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We investigate the possibility of reducing the number of degrees of freedom (d.o.f.) starting from generic
metric theories of gravity by introducing multiple auxiliary constraints (ACs), under the restriction of
retaining spatial covariance as a gauge symmetry. Arbitrary numbers of scalar-, vector- and tensor-type
ACs are considered a priori, yet we find that no vector- and tensor-type constraints should be introduced,
and that scalar-type ACs should be no more than four for the purpose of constructing minimally modified
gravity (MMG) theories which propagate only two tensorial d.o.f., like general relativity (GR). Through a
detailed Hamiltonian analysis, we exhaust all the possible classifications of ACs and find out the
corresponding minimalizing and symmetrizing conditions for obtaining the MMG theories. In particular,
no condition is required in the case of four ACs, hence in this case the theory can couple with matter
consistently and naturally. To illustrate our formalism, we build a concrete model for this specific case by
using the Cayley-Hamilton theorem and derive the dispersion relation of the gravitational waves, which is
subject to constraints from the observations.
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I. INTRODUCTION

After the first binary black hole coalescence event,
GW150914, detected by LIGO in 2015 [1], there have
been more than fifty compact binary merger events reported
by the LIGO-Virgo Scientific Collaborations (LVSC) [2,3]
heralding the era of gravitational wave (GW) for astro-
physics and cosmology which provides the first-ever
window to explore the nature of gravity in the strong-field
regime. So far, GR stands strongly against tests such as
consistency checks [4], merger remnants [5] and the
properties of the generation and propagation (e.g. the
propagating speed, dispersion relations and polarization
states) of GWs [6–13] (see Ref. [14] for reviews).
In particular, due to the spacetime diffeomorphism

symmetry, GR predicts that only two transverse-traceless
tensor modes of GWs are propagating. This is a significant
feature to distinguish GR from usual modified gravity
theories [15,16], in which additionally nontensorial polari-
zation mode(s) [17–19] could be propagating as well. For
instance, there is a scalar mode beyond the two tensor modes
in the fðRÞ and generic scalar-tensor (ST) theories [20–25]

(see also [26–28]), the vector modes appear in the vector-
tensor theories (e.g. the Einstein-Æther theory [29]) while
both scalar and tensor modes could be excited simulta-
neously in addition to the tensor modes in scalar-vector-
tensor theories, such as the TeVeS theory [30]. Therefore,
people have put a lot of effort into extracting information on
the polarization states from GWs signals [31–35] for the
purpose of falsifying gravity theories via polarization states
of GWs. However, limited by the orientation of the detectors
arranged at LVSC, so far the best we have known about the
polarization states from the GWs signals is that the purely
tensor polarization is strongly favored over the purely scalar
or vector polarizations [10]. In light of the establishment of
the network of ground-based detectors including advanced
LIGO, Virgo [36–38], KAGRA [39,40] and LIGO India,
more information will be available and we may then have the
probing ability for separating polarization modes in the near
future.
Naturally, in this context there comes a crucial question,

that is, whether GR is the unique theory with two tensorial
degrees of freedom (TTDOF) of gravity. According to the
Lovelock’s theorem [41,42], GR is the unique theory in
which the metric is the only field in the gravity sector and
obeys second order equations of motion with general
covariance and locality in the four dimensional spacetime
and therefore GR is indeed the unique TTDOF gravity
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theory when the assumptions of Lovelock’s theorem are
preserved.
However, this uniqueness does not hold anymore when

these assumptions are relaxed to some extent.1 In fact, an
alternative gravity theory with TTDOF was proposed and
dubbed the Cuscuton in 2007 [48] by introducing an
incompressible (i.e. propagating at infinite sound speed)
scalar field ϕðt; x⃗Þ with a nonvanishing and timelike
vacuum expectation value of its first derivative. The scalar
d.o.f. with infinite sound speed in the Cuscuton manifests
itself as an instantaneous mode. As discussed in [49–51] for
a generalized instantaneous mode called a shadowy mode in
the context of U-DHOST and VCDM respectively, such a
mode with infinite sound speed satisfies an elliptic equation
on each constant-ϕ hypersurface. In the so-called unitary
gauge, i.e. with ϕ ¼ ϕðtÞ [52], these hypersurfaces on
which the elliptic equation is defined agree with time slices
and thus the equation of motion for the instantaneous/
shadowy mode does not include time derivatives, meaning
that the Cuscuton only propagates the TTDOF [53]. In other
choices of time slicing, the equation of motion for the
instantaneous/shadowy mode includes time derivatives but
is still elliptic. Therefore by imposing a proper boundary
condition the instantaneous/shadowy mode is uniquely
determined by other degrees of freedom. As a result the
Cuscuton propagates TTDOF only, irrespective of whether
the unitary gauge is adopted or not (see Refs. [49–51] for
corresponding discussions in U-DHOST and VCDM).
Generally, in the unitary gauge, general covariance is

broken into the spatial covariance therefore the Cuscuton (or
a generic ST theory) can be classified as a spatially covariant
(SC) framework [54] and inversely the ST theory can be
also recovered from a SC theory by introducing a
Stueckelberg field [55–57]. Due to the reduction of sym-
metry, in addition to the two tensorial d.o.f., the SC gravity
theory with a nondynamical lapse function propagates one
scalar d.o.f. [58]. Nevertheless, a class of TTDOF gravity
theories was proposed within a special SC framework where
the lapse function enters the Lagrangian linearly. The
resulting theory was dubbed the MMG theory [59], which

indicates that GR is modified without changing its d.o.f.
Similarly, a class of TTDOF theories was identified within
the more general ST theory with higher order derivatives
under the unitary gauge [60]. In the case of a nondynamical
lapse function, the general conditions to eliminate the scalar
d.o.f. were found in [61,62]. This idea was also applied to
the more general SC framework with a dynamical lapse
function that enters the Lagrangian nonlinearly [63]. The
conditions to have TTDOF in the presence of a dynamical
lapse function were analyzed in [64].
According to the above works, within the general SC

framework, MMG theories exist as long as some additional
conditions are satisfied, which we dub the TTDOF con-
ditions. The example of the first TTDOF condition arose
in [60], which we dubbed the degeneracy condition to
indicate that the sector of the lapse function and extrinsic
curvature is degenerate. The self-consistency condition
identified in [59], which we dub the second TTDOF
condition, is used to prevent the number of phase space
dimensions from being odd.
The TTDOF conditions are nonlinear functional differ-

ential equations of the Lagrangian, which are difficult to be
solved in general. We are only able to solve them with some
particular ansatz of actions, such as, the square root gravity
in [59], the extended Cuscuton in [60] and the quadratic
extrinsic curvature (QEC) gravity in [61] (see the cosmo-
logical constraints to this model in [65,66]). Another
difficulty of MMG theories is the problem of coupling
with matter consistently, which happens when there are
extra first-class constraint(s) (other than the original six
first-class constraints associated with the spatial diffeo-
morphism) appearing in the MMG theories [67]. More
precisely, the extra first-class constraint(s) would be down-
graded to be second-class when the theory is naively
coupled with Lorentz covariant matter, at which point
the suppressed scalar d.o.f. arises again.
The resolution of these difficulties arising for MMG

theories become more transparent in the phase space than in
the configuration space. This is because counting the
number of d.o.f. is transparent by means of an explicit
constraint analysis in the phase space. For this reason, a
number of works have utilized the Hamiltonian approach.
For instance, by imposing the linearity of the lapse function
in the Hamiltonian [68] instead of the Lagrangian [59], the
self-consistency condition was reformulated in a much
simpler expression by solving the simplified condition. In
these works, the fðHÞ theory which is a particular MMG
theory constructed in [67] was rediscovered and the “kink”
model based on the fðHÞ theory was shown later to fit the
Planck data better than the ΛCDM model [69]. The matter-
coupling problem can also be addressed in the phase space.
As another instance, in [70–72], the authors introduce the
so-called gauge fixing condition to the Hamiltonian of the
MMG theory obtained by performing a canonical trans-
formation of GR. As a result, the first-class constraint

1Recently, the authors in [43] attempted to circumvent the
Lovelock’s theorem to construct an alternative gravity theory
with TTDOF by rescaling the coupling constant of the Gauss-
Bonnet term and therefore nontrivially modifying the Einstein’s
field equation in four dimensional spacetime. However, the
Lovelock’s theorem is a statement about the equations of motion
(but not just about the action) and therefore directly excludes such
a possibility. Indeed, it was soon realized that taking the limit of
Gauss-Bonnet term from higher dimension to 4 dimension is
path-dependent which should be regularized properly and, as a
consequence, additional d.o.f. appears in the regularized 4D
Einstein-Gauss-Bonnet theories (see Ref. [44] for reviews).
Alternatively, by breaking the 4D diffeomorphism invariance
down to the 3D spatial diffeomorphism invariance, one can
construct a consistent 4D Einstein-Gauss-Bonnet theory with
TTDOF [45–47]. We will briefly introduce this theory in
Appendix B 3.
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associated with temporal diffeomorphism is split into a pair
of second-class constraints, which allow the theory to
couple with the Lorentz covariant matter consistently.
Another proposal for addressing the same problem is
adopted in [67,73,74], where the additional first-class
constraint is maintained by modifying the Hamiltonian
constraint of the matter sector such that the constraints
algebra is kept closed. However, as a price, matter no longer
behaves in the usual Lorentz covariant manner.
Inspired by the above works, a more straightforward

approach to constructing the MMG theories was proposed
in [75], where the so-called (scalar-type) auxiliary constraint
(AC) is introduced to a general total Hamiltonian respecting
the spatial diffeomorphism with a nondynamical lapse
function. The Hamiltonian carries two tensorial and one
scalar d.o.f. at the beginning. The AC is used to constrain
the trajectories of canonical variables such that the
unwanted scalar d.o.f. is suppressed. It is therefore intro-
duced to assist in locating the MMG theories in the space of
theories and is eventually part of the definition of the theory.
This AC can be also considered as the generalization of the
gauge-fixing condition that addresses the matter-coupling
problem mentioned above. Nevertheless, the phase space
constrained by the AC is still insufficient to ensure a MMG
theory because the AC is introduced via a generic function
of the canonical variables. Generally, additional TTDOF
conditions are still needed, which are renamed as the
“minimalizing conditions” in [75], to underline that they
are the conditions that “minimalize” the space of more
general theories into the MMG theory space. Even though
the AC is initially introduced by hand, we emphasize that it
is actually nothing but one possible kind of constraint
structure for the MMG theories and just part of the
definition of the theory. In principle there could be more
than one AC, which can be thought of as yet unrevealed
territory among the constraint structures of the MMG
theories.
In this work, we are going to complete the constraint

