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We find accurate quasinormal frequencies of a quantum corrected black hole constructed in the
renormalization group theory via the coordinate-independent iterative procedure, leading to the Dymnikova
regular black hole. We show that while the fundamental mode is only slightly affected by the quantum
correction, the overtones change at a much stronger rate. This outburst of overtones occurs because of the
deformation of the geometry of the Schwarzschild black hole solely near the event horizon. For finding
accurate values of overtones we developed a general procedure allowing one to use the Leaver method to
metrics which, initially, are not expressed in terms of rational functions.
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I. INTRODUCTION

The development of a model for a black hole that
incorporates quantum corrections is crucial, not only as
a specific solution within an unknown and internally
consistent theory of quantum gravity, but also due to the
core issue concerning the final stage of Hawking evapo-
ration and the central singularities of classical solutions.
One way to address this issue is through the application of
the concept of asymptotically safe gravity [1].
Quantum field theory provides the essential foundation for

this issue. A straightforward way to examine its behavior is
through the improvement of the renormalizationgroup [2–8].
This method involves integrating only the beta function for
the gravitational coupling, while ignoring the variations of
other couplings. This leads to the effective Newton constant,
which is dependent on the energy scale k. The energy-
dependent Newton constant is then applied to the classical
black-hole solution to obtain the quantum-corrected lapse
function, which characterizes a regular black hole [9–17].
The concept of energy-dependent physical laws in the action
is a common feature of quantum field theory.
In addition, the gravitational coupling relies on an

arbitrary renormalization group scale denoted as k. Thus,
a relationship between energy and radial coordinates must
be established to express the resulting quantum-corrected
black-hole metric. Currently, there are two options

available to define the parameter k: The modified proper
distance approach, resulting in the Bonanno-Reuter black-
hole metric [9], and the power of the Kretschmann scalar
approach [6,16], resulting in the Hayward metric [17]. The
latter was initially suggested as a toy-model solution to
the singularity problem in the collapse and evaporation
scenario [18].
Alternatively, Kazakov and Solodukhin suggested a self-

consistent method for deriving the quantum-corrected black-
hole metric using the renormalization group approach [19].
Therefore, neglecting nonspherical deformations of the
background, the problem was solved nonperturbatively.
Quasinormal modes and gray-body factors were analyzed
for this case in [20,21]. However, the Kazakov-Solodukhin
solution has not eliminated the singularity altogether, but
instead relocated it to a finite distance from the center.
Quasinormal modes [22,23], a fundamental property of

black holes determined solely by their background parame-
ters, rather than perturbations, play a dominant role in the
decay of perturbations at later stages and can be observed
by gravitational interferometers [24–26]. However, the wide
range of possible angular momentum and mass values for
observed black holes leaves ample room for modified gravity
theories [27].Consequently, a large bodyof literature exists on
quasinormal modes for numerous regular black-hole models
[28–44]. Extensive research on the spectrum of the Hayward
solution has been carried out [41–45], and the quasinormal
modes of the Bonanno-Reuter black hole were analyzed in
[46–48], alongwith an approximate truncated version in [49].
However, many of themost critical and fascinating features of
the quasinormal spectrum for bothmodelswere overlooked in
all the aforementioned studies, in our view.
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The most fascinating behavior occurs in the overtones,
which were mostly neglected in the prior studies. While it is
generally thought that the main contribution to the signal
is from the fundamental mode, recent research in [50]
(and later examined in [51,52]) has shown that up to ten
initial overtones are required to replicate the ringdown of
accurate numerical relativity simulations at all stages, not
just the final phase. This finding also indicates that the
actual quasinormal ringing starts earlier than anticipated.
The primary motivation for the renormalization group
method employed here is obviously linked to quantum
corrections, which are assumed to be quite small for
astrophysical black holes. Nonetheless, our observation
may have a wider interpretation, including sizable black
holes, and the aspects of the overtones’ behavior we
discovered could be valuable. Additionally, we will argue
that some of the traits found here should be universally
applicable to a quantum corrected black hole.
The overtones for the above two choices of the identi-

fication has been recently studied in [53]. There it was shown
that the quasinormal modes exhibit similar qualitative and
even close quantitative characteristics for both types of
the above identification for k. We have observed that the
deviation of the fundamental mode from its Schwarzschild
limit may be several times larger than previously reported in
[46]. Notably, the overtones exhibit a striking deviation from
the Schwarzschild limit, reaching as high as several hundred
percent, even when the fundamental mode closely approx-
imates the Schwarzschild limit. This result is due to the fact
that both metrics are almost identical to the Schwarzschild
metric everywhere except in a small region near the event
horizon, which is crucial for the overtones. Additionally, the
spectrum of both metrics includes nonoscillatory purely
imaginary modes, which can emerge at the second overtone
for certain parameter values [53].
Here, instead of choosing this or that identification for k,

