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The Gibbons-Werner method for the gravitational deflection angle of unbound particles in static
spherically symmetric spacetimes is based on the Jacobi metric and Gauss-Bonnet theorem. When it is
extended to bound massive particles, there exist two difficulties: (a) Bound orbits may overlap with
themselves azimuthally. To extend the definition of deflection angle for unbound orbits to bound orbits, we
divide the bound orbit into multiple segments such that each segment does not overlap with itself
azimuthally and can be regarded as an unbound orbit. (b) The infinite region constructed for unbound orbits
in the Gibbons-Werner method is invalid for bound orbits, since the Jacobi metric of bound massive
particles is singular at the far region. To construct a suitable region for bound orbits, we adopt the
generalized Gibbons-Werner method proposed in our last work [Huang and Cao, Phys. Rev. D 106, 104043
(2022)], so that the unphysical region in Jacobi space is avoided. What is more, taking the Schwarzschild
spacetime as an example, we show the details of the calculation and obtain an analytical expression of the
deflection angle between two arbitrary points on the orbit.
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I. INTRODUCTION

The deflection angle of particles moving in gravitational
field is a significant quantity in relativistic astrophysics.
The particle moving in a strong gravitational field can be
treated as a test particle when its size is small enough
comparing to the characteristic length of the system. Such
orbits can be regarded as geodesics in background space-
times. Whether the particle’s orbit is bound or unbound is
determined by the initial motion parameters such as energy
and angular momentum.
The unbound orbit of massless particles (photons) has

been deeply investigated. In 1919, Dyson, Eddington, and
Davidson confirmed the deflection of light passing near the
Sun [1], which laid the foundation of its usage in astro-
physics and cosmology. Later, gravitational lensing based
on light deflection became one of the most important tools
in the study of galaxies and clusters [2], the Hubble
constant [3,4], dark energy [5,6], dark matter [7,8], and
extrasolar planets [9,10]. The unbound orbit of massive
particles has received less attention than that of massless
particles since the rare astrophysical sources. Neutrons,

neutrinos, cosmic rays from stars and supernova, and
theorized weakly interacting massive particles and axi-
ons [11] may be the potential messenger, with which we
can reveal the property of sources (e.g., supernova mecha-
nism), lenses (e.g., mass, charge, and angular momentum),
and particles themselves [12–20].
The deflection angle is of great significance in the

investigation of unbound orbits; thus, people proposed
various approaches to calculate it. For photons, Gibbons
and Werner introduced a geometric method to study the
deflection angle of photons in static spherically symmetric
(SSS) spacetimes in 2008 [21], which was called the
Gibbons-Werner (GW) method later. By applying the
Gauss-Bonnet theorem (GBT) to an infinite region in
optical space, the GW method reveals the global properties
of the deflection of light. In 2012, Werner extended this
method to photons in stationary axially symmetric (SAS)
spacetimes with the help of the Randers optical metric [22].
Henceforth, by applying the GWmethod, a series of works
studying the deflection of photons with various condition
in various background spacetimes emerged [23–63]. For
massive particles, Crisnejo and Gallo and Jusufi are,
respectively, the ones who first calculated the deflection
angle in SSS [64] and SAS [65] spacetimes with the
GW method. More works investigating the deflection of
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massive particles with the GW method can be found in
Refs. [66–76].
In the GW method, a suitable region which the GBT can

be applied to must be constructed. All of the applications of
the GW method to unbound orbits are based on an infinite
region in previous literatures, except for Ref. [77], whose
scheme is very complicated, Ref. [78], which is valid only
for a special case, and our recent work [79], which
introduces a generalized approach to construct the region
freely and simplify the calculation.
Among the researchers studying the unbound orbits,

some are no longer satisfied with the assumption that both
the source and the observer are at infinity from the lensing
object, since they want to explore finite-distance correc-
tions to the deflection angle and investigate gravitational
deflection in asymptotically nonflat spacetimes. To analyze
the contribution of the cosmological constant to gravita-
tional lensing, in 2007, Rindler and Ishak proposed a
definition of finite-distance deflection angle of light in a
special situation where the lens, receiver, and source are
aligned [80]. But this approach has been criticized by
people [25,81–84]. In 2016, a finite-distance deflection
angle was introduced by Ishihara et al. with the GW
method [25] and later was discussed by Crisnejo, Gallo,
and Rogers [85] and Takizawa, Ono, and Asada [77]. In
2018, Arakida gave a definition of the finite-distance
deflection angle; however, he compared geodesics which
belong to two different spacetimes and did not present the
mathematical justification [39].
Up to now, only the finite-distance deflection angle

defined by Ishihara et al. [25] has been widely recognized.
People usually adopt it in the GW method to study the
finite-distance deflection angle of massless and massive
particles; the infinite-distance angle in the GW method can
also be deduced from it. As a broadly accepted definition,
it can be applied not only to unbound orbits, but also to
bound orbits.
Based on the model of bound orbits of massive particles,