analysis for the MMG theories with multiple ACs. In
principle, not only the scalar-type but also the vector-
and the tensor-type ACs might possibly appear. Hence
we will first investigate the possibilities of minimizing the
number of d.o.f. by introducing an arbitrary number of any
of the above types of ACs to a general total Hamiltonian,
which still preserves spatial diffeomorphism invariance.
Throughout, it is also important to limit the number of
ACs, otherwise the system will be overconstrained thus
become physically inconsistent. In order to determine the
maximum number of each type of ACs, we will first assume
that they are all classified as second-class then count the
number of d.o.f. with respect to an arbitrary background via
the Hamiltonian analysis. By requiring that the number of
each type of d.o.f. be non-negative, we will find limits on
the number of each type of ACs. In fact, as wewill see in the
next section, the number of scalar-type ACs should not

exceed four and no vector- and tensor-type ACs are allowed,
because the phase space in the vector sector is already
sufficiently constrained by the spatial diffeomorphism
constraints, while the tensor sector should not be con-
strained in order to have the correct number of d.o.f.
Following this, we will construct a consistent SC

framework with multiple (scalar-type) ACs as our starting
point for searching the MMG theories. According to the
number of introduced ACs, we will divide the theories into
four cases and for the purpose of obtaining the MMG
theories, the scalar d.o.f. should be completely eliminated
by the primary and secondary constraints, which will divide
the ACs into different classifications for each case. To
further contrive the classification, the ACs and the canoni-
cal Hamiltonian should satisfy not only the corresponding
minimalizing conditions mentioned above but also sym-
metrizing conditions which are the sufficient but not
necessary conditions to end up with a MMG theory and
are required to enhance the gauge symmetries of the theory.
As a results, we will exhaust all the possible constraint
structures for the MMG theories with multiple ACs, thus
leading to a complete classification.
To illustrate this formalism, we will construct a concrete

model with four ACs by using the Cayley-Hamilton
theorem. This theory can couple with matter consistently
without further conditions. We will investigate the
dispersion relation of tensor perturbations around a flat
FLRW background, and show how some coefficients of the
theory can be constrained by the observations.
The rest of the current paper is organized as follows. In

Sec. II, we investigate the possibilities of reducing the
number of d.o.f. by introducing different types of ACs and
determine a consistent general framework with multiple
ACs as our starting point for searching the MMG theories.
In Sec. III, we find the minimalizing and symmetrizing
conditions for each class of MMG theories, each of which
is described in Secs. III A–III D. As an illustrative example,
we construct a concrete model with four ACs and study the
modified dispersion relation of the GWs by performing a
tensor perturbation in Sec. IV. Finally, we conclude this
work in Sec. V.

II. A CONSISTENT FRAMEWORK
WITH AUXILIARY CONSTRAINTS

In this section, we will investigate the possibilities of
reducing the number of d.o.f. by introducing multiple
primary ACs and construct a consistent framework as
our starting point for searching for the MMG theories. We
will adopt the Arnowitt-Deser-Misner (ADM) formalism
in which the lapse function, shift vector, induced
metric and their conjugate momenta are denoted by
fN;Ni; hij; π; πi; πijg respectively and ∇i is the spatially
covariant derivative compatible with hij. Without loss of
generality, we start with the following general total
Hamiltonian
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HT ¼
Z

d3x½HðN; π; hij; πij;∇iÞ þ NiHi

þ λiπi þ μnSn þ νimVm
i þ ρijr T r

ij�; ð1Þ

where H is a generic function of ðN; π; hij; πij;∇iÞ which,
with the second term, corresponds the usual canonical
Hamiltonian and Ni, λi, μn, νim and ρijr play the role of the
Lagrange multipliers corresponding to the following
constraints,

Hi ≈ 0i; πi ≈ 0i; ð2Þ

which are associated with the spatial diffeomorphism with
Hi the momentum constraints, and

Sn ≈ 0n; Vm
i ≈ 0mi ; T r

ij ≈ 0rij; ð3Þ

which denote the introduced scalar-, vector- and (sym-
metric rank-2) tensor-type ACs with n, m and r the
corresponding indices, respectively. Here, scalar-, vector-
and tensor-types refer to the transformation properties
under the spatial diffeomorphism generated by Hi.

2

Throughout this work, “≈” represents “weak equality”
that holds only on the constrained subspace ΓC of the
phase space.
The terminology “primary constraint” is usually referred

to constraints due to a singular Lagrangian, from which we
cannot solve all the conjugate momenta. In particular, in
the case of GR or general SC theories, in (2) πi ≈ 0i are the
primary constraints due to the absence of the velocity of
the shift vector Ni in the Lagrangian, whileHi ≈ 0i are the
so-called secondary constraints, which arise after making
use of the equations of motion. In this work, since we start
from the Hamiltonian in the phase space from the begin-
ning, a “primary constraint” is merely referred to a
constraint that is introduced by hand when defining the
total Hamiltonian. In this sense, both πi ≈ 0i and Hi ≈ 0i,
as well as constraints in (3), are treated as primary
constraints in this work.
We now make some comments on the above introduced

constraints. First, as explained in Sec. I, in light of the
restriction by the Lovelock’s theorem, in order to enlarge
the space of theories such that there is space for searching

for the MMG theories, we reduce the symmetries of the
theory from the general covariance to the spatial covari-
ance. This requires that the spatial diffeomorphism con-
straints (2) must be present in the total Hamiltonian (1). For
convenience, we will adopt the extended definition for the
momentum constraints [58,63,76,77]

Hi ≡ −2
ffiffiffi
h

p ∇j
πjiffiffiffi
h

p þ π∇iN

þ πj∇iNj þ
ffiffiffi
h

p ∇j
πiNjffiffiffi

h
p ≈ 0i; ð4Þ

which satisfy the following property [63]

½Hiðx⃗Þ; Qðy⃗Þ� ≈ 0i; ∀ Q ≈ 0; ð5Þ

with Q an arbitrary quantity weakly vanishing on the
constrained phase space ΓC. The Poisson bracket ½·; ·� is
defined by

½F ;G�≡
Z

d3z
X
I

�
δF

δΦIðz⃗Þ
δG

δΠIðz⃗Þ

−
δF

δΠIðz⃗Þ
δG

δΦIðz⃗Þ
�
; ð6Þ

where we formally denote the ADM variables with ΦI and
their conjugate momenta with ΠI . By using the property
in (5), it is easy to show that the constraints in (2), i.e. the
spatial diffeomorphism generators, are explicitly classified
as the first-class in terms of Dirac’s terminology. They
eliminate 12 dimensions from the (in total) 20-dimensional
phase space, leaving us with 8 dimensions at each point of
the spacetime, i.e. four local d.o.f.
Second, for the purpose of obtaining the MMG theories,

one or several additional constraints are needed in order to
reduce the number of d.o.f. from four to two. In this work,
we perform this by introducing multiple ACs (3) to the total
Hamiltonian (1) as part of the primary constraints of the
theory. Our previous work [75], in which we introduced
only one scalar-type AC with the assumption of a non-
dynamical lapse function, can be considered a preliminary
work in that regard. In principle, there could be more than
one AC appearing in the Hamiltonian, including a priori all
types of constraints, i.e. scalar Sn, vector Vm

i and tensor T r
ij,

which are generic functions of ðN; π; hij; πij;∇iÞ with the
indices n, m and r labeling the number of each type of AC
respectively. Note that it is fair to assume that the ACs are
linearly independent from each other in order to avoid
unnecessary complexity. Obviously, there must be an upper
limit of the number of ACs, otherwise the system will
become overconstrained and inconsistent physically even
without coupling to any external fields. The maximum
number of each type of ACs can be obtained in a scenario

2By using the spatial metric hij, its inverse hij and the spatial
covariant derivative∇i, one could decompose a spatial vector into
the transverse and longitudinal parts, a spatial (symmetric rank-2)
tensor into the transverse-traceless, traceless-longitudinal and
trace parts, as far as the inverse of the Laplace operator is unique
on the spatial manifold. In particular, the decomposition of a
spatial (symmetric rank-2) tensor into the traceless and trace parts
does not introduce any nonlocality and thus is easy to adopt.
Nonetheless, we shall not employ such decompositions since the
main conclusion of the present paper does not change. Hereafter,
we thus simply classify ACs under the transformation properties
under the spatial diffeomorphism.
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where all of the ACs (3) are assumed to be of the second-
class. In this case, we count the number of d.o.f. as

#dof ¼
1

2
ð#var × 2 − #1st × 2 − #2ndÞ

¼ 1

2
½ð4s þ 4v þ 2tÞ × 2 − ð1s þ 2vÞ × 2 × 2

− 1s ×N − ð1s þ 2vÞ ×M − ð2s þ 2v þ 2tÞ ×R�
¼ ð2t −RtÞ − ðMv þRvÞ

þ 1

2
ð4s −N s −Ms − 2 ×RsÞ; ð7Þ

where N , M, R are the numbers of constraints in each
type, and we use the subscripts s, v and t to denote the
scalar, vector and tensor d.o.f. respectively. The classi-
fication of d.o.f. into various types are to be understood in
the sense of spatial diffeomorphism with respect to an
arbitrary background. Since the phase space is spanned by
N, Ni, hij and their conjugate momenta, N will contribute
one scalar d.o.f., i.e. 1s in (7), Ni will contribute one scalar
and two vectorial d.o.f. accounting for 1s þ 2v and hij will
contribute two scalar, two vectorial and two tensorial
d.o.f., accounting for 2s þ 2v þ 2t. Together with their
conjugate momenta, the dimension of the phase space
is therefore ð4s þ 4v þ 2tÞ × 2. The number of d.o.f.
removed by the ACs (3) are counted in the similar
way in (7). Note that the tensor-type ACs, T r

ij ≈ 0rij, are
symmetric with respect to the subscripts therefore
T r

ij ≈ 0rij account for −ð2s þ 2v þ 2tÞ ×R in (7). The
number of d.o.f. in each type should not be negative in
the absence of external fields otherwise the theory is
physically inconsistent. Therefore, from the last line of
(7), we require

2 −R ≥ 0; MþR ≤ 0; ð8Þ

and

4 −N −M − 2R ≥ 0; ð9Þ

which gives

R ¼ 0; M ¼ 0; N ≤ 4: ð10Þ

We conclude that none of the tensor- and vector-type ACs
are allowed, and no more than four scalar-type ACs should
be introduced. In the case with four (necessarily second-
class) independent scalar-type ACs, from (7) we see that (1)
turns out to be an MMG theory automatically, i.e. without
requiring any further condition. In the next section, we will
confirm this result again, via a more detailed Hamiltonian
analysis accounting for all the possible classifications of
the ACs.