we make use of the coordinate independent approach
developed in [54]. A solution obtained within this approach
coincides with the Dymnikova-type black-hole spacetime
[55], and it takes into account the backreaction effects of
the running of the Newton coupling. The renormalization
group approach, which is independent of coordinates, has
been used to derive the spherically symmetric black-hole
metric based on curvature invariants [56].
We will demonstrate that the overtones are again highly

sensitive to the near-horizon asymptotic, which results
in a substantial deviation of their real parts from their
Schwarzschild limit, while the fundamental mode’s
deviation is typically extremely small. To put it differently,
in the case where the geometry of the quantum-corrected
black holes closely resembles the Schwarzschild geometry
everywhere except a small region near the event horizon,
the overtones significantly differ from their Schwarzschild
counterparts. This observation seems to be linked to a
similar phenomenon called the “quasinormal modes’

instability,” which was discovered in [57]. It was observed
that while small perturbations to the initial linearized
Einstein wave equations for the Schwarzschild background
have little effect on the fundamental mode and the first few
overtones, higher overtones undergo significant changes. In
other words, highly damped modes are sensitive to slight
variations in the wave equation. The work [58] suggests
that this instability in the quasinormal modes might be
detectable in the gravitational signal in the future.
We will perform a comprehensive analysis of the

quasinormal ringing, including the behavior of overtones,
for the regular black-hole solutions presented above, using
test scalar, electromagnetic, and Dirac fields. While it is
possible to examine the gravitational perturbations for these
vacuum solutions of the Einstein equation, the primary
assumption of the renormalization group approach is that
the leading correction to the background metric results
from the running gravitational coupling, which implies
the existence of other correction terms that were ignored.
Thus, there is no indication that small perturbations of the
black-hole background spacetimewill remain much smaller
than the unknown terms that were initially neglected in
the background. Furthermore, we know that gravitational
perturbations are typically qualitatively similar to those for
test fields and often coincide with the latter in the high-
frequency (eikonal) regime.
In order to find quasinormal modes we will use the WKB

formula, Bernstein spectral method, and Leaver method.
However, only the latter allows one to find overtones with
guaranteed accuracy. Therefore, our work has also a purely
technical purpose: to develop a general procedure for finding
accurate quasinormalmodes by theLeavermethod,when the
metric coefficients initially are not represented by rational
functions. This procedure can be further applied not only to
analytical metrics like that describing the Dymnikova black
hole [55], but also for spacetimes obtained numerically.
Our paper is organized as follows: In Sec. II we

summarize the coordinate independent renormalization
group approach developed in [54], which leads to the
Dymnikova black hole [55]. Section III is devoted to
representation of the metric function, in terms of rational
functions, appropriate for further usage of the Leaver
method. Section IV briefly relates the properties of the
wavelike equation, while in Sec. V we discuss the methods
used for finding quasinormal modes. In Sec. VI we discuss
the obtained numerical results for quasinormal frequencies
and, finally, in the Conclusion we summarize the obtained
results and mention open questions.

II. DYMNIKOVA BLACK HOLE CONSTRUCTED
VIA ITERATIVE RG-IMPROVEMENT

PROCEDURE

The metric of the spherically symmetric spacetime has
the following form:
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ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2ðsin2θdϕ2 þ dθ2Þ; ð1Þ

where the metric for the Schwarzschild case is

fðrÞ ¼ 1 −
2mG0

r
: ð2Þ

Wewill begin with the usual Schwarzschild spacetime. The
form of the metric is described by the line element (1) and
constitutes a solution to the Einstein vacuum equations with
lapse function (2):

�Rμν − 1
2
Rgμν ¼ 0;

fð0ÞðrÞ ¼ 1 − 2mG0

r :
ð3Þ

The perturbation of (3) via replacing the Newton’s constant
G0 by its running analogue can be expressed as follows:

G0 → GðrÞ ¼ G0

1þ g−1� G0k2ðrÞ
; ð4Þ

where kðrÞ is a cutoff function such that kðrÞ goes to zero as
r → ∞. The latter condition guarantees that the classical
Schwarzschild metric is reproduced in the classical region
ḡμν ≡ hgμνik for k ≪ MPl and r ≫ lPl. The replacement (4)
gives rise to a new metric of the form (1), with the
following lapse function:

fðrÞ ¼ 1 −
2mG½kðrÞ�

r
: ð5Þ

The latter modified spacetime can be considered as an exact
solution to the Einstein equations in the presence of the
effective energy-momentum tensor,

