixed Hubble rate

We require now a fixed value of the Hubble rate at the
boundary, that is,

UðHÞ ¼ H: ð5:13Þ

In such a case, the boundary condition (3.3) takes the form

Fj þ
1

3
a
∂Fj

∂a
þ ð−1ÞjH ¼ 0; ð5:14Þ

with the general solution given by

Fj ¼ ð−1Þjþ1H þ fðHÞ
a3

; ð5:15Þ

where f is an arbitrary function of H. It is straightforward
to get this solution from the general form (5.8) by choosing,
for instance, ϕ ¼ a. In covariant form, after a suitable
redefinition of the function f, it reads

Fj ¼
ð−1Þjþ1

3
K þ fðKÞR3=2: ð5:16Þ

Contrary to the Dirichlet conditions considered above, this
form of the background boundary action does not lead to the
vanishing of neither of the coefficients Aαβ nor Bαβ in (4.16).
Therefore, the boundary conditions for the perturbations will
have the Robin form Aαβδhαβ þ Bαβδ _hαβ ¼ 0.

3. Neumann boundary conditions

Neumann boundary conditions correspond to having a
fixed value for the canonical momentum of a. Taking the
variation of the background action (3.2) with respect to _a, it
is straightforward to see that the momentum of a is
proportional to a2H. Hence we consider

Uða;HÞ ¼ a2H: ð5:17Þ

The corresponding solution for Fj is

Fj ¼ 3ð−1ÞjH þ fða2HÞ
a3

; ð5:18Þ

with f being arbitrary. Its covariant form reads

Fj ¼ ð−1ÞjK þR3=2fðK=RÞ: ð5:19Þ

Also in this case the boundary conditions for tensor
perturbations have the general Robin form.

4. Generalized Robin boundary conditions

A generalization of the Robin boundary conditions for
the background considered in Refs. [12,15] is obtained with
the following choice5:

Uða;HÞ ¼ aH þ λ

r0
an; ð5:20Þ

with n being a positive integer and λ a dimensionless
constant. By defining any functional form for ϕ ¼ ϕða;HÞ,
which is linearly independent to this Uða;HÞ, one
can perform the integral that appears in the general
solution (5.8) and obtain

Fjða;HÞ ¼ ð−1Þj 3λ
r0

n
2þ n

aðn−1Þ þ 1

a3
f

�
aH þ λ

r0
an
�
;

ð5:21Þ

for any function f. This solution can be reexpressed in
covariant fashion as

FjðR; KÞ ¼ ð−1Þj 3λ
rn0

n
2þ n

�
6

R

�ðn−1Þ=2

þR3=2fðKR−1=2 þ 2λ6
n−3
2 r−n0 R−n=2Þ; ð5:22Þ

which leads to a problem of the general form Aαβδhαβ þ
Bαβδ _hαβ ¼ 0 for the perturbations.

VI. CONCLUSIONS

We have considered a generalization of the GHY surface
term that provides a well-defined variational action
principle for general relativity. More precisely, assuming
compact Cauchy slices, the usual Einstein-Hilbert bulk
action (2.1) has been supplemented by surface terms with a

5In the notation of Ref. [12], the FLRW metric is parametrized
as ds2 ¼ − N2

q dt2 þ qðdχ2 þ sin2 χðdθ2 þ sin2 θdϕ2ÞÞ, and the
boundary condition on the initial slice read as B¼ _qo=Nþλqo¼
constant. The form of B when expressed in terms of these
variables justifies the name “Robin boundary conditions.” In
Refs. [5,15] a different set of “Robin boundary conditions” was
also examined, B ¼ _qo=N þ λ

ffiffiffiffiffi
qo

p ¼ constant. Both choices can
be obtained as particular cases of Eq. (5.20), with n ¼ 2 and
n ¼ 1, respectively.
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generic dependence on the three-dimensional Ricci scalar
and the extrinsic curvature of the spatial slices. The
boundary conditions (2.3)–(2.4) implied by such an action
have been explicitly obtained without any symmetry
assumptions. Assuming then a perturbative framework
around a FLRW closed cosmology, boundary conditions
for the cosmological background (3.3) and tensor pertur-
bations (4.16) have also been obtained. In addition, the total
action, including the bulk (4.13) and boundary (4.14)
contributions, for the tensor perturbations has been explic-
itly derived.
The general set of boundary conditions obtained in this

paper includes as special cases all known examples of
boundary conditions considered in the quantum-cosmology
literature. In this context, there are several prescriptions
proposed in the literature for the boundary conditions that
the (symmetry-reduced) background objects should obey.
However, it is unclear whether such conditions may arise
from some covariant action. In this sense, one of the main
results of the present paper is given by the reconstruction
method presented in Sec. V and, more specifically, by
Eq. (5.8), which provides the explicit form of the covariant

boundary action in terms of any chosen background
conditions. Since the equations for the perturbations arise
from the same action principle, the boundary conditions
obeyed by the perturbations are not independent from those
obeyed by the background, and our method allows for an
exact reconstruction of their general form. Finally, the
special cases of Dirichlet, fixed Hubble rate, Neumann,
and Robin boundary conditions have been examined in
detail in Sec. V B.
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