Before getting into the next section, we justify the
introduction of (scalar-type) ACs as follows. Even though
the ACs are introduced by hand in this work, we emphasize
that they are nothing but part of the definition of the MMG
theories. In other words, it is not possible to construct an
MMG theory without introducing ACs because without any
ACs, the number of d.o.f. in the theory (1) is four. Therefore
additional constraints are necessary to reduce the number of
d.o.f. One may consider the possibility that extra constraint
may come from the particular choice of the free function
HðN; π; hij; πij;∇iÞ in (1), for example by requiring that
the lapse N plays the role of a Lagrange multiplier.
However, this also yields the constraint of π ≈ 0, which
is actually a typical choice of the scalar-type AC and has
been adopted in the previous related works [59–61,68,75]
based on the assumption of a nondynamical lapse. In GR,
π ≈ 0 is one of the constraints naturally required by the
4-dimensional spacetime diffeomorphism. In the more
general framework with only spatial covariance, the lapse
function could be dynamical in principle [63,64,78], there-
fore the conjugate momentum π does not correspond to a
constraint in general. From the viewpoint of the formalism
presented here, the constraint π ≈ 0 is noting but a specific
scalar-type AC, which generates the constraint originally
imposed onH. Another example of the AC in the literature
is the gauge fixing term introduced in [70–72]. By fixing
the gauge condition, which by itself is of the second class,
the first-class constraint becomes a second class constraint.
As a result, the theory is able to couple with matter
consistently [67,73,74] (see also [79–81]).
Based on the above discussions, we construct a con-

sistent framework for searching for the MMG theories in
the vacuum by introducing the ACs as follows:

HT ¼
Z

d3xðHþ μnSn þ NiHi þ λiπiÞ; ð11Þ

where H and Sn with n ¼ 1;…;N ðN ≤ 4Þ are generic
functions of ðN; π; hij; πij;∇iÞ. Before we start to search for
the MMG theories based on (11), it is convenient to split the
total Hamiltonian (11) into two parts

HT ¼ HD þHP; ð12Þ

where HD denotes the part of the Hamiltonian correspond-
ing to the spatial diffeomorphism

HD ≡
Z

d3xðNiHi þ λiπiÞ; ð13Þ

and the rest in (11) is denoted by

HP ≡
Z

d3xðHþ μnSnÞ; ð14Þ
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which we dub the “partial” Hamiltonian [75]. Clearly, HD
is fixed in all the SC gravity theories, and thusHP plays the
central role in the following discussions, which has nothing
to do with Ni and πi. Indeed, we are allowed to deduct the
fNi; πig-sector from the system in the first place since the
spatial diffeomorphism constraints (2) are retained and
considered as the first-class. Therefore, the specificities of
the theory such as the number of d.o.f. will be completely
encoded in HP with an 20 − 6 × 2 ¼ 8 dimensional phase
space. One can however restore the neglected part HD
without any difficulty in the following discussions. With
the partial Hamiltonian HP (14), the number of d.o.f. of the
theory is formally counted as

#dof ¼
1

2
½ð2t þ 2sÞ × 2 − #s1st × 2 − #s2nd�

¼ 2t þ
1

2
ð4s − #s1st × 2 − #s2ndÞ; ð15Þ

where #s1st and #s2nd are the numbers of the first- and the
second-class constraints, which include the primary ACs
and the possible secondary constraints generated from the
ACs. Clearly, #s1st and #s2nd should satisfy

N ≤ #s1st þ #s2nd ≤ 4; ð16Þ

and

4 − #s1st × 2 − #s2nd ¼ 0; ð17Þ

since, for the sake of having an MMG theory, the scalar
d.o.f. should be completely eliminated. Combining (16)
with (17), we are able to exhaust all the possible constraint
structures for the MMG theories case by case, which we
will do in the next section.
To conclude this section, by performing a Legendre

transformation of the Hamiltonian (11), we get the corre-
sponding formal form of the action as follows

S ¼
Z

dtd3x½NðπF þ 2πijKijÞ −H − μnSn�; ð18Þ

in which π and πij should be understood as the solutions of
the following canonical equations

NF ¼ δHP

δπ
and 2NKij ¼

δHP

δπij
: ð19Þ

Here, HP is the partial Hamiltonian defined in (14) and we
denote

F≡ 1

N
ð _N −Ni∇iNÞ; Kij ≡ 1

2N
ð _hij − 2∇ðiNjÞÞ; ð20Þ

which play the roles of velocities of the lapse and spatial
metric in the action and the latter is nothing but the extrinsic

curvature. Here and throughout the paper, the overdot “.”
denotes a time derivative. The Lagrange multipliers μn in
(18) are determined as follows. According to the classifi-
cation of the ACs, the corresponding μn will be fixed by the
consistency conditions of the ACs or kept as some general
functions. From (18) with (19), we see that the ACs not only
appear in the action directly but also become part of the
canonical equations, hence will influence how the velocities
enter the action. Once we solve for the momenta π and πij as
functions of F and Kij and substitute them into (18), in
principle, we will find the action corresponding to the
Hamiltonian (11).

III. MINIMALLY MODIFIED GRAVITY WITH
AUXILIARY CONSTRAINT(S)

In this section, we are going to classify the ACs and their
secondary constraints by solving Eqs. (17) with (16), and
then find out the corresponding conditions needed in order
to fully satisfy the classifications so that we are able to
exhaust all the possible constraint structures for the MMG
theories. As mentioned in the last section, one requires no
condition in the case with four second-class (scalar-type)
ACs, so we start the discussion from the case with four
ACs, with more details than the previous section.

A. Case with four auxiliary constraints

Let us start with the case with four ACs, i.e.

HP ≡
Z

d3xðHþ μnSnÞ with n ¼ 1; 2; 3; 4: ð21Þ

By solving Eq. (16) with (17), we find the unique class

#s1st ¼ 0; #s2nd ¼ 4; ðID key∶ IV-0-4Þ ð22Þ

which implies that the four ACs, Sn ≈ 0, must be all of the
second-class for the sake of having an MMG theory. (For
convenience, we will give each type of classification an
identification key. We label this case IV-0-4.) This is also
consistent with the discussions in the last section. As a
consequence, there are two important properties to be
stressed for this case.
First, as an MMG theory, H and Sn in (21) can be

arbitrarily chosen as the independent functions of
ðN; π; hij; πij;∇iÞ, since no condition is required to (21).
In the cases with less number of ACs, however, this is not
true in general, some conditions onH and Sn are needed to
obtain the MMG theories. This complexity is fortunately
evaded in this case because we have introduced a sufficient
number of additional constraints.
Second, the MMG theory (21) with (13) can be coupled

with matter consistently. A common problem for the
MMG theories that include the first-class constraint(s)
[in addition to the spatial diffeomorphism constraints (2)]
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is how to couple with matter consistently. Naive coupling
with matter may change the constraint structure of the
theory and thus make the additional first-class constraint(s)
become the second-class, thus reintroduce the scalar
mode(s) suppressed before. Some strategies for dealing
with this problem have been adopted, for example
in [67,70,71,73,74], by making the gauge symmetries of
the gravity- and matter-sector match each other. Owing to
the absence of additional first-class constraint in (21), the
gauge symmetry of this theory, (21) with (13), is exactly
the spatial diffeomorphism. Thus the coupling problem is
automatically solved as long as the matter field preserves
the spatial covariance as well. For instance, the total
Hamiltonian consistently coupled with a scalar field ϕ with
its conjugate momentum p can be written as

HT ≡
Z

d3xðĤþ μnSn þ NiĤi þ λiπiÞ ð23Þ

where the momentum constraints are extended to

Ĥi ≡Hi þ p∇iϕ ≈ 0i; ð24Þ

with Hi defined in (4) and the matter coupled with gravity
through the following generic function

Ĥ ¼ ĤðN; π; hij; πij;ϕ; p;∇iÞ: ð25Þ

Note that, at the classical level, the Lorentz covariance of the
scalar matter could be enhanced by particular choices of the
generic function Ĥ although, at the quantum level, it may be
violated via the loops induced effect from the Lorentz-
violating gravitons [79].
To conclude, we show that (21) is a partial Hamiltonian

of an MMG theory without requiring any condition. It can
be used to couple with the matter consistently therefore (23)
provides an extensive yet simple framework for investigat-
ing the cosmological properties of the MMG theories. As
an illustrating example, we will construct a concrete model
(by making some choices for the free functions) in Sec. IV.

B. Case with three auxiliary constraints

In the case of three ACs,

HP ≡
Z

d3xðHþ μnSnÞ with n ¼ 1; 2; 3; ð26Þ

there are two possible classifications according to Eq. (16)
with (17)

#s1st ¼ 1; #s2nd ¼ 2; ðID key∶ III-1-2Þ ð27Þ

or

#s1st ¼ 0; #s2nd ¼ 4: ðID key∶ III-0-4Þ ð28Þ

The first case (34), i.e. of type III-1-2, means that one of the
ACs in (26) is first-class and the other two are second-class.
The existence of a first-class constraint implies that the
“partial” Dirac matrix

½Snðx⃗Þ;Sn0 ðy⃗Þ�; ð29Þ

is degenerate in one dimension and the corresponding
linear combination of fSng has vanishing Poisson bracket
with H, which will yield some conditions on the generic
functions H and Sn. Hence, different from the case with
four ACs, these functions cannot be arbitrarily chosen
anymore.
As a simple case in which the matrix (29) is degenerate

in one dimension, let us suppose

½S1ðx⃗Þ;Snðy⃗Þ� ≈ 0n: ð30Þ

We are always able to make linear combinations among the
ACs and redefine the Lagrange multipliers. So, without loss
of generality, we will continue the discussion with the
pattern in (30) for its simplicity. The pattern (30) actually
defines the conditions to be imposed on the ACs in order to
have an MMG theory. We dub this kind of conditions the
“minimalizing conditions” [75], since this kind of condition
helps to narrow the space of theories down to the MMG
subspace. In other words, the scalar d.o.f. are completely
eliminated by introducing the ACs satisfying the minimal-
izing conditions. Once the minimalizing conditions (30) are
satisfied, we should check the consistency condition of
S1 ≈ 0, which is