Teff
μν ¼ ðρþ pÞðlμnν þ lνnμÞ þ pgμν: ð6Þ

The null vectors lμ and nμ obey the normalization condition
lμnμ ¼ −1. The energy density ρ and pressure p are
generated by the variation of the Newton’s constant with
the radial coordinate r,

ρ ¼ mG0ðrÞ
4πr2GðrÞ ; p ¼ −

mG00ðrÞ
8πrGðrÞ : ð7Þ

The effective energy-momentum tensor (6) can be inter-
preted as an effect from the vacuum polarization of
quantum gravitational field. Then, the energy-density ρ
should be considered as an effective quantum-gravitational
self-energy. The quantum system is self-consistent: a small
deviation of the Newton’s constant induces successive
back-reactions of the semiclassical background, which
induces further deviations of the Newton’s coupling.
Following this way, the energy-density ρ ∝ ∂r logGðrÞ
should provide a kind of measure for quantum effects

inside the horizon, and it can be applied to self-consistent
construction of the cutoff function kðnþ1ÞðrÞ for n > 1. The
renormalization group improvement iteration is then for-
malized in the following way.
The first step of the iteration is the classical Schwarzschild

metric, which is characterized by the parameters

kð0ÞðrÞ ¼ 0 ⇒ Gð0Þ ¼ G0; Teffð0Þ
μν ¼ 0: ð8Þ

The second step is defined by the replacement (4), where
k ¼ k1ðrÞ is chosen arbitrarily and serves as an initial
condition for the perturbation of the system (3).
Consequent steps of the iteration procedure, n > 1, are
defined by the following replacement:

GðnÞ → Gðnþ1ÞðrÞ ¼
G0

1þ g−1� G0k2ðnþ1ÞðrÞ
; ð9Þ

where the cutoff function kðnþ1ÞðrÞ is constructed as a
functional of the energy-density ρðnÞðrÞ generated by the
variation of GðrÞ in the previous step,

k2ðnþ1ÞðrÞ≡K½ρðnÞðrÞ�: ð10Þ
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FIG. 1. The metric function fðrÞ (upper panel) and the effective
potential for l ¼ 1 scalar field perturbations (lower panel): lcr ¼
0.01M (bottom, cyan), lcr ¼ 0.9M (blue), lcr ¼ M (green), lcr ¼
1.138M (red), and lcr ¼ 1.2M (magenta).
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The above procedure generates a sequence of the modified
Einstein equations, admitting solutions of the form (1) with
the lapse function fðnÞðrÞ.
Following [54] in this way, it turns out that in the limit

n → ∞ the metric function coincides with the Dymnikova
black hole [55],

fðrÞ ¼ 1 −
2M
r

�
1 − e

− r3

2l2crM

�
: ð11Þ

Here lcr is a critical length scale below which the mod-
ifications owing to the running of the Newton’s constant
become negligible. The maximal value of lcr allowing for
existence of the event horizon is

lcr ≈ 1.138M;

where M≡ G0m is the mass measured in units of length.
An example of the metric functions and effective poten-

tials are shown in Fig. 1. When lcr → 0, the Schwarzschild
limit is reproduced.

III. PARAMETRIZED METRIC AS A RATIONAL
FUNCTION OF THE RADIAL COORDINATE

In order to approximate our metric functions by rational
functions of the radial coordinate we will use the para-
metrization approach [59] for characterizing the spacetime
of spherically symmetric black holes in generic metric
theories of gravity. Unlike other methods, which employed
a Taylor series expansion in powers of M=r, it utilizes
continued-fraction expansions in terms of a compactified
radial coordinate. This expansion provides superior con-
vergence properties and allows us to approximate various
metric theories using only a few coefficients. The para-
metrization was also extended to the axially-symmetric
spacetimes [60,61], which means that the same approach, at
least, in principle, can be used for rotating black holes.
Following [59], we introduce the following dimension-

less variable:

x≡ 1 −
r0
r
; ð12Þ

where r0 is the event horizon radius, so that 0 ≤ x ≤ 1
spans the radial coordinate between the horizon and spatial
infinity.
Then we approximate the metric function fðrÞ,

f
� r0
1 − x

�
¼ xAðxÞ; ð13Þ

where AðxÞ > 0 is defined as follows:

