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We study the linear stability of black holes in Maxwell-Horndeski theories where aUð1Þ gauge-invariant
vector field is coupled to a scalar field with the Lagrangian of full Horndeski theories. The perturbations on
a static and spherically symmetric background can be decomposed into odd- and even-parity modes under
the expansion of spherical harmonics with multipoles l. For l ≥ 2, the odd-parity sector contains two
propagating degrees of freedom associated with the gravitational and vector field perturbations. In the even-
parity sector, there are three dynamical perturbations arising from the scalar field besides the gravitational
and vector field perturbations. For these five propagating degrees of freedom, we derive conditions for the
absence of ghost/Laplacian stabilities along the radial and angular directions. We also discuss the stability
of black holes for l ¼ 0 and l ¼ 1, in which case no additional conditions are imposed to those obtained for
l ≥ 2. We apply our general results to Einstein-Maxwell-dilaton-Gauss-Bonnet theory and Einstein-Born-
Infeld-dilaton gravity and show that hairy black hole solutions present in these theories can be consistent
with all the linear stability conditions. In regularized four-dimensional Einstein-Gauss-Bonnet gravity
with a Maxwell field, however, exact charged black hole solutions known in the literature are prone to
instabilities of even-parity perturbations besides a strong coupling problem with a vanishing kinetic term of
the radion mode.
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I. INTRODUCTION

Black holes (BHs) are the fundamental objects arising
as a solution to the Einstein field equation in General
Relativity (GR). On a static and spherically symmetric
background, the Schwarzschild geometry characterized by
a single mass parameter M is a unique asymptotically flat
solution in GRwithout matter. In the presence of a Maxwell
field, there is a static BH with an electric charge q known as
a Reissner-Nordström (RN) solution. Allowing the rotation
of BHs leads to a Kerr solution containing an angular
momentum J. In Einstein-Maxwell theory without addi-
tional matter, there is a uniqueness theorem stating that
stationary and asymptotically flat BHs are characterized
only by three parameters, i.e., M, q, and J [1–4].
If we take an extra degree of freedom into account, it is

possible to have additional BH “hairs” to those present in
GR without matter. For a minimally coupled canonical
scalar field ϕ [4,5] and k-essence [6] as well as for a
nonminimally coupled scalar field with the Ricci scalar R
of the form G4ðϕÞR [7–10], it is known that BHs do not
have scalar hairs. If the scalar field is coupled to a Gauss-
Bonnet (GB) term R2

GB of the form ξðϕÞR2
GB [11–13],

where ξðϕÞ is a function of ϕ, the existence of asymptoti-
cally flat hairy BH solutions was shown for the dilatonic
coupling ξðϕÞ ∝ e−λϕ [14–24] and the linear coupling

ξðϕÞ ∝ ϕ [25,26]. It was also found that, for the scalar-
GB coupling ξðϕÞ with even power-law functions of ϕ, a
phenomenon called spontaneous scalarization of BHs can
occur [27–34], analogous to spontaneous scalarization of
neutron stars induced by a nonminimal coupling with the
Ricci scalar [35].
The scalar-GB coupling mentioned above belongs to a

subclass of Horndeski theories with second-order Euler
equations of motion [36,37]. If we consider a time-
independent scalar field on the static and spherically
symmetric background, there are some other subclasses
of Horndeski theories in which hairy BH solutions are
present. One example is a scalar nonminimal derivative
coupling ϕGμν∇μ∇νϕ to the Einstein tensor Gμν, in which
case nonasymptotically flat BH solutions are present
[38–43]. However, it was recently recognized that these
solutions are unstable against linear perturbations around
the BH horizon [44]. In so-called regularized four-
dimensional Einstein-Gauss-Bonnet (4DEGB) theory [45]
where the GB coupling α̂GBR2

GB in a D-dimensional
spacetime is rescaled as α̂GB → αGB=ðD − 4Þ on a (D − 4)-
dimensional maximally symmetric flat space [46,47], there
exists an exact hairy BH solution respecting the asymptotic
flatness. The 4DEGB gravity also belongs to a subclass of
Horndeski theories with the scalar field playing the role of a
radion [48], so the linear stability conditions derived in
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Refs. [49–51] for full Horndeski theories can be applied to
this case as well. The recent study [52] showed that the
exact BH solution present in 4DEGB gravity is not only
unstable but also plagued by a strong coupling problem.
The instabilities of BHs found in nonminimal derivative

coupling and 4DEGB theories are related to a finite scalar
field kinetic term X ¼ −ð1=2Þ∇μϕ∇μϕ on the horizon [44].
If we try to search for asymptotically flat hairy BHs with a
static scalar field in full Horndeski theories, models with
regular coupling functions G2;3;4;5 of ϕ and X generally
result in no-hair Schwarzschild solutions [53]. The excep-
tional case is the scalar-GB coupling ξðϕÞR2

GB mentioned
above, in which case the corresponding hairy BHs can be
consistent with all the linear stability conditions in a small
GB coupling regime. For a scalar field having the depend-
ence of time t in the form ϕ ¼ qctþΨðrÞ, where qc is a
constant and ΨðrÞ is a function of the radial coordinate,
it is known that a stealth Schwarzschild solution is also
present [54,55]. It is still fair to say that the construction of
asymptotically flat hairy BHs free from instabilities is
limited in the framework of Horndeski theories, especially
for a time-independent scalar field.
If we consider an electromagnetic tensor Fμν coupled to

the scalar field ϕ, there are more possibilities for realizing
hairy BHs. From the theoretical perspective, heterotic
string theory gives rise to a coupling between the dilaton
field ϕ and Maxwell field strength F ¼ −FμνFμν=4. In
Einstein-Maxwell-dilaton theory given by the Lagrangian
L ¼ Rþ 4X þ 4e−2ϕF, Gibbons and Maeda (GM) [56]
and Garfinkle, Horowitz, and Strominger (GHS) [57] found
charged hairy BH solutions with a nonvanishing dilaton.
The dilatonic hair appears as a result of the coupling with
the electromagnetic field. We note that, for scalar-vector
couplings ξðϕÞF with even power-law functions of ϕ in ξ,
the RN BH can trigger tachyonic instability to evolve into a
scalarized charged BH [58–62]. The low energy effective
action in string theory also contains a coupling between the
dilaton and the GB term as a next-to-leading order term of
the inverse string tension α0. In the presence of the dilatonic
coupling with both Maxwell and GB terms, Mignemi and
Stewart [63] showed the existence of hairy BH solutions by
using an expansion in terms of the small coupling α0 (see
Refs. [64,65] for related works).
In 4DEGB gravity, the hairy BH said before corresponds

to an exact solution without a Maxwell field. Analogous to
the case of string theory, one can incorporate an electro-
magnetic field in the four-dimensional effective action.
Indeed, there exists an exact charged BH solution in
4DEGB gravity [66], which is analogous to those derived
in higher-dimensional setups [67–69]. It is not yet clarified
whether this charged BH has the problems of instability and
strong coupling mentioned above.
In open string theory, there are possible corrections to the

Maxwell action arising from couplings of the Abelian
gauge field to bosonic strings [70–72]. The tree-level

effective electromagnetic action coincides with a nonlinear
action of Born and Infeld (BI) given by the Lagrangian
L ¼ ð4=b2Þð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2b2F

p
Þ [73]. At leading order in the

expansion with respect to a small coupling constant b, the
BI action recovers the Maxwell Lagrangian L ¼ 4F. In
the four-dimensional Einstein-BI gravity, there is an exact
BH solution whose metric differs from the RN solution
[74–76]. One can deal with such a nonlinear electromag-
netism by considering a general function of G2ðFÞ in the
Lagrangian. If there is a scalar field ϕ coupled with the
Maxwell field, the Lagrangian can be further extended to
the form G2ðϕ; X; FÞ. Indeed, in Einstein-Born-Infeld-
dilaton gravity where the dilaton is coupled to the BI field,
the existence of hairy BH solutions is also known [77–81].
In this paper, we study the stability of static and

spherically symmetric BH solutions in four-dimensional
Maxwell-Horndeski theories where the scalar field ϕ with
the Horndeski Lagrangian is coupled to a Uð1Þ gauge-
invariant vector field through the coupling G2ðϕ; X; FÞ. A
similar study was performed in Ref. [82] for the Lagrangian
L ¼ G2ðϕ; X; FÞ þ G4ðϕÞR, but our analysis is more
general in that the scalar field sector is described by the
full Horndeski Lagrangian. By doing this, we can accom-
modate the stabilities of hairy BH solutions present in all
the theories mentioned above, especially those containing
the GB term.
We decompose the types of perturbations into the odd-

and even-parity sectors and derive all the linear stability
conditions of five dynamical perturbations. In particular we
will derive the propagation speeds of even-parity pertur-
bations along the angular direction in the limit of large
multipoles l, which are missing in most of the papers about
BH perturbations in the literature [50,82]. We note that, in
full Horndeski theories with a perfect fluid, all the linear
stability conditions including the angular propagation
speeds were derived in Ref. [51], which can be applied
to the BH case as well (see also Ref. [83]). Indeed, the
angular Laplacian stability is important to exclude hairy
BHs arising in nonminimal derivative coupling theories
[44,44] and in 4DEGB gravity [52]. Neutron stars with
scalar hairs present in the same theories are also prone to
similar instability problems [51,84,85].
After deriving all the linear stability conditions of odd-

and even-parity perturbations in Maxwell-Horndeski theo-
ries, we will apply them to concrete hairy BH solutions
present in Einstein-Maxwell-dilaton theory, Einstein-BI-
dilaton gravity, Einstein-Maxwell-dilaton-GB theory, and
4DEGB gravity. While the first three theories allow the
existence of charged BHs consistent with all the linear
stability conditions, the exact charged BH solution present in
4DEGB gravity suffers from Laplacian instability of even-
parity perturbations as well as the strong coupling problem.
The nature of instabilities is similar to what was found for
the uncharged exact BH solution in 4DEGB gravity [52].
Thus, our stability criteria in Maxwell-Horndeski theories
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are useful to exclude some BH solutions or constrain allowed
parameter spaces. The second-order actions of odd- and
even-parity perturbations and resulting field equations of
motion can be also applied to the computation of BH
quasinormal modes.
This paper is organized as follows. In Sec. II, we derive

the field equations of motion in Maxwell-Horndeski
theories on the static and spherically symmetric back-
ground. In Sec. III, we obtain conditions for the absence of
ghost/Laplacian instabilities in the odd-parity sector and
show that the propagation of vector field perturbation is
luminal with the other stability conditions similar to those
in Horndeski theories. In Sec. IV, we derive the second-
order action of even-parity perturbations and clarify how
the vector field perturbation affects the linear stability
conditions. Since the number of dynamical degrees of
freedom (DOFs) depends on the multipole l in the
expansion of spherical harmonics, we discuss the cases
l ≥ 2, l ¼ 0, and l ¼ 1, in turn. In Sec. V, we apply our
general results to the stability of hairy BHs present in

several classes of theories mentioned above. Section VI is
devoted to conclusions.