Einstein calculated the relativistic pericenter advance angle
ofMercury [86], which tested general relativity successfully
for the first time. The correction from general relativity for
the bound orbit of massive particles is studied with great
accuracy in Refs. [87–91]. The pericenter advance of the
bound orbit is of great significance [92,93], and the zoom-
whirl orbit, as an extreme form of pericenter advance, also
attracts people’s attention [94–97]. Observations on the
astronomical phenomena that can be described by themodel
of bound massive particles have been performed for several
decades. Since the first detection of stars around the super-
massive black hole Sgr A* [98,99], the number of detected
S stars increased with the improvement of instrumentation
and analysis techniques [100]. Recently, the star S2 has been
followed through its pericenter passage using GRAVITY
[101] at the Very Large Telescope Interferometer (VLTI)
interferometer [102,103]. In the foreseeable future, the
Thirty Meter Telescope with higher angular resolution

and deeper spectroscopy could provide bettermeasurements
to the stellar orbits [104,105].
In this paper, (a) the definition of the finite-distance

deflection angle given by Ishihara et al. [25] is extended to
bound orbits, and so does its correspondence to observa-
tions. (b) By using the generalized GW method proposed
by Huang and Cao [79], a finite region is chosen freely in
the physically allowed area of the Jacobi space, and the
formula for the deflection angle between two arbitrary
points on trajectories is derived. Additionally, we show the
calculation process of our scheme and formula in the
Schwarzschild spacetime and obtain an analytical result.
The rest of this paper is organized as follows. In Sec. II,

we review the Jacobi metric and GBT and introduce the
definition of finite-distance deflection angle proposed by
Ishihara et al. In Sec. III, we extend the finite-distance
deflection angle for unbound orbits in the GW method to
bound orbits and derive a formula of the deflection angle of
bound massive particles in SSS spacetimes. In Sec. IV, the
calculation of the deflection angle in Schwarzschild space-
time is performed. The spacetime signature (−;þ;þ;þ)
and the geometric units G ¼ c ¼ 1 are used throughout
the paper.

II. JACOBI METRIC, GBT,
AND DEFLECTION ANGLE

A. Jacobi metric

The geometry of the optical metric, also known as
Fermat geometry or optical reference geometry [22], was
applied to the discussion of inertial forces in general
relativity by Abramowicz, Carter, and Lasota [106] and
thermal Green’s functions of black holes by Gibbons and
Perry [107]. With Fermat’s principle [108,109], the spatial
projection of a lightlike geodesic corresponds to a geodesic
of the optical geometry. Similarly, the Jacobi metric
can be used to describe the timelike geodesics in static
spacetimes [110].
For a free massive particle moving in a static spacetime

whose metric reads

ds2 ¼ g00ðxÞdt2 þ gijðxÞdxidxj; ð1Þ

the corresponding Jacobi metric can be written as [110]

dl2 ¼ m2½E2 þ g00ðxÞ�
gijðxÞ
−g00ðxÞ

dxidxj; ð2Þ

where x is the spatial coordinate, the indices i and j both
run from 1 to 3, and m and E denote the rest mass and the
energy per unit rest mass for the particle, respectively.
A timelike geodesic in the original four-dimensional static
spacetime equipped with metric (1) can be put in one-to-
one correspondence with a geodesic in the three-
dimensional Jacobi space equipped with metric (2).
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Generally, if the spacetime is asymptotically flat, we have
−1 ≤ g00ðxÞ ≤ 0. If E ≥ 1, the Jacobi metric is positive
definite. If E < 1, which corresponds to bound orbits, the
signature of the Jacobi metric changes at large distances.
What is more, there is a level set of g00ðxÞ on which
E2 þ g00ðxÞ vanishes (i.e., the Jacobi metric becomes
singular). From the perspective of the Jacobi metric, this
level set is a pointlike conical singularity, and all geodesics
have a turning point on or inside this level set [110].
Furthermore, if the spacetime is SSS, Eq. (1) will

reduce to

ds2 ¼ gttðrÞdt2 þ grrðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð3Þ

and the corresponding Jacobi metric becomes [for nota-
tional simplicity, we drop “(r)” for gttðrÞ and grrðrÞ]

dl2¼m2ðE2þgttÞ
�
grr
−gtt

dr2þ r2

−gtt
ðdθ2þ sin2θdϕ2Þ

�
: ð4Þ

Restricting our attention to the equatorial plane (θ ¼ π=2
and dθ ¼ 0) without loss of generality, the Jacobi metric
Eq. (4) reduces to

dl2 ¼ αrrdr2 þ αϕϕdϕ2

¼ m2ðE2 þ gttÞ
�
grr
−gtt

dr2 þ r2

−gtt
dϕ2

�
; ð5Þ

with which we obtain a two-dimensional Riemann mani-
fold corresponding to the equatorial plane of the Jacobi
space of SSS spacetimes and denote it as Mðα2Þ for
simplicity.
According to the cyclic coordinate ϕ, we have a

