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We study a conformally coupled scalar-tensor theory with a quartic potential possessing local conformal
symmetry up to a boundary term. We show that requiring the restoration of the full local conformal
symmetry fixes the counterterms that render the on-shell action finite. The building block of the resulting
action is a conformally covariant tensor which is constructed out of the metric and the scalar field and it has
the same conformal weight as the Weyl tensor. This allows us to obtain the counterterms for the scalar-
tensor sector in a closed form. The finiteness of the conformally complete version of the action is suggestive
on the validity of the conformal renormalization prescription. We extend this theory by adding the
conformal gravity action and also the Einstein-AdS action written in MacDowell-Mansouri form. Even
though the latter breaks the conformal symmetry, we find that the action is still renormalized provided a
suitable falloff of the scalar field when considering asymptotically locally anti-de Sitter solutions. Black
hole solutions in these theories are studied, for which the Hawking temperature and the partition function
to first order in the saddle-point approximation are calculated, providing a concrete example of this

and Nelson Merino

renormalization scheme.
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I. INTRODUCTION

Renormalization of gravitational theories that admit
asymptotically locally anti-de Sitter (AIAdS) solutions
has become a crucial ingredient in black hole thermody-
namics and in the anti—de Sitter/conformal field theory
(AdS/CFT) correspondence. The standard prescription—
dubbed holographic renormalization (HR)—consists of
adding the Gibbons-Hawking-York (GHY) term in order
to fix the Dirichlet variational principle for the induced
metric in the radial foliation and then introducing intrinsic
boundary counterterms to cancel divergences that appear
when evaluating the action on solutions with AlAdS
behavior. This renders the Euclidean on-shell action and
asymptotic charges finite [1-9], which allows one to define
the generating functional for correlators of the dual CFT
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and to obtain the holographic data of said theory [10,11].
In particular, in the saddle-point approximation of the
AdS/CFT correspondence, the Euclidean on-shell action
of the gravity theory is identified with the generating
functional for connected correlators of the CFT, where
the values of the fields at the conformal boundary are
identified with the holographic sources of the correspond-
ing CFT operators. Then, the variational principle ensures
that arbitrary variations of the generating functional are
expressed as total variations of the sources, such that the
correlators are directly obtained through functional deriv-
atives thereof.

An interesting observation, which was made in Ref. [12],
is that imposing the Dirichlet condition for the induced
metric at the AdS boundary is ill defined due to the
divergent volume element of AdS space. Furthermore,
fixing the Dirichlet condition for the holographic source
asymptotically close to the boundary does not require
fixing the Dirichlet condition for the intrinsic metric,
as both the extrinsic and intrinsic curvatures admit an
expansion in the holographic source in terms of the
Fefferman-Graham (FG) expansion [13,14]. This lead to
the development of the Kounterterms prescription in
Ref. [15], where the renormalization is achieved by the
addition of a suitable boundary term, which depends on
both extrinsic and intrinsic curvatures of the boundary in a
closed form. For even bulk dimensions, the Kounterterm is

Published by the American Physical Society
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the Chern form, which is the boundary term that appears in
the Euler theorem. Then, the renormalization can also be
achieved by adding the Euler density in the bulk with a
fixed coupling, such that it cancels the divergence of the
maximally symmetric configuration (global AdS). In the
case of odd bulk dimensions, there is a similar procedure
where the boundary term is the contact term of the
transgression form of the AdS group [16]. In that case,
the second gauge connection describes a product manifold
that shares the same boundary as the dynamical manifold.

As shown in Ref. [17], the 4D Kounterterm-
renormalized Einstein-AdS action can be written in a
McDowell-Mansouri form for the AdS group [18,19]. In
the case of Einstein-AdS spacetimes, the latter can be written
in terms of the Weyl tensor squared and the on-shell action
becomes that of conformal gravity (CG), which is the unique
local conformal invariant in four dimensions. This rewriting
of the Einstein theory by embedding it in CG is consistent at
the level of the equation of motion (EOM), as all Einstein
spacetimes belong to the solution space of the theory, whose
EOM is given by the Bach-flat condition. Since CG contains
an Einstein sector, the corresponding action can be explicitly
separated into a MacDowell-Mansouri part plus terms which
vanish for Einstein spaces [20].

For AIAdS manifolds with weakened AdS asymptotics,
it was shown that the Weyl-squared CG action is finite off-
shell, even for non-Bach-flat spacetimes [21]. Therefore,
the finiteness of the McDowell-Mansouri action for
Einstein-AdS gravity follows immediately, as the two
actions are equivalent for Einstein spaces. This was the
first example where the embedding of a gravity theory into
another one with bulk local conformal invariance allowed
to obtain the renormalized form of the action. Later, in
Ref. [22], the same procedure was generalized for Einstein-
AdS gravity in six dimensions by embedding it into the
unique CG action in six dimensions that admits Einstein
spaces as solutions, constructed in Ref. [23]. It is important
to emphasize that, even though the embedding of Einstein-
AdS into CG in four dimensions gives the same action
principle as the Kounterterms, this is not true in six
dimensions. As discussed in Ref. [24], in the 6D case,
the topologically renormalized action cancels all divergen-
ces only for AIAdS spaces with conformally flat boundary.
In the generic case, the latter prescription fails to cancel a
boundary divergence which depends of the Weyl-squared
of the boundary manifold. However, the embedding in the
6D CG theory correctly reproduces all the terms required
for achieving the renormalization, such that the obtained
action is fully equivalent to the one given by HR, up to the
normalizable order. Thus, it is this prescription that gives
the correct renormalization, generalizing the Kounterterms
beyond the requirement of the conformal flatness of the
boundary.

Beyond purely metric theories, renormalization appro-
aches have been considered for cases with additional degrees

of freedom, e.g., scalar fields. Indeed, in the context of HR,
counterterms for AIAdS spaces in scalar-tensor theories
have been discussed in Refs. [25-30]. Therefore, a natural
question to ask is whether or not the use of local conformal
symmetry in the bulk to determine the renormalization terms
can be generalized for these theories. Here, we address this
issue and construct renormalized gravity actions possessing
a conformally coupled scalar-tensor sector, whose solutions
have been studied in the literature. Therefore, this constitutes
the first application of the conformal renormalization ideato
scalar-tensor theories of gravity.