II. MAXWELL-HORNDESKI THEORIES

We consider a scalar field ϕ in the framework of
Horndeski theories with second-order Euler equations of
motion [36]. We also incorporate a Uð1Þ gauge-invariant
vector field Aμ with the field strength tensor Fμν ¼
∇μAν −∇νAμ, where ∇μ is a covariant-derivative operator.
The vector field Lagrangian depends on a scalar quantity

F≡ −
1

4
FμνFμν: ð2:1Þ

We allow the existence of couplings between the scalar and
vector fields of the form G2ðϕ; X; FÞ, where G2 is a
function of ϕ, X ¼ −ð1=2Þ∇μϕ∇μϕ, and F. The action
of Maxwell-Horndeski theories is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p n
G2ðϕ; X; FÞ −G3ðϕ; XÞ□ϕþG4ðϕ; XÞRþG4;Xðϕ; XÞ½ð□ϕÞ2 − ð∇μ∇νϕÞð∇μ∇νϕÞ�

þG5ðϕ; XÞGμν∇μ∇νϕ −
1

6
G5;Xðϕ; XÞ½ð□ϕÞ3 − 3ð□ϕÞð∇μ∇νϕÞð∇μ∇νϕÞ þ 2ð∇μ∇αϕÞð∇α∇βϕÞð∇β∇μϕÞ�

o
; ð2:2Þ

where g is a determinant of the metric tensor gμν, and G3,
G4, G5 are functions of ϕ and X. We use the notations
□ϕ≡∇μ∇μϕ and Gj;ϕ ≡ ∂Gj=∂ϕ, Gj;X ≡ ∂Gj=∂X,
Gj;ϕX ≡ ∂

2Gj=ð∂X∂ϕÞ (j ¼ 2; 3; 4; 5), and so on. The
action (2.2) is invariant under the shift Aμ → Aμ þ ∂μχ,
so the theory respects a Uð1Þ gauge symmetry. Introducing
the gauge-invariant vector field Aμ to the Horndeski action
gives rise to two additional dynamical DOFs to those in
Horndeski theories (one scalar and two tensor modes).
Hence the total propagating DOFs are five in Maxwell-
Horndeski theories.1

In this section, we derive the background equations of
motion on a static and spherically symmetric spacetime
given by the line element

ds2 ¼ −fðrÞdt2 þ h−1ðrÞdr2 þ r2dΩ2; ð2:3Þ

where dΩ2 ¼ dθ2 þ sin2 θdφ2, and t, r, and ðθ;φÞ represent
the time, radial, and angular coordinates, respectively, and

f and h are functions of r. Since we are interested in the
stability of BHs outside the horizon, we will consider
positive values of f and h. On the background (2.3), we
consider a time-independent scalar field with the radial
dependence

ϕ ¼ ϕðrÞ: ð2:4Þ

As we mentioned in Introduction, Maxwell-Horndeski
theories given by the action (2.2) can accommodate a variety
of hairy BH solutions known in the literature. For the vector
field, we consider the following configuration [98]:

Aμ ¼ ½A0ðrÞ; A1ðrÞ; 0; 0�: ð2:5Þ

In theUð1Þ gauge-invariant theory under consideration now,
the longitudinal mode A1ðrÞ does not contribute to the
background equations. The scalar quantities X and F reduce,
respectively, to

X ¼ −
1

2
hϕ02; F ¼ h

2f
A02
0 ; ð2:6Þ

where a prime represents the derivative with respect to r.
Varying the action (2.2) with respect to gμν, the (00),

(11), (22) components of gravitational field equations of
motion are given, respectively, by

1If we consider generalized Proca (GP) theories [86–88] with a
Uð1Þ-symmetry breaking gauge field, there is an additional
longitudinal propagation of the vector field. It is known that
there are hairy BH solutions in GP theories [89–93], but our
analysis in this paper does not accommodate such cases. Readers
may refer to Refs. [94–97] for BH perturbations (mostly in the
odd-parity sector) in GP theories and its extensions.
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E00 ≡
�
C1 þ

C2

r
þ C3

r2

�
ϕ00 þ

�
ϕ0

2h
C1 þ

C4

r
þ C5

r2

�
h0

þ C6 þ
C7

r
þ C8

r2
−
h
f
G2;FA02

0 ¼ 0; ð2:7Þ

E11 ≡ −
�
ϕ0

2h
C1 þ

C4

r
þ C5

r2

�
hf0

f
þ C9 −

2ϕ0

r
C1

−
1

r2

�
ϕ0

2h
C2 þ ðh − 1ÞC4

�
þ h
f
G2;FA02

0 ¼ 0; ð2:8Þ

E22 ≡
��

C2 þ
ð2h − 1Þϕ0C3 þ 2hC5

hϕ0r

�
f0

4f
þ C1 þ

C2

2r

�
ϕ00

þ 1

4f

�
2hC4 − ϕ0C2 þ

2hC5 − ϕ0C3

r

��
f00 −

f02

2f

�

þ
�
C4 þ

2hð2hþ 1ÞC5 − ϕ0C3

2h2r

�
f0h0

4f

þ
�
C7

4
þ C10

r

�
f0

f
þ
�
ϕ0

h
C1 þ

C4

r

�
h0

2

þ C6 þ
C7

2r
¼ 0; ð2:9Þ

where a prime represents the derivative with respect to r,
and the coefficients are given by

C1 ¼−h2ðG3;X −2G4;ϕXÞϕ02−2G4;ϕh;

C2 ¼ 2h3ð2G4;XX −G5;ϕXÞϕ03−4h2ðG4;X −G5;ϕÞϕ0;

C3 ¼−h4G5;XXϕ
04þh2G5;Xð3h−1Þϕ02;

C4 ¼ h2ð2G4;XX −G5;ϕXÞϕ04þhð3G5;ϕ−4G4;XÞϕ02−2G4;

C5 ¼−
1

2
½G5;XXh3ϕ05−hG5;Xð5h−1Þϕ03�;

C6 ¼ hðG3;ϕ−2G4;ϕϕÞϕ02þG2;

C7 ¼−2h2ð2G4;ϕX −G5;ϕϕÞϕ03−4G4;ϕhϕ0;

C8 ¼G5;ϕXh3ϕ04−hð2G4;Xh−G5;ϕh−G5;ϕÞϕ02

−2G4ðh−1Þ;
C9 ¼−hðG2;X −G3;ϕÞϕ02−G2;

C10 ¼
1

2
G5;ϕXh3ϕ04−

1

2
h2ð2G4;X −G5;ϕÞϕ02−G4h: ð2:10Þ

The scalar field equation of motion following from the
variation of (2.2) with respect to ϕ gives

1

r2

ffiffiffi
h
f

s  
r2

ffiffiffi
f
h

r
Jr
!0

þ ∂E
∂ϕ

¼ 0; ð2:11Þ

where

Jr ¼
�
C1 þ

C2

r
þ C3

r2

�
f0

2f
−
C6 þ C9

ϕ0 þ 2

r
C1

þ 1

r2

�
1þ h
2h

C2 −
C4 þ C8 − 2C10

ϕ0

�
; ð2:12Þ

E ¼
�
C1 þ

1

r2

�
C3

2h
−
C5

ϕ0

���
ϕ00 þ ϕ0h0

2h

�

þ
�
ϕ0

2
C2 − hC4 þ

1

2r

�
ϕ0

2
C3 − hC5

��
f0

rf

þ C6 þ
1

r2

�
ϕ0

2
C2 − hC4 þ C8 − 2C10

�
: ð2:13Þ

Varying the action (2.2) with respect to A0, it follows that

EA0
≡
 
G2;F

ffiffiffi
h
f

s
r2A0

0

!0
¼ 0; ð2:14Þ

whose integrated solution is given by

A0
0 ¼

1

G2;F

ffiffiffi
f
h

r
q0
r2

; ð2:15Þ

where q0 is constant. We will only focus on the case of an
electric charge q0 without considering the magnetic charge.
On using Eqs. (2.7)–(2.9) and (2.14), the scalar field

Eq. (2.11) can be expressed as

Eϕ ≡ −
2

ϕ0

"
f0

2f
E00 þ E0

11 þ
�
f0

2f
þ 2

r

�
E11

þ 2

r
E22 −

A0
0

r2

ffiffiffi
h
f

s
EA0

#
¼ 0: ð2:16Þ

We note that some of the coefficients appearing in the
second-order action of even-parity perturbations derived
later can be expressed in terms of the partial ϕ derivatives of
Eϕ and E11.

III. ODD-PARITY PERTURBATIONS

On top of the static and spherically symmetric back-
ground (2.3), we decompose the metric tensor into the
background and perturbed parts as gμν ¼ ḡμν þ hμν, where
a bar represents the background quantity. Under the
rotation in the ðθ;φÞ plane, the metric perturbations hμν
can be separated into odd- and even-parity modes [99,100].
Expanding hμν in terms of the spherical harmonics
Ylmðθ;φÞ, the odd- and even-modes of perturbations have
parities ð−1Þlþ1 and ð−1Þl, respectively. In the odd-parity
sector, the components of hμν are given by
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htt ¼ htr ¼ hrr ¼ 0;

hta ¼
X
l;m

Qðt; rÞEab∇bYlmðθ;φÞ; hra ¼
X
l;m

Wðt; rÞEab∇bYlmðθ;φÞ;

hab ¼
1

2

X
l;m

Uðt; rÞ½Ea
c∇c∇bYlmðθ;φÞ þ Eb

c∇c∇aYlmðθ;φÞ�; ð3:1Þ

where Q, W, and U are functions of t and r, and the
subscripts a and b denote either θ or φ [49,101–103]. In a
formal sense, we should write subscripts l and m for the
variables Q, W, and U, but we omit them for brevity. We
note that Eab is an antisymmetric tensor with nonvanishing
components Eθφ ¼ −Eφθ ¼ sin θ. The scalar field ϕ does
not have an odd-parity perturbation, so it is equivalent to
the background value ϕðrÞ. The vector field Aμ in the odd-
parity sector has the following perturbed components:

δAt ¼ δAr ¼ 0; δAa ¼
X
l;m

δAðt; rÞEab∇bYlmðθ;φÞ;