conserved quantity

L ¼ m2ðE2 þ gttÞ
r2

−gtt

�
dϕ
dl

�
; ð6Þ

which represents the angular momentum per unit rest mass
for the particle. Dividing both sides of Eq. (5) by dl2 and
then combining the result with Eq. (6), the radial equation
of the geodesics in Mðα2Þ can be written as

m2ðE2 þ gttÞ2
grr
−gtt

�
dr
dl

�
2

¼ E2 þ gtt

�
1þ L2

r2

�
: ð7Þ

B. Gauss-Bonnet theorem

As a fabulous result of differential geometry in the aspect
of building the relation between the curvature properties of
a Riemannian manifold and its topological structure, the
GBT connects the Gaussian curvature integral of a compact
and oriented even-dimensional manifold with its topologi-
cal invariant, viz. the Euler characteristic.

As shown in Fig. 1, suppose D is a subset of a two-
dimensional compact and oriented Riemannian manifold
with Gaussian curvature K and Euler characteristic number
χðDÞ. Its boundary ∂D ¼ ⋃i∂Di is a piecewise smooth
curve. Then the GBT states

Z Z
D
KdSþ

X
i

Z
∂Di

κdlþ
X
i

ηi ¼ 2πχðDÞ; ð8Þ

where dS and dl are, respectively, the area element and line
element, ηi denotes the exterior angle (or jump angle) at the
ith vertex in the sense of positive, and κ represents the
geodesic curvature.

C. Definition of finite-distance deflection angle
for unbound particles

In this subsection, to review the definition of the finite-
distance deflection angle for unbound particles, we
(a) elaborate Ishihara, Suzuki, Ono, Kitamura, and
Asada’s original defining the deflection angle for photons
whose source and observer are both assumed at finite
distance [25], (b) discuss the finite-distance deflection
angle based on the observation of the lensed light, and
(c) introduce people’s successful applying the definition to
not only massless particles, but also massive particles.
First, we give an introduction to the finite-distance

deflection angle defined by Ishihara et al. [25]. For the
photons in the equatorial plane of an asymptotically flat
SSS spacetime equipped with metric (3), the optical metric
states [21]

dt2 ¼ grr
−gtt

dr2 þ r2

−gtt
dϕ2: ð9Þ

FIG. 1. Schematic figure for the GBT.
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As shown in Fig. 2, in the two-dimensional optical space
corresponding to the metric (9), γ represents the photon’s
trajectory which is a geodesic, L is the lens, A and B are
two arbitrary points on γ, and ΨA and ΨB are angles
between the tangent vector along γ (velocity direction) and
the outward radial direction measured at A and B, respec-
tively. Then the finite-distance deflection angle along γ
between A and B is defined as [25]

δBA ¼ ΨB −ΨA þ ϕBA; ð10Þ

where ϕBA ¼ ϕB − ϕA is the increment of the azimuthal
position, ϕA denotes the longitude of A measured from L,
and similarly the ϕB. When both A and B approach infinity,
namely, ΨA ¼ π and ΨB ¼ 0, Eq. (10) reduces to the
conventional infinite-distance deflection angle ϕBA − π.
To demonstrate that Eq. (10) is well defined, Ishihara et al.
apply the GBT to an infinite region D∞ ¼B∞

B □
A∞
A and

obtain

Z Z
D∞

KdSþ
Z
AA
⟶

∞

κdlþ
Z
C∞

κdlþ
Z
B∞B
⟶ κdl

þ
Z
BA
↷ κdlþ ηA þ ηA∞

þ ηB∞
þ ηB ¼ 2πχðD∞Þ; ð11Þ

where A∞ is the intersection point of the outward radial

curve AA
�!

∞ and infinite circular arc C∞ ¼ A∞B∞
↷

, and
similarly the B∞.

R
C∞

κdl ¼ R
C∞

ð1=r∞Þ · r∞dϕ ¼ ϕBA

since C∞ is located at the asymptotic region, κðAA�!∞Þ¼
κðB∞B
��!Þ¼0, ηA¼π−ΨA, ηB ¼ ΨB, and ηA∞

¼ ηB∞
¼ π=2.