The paper is organized as follows. In Sec. II, we review
the purely metric formulation of CG in four dimensions
and show its finiteness for AIAdS spaces as well as its
equivalence with renormalized Einstein-AdS theory when
evaluated at Einstein spaces. In Sec. III, we obtain the
conformal completion of a conformally coupled scalar-
tensor theory, which allows us to read the counterterms
for the AIAdS sector explicitly. Section IV is devoted
to present the renormalized Einstein-AdS gravity in
MacDowell-Mansouri form conformally coupled to scalar
fields. We show that, even though the latter is not conformal
invariant, the counterterms still render the action finite for a
suitable falloff of the scalar field; we compute its value
explicitly for the solution obtained in Refs. [31,32]. In
Sec. V, we prove the renormalization of CG with con-
formally coupled scalar fields for all Bach-flat solutions
and we compute explicitly the renormalized action for
analytic black-hole configurations with stealth scalar fields.
Finally, in Sec. VI we present a summary and discussion
about the main results.

II. CONFORMAL GRAVITY

In four dimensions, CG is an interesting theory con-
structed solely in terms of the squared Weyl tensor. It has
been studied as an ultraviolet completion of general
relativity [33], as a counterterm in holographic renormal-
ization [34], and it appears as a possible explanation for the
flat galaxy rotation curves [35]. Different supersymmetric
extensions of CG have been studied in Refs. [36-46]
alongside their holographic properties [47]. Additionally,
it arises in the context of the twistor formulation of string
theory [48]. Its action represents the only four-dimensional
functional constructed uniquely in terms of the metric
that remains invariant under local Weyl rescalings
G = G = eza(x)gﬂ,, As a consequence, the theory
involves four-derivative terms which makes it pathological
due to the presence of ghosts. However, since higher-
derivative theories of gravity have better renormalizability
properties than Einstein gravity [18,49-51], they are
considered useful toy models for quantum gravity.

The space of solutions of CG contains all Einstein
spaces. Indeed, the CG action becomes equal to that of
renormalized Einstein-AdS gravity when evaluated at
Einstein spaces [20]. In the case of AIAdS manifolds,
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the Einstein condition can be implemented, up to the
normalizable order, by imposing Neumann boundary con-
ditions on the FG expansion [52]. Additionally, this theory
has the remarkable property of being finite and possessing a
well-posed variational principle for AIAdS spacetimes
[21]. Specifically, the dynamics of conformal gravity is
dictated by the action principle

Icg = aCG/d4x\/ |l WﬂﬁWﬁ;’ (1)

where acg is a dimensionless coupling constant, g =
detg,, is the metric determinant, while

1

. 1
W% =RY - 45" and S :—(R

1 uv ) Hv _gg;wR> (2)

are the Weyl and Schouten tensor, respectively. Here, Greek
indices indicate the bulk coordinate patch. The four-order
field equations are obtained by performing arbitrary var-
iations of Eq. (1) with respect to the metric, giving B, = 0,
where

B, = _4(v/1c/w/1 + Stow

/Mya)

and C/ll/ﬁ = VASW - VySM, (3)
are the Bach and Cotton tensors, respectively. Therefore,
the solution space of the theory corresponds to Bach-flat
spacetimes. Moreover, notice that Einstein spaces satisfy
this condition automatically. Then, all Einstein spaces are
Bach flat, even though the converse is not necessarily true.
On the other hand, even though some Bach-flat spaces
are conformally Einstein, there are examples where this
condition is not satisfied and they cannot be related to
solutions in Einstein gravity by performing a conformal
transformation [53,54].

One of the most interesting features of CG is the finiteness
of the action when evaluated at AIAdS spacetimes. Namely,
the usual divergences that arise in the gravitational action
due to the infinite volume of AdS spaces are absent in the
case of CG and no additional counterterms are needed.
Indeed, as shown in Ref. [21] for weakened asymptotically
AdS boundary conditions, both the quasilocal stress tensor
and the partially massless response function are finite; these
are the corresponding currents coupled to the massless
and the massive gravitons, respectively. These independent
currents are the ones that in AdS/CFT are identified with the
CFT operators whose holographic sources are then the two
lowest order coefficients of the FG expansion of the metric
about the AdS boundary.

The asymptotic behavior of the CG action can be also
studied by considering power-counting arguments. In
particular, we consider the generic AIAdS conditions which
in the FG gauge obtain the form

72 oo
ds* = ? (de + gij(Z, x>dxldxj)’

22

Z
Gij(z,x) = go)ij(x) + 29(1):‘;’(75) + ﬁg(Z)ij(x)
23
+ Fg(S)ij(x) + (4)

where z is the radial coordinate, £ is the AdS radius, and
Latin indices indicate the coordinates at the codimension-1
constant-z hypersurface. Here, z = 0 denotes the location
of the conformal boundary. This structure defines a radial
ADM-like foliation that allows us to decompose the Weyl
squared in term of the three independent contributions; they
are

Wil WHs = Wi Whn - AWEWE + 4w whn. (5)
Interestingly enough, for the generic AIAdS conditions
described above, all the independent components of the
Weyl tensor fall-off as O(z?). Thus, the CG Lagrangian

falls-off as O(z*), what leads to the action behaving as

/ d*x W“ﬂW"” / d3x /

The latter indicates that the CG action is free from any IR
divergences, in accordance to Ref. [21]. This behavior of
the CG action makes manifest the relation between bulk
conformal symmetry and renormalization, not only for
CG, but also for every subsector of the solution space
of the theory. Indeed, for Einstein-AdS spacetimes, where

S = —2—;)2 9u» the Weyl tensor coincides with the curva-

ture of the torsionless AdS group, .7-"% , given by

aff
W &)

1
=R + Z5,‘;5’ = Fub. (7)
This relation indicates that the CG action evaluated for
Einstein spacetimes reduces to the MacDowell-Mansouri
action for the AdS group [19]. The latter corresponds to the
topologically renormalized Einstein-AdS action' [17]

2
- / d'x
2567'[GN

1---Hq TV1V2 U3ly
|g|5l;|---l/4‘7:ﬂ1ﬂ2]:ﬂ3ﬂ47

(8)

IGlEl =1 g/ex?s

'Actually, the resulting action in Eq. (8) is shifted by a constant
term involving the Euler characteristic of the manifold, which
naturally arises from the Kounterterms renormalization scheme
and matches the renormalized volume [55].
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which, in turn, is equivalent to holographic renormaliza-
tion [24].