ð3:2Þ

where δA depends on t and r.
Under a gauge transformation xμ → xμ þ ξμ, where

ξt ¼ 0, ξr ¼ 0, and ξa ¼
P

l;m Λðt; rÞEab∇bYlmðθ;φÞ, the
metric perturbations transform as Q → Qþ _Λ, W →
W þ Λ0 − 2Λ=r, and U → U þ 2Λ, where a dot represents
the derivative with respect to t. In the following, we choose
the gauge

U ¼ 0; ð3:3Þ

which fixes the scalar Λ in ξa.
We expand the action (2.2) up to quadratic order in odd-

parity perturbations. For this purpose it is sufficient to focus
on the axisymmetric modes of perturbations characterized
by m ¼ 0, since the nonaxisymmetric modes with m ≠ 0
can be restored under the suitable rotation by virtue of the
spherical symmetry on the background [104]. We perform
the integrals with respect to θ and φ by using the following
properties:

Z
2π

0

dφ
Z

π

0

dθY2
l0;θ sin θ ¼ L;

Z
2π

0

dφ
Z

π

0

dθ

�
Y2
l0;θ

sin θ
þ Y2

l0;θθ sin θ

�
¼ L2; ð3:4Þ

where

L≡ lðlþ 1Þ: ð3:5Þ

We also exploit the background Eqs. (2.7), (2.8), and (2.14)
to eliminate the terms G2, G2;X, and A00

0 . After integrating

the action S with respect to t and r, the second-order action
can be expressed in the form

Sodd ¼
X
l

L
Z

dtdrLodd; ð3:6Þ

where

Lodd ¼
ffiffiffi
h

p

4
ffiffiffi
f

p H
�

_W −Q0 þ 2Q
r

�
2

−
ffiffiffi
h

pffiffiffi
f

p G2;FA0
0

�
_W −Q0 þ 2Q

r

�
δA

þ ðL − 2Þ
�

FQ2

4r2
ffiffiffiffiffiffi
fh

p −
ffiffiffiffiffiffi
fh

p
4r2

GW2

�

þ 1

2
ffiffiffiffiffiffi
fh

p G2;F

�
_δA2 − fhδA02 −

Lf
r2

δA2

�
; ð3:7Þ

with

H≡ 2G4 þ 2hϕ02G4;X − hϕ02G5;ϕ −
h2ϕ03G5;X

r
; ð3:8Þ

F ≡ 2G4 þ hϕ02G5;ϕ − hϕ02
�
1

2
h0ϕ0 þ hϕ00

�
G5;X; ð3:9Þ

G≡ 2G4þ 2hϕ02G4;X −hϕ02
�
G5;ϕþ

f0hϕ0G5;X

2f

�
: ð3:10Þ

A. l ≥ 2

We first derive linear stability conditions for the multi-
poles l ≥ 2. To identify the dynamical DOFs, it is con-
venient to consider the following Lagrangian:

Lodd

¼
ffiffiffi
h

p

4
ffiffiffi
f

p H
�
2χ

�
_W −Q0 þ 2Q

r
−
2G2;FA0

0

H
δA
�
− χ2

�

−
1

H

ffiffiffi
h

pffiffiffi
f

p G2
2;FA

02
0 δA

2 þ ðL − 2Þ
�

FQ2

4r2
ffiffiffiffiffiffi
fh

p −
ffiffiffiffiffiffi
fh

p
4r2

GW2

�

þ 1

2
ffiffiffiffiffiffi
fh

p G2;F

�
_δA2 − fhδA02 −

Lf
r2

δA2

�
; ð3:11Þ
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where we introduced an auxiliary field χ. Variation of the
Lagrangian (3.11) with respect to χ leads to

χ ¼ _W −Q0 þ 2Q
r

−
2G2;FA0

0

H
δA: ð3:12Þ

Substituting Eq. (3.12) into Eq. (3.11), we find that the
Lagrangian (3.11) is equivalent to (3.7). Varying (3.11)
with respect to W and Q, respectively, we obtain

ðL − 2ÞfGW þ r2H_χ ¼ 0; ð3:13Þ

½2ðL − 2ÞFQþ 4rhHχ þ 2r2hHχ0 þ r2ðHh0 þ 2hH0Þχ�f
− r2f0hHχ ¼ 0: ð3:14Þ

We solve Eqs. (3.13) and (3.14) forW andQ, and take the t
and r derivatives of W and Q, respectively. Substituting
them into Eq. (3.11) and integrating it by parts, the resulting
second-order Lagrangian can be expressed in the form

Lodd ¼ _X⃗
t
K _X⃗ þ X⃗ 0tGX⃗ 0 þ X⃗ tMX⃗ ; ð3:15Þ

where K;G;M are 2 × 2 symmetric matrices, and X⃗ is a
vector field defined by

X⃗ ¼
�

χ

δA

�
: ð3:16Þ

Note that χ and δA correspond to the dynamical perturba-
tions arising from the gravity and vector field sectors,
respectively. The nonvanishing components of K;G;M are

K11 ¼
r2

ffiffiffi
h

p
H2

4ðL − 2Þf3=2G ; K22 ¼
G2;F

2
ffiffiffiffiffiffi
fh

p ; G11 ¼ −fh
G
F
K11; G22 ¼ −fhK22;

M11 ¼ −
ffiffiffi
h

p
H

4ðL − 2Þ ffiffiffi
f

p
�
L − 2þ α0M −

2

r
αM

�
; M22 ¼ −

G2;FðLfHþ 2r2hA02
0 G2;FÞ

2r2H
ffiffiffiffiffiffi
fh

p ;

M12 ¼ −
ffiffiffi
h

p
A0
0G2;F

2
ffiffiffi
f

p ; ð3:17Þ

where

αM ≡ −
r2hH
F

�
H0

H
−

f0

2f
þ h0

2h
þ 2

r

�
: ð3:18Þ

The ghosts are absent under the conditions K11 > 0 and
K22 > 0. These translate to

G > 0; ð3:19Þ

G2;F > 0; ð3:20Þ

respectively, which correspond to the no-ghost conditions
of gravitational and vector field perturbations in the odd-
parity sector.
The perturbation equations of motion for χ and δA follow

by varying the Lagrangian (3.15) with respect to these
variables. For the propagation of χ and δA along the radial
direction, we assume solutions to the perturbation equa-
tions in the form X⃗ t ∝ eiðωt−krÞ. In the short-wavelength
limit k → ∞, the dispersion relation is given by
det ðω2K þ k2GÞ ¼ 0. The radial propagation speed cr in
proper time can be obtained by substituting ω ¼ ffiffiffiffiffiffi

fh
p

crk
into the dispersion relation. This gives the following two
solutions:

c2r1;odd ¼ −
G11

fhK11

¼ G
F
; ð3:21Þ

c2r2;odd ¼ −
G22

fhK22

¼ 1; ð3:22Þ

which are the squared propagation speeds of χ and δA,
respectively. Under the no-ghost condition (3.19), the
Laplacian stability of χ is ensured for

F > 0: ð3:23Þ

Since the second propagation speed squared (3.22) is
luminal, there is no Laplacian instability for δA.
In the large multipole limit L ¼ lðlþ 1Þ ≫ 1, the matrix

M gives contributions to the propagation speed cΩ along
the angular direction. In this limit, we have

M11 ≃ −
ffiffiffi
h

p
H

4
ffiffiffi
f

p ; M22 ≃ −
ffiffiffi
f

p
G2;F

2r2
ffiffiffi
h

p L: ð3:24Þ

Substituting solutions of the form X⃗ t ∝ eiðωt−lθÞ into the
perturbation equations, the dispersion relation yields
detðω2K þMÞ ¼ 0. The angular propagation speed in
proper time is given by cΩ ¼ ĉΩ=

ffiffiffi
f

p
, where ĉΩ ¼

rdθ=dt. We substitute ω2 ¼ ĉ2Ωl
2=r2 ¼ c2Ωfl

2=r2 into the
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dispersion relation and solve it for c2Ω. In the limit l ≫ 1,
we obtain the following two solutions:

c2Ω1;odd ¼ −
r2M11

l2fK11

¼ G
H

; ð3:25Þ

c2Ω2;odd ¼ −
r2M22

l2fK22

¼ 1; ð3:26Þ

which correspond to the squared angular propagation
speeds of χ and δA, respectively. Under the no-ghost
condition (3.19), the Laplacian instability of χ is absent for

H > 0: ð3:27Þ

The angular propagation speed of δA is luminal, so there is
no Laplacian instability.
We note that the stability conditions of χ are identical to

those derived in Ref. [49] without a vector field Aμ. This
means that the presence of Aμ coupled to the scalar field
of the form G2ðϕ; X; FÞ does not modify the odd-parity
stability conditions in the gravitational sector. The odd-
parity perturbation of Aμ propagates luminally, without a
ghost for G2;F > 0.

B. l = 1

We also study the odd-parity stability of dipolar pertur-
bations (l ¼ 1). Since L ¼ 2 in this case, terms propor-
tional to L − 2 in Eq. (3.7) vanish. Moreover, the metric
components hab vanish identically and henceU ¼ 0. To fix
the residual gauge DOF, we choose the gauge

W ¼ 0: ð3:28Þ

Varying the Lagrangian (3.7) with respect toW and Q, and
setting W ¼ 0 at the end, we obtain

_E ¼ 0; ðr2EÞ0 ¼ 0; ð3:29Þ

where

E ¼ H

ffiffiffi
h
f

s �
Q0 −

2

r
Qþ 2G2;FA0

0

H
δA

�
: ð3:30Þ

Integrating two differential equations in (3.29) leads to

Q0 −
2

r
Qþ 2G2;FA0

0

H
δA ¼ 1

H

ffiffiffi
f
h

r
C
r2

; ð3:31Þ

where C is a constant. On using this relation to eliminateQ0
from the Lagrangian (3.7), it follows that

Lodd ¼
1

2
ffiffiffiffiffiffi
fh

p
�
G2;F

_δA2 − G2;FfhδA02

−
2G2;FðfHþ r2hG2;FA02

0 Þ
r2H

δA2 þ fC2

2r4H

�
: ð3:32Þ

Hence the propagating DOF is only the vector field
perturbation δA. The ghost is absent so long as the first
term in the square bracket of Eq. (3.32) is positive, i.e.,

G2;F > 0; ð3:33Þ

which is the same as the no-ghost condition of δA derived
for l ≥ 2. In the short-wavelength limit, the dominant
contributions to Eq. (3.32) are the first and second terms
in the square bracket. Then, the radial propagation speed
squared of δA in proper time is given by

c2r;odd ¼ 1; ð3:34Þ

which is luminal. Thus, the stability of dipolar perturba-
tions does not add any new conditions to those obtained
for l ≥ 2.