Then Eq. (11) becomes

δBA ¼ −
Z Z

D∞

KdS; ð12Þ

which indicates the definition (10) is geometric invariant
and well defined.
Second, we present the understanding of the definition

(10) from the perspective of the observation. In 2020,
Takizawa, Ono, and Asada interpreted Eq. (10) as the angle
between the real light direction (the direction of light rays
coming from the lensed image) and the fiducial source
direction (the direction of the light rays coming from the
unlensed source) at the position of the observer [77]. As
shown in Fig. 3, focusing on the observer B in Fig. 2, Γ is
the direction of the tangent vector along γ at B, i.e., velocity
direction at B; it corresponds to the real direction of the
light. Γ� is the fiducial source direction of the light. From
the sight of the observer, the deflection angle δBA should be
the deviation between the real direction and the fiducial
direction. This scheme imitates that of Eddington’s obser-
vation to the light bent by the Sun, in which a comparison is
made between the observed (lensed) image direction and
the intrinsic fiducial (unlensed) source direction to obtain
the deflection angle [1]. Now the problem becomes the
determination of the fiducial source direction Γ�. One can
define the fiducial radial direction r�A such that the angle
between rB (the radial direction at the observer) and r�A is
equal to ϕBA, which can be obtained from the ephemeris or
other channels. Thus, Γ� is determined by rotating the
fiducial radial direction r�A with angle ΨA which can be
measured by observers [111]. According to Fig. 3, we have

ΨB − δBA ¼ ΨA − ϕBA ð13Þ

at the position of the observer, i.e., δBA ¼ ΨB −ΨA þ ϕBA
from the perspective of observers. What is more, the
gravitational deflection of orbits can be regarded as the
result of the combination of two factors—the velocity
direction Ψ (with respect to the radial direction) and the
azimuthal position ϕ. Consequently, we can recast Eq. (10)
into the form

δBA ¼ δΨBA þ δϕBA; ð14Þ

where δΨBA ¼ ΨB −ΨA and δϕBA ¼ ϕB − ϕA. More detailed
analysis can be found in Ref. [77].

FIG. 2. In the two-dimensional optical space corresponding to
the metric (9), L is the lens, γ is the trajectory of photons, A and B
are two arbitrary points on γ, and ΨA and ΨB are angles between
the tangent vector along γ and the outward radial direction
measured at A and B, respectively.

FIG. 3. Focusing on the observer B in Fig. 2, Γ is the real
direction of light at B, Γ� is the fiducial source direction, rB is the
radial direction at B, and r�A is the fiducial radial direction.
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Third, we give a brief summary of the application of the
definition (10), which has been extended to unbound orbits
of massless and massive particles in various asymptotically
flat and nonflat spacetimes. Specifically, Ono, Ishihara, and
Asada studied the deflection angle of photons with finite-
distance corrections in SAS and asymptotically flat space-
times, especially the Kerr black hole [35] and rotating Teo
wormhole [40]; the case of asymptotically nonflat space-
times is also investigated in Ref. [112]. Haroon et al.
analyzed the deflection angle of photons for rotating black
holes in perfect fluid dark matter with a cosmological
constant [113]. Kumar, Ghosh, and Wang discussed the
weak gravitational lensing of the charged rotating regular
black hole (a generalized Kerr-Newman black hole with a
regular origin) [53]. Li and his collaborators studied the
finite-distance gravitational deflection of neutral massive
particles in SAS and asymptotically flat spacetimes [72]
and Kerr-like black hole in the bumblebee gravity
model [71]; the deflection of charged massive particles
by a four-dimensional charged Einstein-Gauss-Bonnet
black hole is also investigated by them [74]. More related
works can been found in Refs. [73,76–78,85,111].

III. DEFLECTION ANGLE OF BOUND MASSIVE
PARTICLES IN THE GW METHOD

A. Extending the definition of deflection angle
for unbound orbits to bound orbits

The definition (10) is proposed for and is usually applied
to the unbound orbits which do not overlap with themselves
azimuthally (with respect to the azimuthal coordinate ϕ).
To calculate the deflection angle along the bound orbit, we
carefully extend Eq. (10) to the bound case by dividing the
orbit into multiple segments such that each segment does
not overlap with itself azimuthally.
Consider the bound trajectory ofmassive particlesmoving

in Mðα2Þ, which is the two-dimensional Riemann manifold
corresponding to the equatorial plane of the Jacobi space of
SSS spacetimes as mentioned in Sec. II A. As shown in
Fig. 4, L represents the black hole, G1 and G2 are two
adjacent pericenters, and A and B are two arbitrary points on
the bound trajectory. P is an arbitrary auxiliary point on the

trajectory between A and B such that AP
↷

and PB
↷

do not
overlap with themselves azimuthally. According to the
definition (10), we have

δPA ¼ ΨP −ΨA þ ϕPA;

δBP ¼ ΨB −ΨP þ ϕBP: ð15Þ
Then the deflection angle along the trajectory fromA toB can
be written as

δBA ¼ δPA þ δBP ð16Þ
¼ ΨB −ΨA þ ϕBA: ð17Þ

For the trajectorywithmorewindings, the above formula still
holds, which can be demonstrated by dividing the trajectory
into more segments.
It should be noted that we select the counterclockwise

direction as the rotation direction of the particle, which
does not affect our discussion. Considering the cyclicity of
the azimuthal coordinate of bound trajectories, in this paper
we assume that the azimuthal coordinate monotonically
increases with the counterclockwise rotation of the particle.
Consequently, ϕBA and δBA may be greater than 2π.