It is important to note that the action of Eq. (8) has a well-
defined Dirichlet variational principle for the metric at the
conformal boundary g(qy;; [56]. This is in accordance with
Ref. [12], which showed that the finiteness and the well
posedness of the variational principle in terms of the
holographic sources are related.

Furthermore, Eq. (8) suggests that the counterterms
of Einstein-AdS gravity are dictated by bulk conformal
symmetry, which introduces the concept of conformal
renormalization. Conversely, one could show the finiteness
of the MacDowell-Mansouri action (8) by using the generic

off-shell relation between F fff and the Weyl tensor. This is
given by

Wil = Fill - Xl )
Q a 1 12 ¢
Xill = 2HS) + o5 <R + ﬁ> 5, (10)

with Hj = R} —i&,‘}R being the traceless Ricci tensor.
Thus, replacing this relation into Eq. (8), one obtains

ren fz Loee Y7 7)) v
l(aze\d)s = 2562Gy / d'x lg] [5’51...53WmuiWu§u‘i + 8H’5Hﬂ
2 12)\2
—|R+— . 11

This action reduces exactly to that of Eq. (1) for Einstein
spaces, as it can be seen by noticing that the last two terms of
Eq. (11) vanish identically upon this condition. Therefore,
as the CG action is finite in general for weakened AdS
asymptotics, one concludes that the obtained expression is
renormalized for Einstein-AdS spacetimes.

A. A new route to the renormalized Einstein-AdS action

In what follows, we provide a different strategy to address
conformal renormalization. Instead of finding a conformally
invariant theory and evaluating it at different sectors of the
solutions space, we perform its on-shell conformal com-
pletion. This will be the guiding principle for the derivation
of the generalization to scalar-tensor theories.

Our starting point is the Einstein-AdS gravity in four
dimensions. In this case, the Einstein-Hilbert Lagrangian
density with a negative cosmological constant A = —3/£>
reads

Lo = J@(R+%>. (12)

The behavior of the Ricci scalar under infinitesimal
local Weyl rescalings of the metric, i.e., 3,9, = 26g,,, i$
given by

8,R = —206R —2(D — 1)0o. (13)

Then, the Einstein-Hilbert term transforms according to

5{@(1”%)} =2./]¢] [G(R+§) —3wv,,a]
(14)

In order to conformally complete the Einstein-Hilbert
Lagrangian without modifying the field equations, one
has to add either a surface or topological terms. Since
we are working in four dimensions, we consider that the
Einstein-Hilbert action is supplemented by the Gauss-
Bonnet term with an arbitrary coupling constant c, that is,

6
ZLencs = V19l (R +ﬁ + C4E4>7 (15)

where ¢, is a constant with units of length squared and

1

E
t Ty

SLILIRIGRIA, = R — ARUR + RRIL (16)
1s the Gauss-Bonnet invariant. In four dimensions, the latter
does not contribute to the bulk dynamics since its integral is
proportional to the sum of the Euler characteristic and the
integral of the Chern form in a codimension-one boundary.
Nevertheless, it changes the conserved charges and the
Euclidean on-shell action in a nontrivial way [17,57,58].
Considering its Weyl variation

1
1 0o (V19100 R Ricys) = =168023 Y, (V1911 V*20),

(17)
and summing up all the contributions, we get
12
50‘$EH,GB = 2\/ |g| | R +ﬁ - 3|:|O' - 8C45l;11522
1
x (2 Ch i, V26 + Sy vﬂzvvza)] : (18)

As expected, the EH action supplemented by the GB
density is not Weyl invariant. However, evaluating at
Einstein spaces, the variation becomes

24
5LEncele = V19l (‘650 + 20450) (19)

Demanding on-shell Weyl invariance of the action, the
coupling constant is uniquely fixed as ¢4 = %2. Thus, the
corresponding action matches, up to the Euler characteristic
of the manifold, the topologically renormalized Einstein-
AdS action [17]. This has recently shown to be equivalent
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to the HR prescription [24]. This procedure provides an
alternative route to obtain the surface terms that render the
action finite.

The generalization of the concept of conformal renorm-
alization in six dimension has been presented in Ref. [22].
In the following, we will extend this prescription to the case
when scalar fields are included.

III. CONFORMALLY COUPLED SCALAR FIELDS

The previous analysis indicates that, in the presence of
purely metric fields, bulk conformal invariance leads to
a finite action when AlAdS spacetimes are considered. In
this section, we study whether this relation can be extended
in the presence of scalar fields. Our starting point is the
conformally coupled scalar-tensor theory with a self-
interacting scalar field, whose action is given by

1, - / dxr/To] (% PR+ % ViV g + v¢4> . (20)

where v is the dimensionless coupling of the quartic scalar
potential. This action is quasiconformal invariant, namely,
it transforms as a boundary term under the simultaneous
Weyl rescaling of the metric and scalar field given by g, —
G = €*Wg,, and ¢ > ¢ = e7°W¢. Indeed, considering
the infinitesimal Weyl rescaling of the fields

059y = 209, and 6,9 = —o, (21)

the Eq. (20) transforms as

8,1y = —% / d*xv/]9|V,(¢*V¥o). (22)

The presence of the total derivative indicates that the action
I, should be supplemented by a boundary term and/or
a topological contribution for restoring the exact local
conformal invariance of the theory.