IV. EVEN-PARITY PERTURBATIONS

In this section, we derive the second-order action and
perturbation equations of motion for the even-parity modes.
On the background (2.3), the metric perturbations hμν in the
even-parity sector are given by

htt ¼ fðrÞ
X
l;m

H0ðt; rÞYlmðθ;φÞ; htr ¼ hrt ¼
X
l;m

H1ðt; rÞYlmðθ;φÞ; hrr ¼ hðrÞ−1
X
l;m

H2ðt; rÞYlmðθ;φÞ;

hta ¼ hat ¼
X
l;m

h0ðt; rÞ∇aYlmðθ;φÞ; hra ¼ har ¼
X
l;m

h1ðt; rÞ∇aYlmðθ;φÞ;

hab ¼
X
l;m

½Kðt; rÞgabYlmðθ;φÞ þ Gðt; rÞ∇a∇bYlmðθ;φÞ�; ð4:1Þ
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where H0, H1, H2, h0, h1, K, and G are scalar quantities
depending on t and r. We also decompose the scalar and
vector fields as

ϕ ¼ ϕ̄ðrÞ þ
X
l;m

δϕðt; rÞYlmðθ;φÞ; ð4:2Þ

Aμ ¼ Āμ þ δAμ; ð4:3Þ

with

δAt ¼
X
l;m

δA0ðt; rÞYlmðθ;φÞ;

δAr ¼
X
l;m

δA1ðt; rÞYlmðθ;φÞ;

δAa ¼
X
l;m

δA2ðt; rÞ∇aYlmðθ;φÞ; ð4:4Þ

where δϕ, δA0, δA1, and δA2 are functions of t and r.
Under the infinitesimal gauge transformation xμ →

xμ þ ξμ with

ξt ¼
X
l;m

T ðt; rÞYlmðθ;φÞ; ξr ¼
X
l;m

Rðt; rÞYlmðθ;φÞ; ξa ¼
X
l;m

Θðt; rÞ∇aYlmðθ;φÞ; ð4:5Þ

the metric perturbations in Eq. (4.1) and δϕ in Eq. (4.2) transform as

H0 → H0 þ
2

f
_T −

f0h
f

R; H1 → H1 þ _Rþ T 0 −
f0

f
T ; H2 → H2 þ 2hR0 þ h0R;

h0 → h0 þ T þ _Θ; h1 → h1 þRþ Θ0 −
2

r
Θ; K → K þ 2

r
hR; G → Gþ 2

r2
Θ;

δϕ → δϕ − ϕ0hR: ð4:6Þ

We can eliminate some of the perturbed variables on
account of the gauge DOFs. For the multipoles l ≥ 2,
we choose the uniform curvature gauge given by

h0 ¼ 0; G ¼ 0; K ¼ 0; ð4:7Þ

under which R, Θ, and T are fixed. In addition to the
coordinate transformation (4.5), the action (2.2) is invariant
under the Uð1Þ gauge transformation

δAμ → δAμ þ ∂μδχ with δχ ¼
X
l;m

χ̃ðt; rÞYlmðθ;φÞ:

ð4:8Þ

Under this transformation, the scalar quantities of vector
field perturbations in Eq. (4.4) transform as

δA0 → δA0 þ _̃χ; δA1 → δA1 þ χ̃0; δA2 → δA2 þ χ̃:

ð4:9Þ

We choose the gauge

δA2 ¼ 0; ð4:10Þ

under which χ̃ is fixed.

A. Second-order action and perturbation
equations of motion

We expand the action (2.2) up to second order with the
gauge choices (4.7) and (4.10). As in the case of odd-parity
modes, we setm ¼ 0without loss of generality. Performing
the integration by parts and using the background equations
of motion (2.7)–(2.9) and (2.14), the second-order action of
even-parity perturbations can be expressed in the form

Seven ¼
X
l

Z
dtdrðLu þ LAÞ; ð4:11Þ

where

Lu ¼ H0½a1δϕ00 þ a2δϕ0 þ a3H0
2 þ La4h01 þ ða5 þ La6Þδϕþ ða7 þ La8ÞH2 þ La9h1� þ Lb1H2

1

þH1ðb2 _δϕ0 þ b3 _δϕþ b4 _H2 þ Lb5 _h1Þ þ c1 _δϕ _H2 þH2½c2δϕ0 þ ðc3 þ Lc4Þδϕþ Lc5h1�
þ c6H2

2 þ Ld1 _h
2
1 þ Lh1ðd2δϕ0 þ d3δϕÞ þ Ld4h21 þ e1 _δϕ2 þ e2δϕ02 þ ðe3 þ Le4Þδϕ2; ð4:12Þ

LA ¼ v1ðδA0
0 − _δA1Þ2 þ ðδA0

0 − _δA1Þðv2H0 þ v3H2 þ v4δϕ0 þ v5δϕÞ þ v6H2
0 þ Lðv7δA0h1 þ v8δA2

0 þ v9δA2
1Þ: ð4:13Þ
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We recall that L is defined by L ¼ lðlþ 1Þ. The coef-
ficients a1; a2;…, v9 are given in Appendix A. In com-
parison to Horndeski theories without the Maxwell field,
the Lagrangian Lu has a same structure with that derived in
Refs. [50,51]. Still, the coefficients a2, a5, a7, b3, c2, c3, c6,
e1, e2 are subject to modifications by the presence of Aμ

(see Appendix A). Moreover, the vector field perturbation
gives rise to the new Lagrangian (4.13) whose contribution
is absent in Refs. [50,51].
In what follows, we derive the perturbation equations

of motion by varying the second-order action (4.11) with

respect to H0, H1, H2, h1, δA0, δA1, δϕ, and eliminate
nondynamical variables from the action by using their
corresponding equations. The Lagrangian (4.13) shows that
δA0 is nondynamical since there is no quadratic term of its
time derivative. Nevertheless, the perturbation equation of
δA0 cannot be explicitly solved for δA0 due to the existence
of the quadratic radial derivative term, i.e., δA02

0 , in
Eq. (4.13). This situation is similar to the case of odd-
parity perturbations discussed in Sec. III. Thus, we intro-
duce an auxiliary field Vðt; rÞ in analogy to the discussion
in the odd-parity sector, and rewrite Eq. (4.13) in the form

LA ¼ v1

�
2V

�
δA0

0 − _δA1 þ
v2H0 þ v3H2 þ v4δϕ0 þ v5δϕ

2v1

�
− V2

�
−
ðv2H0 þ v3H2 þ v4δϕ0 þ v5δϕÞ2

4v1
þ v6H2

0 þ Lðv7δA0h1 þ v8δA2
0 þ v9δA2

1Þ: ð4:14Þ

Varying this action with respect to V gives

V ¼ δA0
0 − _δA1 þ

v2H0 þ v3H2 þ v4δϕ0 þ v5δϕ
2v1

: ð4:15Þ

Substituting Eq. (4.15) into Eq. (4.14), we find that
Eq. (4.14) is equivalent to the original Lagrangian (4.13).
By introducing the auxiliary field V, the quadratic terms δA02

0

and _δA2
1 present in the original Lagrangian (4.13) are absent

in the new Lagrangian (4.14). This allows us to solve the
perturbation equations of δA0 and δA1 explicitly for them-
selves. Substituting such solutions into the Lagrangian, we
will see later that the dynamical property of vector field
perturbation is determined by the auxiliary field V.
We also note that the coefficients v2 and v6 have the

following relation:

v6 ¼
v22
4v1

: ð4:16Þ

This means that the two quadratic terms of H0 appearing
in Eq. (4.14), i.e., −½v22=ð4v1Þ�H2

0 and v6H2
0 cancel each

other as a result of introducing the auxiliary field V.
Consequently, the total action (4.11) with the sum of
Eqs. (4.12) and (4.14) depends on H0 linearly. Hence
the perturbation H0 corresponds to a Lagrange multiplier
and the variation of the action with respect to H0 puts
constraint on other perturbation variables.
Varying the total action (4.11) with Eqs. (4.12) and

(4.14) with respect toH0,H1,H2, h1, δA0, δA1, and δϕ, we
obtain the following linear perturbation equations:

a1δϕ00 þ a3H0
2 þ La4h01 þ

�
a2 −

v2v4
2v1

�
δϕ0 þ

�
a5 þ La6 −

v2v5
2v1

�
δϕþ

�
a7 þ La8 −

v2v3
2v1

�
H2 þ La9h1 þ v2V ¼ 0;

ð4:17Þ

2Lb1H1 þ b2δ _ϕ
0 þ b3δ _ϕþ b4 _H2 þ Lb5 _h1 ¼ 0; ð4:18Þ

−c1δϕ̈−b4 _H1þ
�
c2−

v3v4
2v1

�
δϕ0 þ

�
c3þLc4−

v3v5
2v1

�
δϕþLc5h1þ

�
2c6−

v23
2v1

�
H2−a3H0

0

þ
�
a7−a03þLa8−

v2v3
2v1

�
H0þv3V¼ 0; ð4:19Þ

−2d1ḧ1 þ d2δϕ0 þ d3δϕþ 2d4h1 − a4H0
0 þ ða9 − a04ÞH0 − b5 _H1 þ c5H2 þ v7δA0 ¼ 0; ð4:20Þ

−2ðv1VÞ0 þ Lv7h1 þ 2Lv8δA0 ¼ 0; ð4:21Þ

2v1 _V þ 2Lv9δA1 ¼ 0; ð4:22Þ
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− 2e1δ̈ϕ −
�
2e2 −

v24
2v1

�
δϕ00 þ

�
2e3 þ 2Le4 þ

�
v4v5
2v1

�0
−

v25
2v1

�
δϕþ a1H00

0 þ
�
2a01 − a2 þ

v2v4
2v1

�
H0

0

þ
�
a001 − a02 þ a5 þ La6 þ

�
v2v4
2v1

�0
−
v2v5
2v1

�
H0 þ b2 _H

0
1 þ ðb02 − b3Þ _H1 − c1Ḧ2 −

�
c2 − v3v4

2v1

�
H0

2

þ
�
c3 − c02 þ Lc4 þ

�
v3v4
2v1

�0 − v3v5
2v1

�
H2 − Ld2h01 þ Lðd3 − d02Þh1 −

�
2e02 −

�
v24
2v1

�0�
δϕ0

− v4V 0 þ ðv5 − v04ÞV ¼ 0; ð4:23Þ

where we used the relation (4.16).