_S1ðx⃗Þ ¼ ½S1ðx⃗Þ; HP� ¼
Z

d3y½S1ðx⃗Þ;Hðy⃗Þ� ≈ 0: ð31Þ

According to the classification (27), there should be no
secondary constraint generated from (31), which implies that

½S1ðx⃗Þ;Hðy⃗Þ� ≈ 0; ð32Þ

must be satisfied. This is however not a necessary condition
for obtaining an MMG theory. In fact, if Eq. (32) is not
satisfied, then a secondary constraint is generated in (31)
and the system is classified into the class (28), i.e. of type
III-0-4. So no matter whether the condition (32) is satisfied
or not, we will always have an MMG theory as long as the
minimalizing condition (30) is satisfied. The condition (32)
is just used to enhance the gauge symmetry of the theory
without altering the number of d.o.f. We therefore dub this
kind of condition the “symmetrizing condition.”
We conclude that the partial Hamiltonian (26) describes

an MMG theory as long as the minimalizing condition (30)
is satisfied and the symmetries of the theory will be
enhanced when the symmetrizing condition (32) is satisfied.
In this case, the enhanced gauge symmetry helps to suppress
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the unwanted scalar d.o.f., which is exactly what happens in
GR where the would-be scalar d.o.f. is completely sup-
pressed by the spacetime diffeomorphism. One may ask
what kind of gauge symmetry will be enhanced by adopting
the symmetrizing conditions [e.g. (32)] beyond the spatial
diffeomorphism. Some interesting opinions have been
discussed in [74,82]. A detailed analysis is however beyond
the scope of the current work.

C. Case with two auxiliary constraints

In the case with two scalar-type ACs, i.e.

HP ≡
Z

d3xðHþ μnSnÞ with n ¼ 1; 2; ð33Þ

we find the possible classes from Eqs. (16) with (17) as
follows

#s1st ¼ 2; #s2nd ¼ 0; ðID key∶ II-2-0Þ ð34Þ

#s1st ¼ 1; #s2nd ¼ 2; ðID key∶ II-1-2Þ ð35Þ

and

#s1st ¼ 0; #s2nd ¼ 4: ðID key∶ II-0-4Þ ð36Þ

Let us explain the implications of these three classes one
by one:
(1) Obviously, the first class (34), i.e. type II-2-0, covers

the case in which both of the ACs are first-class
without generating secondary constraints. By per-
forming a similar analysis as the one conducted in
the last case (27), it is easy to find the following
minimalizing conditions for this class

½S1ðx⃗Þ;Snðy⃗Þ� ≈ 0n; ð37Þ

and

½S2ðx⃗Þ;S2ðy⃗Þ� ≈ 0; ð38Þ

with the symmetrizing conditions as

½Snðx⃗Þ;Hðy⃗Þ� ≈ 0n; ð39Þ

which prevent the secondary constraints from being
generated.

(2) Similarly, the second class (35), i.e. of type II-1-2,
implies that there is one secondary constraint gen-
erated from the two primary constraints and one of
these three constraints is first-class. However, it is
easy to show that the secondary constraint could not
be first-class, because then the corresponding pri-
mary constraint would become first-class simulta-
neously. As a result there would be two first- and one

second-class constraints, which lead to a negative
number of scalar d.o.f. Therefore, without loss of
generality, we set the secondary constraint as being
generated by the time evolution of S1, i.e., _S1 ≈ 0.
According to whether the first-class constraint is
S1 ≈ 0 or S2 ≈ 0, we divide the class (35) into two
parallel patterns:
(a) The first-class constraint is S1 ≈ 0 which yields

the same minimalizing condition as in (37)
but with

½S1ðx⃗Þ; _S1ðy⃗Þ� ≈ 0: ð40Þ

Once (40) is satisfied, generally, the consistency
condition of _S1 ≈ 0 will generate a tertiary
constraint as

S̈1ðx⃗Þ ¼
Z

d3yf½ _S1ðx⃗Þ;Hðy⃗Þ�

þ μ2ðy⃗Þ½ _S1ðx⃗Þ;S2ðy⃗Þ�g ≈ 0; ð41Þ

where the Lagrange multiplier μ2 has been fixed
by the consistency condition of S2 ≈ 0. However
by requiring (35), S̈1 ≈ 0 should be prevented
from being a nontrivial constraint therefore (41) is
forced to be a symmetrizing condition. We label
this case with the identification key II-1-2a to
distinguish it from the next case.

(b) The first-class constraint is S2 ≈ 0, which gives
the same minimalizing conditions (37) and (38).
The symmetrizing conditions (39) should be
replaced by

½S2ðx⃗Þ; _S1ðy⃗Þ� ≈ 0; ð42Þ

and

½S2ðx⃗Þ;Hðy⃗Þ� ≈ 0; ð43Þ

to ensure that S2 ≈ 0 is first-class and generates
no secondary constraint. Correspondingly, this
case is labeled II-1-2b.

(3) The last class (36), i.e. of type II-0-4, can be simply
achieved by giving up the symmetrizing conditions
(41), which leads to two primary, one secondary, and
one tertiary constraints, or (42) with (43), which
leads to two primary and two secondary constraints.
All the resulting constraints are the second-class and
both choices require the same minimalizing condi-
tions (37), with (40) or (38), respectively.

We summarize for this case that we find two kinds of
minimalizing conditions, i.e. (37), with (38) or (40) respec-
tively, for the partial Hamiltonian (33) with two ACs. For
the former, i.e. (37) with (38), one should complement the
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symmetrizing conditions (39), or (42) with (43). In the latter
case, i.e., (37) with (40), one should impose the symmetriz-
ing condition (41). In the previous work, we have studied a
special case of theories in the class (33) in [75] where π ≈ 0
is specifically chosen as one of the ACs and the particular
minimalizing conditions of (37) and (40) for the other AC
were also discovered.

D. Case with one auxiliary constraint

As the last case, we study the theory with only one
AC, i.e.

HP ≡
Z

d3xðHþ μ1S1Þ; ð44Þ

which may develop into the same classification as
in (34)–(36), i.e.

#s1st ¼ 2; #s2nd ¼ 0; ðID key∶ I-2-0Þ ð45Þ

#s1st ¼ 1; #s2nd ¼ 2; ðID key∶ I-1-2Þ ð46Þ

and

#s1st ¼ 0; #s2nd ¼ 4: ðID key∶ I-0-4Þ ð47Þ

It is obvious in this case that the total number of constraints
is equal to the level of the secondary constraints since S1 ≈ 0
is the only primary constraint and the secondary constraints
must be generated from it step by step.
(1) In the first class (45), i.e. of type I-2-0, the primary

constraint S1 ≈ 0 and the secondary constraint _S1 ≈ 0
are both first-class constraints and it is easy to find the
minimalizing conditions as

½S1ðx⃗Þ;S1ðy⃗Þ� ≈ 0; ð48Þ

½S1ðx⃗Þ; _S1ðy⃗Þ� ≈ 0; ð49Þ

and

½ _S1ðx⃗Þ; _S1ðy⃗Þ� ≈ 0; ð50Þ

with the symmetrizing condition

½ _S1ðx⃗Þ;Hðy⃗Þ� ≈ 0; ð51Þ

which prevents further secondary constraints from
being generated.

(2) The second class (46), i.e. of type I-1-2, implies that
only one of the three constraints, i.e., the primary
constraint S1 ≈ 0, the secondary constraint _S1 ≈ 0

and the tertiary constraint S̈1 ≈ 0, is first-class.
Similarly to what happens to the class of (35), in
this case, the tertiary constraint S̈1 ≈ 0 is not allowed

to be first-class. Therefore, according to whether the
first-class is taken by S1 ≈ 0 or by _S1 ≈ 0, we have
the following two scenarios for (46):
(a) If the first-class constraint is S1 ≈ 0, one requires

the same minimalizing conditions (48) and (49)
but with

½S1ðx⃗Þ; S̈1ðy⃗Þ� ≈ 0; ð52Þ

instead of (50). In order to prevent the generation
of a quaternary constraint we should require the
following symmetrizing condition

½S̈1ðx⃗Þ;Hðy⃗Þ� ≈ 0: ð53Þ

We label this case with the identification key
I-1-2a to distinguish it from the next case.

(b) On the other hand, choosing _S1 ≈ 0 as the first-
class constraint leads exactly to the same mini-
malizing conditions as in (48)–(50) but with a
different symmetrizing condition

½ _S1ðx⃗Þ; S̈1ðy⃗Þ� ≈ 0: ð54Þ

This case is labeled with the identification key
I-1-2b correspondingly.

(3) The last class (47), i.e. of type I-0-4, requires that
the primary, secondary, tertiary and quaternary
constraints are all second-class, which yields
the same minimalizing conditions as in case a)
i.e., (48), (49) and (52), without requiring the
symmetrizing condition.

In summary, we find two possible kinds of minimalizing
conditions for the partial Hamiltonian (44) with only one
AC, both of which consist in (48) and (49), with (50)
or (52) respectively. We can choose the symmetrizing
conditions as either (51) or (54) for the former, and (53)
for the latter. We also point out that these two kinds of
minimalizing conditions become equivalent, i.e.

½ _S1ðx⃗Þ; _S1ðy⃗Þ� ¼ ½S1ðx⃗Þ; S̈1ðy⃗Þ� ≈ 0; ð55Þ

when (49) is satisfied strongly

½S1ðx⃗Þ; _S1ðy⃗Þ� ¼ 0: ð56Þ

This is just what happened in [68] where S1 ≈ 0 and H are
respectively specified as π ≈ 0 and

H ¼ V þ NH0; ð57Þ

where V andH0 are two general functions of ðhij; πij;∇iÞ so
that both of the minimalizing conditions (48) and (49) are
automatically satisfied strongly and (55) reduces to
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½H0ðx⃗Þ;H0ðy⃗Þ� ≈ 0: ð58Þ

With all the cases studied above, we have exhausted all of
the possible constraint structures for the MMG theories with
AC(s) and found the corresponding minimalizing and
symmetrizing conditions for each class. For convenience,
we summarize the results of Secs. III A to III D in the table in
Appendix A. In the next section, as an illustrating example
for our formalism, we will show how to construct a concrete
MMG model corresponding to the case with four ACs by
using the generalized Cayley-Hamilton theorem. We also
describe some known MMG theories in Appendix B as
some concrete examples for the different classifications
listed in Table I to better illustrate our formalism.