In order to perform the conformal completion of the last
expression, we consider that for a scalar @ of arbitrary
scaling dimension A, the Weyl variation of the Laplacian
multiplied with the volume element reads

5,(+v/19|0®) = /|g|[(D + A = 2)600® + AdTo
+ (D +2A —2)V46V,®]. (23)

Thus, for ® = ¢*> with A = =2 in four dimensions, we
obtain

35(v/1918¢%) = =2\/19IV,,(¢*V*o). (24)

Therefore, the combination

1
1¢,cc = I¢ _Z/d4xv |9|D¢2, (25)

is fully invariant under Weyl rescalings of both the metric
and the scalar field. Indeed, this action can be equivalently
written as

1 1
lee= [ @5Vl <E¢2R—5¢D¢+v¢4). (26)

In the last expression, it becomes manifest that the
conformal completion of the nonminimally coupled scalar
field action leads to an explicit dependence from the
Yamabe operator A,, that reads

(D-2)

A =-—Or——— 2
2 +4(D—1)

(27)

This differential operator—frequently dubbed conformal
Laplacian—is conformally covariant with a scaling weight

—D—; 2 when acts on scalars of scaling dimensions A =

—DT‘Z [59,60]. One may trivially extend this differential
operator by adding a scalar with conformal weight A = —2.
In particular, for the theory of interest, we consider the
extension

Ay = Ay + cgp?, (28)

where ¢ is a dimensionless arbitrary constant. This allows
us to write the action (26) as

1 ~
Iqicc = E/d4x\/m¢A2¢ (29)

Since the Yamabe operator is conformally covariant, the
action (29) is explicitly invariant under local rescalings.
However, there are configurations which break the sym-
metry, e.g., constant scalar fields. In that case, the kinetic
part of the scalar field vanishes and one is left only with the
Einstein-Hilbert part, losing the information of the presence
of the scalar. Moreover, it is easy to see that the conformal
transformation becomes singular for a constant scalar by
starting with a nontrivial scalar configuration such that the
action (29) is finite and the spacetime is A1AdS. Then, one
can choose the conformal transformation to make the scalar
field constant. If the original value of the action was finite,
then, by conformal invariance, it should remain finite at the
constant scalar field configuration. However, in that case,
the action will diverge as the AdS volume. Therefore, the
transformation has to be singular. This implies that 1, .. has
to be supplemented by the corresponding compensating
terms which are necessary to ensure the bulk conformal
invariance of all possible field configurations of the theory,
including the case of a constant scalar field.
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In order to circumvent this issue, it iS convenient to
introduce the tensor proposed in Ref. [61], namely,

Sy = PRl — 45, VIN b + 86/ VIV

— 8V VP, (30)

which transforms covariantly under Weyl rescalings in four
dimensions; i.e.,

S’/{; - S’/{; = 6_45()()8/;;;. (31)

This implies that the tensor (30) becomes a convenient
building block for constructing conformally invariant
scalar-tensor theories of gravity. Indeed, their traces are

St =8 = $*RE - §ipTp — 29 VY b
+ 4VHEGV p — 5V, VA, (32)

S=8Y = ¢*R - 640¢. (33)

One can see that Eqgs. (27) and (33) coincide, up to an
overall factor, if and only if ¢ = 0. A natural generalization
of Eq. (30) including the missing piece of the Yamabe
operator in Eq. (33) can be obtained by shifting S’ in field
space according to

o1

o= 22 S+ 20, 34

where 5’;1' _‘fff,’,’ =p !5’[2‘1 .. .5’: ”] is the generalized Kronecker
P
delta of rank p. Written in this way, one can see that Zﬁ; has

the same conformal weight as the Weyl tensor. Then, its
trace gives

P*Zhy = ¢*R — 60 + 24vg* = 67, (35)

for ¢ = 4v. Namely, the full trace of the conformally
covariant tensor 2’/{; is equivalent, up to an overall factor,

to the Yamabe operator in four dimensions.

Based on these considerations, we consider a confor-
mally invariant scalar-tensor theory whose dynamics is
described by the action principle

K: V1Vy xV3ly
L4 cont = 4 d*x |91, 0 Zhis D
4 1, 1 4
=96lv | d*x+\/|g ﬁq’) R—§¢D¢+1/¢
96v

(B + V,,J")] , (36)

where ¢ is a dimensionless parameter and

I = B¢\ GAVAp + $A(Vr Tl — VAV, Vieh)
+ §IVIGVAY, ), (37)

with G,, =R, — % gwR being the Einstein tensor.
Equation (36) reproduces, up-to-a boundary term, exactly
the Yamabe operator of the conformally coupled scalar-
tensor action in Eq. (29).

As previously shown, the Gauss-Bonnet term does not
transform covariantly under Weyl rescalings [see Eq. (17)].
Nevertheless, since the left-hand side of the equation

1 5#1~~M4Sl/11/2 SU3U4 — l
Vi Vg Do P ps3py
4¢4 1--- Vg D P U3y 4

0" R Ry + V", (38)
transforms covariantly under Weyl rescalings by construc-
tion, we conclude that the divergence of J# compensates
the nonhomogeneous piece of FE, under conformal
transformations.

The field equations of the theory given by the initial
action (20) can be obtained by performing stationary
variations of the action (36) with respect to the metric
and scalar field, giving

1 1
T/uz = vu¢vu¢ - igﬂuvlld)vlqﬁ + 6 (g/wl:' - vyvv

+ le>¢2 - 1/4549/4,/ =0, (393)

1
E=0¢p - 8¢R —dvp? =0, (39b)
respectively. By taking the trace of Eq. (39a) and compar-
ing it to Eq. (39b), one has that T = ¢**T,,, = ¢&. Also, the
2 tensor is related to the 7, of Eq. (39a) through

1
Pzl = (T’; - 2T5’;). (40)

Notice that a constant scalar field configuration, say
¢ = ¢y, reduces the theory (36) to Einstein-AdS gravity.
This case corresponds to the Einstein frame of the Weyl
symmetry. Indeed, in order for the action to be written in
terms of the usual Newton’s constant Gy and the AdS
radius Z, the choice

1 ?