B. Linear stability conditions

In order to derive the linear stability conditions of
dynamical perturbations, we eliminate nondynamical var-
iables from the total action (4.11) with Eqs. (4.12) and
(4.14) by using some of the equations derived above. Since
the number of dynamical perturbations is different depend-
ing on the values of l, we investigate the three cases
(1) l ≥ 2, (2) l ¼ 0, and (3) l ¼ 1, in turn.

1. l ≥ 2

Among the eight variables (H0, H1, H2, h1, δA0, δA1,
δϕ, V), we can eliminate H1, δA0, and δA1 by using
Eqs. (4.18), (4.21), and (4.22), respectively. This is due to
the fact that the derivatives of H1, δA0, and δA1 do not
appear in their equations. We recall that H0 corresponds to
a Lagrange multiplier, so its perturbation equation (4.17)
puts constraint on other variables. Introducing a new
variable [50,51]

ψ ¼ H2 þ
a4
a3

Lh1 þ
a1
a3

δϕ0; ð4:24Þ

we can write Eq. (4.17) in terms of ψ 0, ψ , δϕ0, δϕ, V, and
h1. We solve this equation for h1 and take its time
derivative. Terms H2 and _H2 in the action (4.11) can be
expressed in terms of ψ , _ψ , δϕ0, _δϕ0, h1, _h1, where the latter
two variables now depend on ψ , δϕ, V and their derivatives.
Then, we can express the second-order action (4.11) in
terms of the three dynamical perturbations ψ , δϕ, V and
their derivatives. After the integration by parts, we obtain

Seven ¼
X
l

Z
dtdrð _⃗X t

K _⃗X þ X⃗ 0tGX⃗ 0 þ X⃗ tQX⃗ 0 þ X⃗ tMX⃗Þ;

ð4:25Þ

where K, G,M are the 3 × 3 symmetric matrices while Q is
antisymmetric, and the vector X⃗ is defined as

X⃗ ¼

0
B@

ψ

δϕ

V

1
CA: ð4:26Þ

Note that the derivative terms _δϕ0 and _ψ 0 disappear from the
final action (4.25).
The kinetic matrix K in the reduced action (4.25) must be

positive definite for the absence of ghosts. This requires
that the determinants of principal submatrices of K are
positive, such that

K33 ¼
v21

Lfhv8
¼ 2v21

L
ffiffiffiffiffiffi
fh

p
G2;F

> 0; ð4:27Þ

K11K33−K2
13¼

ðLP1−F Þf3P4
2v

2
1

L2h3ðrf0−2fÞ4H2ðP2þ2rLHÞ2G2;F
>0;

ð4:28Þ

detK ¼ ðL − 2Þf5=2Fv21P
4
2ð2P1 − F Þ

2L2h7=2H2ϕ02ðP2 þ 2rLHÞ2ðrf0 − 2fÞ4G2;F
> 0;

ð4:29Þ

where we introduced the following combinations [50]:

P1 ≡ hμ
2fr2H2

�
fr4H4

μ2h

�0
; P2 ≡ h

f
ðrf0 − 2fÞμ;

μ≡ 2ðϕ0a1 þ 2ra4Þffiffiffiffiffiffi
fh

p : ð4:30Þ

Under the stability conditions (3.20) and (3.23) in the
odd-parity sector, the quantities G2;F and F are positive.
Then, the first condition (4.27) is automatically satisfied.
Remembering that L > 2, both the second and third
inequalities (4.28)–(4.29) hold for

K≡ 2P1 − F > 0; ð4:31Þ

which coincides with the stability condition in Horndeski
theories without the Maxwell field [50]. Consequently, the
absence of ghost instabilities in the even-parity sector adds
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one condition (4.31) to the stability conditions in the odd-
parity sector.
We proceed to derive the propagation speeds of even-

parity perturbations along the radial direction. The equations
of motion for three dynamical perturbations follow by
varying the action (4.25) with respect to X⃗ . Assuming the
solutions to those equations of the form X⃗ ∝ eiðωt−krÞ, where
ω and k are the frequency and wave number, respectively, we
obtain the dispersion relation characterizing the radial
propagation. In the limits of large ω and k, it is given by

det jfhc2rK þ Gj ¼ 0: ð4:32Þ
Here, the propagation speed cr is defined by the rescaled
radial coordinate r�¼

R
dr=

ffiffiffi
h

p
and proper time τ¼R ffiffiffi

f
p

dt,
as cr ¼ dr�=dτ ¼ ðfhÞ−1=2ðdr=dtÞ ¼ ðfhÞ−1=2ðω=kÞ. The
matrix components of K and G associated with the vector
field perturbation V have the following relations:

G13

K13

¼ G23

K23

¼ G33

K33

¼ −fh: ð4:33Þ

On using these relations, the radial propagation speed of V,
which is decoupled from the other two, is simply given by

c2r3;even ¼ 1; ð4:34Þ
which is equivalent to the radial propagation speed of vector
field perturbation δA in the odd-parity sector (3.22).
The other components of matrices K and G are quite

complicated, but we can resort to the following relation:

a04 ¼
1

2f − rf0

��
rf00 −

rf02

f
þ 2f0 −

2f
r

�
a4

þ f3=2

r
ffiffiffi
h

p F − 2rfhA02
0 v8

�
; ð4:35Þ

to eliminate the derivative a04. This relation follows by using
the background Eqs. (2.7) and (2.9). As a consequence, the
dispersion relation can be factorized in the form,

ðc2r − c2r1;evenÞðc2r − c2r2;evenÞ ¼ 0; ð4:36Þ

where cr1;even and cr2;even correspond to the radial propa-
gation speeds of ψ and δϕ, respectively, which are given by

c2r1;even ¼
G
F
; ð4:37Þ

c2r2;even ¼
4ϕ0

ðfhÞ3=2ð2P1 − F Þμ2

×

�
8r2ha4c4ðϕ0a1 þ ra4Þ −

ffiffiffiffiffiffi
fh

p
ϕ0a21G

þ 2r2a24

�
f0

f
a1 þ 2c2 þ A0

0v4 þ
ϕ0v24
2v1

��
: ð4:38Þ

Notice that c2r1;even is equivalent to the squared propagation
speed (3.21) of gravitational perturbation χ in the odd-parity
sector, which is not directly affected by the presence of
the vector field. On the other hand, the coupling between
ϕ and Aμ modifies the value of cr2;even due to the presence
of the last two terms in Eq. (4.38) containing v4 ¼
−r2h3=2ϕ0A0

0G2;XF=
ffiffiffi
f

p
. In the absence of the vector field,

the result (4.38) is consistent with those derived in
Refs. [50,51].
Wewill also obtain the propagation speeds of even-parity

perturbations along the angular direction. For this purpose,
we assume the solution to the equations of dynamical
perturbations in the form X⃗ ∝ eiðωt−lθÞ. In the limit of large
ω and l, the reduced Lagrangian (4.25) leads to the
following dispersion relation along the angular direction:

det jfl2c2ΩK þ r2Mj ¼ 0: ð4:39Þ

The propagation speed cΩ is defined by using the proper
time τ such that cΩ ¼ rdθ=dτ ¼ ðr= ffiffiffi

f
p Þðdθ=dtÞ ¼

ðr= ffiffiffi
f

p Þðω=lÞ. Expanding the components of K and
M in the limit l → ∞, we find that the leading-order
matrix components have the following dependence2:

K11 ¼
K̃11

l4
; K12 ¼

K̃12

l2
; K13 ¼

K̃13

l4
; K22 ¼ K̃22; K23 ¼

K̃23

l2
; K33 ¼

K̃33

l2
;

M11 ¼
M̃11

l2
; M12 ¼ M̃12; M13 ¼

M̃13

l2
; M22 ¼ M̃22l2; M23 ¼ M̃23; M33 ¼ M̃33; ð4:41Þ

where the quantities with tildes do not contain the l
dependence. Picking up the leading-order contributions
to Eq. (4.39), it follows that

ðfK̃33c2Ω þ r2M̃33Þ½f2ðK̃11K̃22 − K̃2
12Þc4Ω

þ r2fðK̃11M̃22 − 2K̃12M̃12 þ K̃22M̃11Þc2Ω
þ r4ðM̃11M̃22 − M̃2

12Þ� ¼ 0: ð4:42Þ

2Nonvanishing components of the antisymmetric matrix Q
have the following leading-order l-dependence:

Q12 ¼
Q̃12

l2
; Q13 ¼

Q̃13

l2
; Q23 ¼

Q̃23

l2
: ð4:40Þ

These do not contribute to the values of cΩ in the large l limit.
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Then, the propagation speed of V decouples from the other
two, such that

c2Ω3;even ¼ −
r2M̃33

fK̃33

¼ r2hv8
v1

¼ G2;F

G2;F þ 2FG2;FF
; ð4:43Þ

where F is given in Eq. (2.6). If the LagrangianG2 contains
nonlinear functions of F, the propagation speed of V along
the angular direction deviates from that of light. This
property dose not necessarily hold in other spacetime since
the propagation speed of perturbations generally depends
on underlying symmetry of the background spacetime.
Indeed, on the Friedmann-Lemaître-Robertson-Walker
(FLRW) cosmological background, the propagation speeds
of vector perturbations are luminal in theories with the
coupling G2 ¼ G2ðFÞ [105].
Under the no-ghost condition G2;F > 0, the angular

Laplacian stability of V is ensured for

G2;F þ 2FG2;FF > 0: ð4:44Þ

The other two propagation speeds associated with the
perturbations ψ and δϕ are given by

c2Ω�;even ¼ −B1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 − B2

q
; ð4:45Þ

where

B1 ¼
r2ðK̃11M̃22 − 2K̃12M̃12 þ K̃22M̃11Þ

2fðK̃11K̃22 − K̃2
12Þ

;

B2 ¼
r4ðM̃11M̃22 − M̃2

12Þ
f2ðK̃11K̃22 − K̃2

12Þ
: ð4:46Þ

While each matrix component of K and M is quite
complicated, we can simplify the terms appearing in
Eq. (4.46) by using relations among the coefficients given
in Appendix A. We also exploit the following relation:

ð2hϕ00 þ h0ϕ0Þ
�
a1 − r2hc4
r2

ffiffiffiffiffiffi
fh

p þ fðG −HÞ
rhðrf0 − 2fÞϕ0

�

−
h
4f

�
2f00 −

ðrf0 − 2fÞf0
rf

þ ðrf0 − 4fÞh0
rh

�
H −

1

r2
F

−
rh0 − 2h

2r2
G −

hðrf0 − 2fÞϕ0

2rf
∂H
∂ϕ

þ 2h3=2A02
0ffiffiffi

f
p v8 ¼ 0;