B. Correspondence to observations

Similar to the discussion of definition (10) for unbound
photons in the second paragraph in Sec. II C (also Sec. II B
in Ref. [77]), we give an understanding of that for bound
massive particles by taking Mercury as an example.
The ephemeris of Mercury can be obtained by taking

into account not only the gravitational interaction between
the Mercury and the Sun, but also effects from all other
planets, Earth’s moon, and 300 of the most massive
asteroids, as well as interactions between Earth and the
Moon caused by nonsphericity and tidal effects. In fact, to
provide the observational pericenter advance angle of the
inner planets Mercury, Venus, Earth, and Mars for Taylor
and Wheeler (Sec. 10.8 [114]), Myles Standish, the
principal member of the technical staff at Jet Propulsion
Laboratory (JPL), calculated orbits of the four inner planets
over four centuries (from A.D. 1800 to A.D. 2200) by using
the numerical integration program of the Solar System Data
Processing System. For each inner planet, Standish worked
out two types of orbit whose difference is whether the
relativistic effect is considered and obtained the pericenter
advance angle accounted for only by general relativity
through comparing the result from these two types of orbit.

FIG. 4. The bound trajectory of massive particles in Mðα2Þ.
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JPL is devoted to obtaining the positions and velocities
of the major bodies in the Solar System as precisely as
possible. For the major planets and the Moon, a huge
database is maintained by JPL, and the Solar System Data
Processing System mentioned before refers to a set of
powerful computer programs [115]. Additionally, similar
tasks are also performed by the Paris Observatory [116]
and the Institute of Applied Astronomy of the Russian
Academy of Sciences [117].
Assuming the trajectory of Mercury can be illustrated by

Fig. 4, AB
↷

is the trajectory segment we concerned with.
Then we can apply Fig. 3 to point B in Fig. 4, and the
relevant quantities at B such as ΨB and ϕB can be obtained
from the ephemeris, although the B in Fig. 4 is not the
observer’s position like that in Fig. 3. Moreover,ΨA and ϕA
can also be obtained from the ephemeris. Thus, one can
derive the observed δBA. It should be remarked that, in the
actual calculation, the δBA must be computed based on a
considerable number of cycles or considerable period of
time, e.g., several Earth centuries, so that the statistical
error can be reduced. Subtracting the result of nonrelativ-
istic orbits from that of relativistic orbits, the δBA accounted
for only by general relativity will be derived and can be
described with respect to a period of time such as “δBA per
Earth century.”
Since the radial coordinate of the trajectory in Fig. 4 is

periodic, it can be expressed as

r ¼ p
1þ e cos ξ

; ξ ∈ ð−∞;∞Þ; ð18Þ

where e and p are, respectively, the eccentricity and
semilatus rectum of the trajectory. Without loss of general-
ity, we assume that the particle starts at the pericenter G1

when ξ ¼ 0, then moves in to the apocenter when ξ ¼ π,
and arrives at the next pericenter G2 when ξ ¼ 2π. What is
more, we use ξA and ξB to identify points A and B,
respectively. Then according to definition (10), we have

δBA ¼Ψðξ¼ 2nπþ ξB þ 2πÞ−Ψðξ¼ 2nπþ ξAÞ
þϕðξ¼ 2nπþ ξB þ 2πÞ−ϕðξ¼ 2nπþ ξAÞ; ð19Þ

where n ¼ 0;�1;�2;…. In the actual calculation of the
deflection angle from observations, for the orbit with a vast
number of cycles or a long period of time, one can use
enough numbers of n to cover all of the data from the
ephemeris for the sake of reducing the statistical error.
It seems that the δBA is similar to the pericenter advance

angle Δω. In general, Δω involves only the azimuthal
position of two special points—a pericenter and its adjacent
pericenter, namely,Δω¼ϕðξ¼2nπþ2πÞ−ϕðξ¼2nπÞ−2π.
While δBA involves not only the azimuthal position but also
the velocity direction, in addition, points A and B can be
chosen freely. It can be roughly concluded that δBA can
encode more information than Δω. In fact, the pericenter

advance angle (plus 2π) can be regarded as the deflection
angle between two adjacent pericenters, since for any peri-
center the Ψ is π=2 and does not contribute to the deflec-
tion angle.

C. Formula of deflection angle for bound orbits
with the generalized GW method

According to Eq. (4), in the Jacobi space of SSS
spacetimes, only the region satisfying E2 þ gtt > 0 is
nonsingular and can be treated as a Riemannian space.
We denote the critical radial coordinate of the nonsingular
region by rcri. For example, consider the Schwarzschild
spacetime for which gtt ¼ −ð1 − 2M=rÞ; the energy of
unit rest mass for bound massive particles must satisfy
E < 1, and, thus, rcri ¼ 2M=ð1 − E2Þ. The region r > rcri is
singular; thus, the region that the GBT can be applied to is
confined by r < rcri. If the event horizon r ¼ 2M is further
considered, the bound massive particles in Jacobi space of
Schwarzschild spacetime will be confined in the region
r ∈ ð2M; 2M=ð1 − E2ÞÞ.
As shown in Fig. 5, in Mðα2Þ, L denotes the black hole,

and AB
↷

is a segment of the trajectory of bound massive

particles. We divide AB
↷

into two segments AP
↷

and PB
↷
,

which do not overlap with themselves azimuthally. C is an
auxiliary circle centered at L with r ¼ r0, and being in the
physical allowed region is the only requirement for C or r0.
The auxiliary circle we choose in Fig. 5 intersects with the

trajectory; specifically, C intersects with AB
↷

at Q1 and Q2.