2 _ =
v =5p and C=crG

(41)

is made. At the level of the equations of motion, one can see
that Eq. (39a) becomes the usual Einstein field equation
when fixing the Weyl gauge as in Eq. (41). Also, Eq. (39b)
simply becomes the constraint that the Ricci scalar should
be fixed in terms of the AdS radius, as is the case for
Einstein spaces. Therefore, it is evident that the theory
admits the full Einstein-AdS family as solutions for a
constant scalar field.

104049-6



CONFORMAL RENORMALIZATION OF SCALAR-TENSOR ...

PHYS. REV. D 107, 104049 (2023)

At the level of the action, one can now check how the
aforementioned Weyl gauge choice implies that the
Lagrangian reduces to that of renormalized Einstein-AdS
gravity. Indeed, for the values of the coupling constants in
Eq. (41), the action (29) can be cast into the MacDowell-
Mansouri form given in Eq. (8). This is the exact form of
the on-shell Einstein-Hilbert action with negative cosmo-
logical constant augmented by the Gauss-Bonnet term with
a fixed coupling; the latter provides a natural counterterm
for renormalizing the Euclidean on-shell action and the
conserved charges for asymptotically locally Einstein-AdS
solutions [17,57,58]. The previous discussion can be
resumed in the following relation

Ly cont = Iinss- (42)

Therefore, we conclude that the action (36) has a well-
posed Einstein limit defined through the choice of Eq. (41)
for a constant scalar field.

In order to study the finiteness of the theory (36) when
AIAdS spacetimes are considered, we perform the off-shell
decomposition of the Weyl tensor (2) in terms of the X
tensor (40) and the Schouten tensor. Since the Einstein
tensor appears explicitly in the definition of T,,, we can
equivalently write the Schouten as

w _ Yl 1o
Sy = > (Gy + 3R5y>. (43)
Taking into account the Egs. (39a) and (39b), one can
replace the Einstein tensor and the Ricci scalar in terms of
T,, and its corresponding trace. When the latter is replaced
in the definition of the Weyl tensor (2), results into the off-
shell form of the Weyl, this is,

2 J
Wi =Tt = 2 (6T[a5ﬁ] - Ta/;;). (44)
Since the field equations imply that 7', = 0, we conclude
that the X tensor coincides with the Weyl tensor and the on-
shell action becomes

/ Ap
I¢,conf|on-shell = Z-: / d*x |g|Wl,;; Wﬂfv‘ (45)

Therefore, the fully conformally coupled scalar-tensor
theory is on-shell equivalent to CG, which is finite for
any AIAdS solution [21]. A particular example of this fact
has been recently shown in Ref. [62] for charged Taub-
NUT-AdS and Eguchi-Hanson solutions in presence of
conformally coupled scalar fields.

In analogy to the Einstein-AdS case discussed in Sec. II,
demanding exact local conformal invariance of the action
under Weyl rescalings of both the metric and the scalar
field, dictates the counterterms that render the action finite.

Namely, the relation 7 .,nr = Igen) is valid and it leads to

the renormalized conformally coupled scalar action, that
reads

1 v
157 = gy [ ateloleti s

1
=1y+—

56 d*x\/|g|(Es + V,J#),  (46)

where
Tt =8¢~ Gy p + ¢~ (Vi — VAV, Vi)
LIV ]~ 5 99, (@7)

and 7, is defined in Eq. (20). Hence, the last expression is
conformally invariant for all configurations allowed by the
solution space of the theory.

We emphasize that in the theory of Eq. (20), or,
equivalently, of Eq. (46), the scalar field cannot be gauged
away to recover Einstein-AdS gravity (41) without chang-
ing the asymptotic behavior. Therefore, when fixing the
AIAdS condition in a configuration with a nontrivial scalar
field, the physical spacetime is chosen as the one in which
said scalar field is present. Thus, the scalar is physical as it
will contribute to the asymptotic charges of the configu-
ration, and in the AdS/CFT context, to the holographic
sources.

IV. COUPLING TO EINSTEIN-AdS GRAVITY

In this section, we extend the application of the
Conformal Renormalization prescription, in the case where
Einstein-AdS gravity couples to the non-minimally con-
formally coupled scalar-tensor field theory. In this case, the
generic form of the action reads

I = d* R—2A)+1, (48
inss = Tong | 4xVIsR=20) + 1. (49

In the last two sections, we have shown that the cancellation
of the divergences for AIAdS spacetimes amounts to
the requirement that the on-shell action is invariant under
Weyl rescalings of the bulk fields. However, the on-shell
conformal completion of action in Eq. (48) for any
configuration of the solution space is highly nontrivial.
Nevertheless, there are certain sectors of the theory that
allow us to render the corresponding action conformally
invariant. In order to do so, we consider the metric and the
scalar sector separately. As shown in the last section, the
latter can be supplemented by boundary terms which make
it off-shell conformally invariant in four dimensions.
Although this is finite for all possible solutions of such
a theory, it is not expected to be true when other sectors are
included. In a similar fashion, the pure-metric sector of the
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theory renders conformally invariant for Einstein-AdS
spacetimes when augmented by the Gauss-Bonnet term
with a fixed overall constant, as seen in Eq. (8) and in
Refs. [20,52]. Nevertheless, we show that, provided a
suitable asymptotic behavior of the scalar field in AdS,
the action is finite without reference to intrinsic boundary
counterterms.