ð4:47Þ

which is equivalent to the subtraction of Eq. (2.7) from
Eq. (2.9). After lengthy but straightforward calculations,
we find that the quantities B1 and B2 are of the same forms
as those derived in Ref. [51] without a perfect fluid, i.e.,

B1 ¼
a4r3½4hðϕ0a1 þ 2ra4Þβ1 þ β2 − 4ϕ0a1β3� − 2fhG½2ra4ð2P1 − F Þðϕ0a1 þ ra4Þ þ ϕ02a21P1�

4
ffiffiffiffiffiffi
fh

p
a4ðϕ0a1 þ 2ra4Þ2ð2P1 − F Þ ; ð4:48Þ

B2 ¼ −r2
r2hβ1½2fhFGðϕ0a1 þ 2ra4Þ þ r2β2� − r4β2β3 − fhFGðϕ0fhFGa1 þ 4r3a4β3Þ

fhFϕ0a1ðϕ0a1 þ 2ra4Þ2ð2P1 − F Þ ; ð4:49Þ

with

β1 ¼ ϕ02a4e4 − 2ϕ0c4a04 þ
��

f0

f
þ h0

h
−
2

r

�
a4 þ

ffiffiffiffiffiffi
fh

p
F

r

�
ϕ0c4 þ

fFG
2r2

; ð4:50Þ

β2 ¼
� ffiffiffiffiffiffi

fh
p

F
r2

�
2hrϕ02c4 þ

rf0ϕ0a4
f

−
ffiffiffiffiffiffi
fh

p
ϕ0G
�
−
2
ffiffiffiffiffiffi
fh

p
ϕ0a4G
r

�
G0

G
−
a04
a4

þ f0

f
þ 1

2

h0

h
−
1

r

��
a1 −

4FGfha4
r

; ð4:51Þ

β3 ¼
�
hc04 −

d3
2
þ 1

2
h0c4

�
ϕ0a4 þ

�
h0

2h
−
1

r
þ f0

2f
−
a04
a4

��
a4f0

2f
þ 2hϕ0c4 þ

ffiffiffiffiffiffi
fh

p
G

2r

�
a4

þ
ffiffiffiffiffiffi
fh

p
F

4r

�
f0

f
a4 þ 2hϕ0c4 þ

3
ffiffiffiffiffiffi
fh

p
G

r

�
: ð4:52Þ

While B1 and B2 do not explicitly contain the vector
field contribution, the quantity a04 present in β1, β2, β3
generally picks up such contributions, see Eq. (4.35). To
ensure the Laplacian stabilities of perturbations ψ and δϕ,

we require that c2Ω�;even > 0. These conditions are sat-
isfied if

B2
1 ≥ B2 > 0 and B1 < 0: ð4:53Þ
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In Table I, we summarize all the linear stability con-
ditions in both odd- and even-parity sectors. The radial
propagation speeds of vector field perturbations δA (odd-
parity) and V (even-parity) are both luminal (c2r2;odd ¼
c2r3;even ¼ 1). In the gravitational sector, the radial propa-
gation speeds of χ (odd-parity) and ψ (even-parity) are
equivalent to each other (c2r1;odd ¼ c2r1;even ¼ G=F ). We
note that, on the FLRW background, the nonlinear term
of F in G2 does not affect the perturbation dynamics by
reflecting the fact that the quantity F vanishes in Uð1Þ
gauge-invariant theories [105]. In contrast, the quantity F
does not vanish on the static and spherically symmetric

background, and nonlinear terms of F affect linear stability
conditions in the odd- and even-parity sectors.

2. l = 0

We proceed to the analysis of the monopole perturbation
l ¼ 0, i.e., L ¼ 0. In this case, the perturbations h0, h1, and
G vanish identically from the second-order action of even-
parity perturbations [50,51]. While one can choose the
gauge different from Eq. (4.7) to eliminate perturbations
other than h0 and G, we avoid doing so since the gauge
DOFs are not completely fixed in such a case. For l ¼ 0, the
total action (4.11) reduces to

Seven ¼
X
l

Z
dtdr

�
v1

�
2V

�
δA0

0 − _δA1 þ
v3H2 þ v4δϕ0 þ v5δϕ

2v1

�
− V2

�
−
ðv3H2 þ v4δϕ0 þ v5δϕÞ2

4v1

þ ðΦ0 þ A0
0v1VÞH0 −

2

f
_ΦH1 þ c1 _δϕ _H2 þ ðc2δϕ0 þ c3δϕÞH2 þ c6H2

2 þ e1 _δϕ2 þ e2δϕ02 þ e3δϕ2

�
; ð4:54Þ

where we introduced the combination

Φ≡ a1δϕ0 þ
�
a2 − a01 −

1

2
A0
0v4

�
δϕþ a3H2; ð4:55Þ

and used the relations among coefficients given in Appen-
dix A. The quadratic terms of H1, δA0, and δA1 present
in the original Lagrangians (4.12) and (4.14) disappear in
Eq. (4.54). This means that, in addition to H0, each
perturbation, H1, δA0, δA1, plays a role of the Lagrange
multiplier for l ¼ 0, and their Euler-Lagrange equations put
constraints on other variables. Indeed, varying (4.54) with
respect to δA0 and δA1 leads to

ðv1VÞ0 ¼ 0; ðv1VÞ· ¼ 0; ð4:56Þ
respectively. They are integrated to give

v1V ¼ C1; ð4:57Þ

where C1 is a constant. This shows that V depends only on r
and hence it is nondynamical for l ¼ 0. On the other hand,
varying the action (4.54) with respect to H0 and H1 gives

Φ0 þ A0
0v1V ¼ 0; _Φ ¼ 0; ð4:58Þ

respectively. Integrating these two equations with the use of
Eq. (4.57), we obtain

Φ ¼ C2 − C1A0; ð4:59Þ

where C2 is an integration constant. Combining Eq. (4.55)
with Eq. (4.59), we find that the perturbation H2 can be
expressed by using other variables as

H2 ¼−
1

a3

�
a1δϕ0 þ

�
a2−a01−

1

2
A0
0v4

�
δϕ− ðC2−C1A0Þ

�
:

ð4:60Þ

In the present case, the perturbation (4.24) reduces to ψ ¼
H2 þ a1δϕ0=a3 and hence Eq. (4.60) gives a constraint on
ψ . This means that, for l ¼ 0, the gravitational perturbation
ψ is not a propagating DOF.
Substituting Eqs. (4.57), (4.59), and (4.60) together with

_H2 into Eq. (4.54), the resulting second-order action
consists of δϕ and its derivatives. Since the integration
constants C1 and C2 are irrelevant to the dynamics of
perturbations, we simply set C1 ¼ 0 ¼ C2 in the following
discussion. After the integration by parts, we obtain the
second-order action in the form

Seven ¼
Z

dtdrðK0
_δϕ2 þG0δϕ

02 þM0δϕ
2Þ; ð4:61Þ

TABLE I. Summary of linear stability conditions.

No ghosts c2r > 0 c2Ω > 0

Odd-parity modes G > 0, G2;F > 0 F > 0 H > 0

Even-parity modes K > 0 c2r2;even > 0 B2
1 ≥ B2 > 0, B1 < 0, G2;F þ 2FG2;FF > 0
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where K0, G0, and M0 are composed of the background
quantities with the superscript representing l ¼ 0. This
reduced action shows that the monopole perturbation
possesses only one propagating DOF δϕ. The ghost is
absent under the condition

K0 ¼
2P1 − Fffiffiffiffiffiffi

fh
p

ϕ02 > 0; ð4:62Þ

which is equivalent to the no-ghost condition (4.31) derived
for l ≥ 2. The squared propagation speed c2r;even ¼
−G0=ðfhK0Þ also coincides with Eq. (4.38) obtained for
l ≥ 2. Consequently, the monopole perturbation l ¼ 0 does
not give rise to additional stability conditions to those given
in Table I.

3. l = 1

For the dipole mode l ¼ 1, the perturbations K and G
appear in the second-order action only in the form G − K
[50,51]. If we impose the gauge conditions h0 ¼ 0 and
K ¼ G, there is a residual gauge DOF associated with the
transformation scalar R. This can be fixed by choosing the
gauge δϕ ¼ 0. Namely, for l ¼ 1, we choose the gauge
conditions

h0 ¼ 0; K ¼ G; δϕ ¼ 0: ð4:63Þ

Eliminating nondynamical variables from the action (4.11)
with the approach analogous to the case l ≥ 2, the second-
order action can be expressed in the form (4.25) with two
dynamical perturbations

X⃗ ¼
�
ψ

V

�
: ð4:64Þ

The ghosts are absent under the conditions

K22 > 0; K11K22 − K2
12 > 0; ð4:65Þ

which are equivalent to Eqs. (4.27) and (4.28), respectively,
with the substitution of L ¼ 2. The propagation speeds cr
along the radial direction obey the same dispersion relation
as Eq. (4.32). On using the properties G12 ¼ −fhK12 and
G22 ¼ −fhK22, it follows that the squared propagation
speeds of ψ and V are identical to Eqs. (4.38) and (4.34),
respectively. Thus, the dipole perturbation possesses two
propagating DOFs arising from the scalar and vector field
perturbations. We do not have additional conditions to
those given in Table I.

V. APPLICATION TO CONCRETE THEORIES
WITH HAIRY BHS

Theories with the action (2.2) can accommodate a wide
variety of hairy BH solutions known in the literature. In this

section, we apply the linear stability conditions derived
in Secs. III and IV to concrete BHs present in the
framework of Maxwell-Horndeski theories. We will focus
on the case l ≥ 2, in which case five dynamical DOFs are
present.