IV. THE CAYLEY-HAMILTON CONSTRUCTION
WITH MIXED TRACES CONSTRAINTS

According to the discussions in Sec. III A, the total
Hamiltonian with four ACs describes a broad consistent
framework to construct MMG theories, which reads

HT ¼
Z

d3xðHþ μnSn þ NiHi þ λiπiÞ; ð59Þ

where H and Sn ðn ¼ 1; 2; 3; 4Þ are generic functions of
ðN; π; hij; πij;∇iÞ, of which the forms can be taken arbi-
trarily. This theory is able to couple with matter consistently
and in a general manner, for example in (25). In order to
pick out a concrete MMGmodel from this class of theories,
we will choose some restrictions for the generic functionsH
and Sn.
First, for simplicity, we assume that the lapse N is

nondynamical, as being considered in [59–61,68,75],
which means its conjugate momentum π plays the role
of an AC. We take

S4 ¼ π ≈ 0; ð60Þ

therefore the remaining functions H and SI ðI ¼ 1; 2; 3Þ
can be rewritten as generic functions of ðN; hij; πij;∇iÞ on
the constrained hypersurface or by redefinition of μ4.
Next we adopt the same restriction as what was imposed

in [75], i.e. that the spatial derivative∇i appears in the theory
in terms of the Ricci tensor Rij only. Thus we consider the
H and SI to be generic functions of ðN;Rij; πijÞ only. A
motivation for picking this restriction is that according to the
generalized Cayley-Hamilton theorem [83] (see also the
Appendix in [75]),H and SI can then be equivalently recast
into generic functions of the traces ðN;RI;ΠI;QIÞ con-
structed from Rij and πij, in which we denote the traces of
Rij by

RI ≡ fRi
i; R

i
jR

j
i ; R

i
jR

j
kR

k
i g; ð61Þ

the traces of πij by

ΠI ≡ fπii; πijπji ; πijπjkπki g; ð62Þ

and the mixed traces by

QI ≡ fRi
jπ

j
i ; R

i
jπ

j
kπ

k
i ; R

i
jR

j
kπ

k
i g: ð63Þ

In the model constructed in [75], the mixed traces terms (63)
were dropped for simplicity. Instead, in the current work, we
use them to construct ACs by choosing

SI ¼ QI − PIðNÞ ≈ 0; ð64Þ

where PI are generic functions of N. Please keep in mind
that we have complete freedom to determine the form for the

TABLE I. The minimalizing and symmetrizing conditions.

# ACs Minimalizing conditions Symmetrizing conditions Classifications Identification key Examples

#s ¼ 4 None None #s1st ¼ 0, #s2nd ¼ 4 IV-0-4 Mixed traces

#s ¼ 3 ½S1;Sn� ½S1;H� #s1st ¼ 1, #s2nd ¼ 2 III-1-2 Unknown
None #s1st ¼ 0, #s2nd ¼ 4 III-0-4 Unknown

#s ¼ 2 ½S1;Sn� & ½S2;S2� ½S1;H� & ½S2;H� #s1st ¼ 2, #s2nd ¼ 0 II-2-0 Unknown

½S2; _S1� & ½S2;H� #s1st ¼ 1, #s2nd ¼ 2 II-1-2b Unknown
None #s1st ¼ 0, #s2nd ¼ 4 II-0-4b Linear AC

½S1;Sn� & ½S1; _S1� ½ _S1; HP� #s1st ¼ 1, #s2nd ¼ 2 II-1-2a 4dEGB
None #s1st ¼ 0, #s2nd ¼ 4 II-0-4a Unknown

#s ¼ 1 ½S1;S1�, ½S1; _S1� & ½ _S1; _S1� ½ _S1;H� #s1st ¼ 2, #s2nd ¼ 0 I-2-0 GR & fðHÞ
½ _S1; S̈1� #s1st ¼ 1, #s2nd ¼ 2 I-1-2b Unknown

½S1;S1�, ½S1; _S1� & ½S1; S̈1� ½S̈1;H� #s1st ¼ 1, #s2nd ¼ 2 I-1-2a Cuscuton & QEC
None #s1st ¼ 0, #s2nd ¼ 4 I-0-4 Unknown

Note that we simply denote the condition ½·ðx⃗Þ; ·ðy⃗Þ� ≈ 0 by ½·; ·� in the table.

YAO, OLIOSI, GAO, and MUKOHYAMA PHYS. REV. D 107, 104052 (2023)

104052-10



ACs in this theory and each choice may define a different
MMG theory. As a result, if we put together the above
choices, we have picked a concrete MMG model from the
class of theories (59) as

HðC:H:Þ
T ¼

Z
d3x½HðC:H:Þ þ NiHi

þ λiπi þ λπ þ μIðQI − PIÞ�; ð65Þ

where the fourth Lagrange multiplier is written as μ4 ≡ λ
and HðC:H:Þ is a free function of ðN;RI;ΠIÞ on the con-
strained hypersurface for this MMG model (65). We will
dub this model the Cayley-Hamilton construction with
mixed traces constraints.

A. The dispersion relation

In order to investigate the properties of the model (65) in
a cosmological setting, we will derive the dispersion
relation of gravitational waves as tensor perturbations on
a cosmological background within this model. First,
according to (18) and (19), we can easily obtain the
corresponding action of the Hamiltonian (65) as follows

SðC:H:Þ ¼
Z

dtd3x½2NKijπ
ij−HðC:H:Þ −μIðQI−PIÞ�; ð66Þ

where πij should be understood as the solution of

2NKij ¼
∂HðC:H:Þ

∂πij
þ μI

∂QI

∂πij
; ð67Þ

and will rely on the concrete choice of HðC:H:Þ. The
Lagrange multipliers μI have been fixed by the consistency
condition of π ≈ 0 as

μI ¼
�
∂PI

∂N

�−1 ∂HðC:H:Þ

∂N
: ð68Þ

The tensor perturbations of the action (66) are defined
around a flat Friedmann-Lemaître-Robertson-Walker
(FLRW) background with

μI ¼ μ̄IðtÞ; N ¼ 1; Ni ¼ 0; hij ¼ aðtÞ2gij; ð69Þ

where (and also throughout the rest of this paper) a bar“ ¯ ”
represents the background values and aðtÞ is the scale
factor of the background FLRW metric

ds2 ¼ −dt2 þ aðtÞ2δijdxidxj: ð70Þ

We expand

gij ≡ δij þ γij þ
1

2!
γikγ

k
j þ

1

3!
γikγ

k
lγ

l
j þ � � � ; ð71Þ

with the tensor perturbation γij satisfying the transverse and
traceless conditions

∂iγ
i
j ¼ 0; γii ¼ 0: ð72Þ

Note that we have turned off the scalar- and vector-type
perturbations and in this subsection, spatial indices are
raised and lowered by δij and δij.
For generality, we keep HðC:H:Þ as a general function.

However this also means that we are only able to solve (67)
order by order for πij. By substituting this solution back
into the action (66), we can nonetheless find the following
quadratic action

SðC:H:Þ2 ¼
Z

dtd3x
1

4

�
G0ðtÞ_γij _γij þW0ðtÞγij

Δ
a2

γij

−W2ðtÞγij
Δ2

a4
γij

�
; ð73Þ

where

G0ðtÞ≡
��

∂H̄
∂Π2

�
2

− 3
∂H̄
∂Π3

�
∂H̄
∂Π1

− 2H

��−1=2
; ð74Þ

W0ðtÞ≡ −
∂H̄
∂R1

þϖ0ðtÞ; ð75Þ

and

W2ðtÞ≡ ∂H̄
∂R2

þϖ2ðtÞ; ð76Þ

with

ϖ0ðtÞ≡ −
1

2
G0

_̄μ1 þ
�
3
∂H̄
∂Π3

�−1�
G0

∂H̄
∂Π2

− 1

�
_̄μ2

þ
��

3
∂H̄
∂Π3

�−1�
∂H̄
∂Π2

− G−1
0

�
−

_G0

2
þ G0H

�
μ̄1

þ
�
3
∂H̄
∂Π3

G0

�−2�
−1þ G0

�
3G0

�
G0

∂H̄
∂Π3

∂
_̄H

∂Π2

þ ∂
_̄H

∂Π3
þ 2

∂H̄
∂Π3

H

�
þ ∂H̄
∂Π2

�
2 − 3G0

�
G0

∂
_̄H

∂Π3

−
∂H̄
∂Π3

_G0 þ 2
∂H̄
∂Π3

G0H

��
−

∂H̄
∂Π2

2

G0

��
μ̄2; ð77Þ

and

ϖ2ðtÞ≡
�
6
∂H̄
∂Π3

�−2�
12

∂H̄
∂Π3

�
G−1
0 −

∂H̄
∂Π2

�
μ̄3

− G0

�
3
∂H̄
∂Π3

μ̄1 þ 2

�
G−1
0 −

∂H̄
∂Π2

�
μ̄2

�
2
�
: ð78Þ
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Here, HðC:H:Þ is simply denoted by H for short and H ≡
_a=a is the Hubble parameter. Note that the background
values of the Lagrange multipliers μ̄I in (77) and (78) have
been fixed by (68).
In order to prevent tensor perturbations from being

ghosts, i.e. from acquiring a negative kinetic term, only
the positive branch of G0ðtÞ is taken in (74) which holds for
∂H̄
∂Π2 > 0. The dispersion relation can be immediately read
from (73) as [84]

ω2
T ¼ W0ðτÞ

G0ðτÞ
k2

a2
þW2ðτÞ

G0ðτÞ
k4

a4

¼ k2

a2
G−1
0

�
ϖ0 −

∂H̄
∂R1

þ
�
ϖ2 þ

∂H̄
∂R2

�
k2

a2

�
: ð79Þ

On large scales, the speed of gravitational waves cT ¼
ωT=k ¼ 1 when

∂H̄
∂R1

¼ ϖ0 − G0: ð80Þ

According to the observation of the speed of gravitational
waves [11,13] and the modified dispersion relation [12], we
should impose the following constraints to (79):

−3 × 10−15 <
W0

G0

− 1 < 7 × 10−16; ð81Þ

and

����W2

G0

���� < 10−19 peV−2; ð82Þ

where 1 peV ≃ h × 250 Hz with h the Planck constant.