A. Renormalization
The dynamics of the theory we are interested in is
dictated by an action principle that contains an Einstein-
AdS sector written in a MacDowell-Mansouri form and the
renormalized conformally coupled scalars, namely,

_ V1V) xoValy
é’zﬂlﬂz 2”3144 ’

Iy =+ / dx/glot s (i s
(49)

where a = ¢/, while .7-'” Y and Z” “ are defined in Egs. (7)
and (34), respectively. The field equations for the metric
and scalar field obtained from arbitrary variations of the
action (49) with respect those fields are

3
Eu= a(GW - ﬁgﬂy) - 121/”2CUTW =0, (50a)

£=0p- %¢R —dug? =0, (50b)

respectively. It is worth mentioning that this theory admits
Einstein-AdS spaces as solutions when the scalar field is
constant. Indeed, the condition of Eq. (41) imposes that the
solutions to the Egs. (50) are Einstein manifolds, for which
the action of Eq. (49) vanishes identically. In particular, this
theory admits global AdS space as the ground state when
the scalar field is constant.

Having partially conformally completed the theory, we
study under which conditions this can be rendered finite.
Following the prescription introduced in the last section,
we can rewrite the action in terms of the Weyl squared term,
which is finite for any AIAdS spacetimes. In a similar
fashion, we have introduced an alternative decomposition
of the Weyl tensor in terms of the X tensor (44).
Additionally, since the trace of the stress-energy tensor
T, vanishes on shell, then Eq. (502) constrains the space of
solutions to possess negative constant Ricci scalar, i.e.,

R=-——. (51)

This simplifies the X tensor in Eq. (10) as it is now depends
explicitly on the traceless Ricci tensor. Replacing Eqgs. (9)
and (44) into the action Iyp, and taking into account the
EOM, we get that

o
Iniviglon-shen = /d“x lg] [(a — §)VV§4£W’;7,

+2a (@ - 1) H’JH/’;} . (52)

This on-shell action matches the CG action for Einstein
spaces (HY = 0) or, equivalently, for stealth solutions: a
nontrivial scalar field with vanishing stress-energy tensor
[63—66]. Therefore, in those cases the theory is finite for
AlAdS Einstein spacetimes. Indeed, if @ = ¢, the action
vanishes identically for Einstein solutions, providing a
different sort of criticality in scalar-tensor theories. On
the other hand, non-Einstein solutions can also provide a
finite on-shell action if and only if the fall-off of the non-
Weyl contribution of the last expression is sufficiently fast.
A characteristic example of the latter is given below.

B. Applications: The MSTZ black hole

In the absence of the cosmological constant and the
quartic potential, the first black hole solution to the field
equations (50) was found in Refs. [67,68]. However, in that
case the scalar field diverges at the horizon. In order to
circumvent this problem, the authors of Refs. [31,32]
showed that the addition of these two terms allows for
the scalar-field singularity to lie behind the horizon.” This is
known as the Martinez-Staforelli-Troncoso-Zanelli (MSTZ)
black hole. In that case, the authors considered a line
element that remains locally invariant under the action
of the isometry groups SO(3) x R, SO(1,2) x R, and
ISO(2) x R. These conditions yield

dr?
d52 f( )dtz + ﬁ + r2d22 (53)
r
Here, d2<2k) is the line element of a two-dimensional base

manifold of constant curvature k, describing locally S2, T2,
and H? transverse sections for k = 1,0, —1, respectively.
The solution is then given by [31,32]

uG\?  r? 1 /1 uG
= 1 —_ — - —
() k( * r ) + 2 and ¢ (r) N 2ur+uG’

(54)

where y is an integration constant, v > 0, and the condition
on the parameters

f2

= 55
¢ 642G (53)
must be met. Indeed, we can fix { = 5z without loss of

generality in order to obtain exactly the same normalization

*For different solutions in this theory and modifications
thereof, see Refs. [69-84].

104049-8



CONFORMAL RENORMALIZATION OF SCALAR-TENSOR ...

PHYS. REV. D 107, 104049 (2023)

as in Refs. [31,32]. This solution has a curvature singularity
at r = 0. The cosmic censorship conjecture requires the
existence of a horizon at r = ry,, defined by the positive real
roots of the polynomial f(r;,) = 0. This condition demands
that k = —1. In order for this solution to describe a black
hole, the topology of the transverse section should be H?/T"
where T is a subgroup of SO(2, 1), such that the hyper-
surfaces of constant  — r have a finite area. Focusing on
the case y > 0, the solution has only one horizon and it is

given by
4 4uG
== 14+4/1+—). 56
ry 2( + + f) (56)

To first order in the saddle-point approximation, we can
obtain the partition function Z through the relation
In Z =~ —Ig, where [g is the Euclidean on-shell action.
To compute the latter, we perform the analytic continuation
to Euclidean time, that is, t — —iz. The absence of conical
singularities at the horizon implies that 7 ~ 7 + 3, where
is the period of the Euclidean time which is identified as the
inverse of the Hawking temperature 7. For the solution
(54), we find

2r?

Ty=p"= (57)
Then, evaluating the Euclidean on-shell action (49) on the
solution (54) we obtain

C—r. 417
Iy = _ﬂw(k)( + ) , (58)
8rGt

where @) is the volume of the codimension-2 base
manifold. Remarkably, the value of the partition function
is finite without any reference to boundary counterterms,
even though it corresponds to a nonstealth configuration.
This is due to the fact that the fall-off of the scalar field and
the traceless Ricci tensor is of order O(r~!) and O(r™),
respectively, which makes the non-Weyl contribution in
Eq. (52) to be subdominant, inducing no divergences. The
latter can be seen directly from the fact that

d4x\/m< a

m— 1>H’;HZNO(}’_1), (59)
when evaluated at the solution (54). Thus, this prescription
provides a natural definition of counterterms for scalar-
tensor theories possessing an Einstein sector and confor-
mally coupled scalar fields whenever the non-Weyl squared
part of the on-shell Lagrangian (52) have a falloff that is at
least as fast as O(r™).

Furthermore, notice that the on-shell form of the action

Iyivg indicates that it vanishes identically for Einstein

spacetimes when a = { or, equivalently, v = v Indeed,

this is exactly the point in parameter space where the
solution (54) exists, although the configuration is non-
Einstein. This theory is completely analogous to the critical
gravity, introduced in Ref. [23], that is trivial for Einstein
spacetimes. This means that Iypy, for the specific value of
v, corresponds to the generalization of critical gravity to
scalar-tensor theories of gravity.