A. Nonminimally coupled k-essence
with a gauge field

We begin with a subclass of Maxwell-Horndeski given
by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½G2ðϕ; X; FÞ þG4ðϕÞR�; ð5:1Þ

where the nonminimal coupling G4 is a function of ϕ only.
The analysis of BH perturbations in this case was also
addressed in Ref. [82], but the angular stability conditions
of even-parity perturbations were missing. In the following,
we will investigate all the linear stability conditions.
The stability of odd-parity perturbations requires that

G ¼ F ¼ H ¼ 2G4 > 0; G2;F > 0: ð5:2Þ

Hence all the propagation speeds of χ and δA are luminal in
both radial and angular directions. In the even-parity sector,
the quantity (4.31) yields

K ¼ 2r2ϕ02G4ðG2;XG4 þ 3G2
4;ϕÞ

ð2G4 þ rϕ0G4;ϕÞ2
: ð5:3Þ

If the BH has a scalar hair, the field derivative ϕ0 is
nonvanishing. Under the first inequality (5.2), the no-ghost
condition K > 0 translates to

G2;XG4 þ 3G2
4;ϕ > 0: ð5:4Þ

For a minimally coupled scalar field (G4 ¼ constant > 0),
this condition reduces to G2;X > 0. The radial propagation
speeds of both ψ and V are luminal (c2r1;even ¼ c2r3;even ¼ 1).
To ensure the Laplacian stability of δϕ along the radial
direction, we require that

c2r2;even ¼ 1þ 2G4X½G2;XXðG2;F þ 2FG2;FFÞ − 2FG2
2;FX�

ðG2;XG4 þ 3G2
4;ϕÞðG2;F þ 2FG2;FFÞ

> 0; ð5:5Þ

which coincides with Eq. (5.26) of Ref. [82] (one needs
to replace G2 → f2 and G4 → f1=2 for the notation used
in [82]).
Along the angular direction, the quantities (4.48) and

(4.49) reduce, respectively, to

B1 ¼ −1; B2 ¼ 1; ð5:6Þ
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and hence

c2Ωþ;even ¼ 1; c2Ω−;even ¼ 1: ð5:7Þ

Thus, there are no angular Laplacian instabilities for the
perturbations ψ and δϕ. The angular stability of vector field
perturbation V requires that

c2Ω3;even ¼
G2;F

G2;F þ 2FG2;FF
> 0: ð5:8Þ

Under the no-ghost conditionG2;F > 0, the inequality (5.8)
is satisfied for G2;F þ 2FG2;FF > 0.
In the following, we will study the stability of hairy BHs

in two subclasses of theories given by the action (5.1).

1. Einstein-Maxwell-dilaton theory

In bosonic heterotic string theory, the gauge field is
coupled to a dilaton field ϕ with the Lagrangian 4e−2ϕF.
In the Einstein frame, the corresponding effective four-
dimensional action is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðRþ 4X þ 4e−2ϕFÞ; ð5:9Þ

where the unit M2
Pl=2 ¼ 1 is used, with MPl being the

reduced Planck mass. In this theory, there is an exact BH
solution advocated by GM and GHS [56,57]. GHS derived
the hairy BH solution for a static and spherically symmetric
metric where r2 in front of dΩ2 in Eq. (2.3) is modified to a
general function ζ2ðrÞ. In Appendix B, we revisit the
derivation of this exact solution. In terms of the coordinate
(2.3), the GM-GHS solution is expressed as

f ¼ 1 −
2M
r2

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2q

q
− rq



; h ¼

�
1þ r2q

r2

�
f;

ϕ ¼ ϕ0 þ
1

2
ln

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2q

q
− rqffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ r2q
q

þ rq

1
CA; A0

0 ¼
qre2ϕ0	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ r2q
q

þ rq


2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2q

q ; ð5:10Þ

where M is a constant, ϕ0 is an asymptotic value of ϕ at
spatial infinity, and

rq ≡ q2e2ϕ0

2M
: ð5:11Þ

Here, q is a constant corresponding to an electric charge.
The radial derivative of ϕ is given by ϕ0ðrÞ ¼
rq=½r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2q

q
�, which behaves as ϕ0ðrÞ≃q2e2ϕ0=ð2Mr2Þ

at spatial infinity. The scalar field acquires a secondary
hair q through a dilatonic coupling with the gauge field.
In the limit that q → 0, the solution (5.10) reduces to the
Schwarzschild metric f ¼ h ¼ 1–2M=r with ϕ ¼ ϕ0 and
A0
0 ¼ 0. For q ≠ 0, there is a single event horizon [57]

located at

rH ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðM − rqÞ

q
; ð5:12Þ

whose existence requires that rq < M. From Eq. (5.10),
both ϕ0 and A0

0 are finite at r ¼ rH.
The action (5.9) corresponds to the coupling functions

G2 ¼ 4X þ 4e−2ϕF; G4 ¼ 1; ð5:13Þ

in Eq. (5.1). In this case we have G ¼ F ¼ H ¼ 2,
G2;F ¼ 4e−2ϕ, and G2;XG4 þ 3G2

4;ϕ ¼ 4, so the conditions

(5.2) and (5.4) are automatically satisfied. The two squared
propagation speeds (5.5) and (5.8) reduce, respectively, to

c2r2;even ¼ 1; c2Ω3;even ¼ 1: ð5:14Þ

Thus, all the linear stability conditions are consistently
satisfied for the GM-GHS BH solution.
We can consider more general theories in which the

dilatonic coupling e−2ϕ is extended to an arbitrary function
ξ of ϕ, i.e., G2 ¼ 4X þ 4ξðϕÞF and G4 ¼ 1. This includes
the case of spontaneous scalarized BHs which can be
realized for even-power law functions of ξðϕÞ [58–62]. In
such Einstein-Maxwell-scalar theories, the difference of
stability conditions from the dilatonic case appears only
for the quantity G2;F ¼ 4ξðϕÞ. So long as ξðϕÞ > 0, hairy
BH solutions are consistent with all the linear stability
conditions.

2. Einstein-Born-Infeld-dilaton gravity

A BI-type action can arise as a low energy effective
action describing the dynamics of vector fields in open
string theory or on D-branes [70–72,106–109]. The
Lagrangian of such a nonlinear BI theory is given by
LBIðFÞ ¼ ð4=b2Þ½1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2b2F

p
�, where b is a coupling

constant. The nonlinear BI vector field can be coupled to
the dilaton field ϕ. The action of Einstein-BI-dilaton theory
is given by
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S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Rþ ηX þ 4

b2μðϕÞ

×

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2b2μ2ðϕÞF

q ��
; ð5:15Þ

where η is a constant, and μðϕÞ ¼ e−2ϕ. This theory
corresponds to the coupling functions

G2 ¼ ηX þ 4

b2μðϕÞ
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2b2μ2ðϕÞF

q �
; G4 ¼ 1;

ð5:16Þ

where 1 − 2b2μ2ðϕÞF > 0 for theoretical consistency. In
the limit that b → 0 we have G2 → ηX þ 4μðϕÞF, so it
recovers the theory discussed in Sec. VA 1. In the regime of
small values of b, there should be hairy BHs similar to the
exact solution (5.10). Indeed, the existence of regular BH
solutions was shown for arbitrary couplings b [77–81].
Let us now discuss the linear stability of BHs in

theories given by the coupling functions (5.16). First of
all, we have G ¼ F ¼ H ¼ 2 > 0. Since G2;F ¼ 4μðϕÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2b2μ2ðϕÞF

p
, the dilatonic coupling μðϕÞ ¼ e−2ϕ

satisfies the condition G2;F > 0. The no-ghost condition
(5.4) yields G2;XG4 þ 3G2

4;ϕ ¼ η > 0. The radial propaga-
tion speed squared (5.5) reduces to the luminal value
c2r2;even ¼ 1. On the other hand, the angular propagation
speed squared (5.8) yields

c2Ω3;even ¼ 1 − b2μ2ðϕÞ h
f
A02
0 : ð5:17Þ

From Eq. (2.15), we have

A0
0 ¼

q
ffiffiffi
f

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðr4 þ b2q2Þ

p
μðϕÞ ; ð5:18Þ

where q ¼ q0=4. Then, Eq. (5.17) reduces to

c2Ω3;even ¼
r4

r4 þ b2q2
; ð5:19Þ

which is positive. Moreover, this vector field propagation
speed is in the subluminal range 0 < c2Ω3;even < 1. In

summary, provided that η > 0, all the linear stability
conditions are consistently satisfied.
Finally, there is a specific case in which the scalar field ϕ

is absent, i.e.,

η ¼ 0; μðϕÞ ¼ 1; ð5:20Þ

in the action (5.15). In this theory, there is an exact BH
solution given by [74–76]

f ¼ h ¼ 1 −
2M
r

þ 2r2

3b2
−
2

r

Z
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̃4 þ b2q2

p
b2

dr̃; ð5:21Þ

where A0
0 is given by Eq. (5.18) with μðϕÞ ¼ 1. The

absence of the scalar field means that we do not have
the no-ghost condition K > 0 associated with the pertur-
bation δϕ. Since the other stability conditions are the same
as those derived for the action (5.15) with the replacement
μðϕÞ → 1, there are neither ghost nor Laplacian instabil-
ities. We note that cΩ3;even is again subluminal.

B. Einstein-Maxwell-Dilaton-Gauss-Bonnet Theory

In low energy effective heterotic string theory, the dilaton
field ϕ is not only coupled to the electromagnetic field
strength F but also to a GB curvature invariant R2

GB ¼
R2 − 4RμνRμν þ RμνρλRμνρλ of the form e−2ϕR2

GB, where
Rμν is the Ricci tensor and Rμνρλ is the Riemann tensor. At
leading order in the α0 expansion, the low energy effective
action of heterotic strings in the bosonic sector is given
by [11,110,111]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½Rþ 4X þ αξðϕÞð4F þ R2
GBÞ�; ð5:22Þ

where α ¼ α0=8 is a coupling constant, and

ξðϕÞ ¼ e−2ϕ: ð5:23Þ

It is known that hairy BH solutions are present in this
theory [63,67] (see also Refs. [112,113] for recent related
works). The theory given by the action (5.22) belongs
to a subclass of Horndeski theories with the coupling
functions [37]

G2 ¼ 4X þ 4αξðϕÞF þ 8αξ;ϕϕϕϕðϕÞX2ð3 − ln jXjÞ; G3 ¼ 4αξ;ϕϕϕðϕÞXð7 − 3 ln jXjÞ;
G4 ¼ 1þ 4αξ;ϕϕðϕÞXð2 − ln jXjÞ; G5 ¼ −4αξ;ϕðϕÞ ln jXj: ð5:24Þ

In the limit that α → 0, the BH solution should reduce to the no-hair Schwarzschild metric. For arbitrary couplings α it is
difficult to derive an exact BH solution, but we can obtain solutions for small α by using the expansions
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fðrÞ ¼
�
1 −

2M
r

��
1þ

X
j≥1

f̂jðrÞαj
�
; hðrÞ ¼

�
1 −

2M
r

��
1þ

X
j≥1

ĥjðrÞαj
�
;

ϕðrÞ ¼ ϕ0 þ
X
j≥1

ϕ̂jðrÞαj; ð5:25Þ

where M and ϕ0 are constants, f̂jðrÞ, ĥjðrÞ, and ϕ̂jðrÞ are
functions of r. The temporal vector component obeys
Eq. (2.15), i.e.,

A0
0 ¼ e2ϕ

ffiffiffi
f
h

r
q
r2
; ð5:26Þ

where q is a constant. We substitute Eqs. (5.25) and (5.26),
and their r derivatives into the background Eqs. (2.7)–(2.9)
and (2.11). Then, we derive the solutions to f̂jðrÞ, ĥjðrÞ,
and ϕ̂jðrÞ at each order in α.
At first order in α, the solutions regular on the horizon