V. CONCLUSIONS

In this work, we have searched for all the possible
Hamiltonian structures for minimally modified gravity
(MMG) theories with multiple auxiliary constraints (ACs)
in the phase space. To do this, we have first investigated the
possibilities of reducing the number of degree(s) of freedom
(d.o.f.) by introducing ACs to the total Hamiltonian (1)
while respecting spatial diffeomorphism. An arbitrary
number of scalar-, vector- and tensor-type ACs have been
considered a priori, and in order to extract the maximum
number for each type of ACs, they were first assumed to be
linearly independent second-class constraints following
Dirac’s terminology. By counting the number of each type
of d.o.f. with respect to an arbitrary background in (7), and
requiring that this number be non-negative, we have found
that no vector- and no tensor-type should be introduced, and
that there should be no more than four scalar-type of ACs in

the absence of external fields.3 In fact, the vectorial d.o.f.
have been completely eliminated by the spatial diffeomor-
phism constraints (2) and the existence of vector- or tensor-
type ACs would lead to a negative result, which is physically
inconsistent in the vacuum. Hence, on the premise of
retaining spatial covariance, we have determined a consistent
framework (11) with no more than four (scalar-type) ACs,
Sn ≈ 0n [n ¼ 1;…;N ðN ≤ 4Þ], as our starting point for
searching for MMG theories which propagate only two
tensorial d.o.f. By this request, the residual scalar d.o.f.
should all be completely suppressed by the ACs and the
possible secondary constraints being generated from the
consistency conditions of the ACs. According to the number
of introduced primary ACs, we have exhausted all possible
classes of primary and secondary constraints and have found
out the corresponding conditions for their consistency.
In Sec. III Awith four ACs (21), we have confirmed that

all of the ACs must be classified as second-class, and that
one requires no extra condition to obtain a MMG theory.
Therefore, (21) together with (13) provide an extensive
framework for us to investigate several MMG theories with
four ACs Sn ≈ 0n, thus leaving in addition to the free
function H, four other arbitrary choices of independent
functions of ðN; π; hij; πij;∇iÞ, i.e. a lot of freedom in terms
of model building. More importantly, this type of structure
can be used to couple with matter consistently in a very
general manner in (25). In Sec. IV, as an illustrating example
of this type of structure, we have constructed a practical
MMG model by starting from (59). For simplicity, we have
restricted ourselves to the special case of a nondynamical
lapse which yields π ≈ 0 as one of the four ACs. We have
further chosen that the spatial derivative ∇i should only
appear in the theory in the form of the Ricci tensor Rij and,
according to the generalized Cayley-Hamilton theorem, we
were therefore able to recastH and SI into generic functions
of ðN;RI;ΠI;QIÞ. By choosing the mixed traces QI as the
remaining ACs (64), we were able to pick out an interesting
MMG model (65) which we dub the Cayley-Hamilton
construction with mixed traces constraints. In order to
investigate the properties of this model in the cosmological
setting, we have studied the tensor perturbations of the
corresponding action (66) on an FLRW background up to
the quadratic order and thereby have derived the modified
dispersion relation (79) for the gravitational waves (GW)
from which we have found that the speed of GW is unity
on large scales when (80) is satisfied. Besides, in order
to prevent the tensor perturbations from being ghosts, the
free function HðC:H:ÞðN;RI;ΠIÞ in the model must satisfy
∂H̄
∂Π2 > 0 and the constraints (81) and (82) from observations.

3This conclusion holds as far as we seek theories with only two
tensorial d.o.f., even if we allow the traceless or transverse-
traceless parts of tensor-type ACs (or the transverse parts of
vector-type ACs) to be imposed separately.

YAO, OLIOSI, GAO, and MUKOHYAMA PHYS. REV. D 107, 104052 (2023)

104052-12



In Secs. III B to III D, we have determined all possible
classes of primary and secondary constraints for the MMG
theories with three, two and one AC(s) respectively.
Different from the case with four ACs, in these cases with
less AC(s), minimalizing conditions are required. These
are the sufficient conditions to suppress the scalar d.o.f.
completely, e.g., (30) for the case with three ACs. In
particular, with a nondynamical lapse, the specific mini-
malizing conditions, (37) with (38) or (40), for the case with
two ACs had already been discovered in [75]; similarly, the
minimalizing conditions (48) and (49) with (50) or (52) had
already been discovered [68] respectively. On the other
hand, with fewer ACs, there is room for the appearance of
extra gauge symmetries other than the spatial diffeomor-
phism retained from the beginning of the construction. In
order to allow for the extra gauge symmetries, so-called
symmetrizing conditions have been imposed, e.g. (32) for
the case with three ACs. The symmetrizing conditions of
course help to suppress the scalar d.o.f., however, they are
neither necessary nor sufficient conditions for obtaining a
MMG theory because we are always able to fix the gauge
symmetries by simply giving up these symmetrizing con-
ditions. Nevertheless they are important for investigating the
gauge symmetries of MMG theories [74,82] and it would
be interesting to clarify these properties in a future work.
We have summarized the minimalizing and symmetrizing
conditions for each class in Table I. With this, we have
exhausted all the possible constraint structures of the MMG
theories with multiple ACs. To better illustrate our formal-
ism, we have collected some MMG theories in Appendix B
as concrete examples for some of the classifications listed in
Table I.
We finish this paper with the following comments. First,

as mentioned previously, we should clarify the possible
gauge symmetries for the MMG theories and examine the
possible deviations from the spacetime diffeomorphism.
Second, we have not constructed a concrete model for the
case with three ACs which is also an interesting case of
MMG theory and should be studied in the future. Third,
the cosmological behavior and evolution with matter of the
Cayley-Hamilton construction with mixed traces con-
straints (65) should be investigated and tested against the
observations. It would also be interesting to see whether it
can be used to address current issues within cosmology, e.g.
the Hubble tension or the dark energy [85,86]. And more
importantly, we should find the features of this theory with
respect to GWs and see whether it can be practically
distinguished from GR. Lastly, we comment on the
symplectic structure modified by the ACs. The effects of
ACs on the symplectic structure are essentially the same as
what usual constraints do. If all the ACs (and induced
secondary constraints) are classified into the second-class,
the induced two-form has a maximum rank and the second-
class ACs can be taken into account by the use of
appropriate Dirac brackets. On the other hand, in the case

with the first-class ACs, the induced two-form is maximally
degenerate and the first-class ACs need to be imposed on
the quantum states. We will come back to these questions in
the near future.
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APPENDIX A: SUMMARY OF THE
MINIMALIZING AND SYMMETRIZING

CONDITIONS

We summarize the minimalizing and symmetrizing
conditions for each class discussed in Sec. III A to III D
in Table I.

APPENDIX B: SOME KNOWN EXAMPLES
OF MMG THEORIES

In this appendix, we collect some known MMG theories
as concrete examples for some of the classifications in
Table I. Especially, the lapse functions of the MMG
theories collected in this appendix are all considered to
be nondynamical that, which in our terminology, implies a
specific AC, i.e. S1 ¼ π ≈ 0, in the Hamiltonian of the
theories.

1. The QEC gravity

A model of SCG theory with TTDOF was proposed in
the [61] whose action is quadratic in the extrinsic curvature
(QEC) and by performing a Legendre transformation we
can obtain the total Hamiltonian of the QEC gravity as

HðQECÞ
T ¼

Z
d3xðVðQECÞ þNHðQECÞ

0 þNiHi þ λiπi þ λπÞ;

ðB1Þ

in which the Hamiltonian constraint of the QEC gravity can
be written as

HðQECÞ
0 ≡ 1

2
ffiffiffi
h

p GðW:D:Þ
ij;kl πijπkl −

ffiffiffi
h

p
½ρ1ðtÞ þ ρ2ðtÞR�; ðB2Þ

with the Wheeler-DeWitt metric [87]

GðW:D:Þ
kl;mn ≡ 2hkðmhnÞl − hklhmn; ðB3Þ

and the part with no lapse is
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VðQECÞ ≡ 1

2
ffiffiffi
h

p VðQECÞ
ij;kl πijπkl −

ffiffiffi
h

p
½ρ3ðtÞ þ ρ4ðtÞR�; ðB4Þ

with

VðQECÞ
kl;mn ≡ 2β2hkðmhnÞl −

1

3
ðβ1 þ 2β2Þhklhmn: ðB5Þ

The coefficients β1, β2 and ρ1 ∼ ρ4 are all general functions
of time.
From the viewpoint of our formalism, given the total

Hamiltonian of QEC gravity (B1), we have

H ¼ VðQECÞ þ NHðQECÞ
0 ; S1 ¼ π ≈ 0; ðB6Þ

and one can check that the minimalizing conditions (48),
(49) and (52) and the symmetrizing condition (53) are
satisfied, therefore the QEC gravity generally belongs to the
I-1-2a type of MMG theory.
A special case of the QEC gravity is the Cuscuton theory,

which corresponds to

VðCusÞ ¼ −
ffiffiffi
h

p
μ2ðtÞ: ðB7Þ

In particular, if we set VðQECÞ ¼ 0, then the symmetrizing
condition (53) is trivially satisfied, which turns the QEC
gravity into the I-2-0 type of MMG theory. Especially, if we
further set the coefficient in front of the Ricci scalar to
unity, i.e. ρ2 ¼ 1, we recover general relativity.