V. CONFORMAL GRAVITY AND SCALAR FIELDS

Another very interesting class of scalar-tensor theories
with manifest conformal invariance is given by the CG
action (1) and the nonminimally coupled scalar field action
1 e that is,

ICG¢ :ICG+I(/) (60)

Unlike the Einstein-Hilbert action in the previous section,
the CG action is conformally invariant and the only part
that it should be conformally completed comes from the
scalar sector. This is achieved by introducing the surface
terms that allow us to bring /4 in the from given in Eq. (46).
Thus, both actions are fully conformally invariant and they
can be cast into the form

1 2
Tesgem =7 4t/ TGl 4 (WS Wit ~CESR TR,

(61)

In fact, this is the most general conformally invariant scalar-
tensor theory of gravity, constructed out of squares of a
single conformally covariant tensor in the presence of
scalar fields. The field equations are obtained by perform-
ing stationary variations of the action with respect to the
metric and scalar field, giving

Ew=aB,, —480vT,, =0, (62a)

E=0¢ - %gbR — 4u® =0, (62b)

respectively. For a constant scalar field, these field equa-
tions admit Einstein spaces as solutions since they are
Bach-flat and have vanishing stress-energy tensor.

A. Renormalization

In order to study the consequences of the conformal
completion of /g, on its renormalization, we rewrite the
action in terms of Weyl squared taking into account the
decomposition given in Eq. (44). In this case, IcGgp conr Can
be written as

104049-9



GIORGOS ANASTASIOU et al.

PHYS. REV. D 107, 104049 (2023)

Teeo = [ @/l Lt v
248
+ R

This is just a rewriting of the action in Eq. (61), which can
be further simplified when going on shell due to Eq. (62b)
or, equivalently, 7 = 0, giving

ICG{/),COnf|0n—Shell = / d*x \/ |:

+ % T T’,f} . (64)
Thus, the action matches the Weyl squared, acquiring
its well-behaved asymptotics for any AIAdS spacetimes,
when configurations corresponding to 7, = 0 are consid-
ered. Furthermore, as noticed in the last section, the
addition of the counterterms that conformally complete 7,
lead to a finite action even for nonvanishing 7, configu-
rations, as long as the fall-off of the term ¢‘4T;T£‘ is fast
enough.

Furthermore, there exists a particular point in parameter
space, i.e., @ = ¢, where the action vanishes identically for
all solutions of the theory for which T,, = 0. Thus, the
Euclidean continuation of these solutions have vanishing
on-shell action like the maximally symmetric solution, and
therefore they can be considered to be part of the same
vacuum state of the theory. The latter condition does not
imply necessarily that the scalar field has to be trivial,
rather, it could represent a stealth configuration. This yields
an extended notion of criticality since the Euclidean on-
shell action vanishes for stealth solutions at this particular
point in parameter space. This results is in complete
analogy to critical gravity for the metric fields [23] where
the action and conserved charges vanish identically for
Einstein spaces [85,86]. However, in both theories the
vacuum sector is determined by Einstein spacetimes. Here,
on the other hand, criticality arises for stealth configura-
tions that can or cannot be Einstein spacetimes.

(37T - m} . (63)

- Ha Yp V1V Y 7V3Va
51/1 Uy Wﬂ|ﬂ2W/43I44

B. Applications: Stealth configurations over the Riegert
black hole

Let us study stealth configurations to check conformal
renormalization explicitly. Replacing Eq. (53) into (62), the
following solution is found

6mG 2 3mG 2mG /1
) =k+ 2 ——<k+ m )r— M (65a)
ro ro ro r
1 k+2’"—G+%
= — To , 65b
)= - (65b)

where m, A, and r are integration constants. This solution
exists only for v # 0 and ry # 0 and, to the best of our
knowledge, it was found first in [87]. Indeed, even though
the scalar field is nontrivial, it has a vanishing stress-energy
tensor. Thus, we conclude that this solution represents a
stealth scalar field [63—-66] over the Riegert metric [88]; the
latter represents the most general static and spherically
symmetric Bach-flat spacetime that solves the field equa-
tions of conformal gravity. Moreover, this solution is
continuously connected to the topological Schwarzschild
black hole AdS when ry, — oo, where the scalar field

becomes constant, namely, ¢ = —é.

The solution is endowed with a curvature singularity at
r = 0 as it can be seen from its Ricci scalar, that is,

12(3mG + kry)  12mG
R=41+ (m2+ o) _ . (66)
ror ror

The singularity is dressed by a single horizon defined as the
real root of the cubic polynomial f(r,) = 0. We do not
provide its explicit expression because it is cumbersome
and not very illuminating. However, in order for a black
hole horizon to exist, the condition r, > 0 must be met.
Then, focusing on the case k = 1 for the sake of simplicity,
we identify two possible cases: (i) ry > 0 or (i) ry < 0. In
both cases, we find that m > 0. In the first one, there exists
apole in the scalar field at » = r,. Then, demanding that the
scalar pole lies behind of the horizon, we find 0 < ry <
6mG < r;, and

_ 2
(ro — 6mG)(ro + 3mG) < A<0 y

ro(3mGr)?
_ 2
Ao (ro — 6mG)(ro + 3mG) . (67)
ro(3mGry)?

On the other hand, if ry < 0, the scalar field is regular for
r € R. . Then, there is no need to demand r, > ry. Thus,
we find

3

2
o

(ro>-2mG A A<DO0). (68)
These conditions guarantee the existence of a black hole
solution with a regular scalar field outside the horizon.