AðxÞ ¼ 1 − ϵð1 − xÞ þ ða0 − ϵÞð1 − xÞ2 þ ÃðxÞð1 − xÞ3;

where the coefficient ϵ measures the deviation of r0 from
the Schwarzschild radius 2M,

ϵ ¼ 2M − r0
r0

; ð14Þ

and the post-Newtonian parameter a0 ¼ 0.
The function Ã is introduced through infinite continued

fraction in order to describe the metric near the horizon
(i.e., for x ≃ 0),

ÃðxÞ ¼ a1
1þ a2x

1þ a3x
1þ…

; ð15Þ

where a1; a2; a3;… are dimensionless constants matching
the near-horizon behavior of the metric function,

a1 ¼ ϵ

�
2 −

3r30
2l2crM

�
;

a2 ¼
9r60 − 48r30l

2
crM þ 24l4crM2

4l2crMð3r30 − 4l2crMÞ ;…; ð16Þ

and the closed form can be obtained for any ai.
Since the horizon radius is a solution of a nonalgebraic

equation fðr0Þ ¼ 0, the value of ϵ defined in Eq. (14)
satisfies

ϵ ¼ ðϵþ 1Þe−
4M2

l2cr ðϵþ1Þ3 : ð17Þ

From Eq. (17) one can find ϵ numerically for any given
lcr=M (see Fig. 2).
In order to approximate the metric function we consider

a finite number n of terms in Eq. (15), i.e., we consider
anþ1 ¼ 0. Then the metric function (13) is a rational
function of x and, therefore, of the radial coordinate r.
The Mathematica® notebook with the approximate metric
is available as an ancillary file.
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0.10

0.15

FIG. 2. The value of ϵ as a function of lcr.
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IV. THE WAVELIKE EQUATIONS

The general relativistic equations for the scalar (Φ),
electromagnetic (Aμ), and Dirac (ϒ) fields can be written in
the following form:

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ ¼ 0; ð18aÞ

1ffiffiffiffiffiffi−gp ∂μðFρσgρνgσμ
ffiffiffiffiffiffi
−g

p Þ ¼ 0; ð18bÞ

γα
�

∂

∂xα
− Γα

�
ϒ ¼ 0; ð18cÞ

where Fμν ¼ ∂μAν − ∂νAμ is the electromagnetic tensor, γα

are noncommutative gamma matrices, and Γα are spin
connections in the tetrad formalism. After separation of the
variables the above Eq. (18) take the Schrödinger wavelike
form [22,23,62]:

d2Ψ
dr2�

þ ðω2 − VðrÞÞΨ ¼ 0; ð19Þ

where the “tortoise coordinate” r� is defined as follows:

dr� ≡ dr
fðrÞ : ð20Þ

The effective potentials for the scalar (s ¼ 0) and
electromagnetic (s ¼ 1) fields have the form

VðrÞ ¼ fðrÞlðlþ 1Þ
r2

þ ð1 − sÞ · fðrÞ
r

dfðrÞ
dr

; ð21Þ

where l ¼ s; sþ 1; sþ 2;… are the multipole numbers.
For the Dirac field (s ¼ 1=2) one has two isospectral
potentials,

V�ðrÞ ¼ W2 � dW
dr�

; W ≡
�
lþ 1

2

� ffiffiffiffiffiffiffiffiffi
fðrÞp
r

: ð22Þ

The isospectral wave functions can be transformed one into
another by the Darboux transformation,

Ψþ ¼ q

�
W þ d

dr�

�
Ψ−; q ¼ const; ð23Þ

so that it is sufficient to calculate quasinormal modes for
only one of the effective potentials. We will do that for
VþðrÞ because the WKB method works better in this case.

V. METHODS USED FOR CALCULATIONS
OF QUASINORMAL MODES

Quasinormal modes ωn of asymptotically flat black
holes are proper oscillation frequencies corresponding to
the solutions of the master wave equation (19), when the
purely outgoing waves at both infinities are imposed:

Ψ ∝ e−iωt�iωr� ; r� → �∞: ð24Þ

Here we will briefly review the three methods which will be
used for calculations of quasinormal frequencies: the WKB
method, Bernstein spectral method, and Frobenius method.