2. The f ðHÞ theory
A more general I-2-0 type MMG theory was proposed

in [67,68] whose total Hamiltonian can be written as

HðfHÞ
T ¼

Z
d3x½NfðHgrÞ þ NiHi þ λiπi þ λπ�; ðB8Þ

where the Hamiltonian constraint H0 is chosen as a
function of the Hamiltonian constraint in GR, i.e.,

HðfHÞ
0 ≡ fðHgrÞ; with Hgr ≡ 1

2
ffiffiffi
h

p GðW:D:Þ
ij;kl πijπkl − R;

ðB9Þ

the free function f being the reason for it to be dubbed the
fðHÞ theory. It is easy to check that the fðHÞ theory (B8)
satisfies the minimalizing conditions (48), (49) and (50)
and the symmetrizing condition (51), which points it to the
I-2-0 type of MMG theory.4

3. The consistent d → 4 EGB gravity

A concrete example with an additional AC other than
π ≈ 0 is the consistent d → 4 Einstein-Gauss-Bonnet
(4dEGB) gravity [79] in which a gauge fixing condition
is introduced in order to cure the inconsistency of the initial
theory [43]. As a result, the total Hamiltonian of the
consistent 4dEGB gravity can be expressed as follows

Hð4dEGBÞ
T ¼

Z
d3xðNHð4dEGBÞ

0 þNiHi þ λiπi þ λπþ μ 3GÞ;

ðB10Þ

and the Hamiltonian constraint is determined by

Hð4dEGBÞ
0 ≡

ffiffiffi
h

p

2κ2

�
2Λ −Mþ α̃

�
4MijMij −

3

2
M2

��
;

ðB11Þ

where κ is the gravitational coupling constant and α̃ is the
Gauss-Bonnet coupling with

Mij ≡ Rij þKk
kKij −KikKk

j : ðB12Þ

The Kij in (B12) should be understood as the solution of

πij ¼
ffiffiffi
h

p

2κ2

�
Ki

j −Kδij −
8

3
α̃δikljrsK

r
k

×

�
Rs
l −

1

4
δslRþ 1

2

�
Ms

l −
1

4
δslM

���
; ðB13Þ

with δikljrs ≡ 3!δ½ir δjsδ
k�
t . The gauge fixing condition 3G is

introduced as a general function of ðhij; πij;∇iÞ and to
match 4dEGB gravity (B10) with our framework, we take

H ¼ NHð4dEGBÞ
0 ; S1 ¼ π ≈ 0; S2 ¼3 G≈ 0: ðB14Þ

One can check that the minimalizing conditions (37)
and (40) as well as the symmetrizing condition (41)
are satisfied, which implies that the consistent 4dEGB
gravity (B10) belongs to the II-1-2a type of MMG theory.
A general framework for the II-1-2a type of MMG theory

was proposed in [75]

HT ¼
Z

d3xðVþNH0þNiHiþ λiπiþ λπþ νφ0Þ; ðB15Þ

where the free function V, the Hamiltonian constraint H0

and the AC φ0 are arbitrary functions of ðhij; πij;∇iÞ.

4As other examples of the I-2-0 type of MMG theories, two
different MMG theories with the square root form of the
Hamiltonians were constructed earlier and dubbed the “intrinsic
time gravity” in [88] and “square root gravity” in [59] respectively.
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4. The Cayley-Hamilton construction with a linear AC

In our previous work [75], we constructed a concrete
MMG theory with a linear AC by applying the generalized
Cayley-Hamilton theorem as

HðLACÞ
T ¼

Z
d3xðHðC:H:Þ þNiHiþλiπiþ λπþνφ̂Þ; ðB16Þ

where theHðC:H:Þ is identical to the free function in (65) and
φ̂ is called the linear AC with the following form

φ̂≡ c1ðtÞπii þ c2ðtÞ
ffiffiffi
h

p
Ri
i þ c3ðtÞ

ffiffiffi
h

p ∇2
πiiffiffiffi
h

p : ðB17Þ

We have demonstrated that the total Hamiltonian (B16)
belongs to the II-0-4b type of MMG theory in [75] in which
we also proposed a general framework for this type MMG
theory as

HT ¼
Z

d3xðHþ NiHi þ λiπi þ λπ þ νφ̃Þ; ðB18Þ

where the free function H and the AC φ̃ are arbitrary
functions of ðN; hij; πij;∇iÞ and ðhij; πijÞ respectively.

[1] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. Lett. 116, 241103 (2016).

[2] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. X 9, 031040 (2019).

[3] R. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. X 11, 021053 (2021).

[4] R. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. D 103, 122002 (2021).

[5] J. Healy, C. O. Lousto, and Y. Zlochower, Phys. Rev. D 90,
104004 (2014).

[6] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. Lett. 116, 221101 (2016); 121, 129902(E)
(2018).

[7] N. Yunes, K. Yagi, and F. Pretorius, Phys. Rev. D 94,
084002 (2016).

[8] R.-G. Cai, Z. Cao, Z.-K. Guo, S.-J. Wang, and T. Yang, Natl.
Sci. Rev. 4, 687 (2017).

[9] A. Samajdar and K. G. Arun, Phys. Rev. D 96, 104027
(2017).

[10] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. Lett. 119, 141101 (2017).

[11] B. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. Lett. 119, 161101 (2017).

[12] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. Lett. 118, 221101 (2017); 121, 129901(E)
(2018).

[13] B. Abbott et al. (LIGO Scientific, Virgo, Fermi-GBM,
INTEGRAL Collaborations), Astrophys. J. Lett. 848, L13
(2017).

[14] N. V. Krishnendu and F. Ohme, Universe 7, 497 (2021).
[15] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Phys.

Rep. 513, 1 (2012).
[16] C. M. Will, Living Rev. Relativity 17, 4 (2014).
[17] Z. Arzoumanian et al. (NANOGrav Collaboration),

Astrophys. J. Lett. 905, L34 (2020).
[18] Z.-C. Chen, C. Yuan, and Q.-G. Huang, Sci. China Phys.

Mech. Astron. 64, 120412 (2021).

[19] Z. Arzoumanian et al. (NANOGrav Collaboration),
Astrophys. J. Lett. 923, L22 (2021).

[20] C. Brans and R. Dicke, Phys. Rev. 124, 925 (1961).
[21] G.W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974).
[22] C. Armendariz-Picon, T. Damour, and V. F. Mukhanov,

Phys. Lett. B 458, 209 (1999).
[23] T. Chiba, T. Okabe, and M. Yamaguchi, Phys. Rev. D 62,

023511 (2000).
[24] C. Deffayet, X. Gao, D. A. Steer, and G. Zahariade, Phys.

Rev. D 84, 064039 (2011).
[25] D. Langlois and K. Noui, J. Cosmol. Astropart. Phys. 02

(2016) 034.
[26] D. Liang, Y. Gong, S. Hou, and Y. Liu, Phys. Rev. D 95,

104034 (2017).
[27] Y. Gong, S. Hou, E. Papantonopoulos, and D. Tzortzis,

Phys. Rev. D 98, 104017 (2018).
[28] S. Hou, Y. Gong, and Y. Liu, Eur. Phys. J. C 78, 378 (2018).
[29] T. Jacobson and D. Mattingly, Phys. Rev. D 70, 024003

(2004).
[30] J. D. Bekenstein, Phys. Rev. D 70, 083509 (2004); 71,

069901(E) (2005).
[31] Y. Gong and S. Hou, Universe 4, 85 (2018).
[32] Y. Hagihara, N. Era, D. Iikawa, and H. Asada, Phys. Rev. D

98, 064035 (2018).
[33] H. Takeda, A. Nishizawa, K. Nagano, Y. Michimura, K.

Komori, M. Ando, and K. Hayama, Phys. Rev. D 100,
042001 (2019).

[34] H. Takeda, S. Morisaki, and A. Nishizawa, Phys. Rev. D
103, 064037 (2021).

[35] C. Zhang, Y. Gong, D. Liang, and C. Zhang, Phys. Rev. D
105, 104062 (2022).

[36] J. Aasi et al. (LIGO Scientific Collaboration), Classical
Quantum Gravity 32, 074001 (2015).

[37] F. Acernese et al. (Virgo Collaboration), Classical Quantum
Gravity 32, 024001 (2015).

[38] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. Lett. 120, 201102 (2018).

MINIMALLY MODIFIED GRAVITY WITH AUXILIARY … PHYS. REV. D 107, 104052 (2023)

104052-15

https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.11.021053
https://doi.org/10.1103/PhysRevD.103.122002
https://doi.org/10.1103/PhysRevD.90.104004
https://doi.org/10.1103/PhysRevD.90.104004
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.121.129902
https://doi.org/10.1103/PhysRevLett.121.129902
https://doi.org/10.1103/PhysRevD.94.084002
https://doi.org/10.1103/PhysRevD.94.084002
https://doi.org/10.1093/nsr/nwx029
https://doi.org/10.1093/nsr/nwx029
https://doi.org/10.1103/PhysRevD.96.104027
https://doi.org/10.1103/PhysRevD.96.104027
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.121.129901
https://doi.org/10.1103/PhysRevLett.121.129901
https://doi.org/10.3847/2041-8213/aa920c
https://doi.org/10.3847/2041-8213/aa920c
https://doi.org/10.3390/universe7120497
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.12942/lrr-2014-4
https://doi.org/10.3847/2041-8213/abd401
https://doi.org/10.1007/s11433-021-1797-y
https://doi.org/10.1007/s11433-021-1797-y
https://doi.org/10.3847/2041-8213/ac401c
https://doi.org/10.1103/PhysRev.124.925
https://doi.org/10.1007/BF01807638
https://doi.org/10.1016/S0370-2693(99)00603-6
https://doi.org/10.1103/PhysRevD.62.023511
https://doi.org/10.1103/PhysRevD.62.023511
https://doi.org/10.1103/PhysRevD.84.064039
https://doi.org/10.1103/PhysRevD.84.064039
https://doi.org/10.1088/1475-7516/2016/02/034
https://doi.org/10.1088/1475-7516/2016/02/034
https://doi.org/10.1103/PhysRevD.95.104034
https://doi.org/10.1103/PhysRevD.95.104034
https://doi.org/10.1103/PhysRevD.98.104017
https://doi.org/10.1140/epjc/s10052-018-5869-y
https://doi.org/10.1103/PhysRevD.70.024003
https://doi.org/10.1103/PhysRevD.70.024003
https://doi.org/10.1103/PhysRevD.70.083509
https://doi.org/10.1103/PhysRevD.71.069901
https://doi.org/10.1103/PhysRevD.71.069901
https://doi.org/10.3390/universe4080085
https://doi.org/10.1103/PhysRevD.98.064035
https://doi.org/10.1103/PhysRevD.98.064035
https://doi.org/10.1103/PhysRevD.100.042001
https://doi.org/10.1103/PhysRevD.100.042001
https://doi.org/10.1103/PhysRevD.103.064037
https://doi.org/10.1103/PhysRevD.103.064037
https://doi.org/10.1103/PhysRevD.105.104062
https://doi.org/10.1103/PhysRevD.105.104062
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1103/PhysRevLett.120.201102


[39] K. Somiya (KAGRA Collaboration), Classical Quantum
Gravity 29, 124007 (2012).

[40] Y. Aso, Y. Michimura, K. Somiya, M. Ando, O. Miyakawa,
T. Sekiguchi, D. Tatsumi, and H. Yamamoto (KAGRA
Collaboration), Phys. Rev. D 88, 043007 (2013).