The black hole temperature of the solution (65) is
given by

_ (rp = ro)[k(3ry, = ro) —ﬂrﬁ(rh —1p)]
T = drry[3ry(ry, = ro) + 1) > (69)

which provides the inverse of the Euclidean’s time period of
this configuration. As we anticipated, conformal invariance
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of the action functional (61) renders the Euclidean on-shell
action finite for stealth configurations. This can be seen
explicitly by evaluating the Eq. (61) in the solution (65),
giving

P C)ﬂ3w<k>m2G2 [1 _3% <1 - r—h)] (70)

T

Notice that, even though the scalar field does not backreact,
its presence modifies the Euclidean on-shell action in a
nontrivial way. Then, we can unveil whether the thermo-
dynamic system develops a Hawking-Page phase transition
when a # {. This will be studied in a forthcoming work.
Additionally, there exist another asymptotically AdS
black hole which is not continuously connected to the
solution presented in Eq. (65). These configurations were
first reported in Ref. [89], where their conserved charges
were obtained through the Abbott-Deser-Tekin formalism
[90-93]. In the coordinates we are using here, the asymp-
totically AdS solution reported in [89] is given by

f(r):k+12y¢0—br—/13ﬁ, (71a)
pr) =00, (71b)

where ¢, b, and 1 are integration constants subject to the
condition (¢ — 4a)(k + 6v¢y) = 0. Although this solution
is not continuously connected to (65), it represents a stealth
scalar field configuration as well. This solution possesses
a curvature singularity at » = 0 which can be dressed by
a horizon located at the locus r = r, defined through
the polynomial f(r,) =0. In the Euclidean section, the
absence of conical singularities demands that the period of
the Euclidean time is

o 47[1”;/2

=, 72
p r%l—l—kfz (72)

from which one can read the Hawking temperature. The
conformally renormalized Euclidean on-shell action (61)
for the solution in Eq. (71) is then given by

16wk (a={)
Ip=— 5 . (73)

Thus, we conclude that conformal renormalization provides
a finite value of the Euclidean on-shell action for the
solution [89] as well. We will study thermodynamics of this
system in the extended phase space formalism in a forth-
coming work.

VI. DISCUSSION

We studied how the renormalization of nonminimally
coupled scalar-tensor gravity theories is dictated by restor-
ing the on-shell conformal symmetry in the bulk. We
considered the case of a conformally coupled scalar field
with a quartic potential, whose theory produces a boundary
term when performing a Weyl transformation. Then, the
conformal symmetry is restored by writing the kinetic term
of the scalar in a noncanonical way, such that the action
could be written in terms of the Yamabe operator. The
resulting action was Weyl invariant except for the constant
scalar configuration, where the conformal transformation
became singular as evidenced by the fact that the action was
divergent for AIAdS spacetimes. The restoration of the
local rescaling symmetry was achieved by defining the ZZZ
tensor as given in Eq. (34), in terms of the metric and scalar
degrees of freedom, such that it is conformally covariant
and it has the same conformal weight as the Weyl tensor.
Then, X squared is a local conformal invariant of the theory,
which can be used to define the action such that the theory
is both renormalized and has full conformal invariance
restored—such that the Weyl variation vanishes exactly and
there are no singular points in the transformation. The
resulting action was shown to be on-shell renormalized,
such that any field configuration that satisfies the EOM of
the theory has a finite action when considering AIAdS
spacetimes with weakened AdS asymptotics. Additionally,
we note that the scalar field cannot be gauged away without
modifying the boundary behavior away from the AIAdS
condition, and thus it would change the physical state.

We also studied the theory which considers renormalized
Einstein-AdS gravity written in MacDowell-Mansouri
form in the presence of the renormalized conformally
coupled scalar field. In that case, the theory does not have
conformal invariance due to the Einstein-Hilbert sector.
However, for Einstein spaces and constant scalar field, it
becomes on-shell conformal invariant. In this case, the
theory is renormalized for Einstein spacetimes as the full
action becomes proportional to Weyl squared. Other
configurations which also have finite action are those with
AlAdS metrics such that their non-Einstein degrees of
freedom, encoded in the traceless Ricci tensor, vanish
sufficiently fast towards the conformal boundary. The
MSTZ black hole [31,32] belongs to this category and
the value of the on-shell action and the corresponding black
hole temperature were also computed.

Then, the same analysis was performed in conformal
gravity plus renormalized conformally coupled scalar
fields, which corresponds to the most general locally
conformal invariant action constructed from quadratic
antisymmetric contractions of Weyl-covariant tensors.
Indeed, we showed explicitly that this theory is renormal-
ized for Bach-flat spacetimes, which by virtue of the EOM
are also stealth configurations. For this type of spacetimes,
the action is renormalized for AIAdS spacetimes as it is

104049-11



GIORGOS ANASTASIOU et al.

PHYS. REV. D 107, 104049 (2023)

proportional to the CG action. As a particular example,
stealth configurations over the Riegert metric were con-
sidered and their Euclidean on-shell action was shown to be
finite.

In both theories, there are interesting points in parameter
space where the action can be rendered trivial for certain
types of metric and scalar configurations. In particular,
for the theory that includes conformal gravity, the action
vanishes at the critical point of a = for Bach-flat
configurations. Analogously, the theory that includes an
Einstein-AdS sector has a trivial action at the critical point
of @ = { for Einstein spaces, which correspond to solutions
to the EOM with a constant value of the scalar field.

The fact that the action is rendered trivial implies that
all asymptotic charges vanish identically, as well as the
thermodynamic potential which is proportional to the on-
shell action in the Euclidean section. This suggests a novel
notion of criticality in scalar-tensor theories, which is
different from the standard definition formulated perturba-
tively in terms of a decoupling of the massive modes of the
metric from the spectrum [23]. This notion of thermody-
namic criticality corresponds to points in theory space
where the ground state of the theory becomes enhanced,
such that the maximally symmetric configuration has the
same free energy as an entire class of solutions. Thus, they
form a moduli space of vacuum configurations, which
would admit spontaneous transitions between them at zero

free energy cost. This idea was already discussed in the case
of pure gravity theories, for Einstein-AdS gravity in both
four and six dimensions in Refs. [20,86,94]. Although this
point is very interesting, its full analysis requires a careful
study of the thermodynamics. The possible phase transi-
tions, along with the holographic analysis of the renor-
malized actions, will be studied in a follow-up paper.
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