A. WKB method

In the frequency domain we will use the semianalytic
WKB approach applied by Will and Schutz [63] for
finding quasinormal modes. The Will-Schutz formula
was extended to higher orders in [64–66] and made even
more accurate when using the Padé approximants [66,67].
The general WKB formula has the form [68]

ω2 ¼ V0 þA2ðK2Þ þA4ðK2Þ þA6ðK2Þ þ…

− iK
ffiffiffiffiffiffiffiffiffiffiffi
−2V2

p
ð1þA3ðK2Þ þA5ðK2Þ þA7ðK2Þ þ…Þ;

ð25Þ

where K ¼ nþ 1=2 is half-integer. The corrections
AkðK2Þ of the order k to the eikonal formula are poly-
nomials of K2 with rational coefficients and depend on the
values of higher derivatives of the potential VðrÞ in its
maximum. In order to increase the accuracy of the WKB
formula, we will follow the procedure of Matyjasek and
Opala [66] and use the Padé approximants. Here we will
use the sixth-order WKB method with m̃ ¼ 4, where m̃ is
defined in [66,68], because this choice provides the best
accuracy in the Schwarzschild limit, and there is hope that
this will be the case for more general metrics.

B. Frobenius method

In order to find accurate values of quasinormal modes we
use the method proposed by Leaver [69]. The wavelike
equation (19) always has a regular singularity at the event
horizon r ¼ r0 and the irregular singularity at spatial
infinity r ¼ ∞. We introduce the new function,

ΨðrÞ ¼ eiωrr2Miω

�
1 −

r0
r

�
−iω=f0ðr0Þ

yðrÞ; ð26Þ

so that yðrÞ is regular for r0 ≤ r < ∞, once ΨðrÞ corre-
sponds to the purely outgoing wave at spatial infinity and
the purely ingoing wave at the event horizon. Therefore, we
are able to represent yðrÞ in terms of the Frobenius series:
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yðrÞ ¼
X∞
k¼0

ak

�
1 −

r0
r

�
k
: ð27Þ

Using Eq. (19), all the coefficients ak>0 can be expressed
in terms of a0. Unfortunately, since the function fðrÞ in
(11) is not a rational function of r, one cannot derive a finite
recurrence relation. However, once we use the approxima-
tion using the finite continued fraction (13), we can find a
finite recurrence relation, which can be reduced to the one
of three terms via the Gaussian elimination (see, for
example, [22] for a detailed description of the procedure).
The number of terms in the recurrence relation increases
with the approximation order n in Eq. (15). For the
Frobenius series defined in (26), the number of terms in
the recurrence relation is 10þ n. This number could be
further decreased by taking into account the inner horizon
radius in the Frobenius series. However, the inner horizon
for the approximated metric differs from the one for the
accurate metric and depends on the approximation order.
Therefore, in order to have a general procedure, which can
be applied for any approximation order, we have employed
the simplest Frobenius series (26), which depends on the
horizon radius only.
Then, using the recurrence relation coefficients, we find

the equation with the infinite continued fraction with
respect to ω, which is satisfied if and only if the series
(27) converges at r ¼ ∞, i.e., when ΨðrÞ obeys the
quasinormal boundary conditions. In order to calculate
the infinite continued fraction we also use the Nollert
improvement [70], which was generalized in [71] for an
arbitrary number of terms in the recurrence relation.
Namely, for each given ω we calculate numerically the
values of C0ðωÞ, C1ðωÞ, and C2ðωÞ in Eq. (17) of [71] and
use the approximation for the value of the infinite continued
fraction tail, making sure that the result does not change if
we increase the position of the tail.

For nonsmall values of lcr the behavior of the metric
function near the event horizon differs significantly from
the Schwarzschild black hole (see Fig. 1). The function
fðrÞ grows slowly, and, when approximating the function
by a rational function of r the resulting geometry implies
that the inner horizon appears even though the accurate
metric does not have one. This leads to an additional
singular point in the wavelike equation (19), which
diminishes the convergence radius of the series (27). It
is possible to avoid this problem by modifying the
Frobenius series as described in [72]. Instead, since
generally the additional singular points depend not only
on the value of lcr but also on the order of approximation
(15), we continue the series (27) through some positive real
midpoints as described in [73]. Unfortunately, such a
complication of the singular point structure seems to result
in the slower convergence of the values of the quasinormal
modes, with respect to the approximation order (see Fig. 3).