As shown in Fig. 6, AP
↷

and PB
↷

are separated to have a

better presentation. The auxiliary circular arc CA ¼ A0P0

↷
,

FIG. 5. In Mðα2Þ, AB
↷

is a segment of the trajectory of bound
massive particles, and C denotes an auxiliary circle.
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centered at L with r ¼ r0, intersects with two outward
radial geodesics passing through A and P at A0 and
P0, respectively. Thus, we get a quadrilateral region
DA ¼A

A0
□P

P0
. According to the generalized GW method

in Ref. [79], applying the GBT to DA yields

δPA ¼
Z

ϕP

ϕA

½1þHðrγÞ�dϕ; ð20Þ

where rγ is the radial coordinate of the trajectory and

HðrÞ ¼ −
αϕϕ;r
2

ffiffiffi
α

p : ð21Þ

α denotes the determinant of the metric of Mðα2Þ [Eq. (5)].

The auxiliary circular arc CB ¼ P0B0

↷
, centered at L with

r ¼ r0, intersects with two outward radial geodesics
passing through P and B at P0 and B0, respectively.
Thus, we get three regions: the triangle DB1 ¼Q1

△
P0

P ,
the digon DB2 with vertexes Q1 and Q2, and the triangle
DB3 ¼B0

△
Q2

B . According to the generalized GWmethod in
Ref. [79], applying the GBT to DB1, DB2, and DB3 yields

δBP ¼
Z

ϕB

ϕP

½1þHðrγÞ�dϕ: ð22Þ

Substituting Eqs. (20) and (22) into Eq. (16) leads to

δBA ¼
Z

ϕB

ϕA

½1þHðrγÞ�dϕ; ð23Þ

which holds regardless of whether r0<rmin
γ , rmin

γ ≤r0≤rmax
γ ,

or r0 > rmax
γ according to the discussion in Ref. [79]; rmin

γ

and rmax
γ are the minimum and the maximum of the radial

coordinate of the trajectory, respectively. Equation (23) can
also be derived based on Eq. (17) by applying GBT to
relevant regions (DA, DB1, DB2, and DB3) and simplifying
formulas with the scheme of the generalized GWmethod. If
the trajectory segment we are concerned with intersects with
the auxiliary circle at more points, Eq. (23) still holds
although it should be derived by constructing more regions
(digon, triangle, and quadrilateral).
The flat spacetime can be looked as the zeroth-order

counterpart of a curved spacetime with the post-Newtonian
approximation, and so does the relevant quantity.
According to Eq. (21), the HðrÞ in flat spacetime is −1
(αrr ¼ 1 and αϕϕ ¼ r2); i.e., the zeroth-order term of
1þHðrÞ vanishes. As a consequence, by using Eq. (23)
one can extract the (N þ 1)th-order deflection angle from
the Nth-order orbit.

IV. DEFLECTION ANGLE OF BOUND MASSIVE
PARTICLES IN SCHWARZSCHILD SPACETIME

In this section, taking the Schwarzschild spacetime as an
example, the calculation process of the formula (23) is
presented, and the deflection angle between two arbitrary
points on the bound trajectory of massive particles is
obtained and analyzed.

A. Motion of bound massive particles

The metric of Schwarzschild spacetime states

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ 1

1 − 2M
r

dr2 þ r2dθ2

þ r2 sin2 θdϕ2: ð24Þ

Without loss of generality, we focus on the massive
particles moving in the equatorial plane. Substituting the
above metric into Eq. (5) brings about the metric of the
corresponding Mðα2Þ:

dl2 ¼ m2

�
E2 −

�
1 −

2M
r

���
dr2

ð1 − 2M
r Þ2

þ r2dϕ2

1 − 2M
r

�
: ð25Þ

According to Eqs. (6) and (7), we obtain the equations of
geodesic motion

L ¼ m2

�
E2

1 − 2M
r

− 1

�
r2
�
dϕ
dl

�
; ð26Þ

m2

�
E2

1 − 2M
r

− 1

�
2
�
dr
dl

�
2

¼ E2 −
�
1 −

2M
r

��
1þ L2

r2

�
:

ð27Þ

FIG. 6. The trajectory segments AP
↷

and PB
↷

in Fig. 5 are
separated to have a better presentation. The auxiliary circular arc