[41] D. Lovelock, Aequ. Math. 4, 127 (1970).
[42] D. Lovelock, J. Math. Phys. (N.Y.) 13, 874 (1972).
[43] D. Glavan and C. Lin, Phys. Rev. Lett. 124, 081301 (2020).
[44] P. G. S. Fernandes, P. Carrilho, T. Clifton, and D. J.

Mulryne, Classical Quantum Gravity 39, 063001 (2022).
[45] K. Aoki, M. A. Gorji, and S. Mukohyama, Phys. Lett. B

810, 135843 (2020).
[46] K. Aoki, M. A. Gorji, and S. Mukohyama, J. Cosmol.

Astropart. Phys. 09 (2020) 014; 05 (2021) E01.
[47] K. Aoki, M. A. Gorji, S. Mizuno, and S. Mukohyama,

J. Cosmol. Astropart. Phys. 01 (2021) 054.
[48] N. Afshordi, D. J. H. Chung, and G. Geshnizjani, Phys. Rev.

D 75, 083513 (2007).
[49] A. De Felice, D. Langlois, S. Mukohyama, K. Noui, and A.

Wang, Phys. Rev. D 98, 084024 (2018).
[50] A. De Felice, S. Mukohyama, and K. Takahashi, J. Cosmol.

Astropart. Phys. 12 (2021) 020.
[51] A. De Felice, K.-i. Maeda, S. Mukohyama, and M. C.

Pookkillath, Phys. Rev. D 106, 024028 (2022).
[52] N. Arkani-Hamed, H.-C. Cheng, M. A. Luty, and S.

Mukohyama, J. High Energy Phys. 05 (2004) 074.
[53] H. Gomes and D. C. Guariento, Phys. Rev. D 95, 104049

(2017).
[54] X. Gao, Phys. Rev. D 90, 081501 (2014).
[55] X. Gao and Y.-M. Hu, Phys. Rev. D 102, 084006 (2020).
[56] X. Gao, J. Cosmol. Astropart. Phys. 11 (2020) 004.
[57] Y.-M. Hu and X. Gao, Phys. Rev. D 105, 044023 (2022).
[58] X. Gao, Phys. Rev. D 90, 104033 (2014).
[59] C. Lin and S. Mukohyama, J. Cosmol. Astropart. Phys. 10

(2017) 033.
[60] A. Iyonaga, K. Takahashi, and T. Kobayashi, J. Cosmol.

Astropart. Phys. 12 (2018) 002.
[61] X. Gao and Z.-B. Yao, Phys. Rev. D 101, 064018 (2020).
[62] Y.-M. Hu and X. Gao, Phys. Rev. D 104, 104007 (2021).
[63] X. Gao and Z.-B. Yao, J. Cosmol. Astropart. Phys. 05

(2019) 024.
[64] J. Lin, Y. Gong, Y. Lu, and F. Zhang, Phys. Rev. D 103,

064020 (2021).

[65] A. Iyonaga and T. Kobayashi, Phys. Rev. D 104, 124020
(2021).

[66] T. Hiramatsu and T. Kobayashi, J. Cosmol. Astropart. Phys.
07 (2022) 040.

[67] R. Carballo-Rubio, F. Di Filippo, and S. Liberati, J. Cosmol.
Astropart. Phys. 06 (2018) 026; 11 (2018) E02.

[68] S. Mukohyama and K. Noui, J. Cosmol. Astropart. Phys. 07
(2019) 049.

[69] K. Aoki, A. De Felice, S. Mukohyama, K. Noui, M. Oliosi,
and M. C. Pookkillath, Eur. Phys. J. C 80, 708 (2020).

[70] K. Aoki, C. Lin, and S. Mukohyama, Phys. Rev. D 98,
044022 (2018).

[71] K. Aoki, A. De Felice, C. Lin, S. Mukohyama, and M.
Oliosi, J. Cosmol. Astropart. Phys. 01 (2019) 017.

[72] A. De Felice, A. Doll, and S. Mukohyama, J. Cosmol.
Astropart. Phys. 09 (2020) 034.

[73] C. Lin, J. Cosmol. Astropart. Phys. 05 (2019) 037.
[74] C. Lin and Z. Lalak, arXiv:1911.12026.
[75] Z.-B. Yao, M. Oliosi, X. Gao, and S. Mukohyama, Phys.

Rev. D 103, 024032 (2021).
[76] S. Mukohyama, R. Namba, R. Saitou, and Y. Watanabe,

Phys. Rev. D 92, 024005 (2015).
[77] R. Saitou, Phys. Rev. D 94, 104054 (2016).
[78] G. Domènech, S. Mukohyama, R. Namba, A. Naruko,

R. Saitou, and Y. Watanabe, Phys. Rev. D 92, 084027
(2015).

[79] K. Aoki, M. A. Gorji, and S. Mukohyama, Phys. Lett. B
810, 135843 (2020).

[80] K. Aoki, M. A. Gorji, and S. Mukohyama, J. Cosmol.
Astropart. Phys. 09 (2020) 014; 05 (2021) E01.

[81] K. Aoki, M. A. Gorji, S. Mizuno, and S. Mukohyama,
J. Cosmol. Astropart. Phys. 01 (2021) 054.

[82] G. Tasinato, Phys. Rev. D 102, 084009 (2020).
[83] B. Mertzios and M. Christodoulou, IEEE Trans. Autom.

Control 31, 156 (1986).
[84] X. Gao and X.-Y. Hong, Phys. Rev. D 101, 064057

(2020).
[85] A. Ganz, J. Cosmol. Astropart. Phys. 08 (2022) 074.
[86] A. Ganz and C. Lin, Classical Quantum Gravity 39, 215016

(2022).
[87] B. S. DeWitt, Phys. Rev. 160, 1113 (1967).
[88] N. O. Murchadha, C. Soo, and H.-L. Yu, Classical Quantum

Gravity 30, 095016 (2013).

YAO, OLIOSI, GAO, and MUKOHYAMA PHYS. REV. D 107, 104052 (2023)

104052-16

https://doi.org/10.1088/0264-9381/29/12/124007
https://doi.org/10.1088/0264-9381/29/12/124007
https://doi.org/10.1103/PhysRevD.88.043007
https://doi.org/10.1007/BF01817753
https://doi.org/10.1063/1.1666069
https://doi.org/10.1103/PhysRevLett.124.081301
https://doi.org/10.1088/1361-6382/ac500a
https://doi.org/10.1016/j.physletb.2020.135843
https://doi.org/10.1016/j.physletb.2020.135843
https://doi.org/10.1088/1475-7516/2020/09/014
https://doi.org/10.1088/1475-7516/2020/09/014
https://doi.org/10.1088/1475-7516/2021/05/E01
https://doi.org/10.1088/1475-7516/2021/01/054
https://doi.org/10.1103/PhysRevD.75.083513
https://doi.org/10.1103/PhysRevD.75.083513
https://doi.org/10.1103/PhysRevD.98.084024
https://doi.org/10.1088/1475-7516/2021/12/020
https://doi.org/10.1088/1475-7516/2021/12/020
https://doi.org/10.1103/PhysRevD.106.024028
https://doi.org/10.1088/1126-6708/2004/05/074
https://doi.org/10.1103/PhysRevD.95.104049
https://doi.org/10.1103/PhysRevD.95.104049
https://doi.org/10.1103/PhysRevD.90.081501
https://doi.org/10.1103/PhysRevD.102.084006
https://doi.org/10.1088/1475-7516/2020/11/004
https://doi.org/10.1103/PhysRevD.105.044023
https://doi.org/10.1103/PhysRevD.90.104033
https://doi.org/10.1088/1475-7516/2017/10/033
https://doi.org/10.1088/1475-7516/2017/10/033
https://doi.org/10.1088/1475-7516/2018/12/002
https://doi.org/10.1088/1475-7516/2018/12/002
https://doi.org/10.1103/PhysRevD.101.064018
https://doi.org/10.1103/PhysRevD.104.104007
https://doi.org/10.1088/1475-7516/2019/05/024
https://doi.org/10.1088/1475-7516/2019/05/024
https://doi.org/10.1103/PhysRevD.103.064020
https://doi.org/10.1103/PhysRevD.103.064020
https://doi.org/10.1103/PhysRevD.104.124020
https://doi.org/10.1103/PhysRevD.104.124020
https://doi.org/10.1088/1475-7516/2022/07/040
https://doi.org/10.1088/1475-7516/2022/07/040
https://doi.org/10.1088/1475-7516/2018/06/026
https://doi.org/10.1088/1475-7516/2018/06/026
https://doi.org/10.1088/1475-7516/2018/11/E02
https://doi.org/10.1088/1475-7516/2019/07/049
https://doi.org/10.1088/1475-7516/2019/07/049
https://doi.org/10.1140/epjc/s10052-020-8291-1
https://doi.org/10.1103/PhysRevD.98.044022
https://doi.org/10.1103/PhysRevD.98.044022
https://doi.org/10.1088/1475-7516/2019/01/017
https://doi.org/10.1088/1475-7516/2020/09/034
https://doi.org/10.1088/1475-7516/2020/09/034
https://doi.org/10.1088/1475-7516/2019/05/037
https://arXiv.org/abs/1911.12026
https://doi.org/10.1103/PhysRevD.103.024032
https://doi.org/10.1103/PhysRevD.103.024032
https://doi.org/10.1103/PhysRevD.92.024005
https://doi.org/10.1103/PhysRevD.94.104054
https://doi.org/10.1103/PhysRevD.92.084027
https://doi.org/10.1103/PhysRevD.92.084027
https://doi.org/10.1016/j.physletb.2020.135843
https://doi.org/10.1016/j.physletb.2020.135843
https://doi.org/10.1088/1475-7516/2020/09/014
https://doi.org/10.1088/1475-7516/2020/09/014
https://doi.org/10.1088/1475-7516/2021/05/E01
https://doi.org/10.1088/1475-7516/2021/01/054
https://doi.org/10.1103/PhysRevD.102.084009
https://doi.org/10.1109/TAC.1986.1104208
https://doi.org/10.1109/TAC.1986.1104208
https://doi.org/10.1103/PhysRevD.101.064057
https://doi.org/10.1103/PhysRevD.101.064057
https://doi.org/10.1088/1475-7516/2022/08/074
https://doi.org/10.1088/1361-6382/ac902e
https://doi.org/10.1088/1361-6382/ac902e
https://doi.org/10.1103/PhysRev.160.1113
https://doi.org/10.1088/0264-9381/30/9/095016
https://doi.org/10.1088/0264-9381/30/9/095016