C. Bernstein polynomial spectral method

Following [74], we introduce the compact coordinate u,

u≡ 1

r
;

and represent yðuÞ as a sum,

yðuÞ ¼
XN
k¼0

CkBN
k ðuÞ; ð28Þ

where

BN
k ðuÞ≡ N!

k!ðN − kÞ! u
kð1 − uÞN−k

are the Bernstein polynomials.
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FIG. 3. Convergence of the dominant quasinormal mode for l ¼ 1 electromagnetic perturbations with respect to the approximation
order (lcr ¼ M ¼ 1).
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Substituting (26) into (19) and using a Chebyschev
collocation grid of N þ 1 points, we obtain a set of linear
equations with respect to Ck, which has nontrivial solutions
if and only if the corresponding coefficient matrix is
singular. The problem is reduced to the eigenvalue problem
of a matrix pencil with respect to ω, which can be solved
numerically. Once the eigenvalue problem is solved, one
can calculate the corresponding coefficients Ck and explic-
itly determine the polynomial (28), which approximates the
solution to the wave equation [74].
In order to exclude the spurious eigenvalues, which

appear due to finiteness of the polynomial basis in (28), we
compare both the eigenfrequencies and corresponding
approximating polynomials for different values of N.
Namely, for the coinciding eigenfrequencies, ωð1Þ and
ωð2Þ, obtained, respectively, for N ¼ Nð1Þ and N ¼ Nð2Þ,
we calculate

1 −
jhyð1Þjyð2Þij2
kyð1Þk2kyð2Þk2 ¼ sin2α;

where α is the angle between the vectors yð1Þ and yð2Þ in the
L2-space. If α is sufficiently small, then the difference
between ωð1Þ and ωð2Þ provides the error estimation.1

VI. QUASINORMAL MODES

The crucial aspect for finding quasinormal modes not for
the exact numerical or analytical solution, but for its
parametrized approximation, is the convergence in orders
of the parametrization. In Fig. 3 we can see that in order to
find the fundamental mode with sufficiently high accuracy,
the truncation at about the 17th order of the parametrization
is necessary. In that case the five decimal places are
guaranteed for the fundamental mode and, normally, a
few decimal places for the first several overtones. Unlike
the Leaver method, the WKB and Bernstein polynomial
methods can be applied directly to the exact exponential
form of the metric, so that the error due to truncation of the
parametrization is excluded from their data. However, the
WKB and Bernstein polynomial methods are not on equal

footing here because the WKB formula converges only
asymptotically, and its accuracy is, strictly speaking,
unknown. That is why the Leaver and Bernstein polynomial
methods are in very good concordance for the fundamental
mode, as can be seen in Tables I–IV, but the difference with
WKB increases as the lcr approaches the extreme value. At
the same time the Bernstein polynomial method is con-
verging slowly when the overtone number n is increased, so
that the Leaver method remains the only efficient and
quickly convergent tool for finding the overtones.
The fundamental mode is characterized by smaller oscil-

lation frequency and damping rate, once the quantum
correction represented by the parameter lcr is turned on.
However, this is not so always for overtones which may have
nonmonotonic dependence on lcr near the extremal limit.
From Table V we can see that while the fundamental

mode is changed by only a few percent, when lcr is changed
from its Schwarzschild limit to the extremal one, the
overtones can change significantly: already for the first
overtone the oscillation frequency changes within tens of
percent, while for the higher overtones, it can approach
zero. For larger multipole (l ¼ 1) the effect takes place at
higher overtones (see Table VI): the real part for n ¼ 2

changes within tens of percent and for n ¼ 3 can be more
than two times smaller compared to the Schwarzschild one.
For the electromagnetic perturbations presented in
Table VII the third overtone is almost three times smaller
in the near extremal regime than in the Schwarzschild limit.
The effect is due to the deviation of the spacetime geometry
solely near the event horizon [53,76,77]. The effective
potential is very close to the Schwarzschild one near its
peak and the fundamental mode, unlike the overtones, is
usually determined by the scattering near the peak, being
insensitive to the near-horizon deformations.

TABLE I. The fundamental (n ¼ 0) quasinormal mode for l ¼ 0, scalar field perturbations; the relative error is
calculated assuming that the Frobenius values are accurate.

lcr WKB Error (%) Bernstein Error (%) Frobenius

0.5 0.110892 − 0.104608i 0.34230 0.110558 − 0.105125i 0.16111 0.11046 − 0.10490i
0.9 0.098211 − 0.093779i 9.92174 0.110071 − 0.103336i 0.20876 0.10994 − 0.10305i
1.0 0.096781 − 0.092553i 9.66451 0.108911 − 0.100335i 0.13202 0.10890 − 0.10014i
1.1 0.095144 − 0.090187i 7.77728 0.103852 − 0.096527i 0.21895 0.10416 − 0.09657i

TABLE II. The fundamental (n ¼ 0) quasinormal mode for
l ¼ 1=2, Dirac field perturbations; M ¼ 1.