CA ¼ A0P0

↷
, centered at L with r ¼ r0, intersects with two

outward radial geodesics passing through A and P at A0 and

P0, respectively. The auxiliary circular arc CB ¼ P0B0

↷
, centered

at L with r ¼ r0, intersects with two outward radial geodesics
passing through P and B at P0 and B0, respectively.
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Let the right side of Eq. (27) equal to zero, and we obtain

0 ¼ E2 −
�
1 −

2M
r

��
1þ L2

r2

�
; ð28Þ

which can be recast into the form

0 ¼ 2ML2

�
1

r
−

1

r1

��
1

r
−

1

r2

��
1

r
−

1

r3

�
: ð29Þ

Obviously, r1, r2, and r3 are roots of Eq. (28) and also roots
of equation dr=dl ¼ 0. For the bound orbits of massive
particles, we set (Sec. 5.6.3 in Ref. [118])

r1¼
p

1þe
; r2¼

p
1−e

; r3¼
2Mp
p−4M

ð0<e<1Þ; ð30Þ

where e and p are, respectively, the eccentricity and
semilatus rectum of the orbit and are constant like the
energy and the angular momentum. r1 and r2 correspond to
the inner and outer turning points (pericenter and apoc-
enter) of the orbit, respectively. Substituting Eq. (30) into
Eq. (29) and comparing the result with Eq. (28), E and L
can be expressed in terms of e and p:

E2 ¼ 1 −
Mð1 − e2Þ

p
p − 4M

p − ð3þ e2ÞM ;

L2 ¼ Mp2

p − ð3þ e2ÞM : ð31Þ

We adopt the change of variable r ¼ p=ð1þ e cos ξÞ
[Eq. (18)] to describe the periodic motion of bound massive
particles moving in the equatorial plane of Schwarzschild

spacetime. According to Eqs. (18), (26), (27), and (31), we
obtain

dϕ
dξ

¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

p ð3þ e cos ξÞ
q : ð32Þ

The � in the above expression represents two different
rotation directions of massive particles, which is unim-
portant for our calculation. Without loss of generality, the
plus sign of Eq. (32) is selected, which means the particles
rotate counterclockwise and ϕmonotonically increases as ξ
increases.

B. The deflection angle

In this subsection, we calculate the deflection angle
between two arbitrary points on the trajectory with
Eq. (23). Substituting Eq. (25), the metric of the equatorial
plane of Jacobi space corresponding to massive particles in
Schwarzschild spacetime, into Eq. (21), we derive

HðrÞ ¼ rE2ð3M − rÞ þ ðr − 2MÞ2
½2M þ rðE2 − 1Þ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rðr − 2MÞp : ð33Þ

Then using Eq. (18) [rγ ¼ p=ð1þ e cos ξÞ] and Eq. (32),
we get the indefinite integral

Z
½1þHðrγÞ�dϕ ¼

Z
½1þHðrγÞ�

dϕ
dξ

dξ

¼ ΩðξÞ þ const; ð34Þ

in which

ΩðξÞ ¼ 2ep

ðe2 − 1Þ ffiffiffiffiffiffiffi
BD

p i

�
eþ 1

p
B

ffiffiffiffiffiffiffi
−D
C

r
F

�
i arcsinh

� ffiffiffiffiffiffiffi
−B
A

r
tan

ξ

2

�
;
AD
BC

�

þ
�
8M
p

− 2

� ffiffiffiffiffiffiffi
−B
A

r
Π
��

e − 1

eþ 1

�
2

; i arcsinh

� ffiffiffiffiffiffiffi
−D
C

r
tan

ξ

2

�
;
BC
AD

�

þ ðe2 − 1Þ 4M
p

Π
�
−C
D

; i arcsinh

� ffiffiffiffiffiffiffi
−D
C

r
tan

ξ

2

�
;
BC
AD

�	
þ 2Fðξ

2
; 4eMA Þ ffiffiffiffi

p
p

ffiffiffiffiffiffiffiffi
−A

p ; ð35Þ

where we have introduced notations

A≡ 2eM þ 6M − p; B≡ 2eM − 6M þ p;

C≡ 2eM þ 2M − p; D≡ 2eM − 2M þ p: ð36Þ

F and Π denote the incomplete elliptic integral of the first
kind and the third kind, respectively, i.e.,

Fðφ; kÞ ¼
Z

φ

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2x

p ;

Πðn;φ; kÞ ¼
Z

φ

0

dx

ð1 − nsin2xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2x

p ; ð37Þ

where k is the elliptic modulus satisfying 0 < k2 < 1 and n
is the elliptic characteristic. According to Eqs. (23) and (34),
for two arbitrary points identified by ξA and ξB (assuming
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ξB > ξA), the deflection angle along the trajectory from A to
B is expressed as the increment of Ω:

δBA ¼ ΩðξBÞ − ΩðξAÞ; ð38Þ

which is an analytical result without any approximation.