lcr WKB Bernstein

0.5 0.182749 − 0.097081i 0.190340 − 0.097486i
0.9 0.174997 − 0.097650i 0.187575 − 0.094316i
1.0 0.173153 − 0.096513i 0.182531 − 0.089763i
1.1 0.167839 − 0.091445i 0.167347 − 0.091296i

1The Wolfram Mathematica® package with the implementa-
tion of the Bernstein spectral method [75] is publicly available
from https://arxiv.org/src/2211.02997/anc.
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TABLE III. The fundamental (n ¼ 0) quasinormal mode for l ¼ 1, scalar field perturbations;M ¼ 1; the relative
error is calculated assuming that the Frobenius values are accurate.

lcr WKB Error (%) Bernstein Error (%) Frobenius

0.5 0.29293 − 0.09766i 0.00324 0.29294 − 0.09767i 0.00324 0.29294 − 0.09766i
0.9 0.29125 − 0.09899i 0.61139 0.29204 − 0.09725i 0.01657 0.29199 − 0.09726i
1.0 0.28995 − 0.09811i 0.64575 0.29074 − 0.09631i 0.00980 0.29077 − 0.09631i
1.1 0.28782 − 0.09616i 0.57349 0.28854 − 0.09470i 0.06615 0.28874 − 0.09468i

TABLE IV. The fundamental (n ¼ 0) quasinormal mode for l ¼ 1, electromagnetic perturbations; M ¼ 1; the
relative error is calculated assuming that the Frobenius values are accurate.

lcr WKB Error (%) Bernstein Error (%) Frobenius

0.5 0.248255 − 0.092497i 0.00325 0.248255 − 0.092492i 0.00203 0.24826 − 0.09249i
0.9 0.246233 − 0.093069i 0.77832 0.247604 − 0.091552i 0.02563 0.24766 − 0.09159i
1.0 0.244931 − 0.090477i 0.74937 0.246753 − 0.089864i 0.01796 0.2468 − 0.08986i
1.1 0.243683 − 0.088349i 0.77155 0.245052 − 0.087023i 0.73291 0.24516 − 0.08699i

TABLE V. Quasinormal modes found by the Leaver method for l ¼ 0, scalar perturbations;M ¼ 1. The metric is
approximated by the 17th-order parametrization. The Schwarzschild limit corresponds to lcr ¼ 0.

lcr n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3

0 0.11046 − 0.10490i 0.0861 − 0.3481i 0.076 − 0.601i 0.070 − 0.854i
0.7 0.11042 − 0.10482i 0.0846 − 0.3477i 0.069 − 0.601i 0.050 − 0.853i
0.75 0.11039 − 0.10470i 0.0827 − 0.3472i 0.061 − 0.601i 0.016 − 0.851i
0.8 0.11034 − 0.10445i 0.0792 − 0.3462i 0.043 − 0.601i 0.031 − 0.969i
0.85 0.11016 − 0.10388i 0.0732 − 0.3420i 0.011 − 0.576i 0.054 − 0.915i
0.9 0.10994 − 0.10305i 0.064 − 0.337i 0.033 − 0.660i 0.07 − 0.87i
0.95 0.10959 − 0.10184i 0.047 − 0.333i 0.04 − 0.64i 0.04 − 0.84i
1.0 0.10890 − 0.10014i 0.031 − 0.376i 0.01 − 0.60i 0.07 − 1.03i
1.05 0.10737 − 0.09797i 0.046 − 0.362i 0.01 − 0.69i 0.09 − 1.06i
1.1 0.10416 − 0.09657i 0.0356 − 0.3674i 0.053 − 0.724i 0.127 − 1.043i

TABLE VI. Quasinormal modes found by the Leaver method for l ¼ 1, scalar perturbations; M ¼ 1. The metric
is approximated by the 17th-order parametrization. The Schwarzschild limit corresponds to lcr ¼ 0.