C. Discussion about the deflection angle

Consider the expression of the deflection angle Eq. (14).
δΨAB describes the increment of the angle between the
velocity direction and the radial direction, which is related
to the first term of Eq. (35). δϕBA describes the increment of
the azimuthal coordinate which is related to the second term
of Eq. (35).
The δBA, δΨBA, and δ

ϕ
BA against ξB areplotted inFig. 7,where

we assume ξA ¼ 0; i.e., point A is a pericenter. The first term
of Eq. (35) can be seen as a composite function, ξ exists only
in the inner function tan ðξ=2Þ whose period is 2π, and the
other outer functions aremonotonic.Thus,we can see that δΨBA
oscillateswith a period of 2π.When the particlemoves froma
pericenter to the next adjacent pericenter, δΨBA decreases
slowly from zero to a local minimum, then it increases
quickly near the apocenter, and finally it decreases slowly
back to zero after a local maximum point. For all pericenters
and apocenters, the velocity direction is perpendicular to
the radial direction, namely, Ψðξ ¼ 0;�π;�2π;…Þ ¼ π=2;
thus, δΨABðξB ¼ 0;�π;�2π;…Þ ¼ 0. δΨAB ismore sensitive to
ξB near apocenters than pericenters; this is consistentwith our
intuition that, for an elliptic orbit, the farther the particle is
from the focal point, the quicker the angle between velocity
direction and radial direction changes with the same “rotation
amplitude.” δϕBA monotonically increases as ξB increases.

When the particle moves from a pericenter to the next
pericenter, for instance, ξB varies from 0 to 2π, δϕBA is a little
bigger than 2π, and the difference between them is the
pericenter advance angle.
δBA is dominated by δϕAB, and δΨAB contributes a periodic

perturbation to δBA. Specifically, δΨAB have a negative effect
on δBA in the first half cycle while a positive effect in the
second half. We emphasize again that ϕ represents a
monotonically increasing azimuthal coordinate along the
trajectory; thus, δϕAB may be greater than 2π, and so does
δBA. For the zoom-whirl orbits with more than one winding
within a radial cycle, the behavior of δBA, δΨBA, and δ

ϕ
BA will

be a little more complicated.
The analysis about the dependence of δBA on the orbit

parameters e and p is shown in the Appendix.

V. CONCLUSION

Based on the Jacobi metric, we project the bound orbit of
massive particles moving in the equatorial plane of four-
dimensional SSS spacetimes into a two-dimensional Jacobi
space. (a) Since the bound trajectory of massive particles is
periodic and will overlap with itself azimuthally, we divide
it into multiple segments such that each segment does not
overlap with itself azimuthally. Then, those segments are
treated as unbound trajectories, and the finite-distance
deflection angle for unbound trajectories defined by
Ishihara et al. is extended to bound trajectories. In addition,
the discussion of the deflection angle for unbound trajec-
tories from the view of observation is also extended to the
bound scenario. (b) For the bound massive particle, there
exists a singular region in the Jacobi space due to the
energy per unit rest mass being less than 1. Thus, the
infinite region constructed for unbound trajectories is
useless for the bound scenario. Thanks to the generalized
GWmethod, the auxiliary circle arc can be chosen freely to
construct the region that the GBT can be applied to, and a
very simple calculation formula is obtained for two
arbitrary points on bound trajectories. We successfully
extend the GW method to the bound trajectory of massive
particles. Finally, to show the application of the extended
GW method, we compute the deflection angle along the
bound trajectory between two arbitrary points for massive
particles in Schwarzschild spacetime and obtain an ana-
lytical result.

APPENDIX: THE DEPENDENCE
OF δBA ON e AND p

Let us see how the parameters e and p affect the
deflection angle δBA.
The behavior of δBA, δΨAB, and δϕAB in a radial cycle is

shown in Fig. 8 for which we fix e ¼ 0.6 and assume
ξA ¼ 0. The bigger the semilatus rectum p, the bigger the
absolute value of δΨAB and the smaller the δϕAB. But when p is

FIG. 7. δBA, δΨAB, and δϕAB against ξB with ξA ¼ 0, e ¼ 0.6, and
p ¼ 102M.
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bigger than 100M, δΨAB and δϕAB will saturate. δBA is
dominated by δϕAB.
Figure 9 shows the δBA, δΨAB, and δϕAB against ξB. We fix

p ¼ 100M and assume ξA ¼ 0. As we can see, the bigger
the eccentricity e, the bigger the absolute value of δΨAB.
When e increases, the local minimum point and local
maximum point move toward the apocenter at the same

time, and, consequently, δΨAB varies more quickly near the
apocenters. When e ¼ 0, the trajectory reduces to a circle
whose velocity direction is perpendicular to the radial
direction at all points; accordingly, δΨAB is identically equal
to zero. Additionally, e has little effect on δϕAB. Thus, the
relation between δBA and p is similar to that between δΨAB
and p, although δϕAB dominates the δBA.
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