lcr n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3

0 0.29294 − 0.09766i 0.2644 − 0.3063i 0.2295 − 0.5401i 0.203 − 0.788i
0.7 0.29290 − 0.09766i 0.2640 − 0.3063i 0.2275 − 0.5405i 0.197 − 0.790i
0.75 0.29283 − 0.09765i 0.2634 − 0.3063i 0.2247 − 0.5409i 0.188 − 0.792i
0.8 0.29271 − 0.09760i 0.2623 − 0.3061i 0.2199 − 0.5410i 0.173 − 0.794i
0.85 0.29246 − 0.09748i 0.2604 − 0.3054i 0.212 − 0.540i 0.155 − 0.786i
0.9 0.29199 − 0.09726i 0.2571 − 0.3037i 0.200 − 0.533i 0.14 − 0.80i
0.95 0.29146 − 0.09688i 0.2533 − 0.3020i 0.184 − 0.534i 0.14 − 0.81i
1.0 0.29077 − 0.09631i 0.2485 − 0.3002i 0.170 − 0.544i 0.09 − 0.80i
1.05 0.28986 − 0.09556i 0.2430 − 0.2990i 0.157 − 0.551i 0.11 − 0.97i
1.1 0.28874 − 0.09468i 0.2378 − 0.2981i 0.144 − 0.568i 0.159 − 0.964i
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In Table VII we present first four quasinormal modes of
the Dymnikova black hole, calculated by the Frobenius
method for the metric approximated with the 17th-order
parametrization. The number of obtained decimal places
becomes smaller for higher overtones and near-extreme
values of lcr. In this regime the metric function changes
strongly near the event horizon but is very close to the
Schwarzschild metric at a distance from it. Such type of
metrics were called nonmoderate in [78]; it requires many
orders of the parametrization to be approximated suffi-
ciently well. We conclude that the values of the quasinor-
mal modes converge when increasing the approximation
order, even for such nonmoderate black holes (see Fig. 3).
Although the accuracy of our numerical approach becomes
worse in this regime, the effect, i.e., deviation from
the Schwarzschild values, is clearly larger than the error
of the approximation, so that we can claim that, while the
variation of the dominant modes is insignificant, the higher
overtones’ frequencies change at a much stronger rate, as lcr
approaches the extreme value.

VII. CONCLUSION

In the present paper we have studied two issues. The first
one is methodological: How to find accurate quasinormal
modes, including overtones, for metric functions which,
initially, are not expressed in terms of rational functions.
The solution consists in approximation of the metric with
the help of the continued fraction parametrization sug-
gested in [59]. One difficulty occurs in this way, which is
related to accurate calculation of overtones: the higher

overtone one needs to find, the more order of the para-
metrization is necessary to use. We further applied this
procedure to find accurate frequencies both for the funda-
mental mode and several first overtones of the black hole
constructed via the iterative coordinate independent pro-
cedure in the renormalization group approach [54]. We
have found that while the fundamental mode changes by
only a few percent, the overtones are highly sensitive to
deformations of the geometry in the near-horizon zone
induced by the quantum correction.
A similar approach of the parametrization and conse-

quent usage of the Leaver method can be applied to axially-
symmetric spacetimes, the general formalism for which
was developed and studied in [60,61]. Thus, the finding of
accurate quasinormal frequencies for black holes, whose
metric are given numerically or in terms of the nonrational
functions, can be done according to the same principles for
rotating black holes as well. Once a reliable axially-
symmetric black-hole solution in the renormalization group
theory is obtained, usage of the continued fraction expan-
sion in the radial direction and expansion near the equa-
torial plane in the azimuthal one [60,61] should allow the
finding of accurate quasinormal frequencies then. However,
such a task would be much more involved because of the
problem of convergence in the angular sector.
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TABLE VII. Quasinormal modes found by the Leaver method for l ¼ 1, electromagnetic perturbations; M ¼ 1.
The metric is approximated by the 17th-order parametrization. The Schwarzschild limit corresponds to lcr ¼ 0.

lcr n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3

0 0.24826 − 0.09249i 0.2145 − 0.2937i 0.175 − 0.525i 0.146 − 0.772i
0.7 0.24823 − 0.09247i 0.2141 − 0.2935i 0.173 − 0.525i 0.140 − 0.772i
0.75 0.24814 − 0.09239i 0.2135 − 0.2930i 0.170 − 0.523i 0.135 − 0.768i
0.8 0.24804 − 0.09226i 0.2125 − 0.2922i 0.166 − 0.521i 0.123 − 0.765i
0.85 0.24790 − 0.09200i 0.2112 − 0.2909i 0.160 − 0.518i 0.103 − 0.762i
0.9 0.24766 − 0.09159i 0.2088 − 0.2886i 0.149 − 0.512i 0.06 − 0.74i
0.95 0.2473 − 0.09085i 0.206 − 0.2849i 0.13 − 0.50i 0.06 − 0.81i
1.0 0.2468 − 0.08986i 0.201 − 0.280i 0.107 − 0.508i 0.05 − 0.8i
1.05 0.24614 − 0.08855i 0.195 − 0.276i 0.107 − 0.514i 0.04 − 0.8i
1.1 0.24516 − 0.08699i 0.1892 − 0.2731i 0.091 − 0.519i 0.05 − 0.87i
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