(r ¼ 2M) are given by

f̂1ðrÞ ¼ −
q2e2ϕ0

2M2r̂
; ĥ1ðrÞ ¼ −

q2e2ϕ0

2M2r̂
; ϕ̂1ðrÞ ¼ ϕ̃1 −

3e2ϕ0q2r̂2 þ 2e−2ϕ0ð3r̂2 þ 3r̂þ 4Þ
6M2r̂3

; ð5:27Þ

where r̂≡ r=M, and ϕ̃1 is a constant. For q → 0, the vector field derivative (5.26) is vanishing and hence this corresponds to
the limit in which only the dilaton-GB coupling αξðϕÞR2

GB is present. In this limit we have f̂1ðrÞ ¼ 0 ¼ ĥ1ðrÞ, so the GB
term does not contribute to the metric components at this order. This property is consistent with the findings in
Refs. [44,53]. We note that ϕ̂1ðrÞ is affected by both the GB term and the vector field.
At second order in α, we obtain the following regular solutions:

f̂2ðrÞ ¼ ½3200þ 832r̂þ 112ð5q2e4ϕ0 − 1Þr̂2 − 8f137þ 5q2e4ϕ0ð6ϕ̃1M2r̂2e2ϕ0 þ 5Þgr̂3 þ 6ð5q4e8ϕ0 − 10q2e4ϕ0 − 98Þr̂4
þ 3ð5q4e8ϕ0 − 10q2e4ϕ0 − 98Þr̂5�=ð240e4ϕ0M4r̂6Þ; ð5:28Þ

ĥ2ðrÞ ¼ ½14720þ 6976r̂þ 16ð125q2e4ϕ0 þ 203Þr̂2 þ 24ð5q2e4ϕ0 − 19Þr̂3 þ 6ð15q4e8ϕ0 þ 30q2e4ϕ0 − 58Þr̂4
þ 3f5q4e8ϕ0 − 10q2e4ϕ0ð8ϕ̃1M2e2ϕ0 þ 1Þ − 98gr̂5�=ð240e4ϕ0M4r̂6Þ; ð5:29Þ

ϕ̂2ðrÞ ¼ ϕ̃2 þ ϕ̃1

8þ 6r̂þ 3ð2 − q2e4ϕ0Þr̂2
3e2ϕ0M2r̂3

− ½1600þ 2688r̂þ 60ð73 − 10q2e4ϕ0Þr̂2 þ 40ð73þ 15q2e4ϕ0Þr̂3 þ 2190r̂4

þ 15ð146 − 30q2e4ϕ0 − 15q4e8ϕ0Þr̂5�=ð1800e4ϕ0M4r̂6Þ; ð5:30Þ

where ϕ̃2 is a constant. At this order, both the GB term and
the vector field contribute to the metric components. At
spatial infinity, all of f̂1ðrÞ, ĥ1ðrÞ, f̂2ðrÞ, f̂2ðrÞ approach 0
with ϕ̂1ðrÞ → ϕ̃1 and ϕ̂2ðrÞ → ϕ̃2, so the above hairy BH
solutions are asymptotically flat.
We derive the solutions (5.25) expanded up to the sixth

order in α and use them to compute quantities associated
with the linear stability of BHs. Since G2;F ¼ 4αe−2ϕ, we
require the condition

α > 0; ð5:31Þ
to avoid ghost instabilities of vector field perturbations. The
angular propagation speed of V is luminal, c2Ω3;even ¼ 1. In
the odd-parity sector, we have

G¼2þ8½q2r̂2þ2e−4ϕ0ðr̂2þ2r̂þ4Þ�
M4r̂6

α2þOðα3Þ; ð5:32Þ

F ¼ 2 −
8½q2r̂2ð2r̂ − 5Þ þ 2e−4ϕ0ð2r̂3 þ r̂2 þ 2r̂ − 36Þ�

M4r̂6
α2

þOðα3Þ; ð5:33Þ

H ¼ 2þ 8ðr̂− 2Þ½q2r̂2 þ 2e−4ϕ0ðr̂2 þ 2r̂þ 4Þ�
M4r̂6

α2 þOðα3Þ:
ð5:34Þ

In the small coupling regime where terms of order α2 in
Eqs. (5.32)–(5.34) are smaller than the order 1, all of G, F ,
and H are positive.
In the even-parity sector, the no-ghost parameter (4.31)

yields

K¼½e2ϕ0q2r̂2þ2e−2ϕ0ðr̂2þ2r̂þ4Þ�2
2M4r̂6

α2þOðα3Þ; ð5:35Þ
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whose leading-order term is always positive. The radial squared propagation speed of δϕ can be estimated as

c2r2;even ¼ 1 −
32ðr̂ − 2Þ½q4r̂4 þ 4q2r̂2ðr̂2 þ 2r̂þ 16Þe−4ϕ0 þ 4ðr̂4 þ 4r̂3 þ 36r̂2 þ 88r̂þ 208Þe−8ϕ0 �

M8r̂12
α4 þOðα5Þ: ð5:36Þ

To derive this result, we need to use the solutions (5.25)
expanded up to the order j ¼ 6. The solutions expanded up
to j ¼ 7 give the same coefficient of α4 in c2r2;even as that
appearing in Eq. (5.36). For small α, c2r2;even is close to 1
and hence there is no Laplacian stability of δϕ along the
radial direction. The squared propagation speeds of ψ and
δϕ along the angular direction are given by

c2Ω�;even ¼ 1� 24e−2ϕ0

M2r̂3
αþOðα2Þ; ð5:37Þ

where terms of order α arises from the dilaton-GB
coupling. For small α, both c2Ωþ;even and c2Ω−;even are
positive. We have thus shown that all the linear stability
conditions are consistently satisfied for hairy BH solutions
present for small couplings α.

C. 4DEGB gravity

The GB curvature invariant R2
GB is a topological surface

term, so the field equations of motion following from the
action S¼R d4x ffiffiffiffiffiffi−gp

α̂GBR2
GB vanish in 4 dimensions [114].

In a D-dimensional spacetime (D > 4), rescaling the GB
coupling constant as α̂GB → αGB=ðD − 4Þ allows a
possibility for extracting contributions of the higher-
dimensional GB term [45]. One can perform a Kaluza-
Klein reduction of the D-dimensional Einstein-GB gravity
on a (D − 4)-dimensional maximally symmetric space
with a vanishing spatial curvature [46,47]. The size of a
maximally symmetric space is characterized by a scalar
field ϕ. Taking the Maxwell field into account, the four-
dimensional action derived from the Kaluza-Klein reduc-
tion of D-dimensional Einstein-GB theory belongs to a
subclass of shift-symmetric Maxwell-Horndeski theories
given by the coupling functions [48]

G2 ¼ 8αGBX2 þ 4F; G3 ¼ 8αGBX; G4 ¼ 1þ 4αGBX; G5 ¼ 4αGB ln jXj: ð5:38Þ

In this regularized 4DEGB gravity, it is known that there exists an exact hairy BH solution [66]. We first revisit the
derivation of this exact BH solution and then study its linear stability. The background equations of motion for the line
element (2.3) are expressed in the form

f0 ¼ −
r2fðh − 1Þ þ αGBf½h2 − 2hð1 − 2j − 2rϕ0jÞ þ 1 − 4jþ 3j2� þ hr4A02

0

hr½r2 − 2αGBðh − 1þ jþ rϕ0jÞ� ; ð5:39Þ

h0

h
−
f0

f
¼ −

4αGBrjðϕ02 − ϕ00Þ
r2 − 2αGBðh − 1þ jþ rϕ0jÞ ; ð5:40Þ

ffiffiffi
h
f

s
αGBðf0 þ 2ϕ0fÞj ¼ C; ð5:41Þ

A0
0 ¼

ffiffiffi
f
h

r
q
r2
; ð5:42Þ

where C and q are constants, and

j≡ 1 − hð1þ rϕ0Þ2: ð5:43Þ

We search for asymptotically flat BH solutions with
f ¼ f0 þ f1=rþ f2=r2 þ � � �, h¼ 1þ h1=rþ h2=r2 þ � � �,
and ϕ ¼ ϕ0 þ ϕ1=rþ ϕ2=r2 þ � � � at spatial infinity, where
fj, hj, and ϕj are constants. The left-hand side of Eq. (5.41)
approaches 0 as r → ∞, so the constant C is fixed to be 0.

Since f, h, f0, and ϕ are finite outside the horizon, we
require that j ¼ 0. Then, the scalar field solution with the
behavior ϕ0 ∝ 1=r2 at large distances is given by

ϕ0 ¼ 1

r

�
1ffiffiffi
h

p − 1

�
; ð5:44Þ

which diverges on the horizon (h ¼ 0). We note that the
field kinetic term X ¼ −ð1 − ffiffiffi

h
p Þ2=ð2r2Þ is finite at h ¼ 0.

We can integrate Eq. (5.40) to give h ¼ C̃f, where C̃ is a
constant. Since C̃ can be chosen 1 after the time repar-
ametrization of f, it follows that h ¼ f. Substituting j ¼ 0,
h ¼ f, and Eq. (5.42) into Eq. (5.39), we obtain

f0 ¼ −
ðf − 1Þ½r2 þ αGBðf − 1Þ� þ q2

r3 − 2αGBrðf − 1Þ : ð5:45Þ

The integrated solution to this equation, which is consistent
with the boundary condition at spatial infinity, is given by
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f ¼ h¼ 1þ r2

2αGB

"
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4αGB

�
2M
r3

−
q2

r4

�s #
; ð5:46Þ

where M is a constant. The vector field solution (5.42)
reduces to A0

0 ¼ q=r2. The horizons are located at

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − q2 − αGB

q
: ð5:47Þ

The existence of horizons requires the condition
q2 þ αGB ≤ M2.
On using Eqs. (5.42), (5.44), and (5.45) with f ¼ h, it

follows that

K ¼ 0; ð5:48Þ

at any distance r. Since the dynamical scalar field ϕ is
present as a radion mode in the extra dimension, the
vanishing kinetic term K means a strong coupling problem
associated with the perturbation δϕ. The same strong
coupling problem is also present for hairy BH solutions
with q ¼ 0 [52]. The denominator of Eq. (4.38) is propor-
tional to K ¼ 2P1 − F and hence c2r2;even is divergent for
arbitrary r. We also note that both B1 and B2 contain K in

their denominators, so this generally leads to the diver-
gences of c2Ω�;even as well.
We can compute the ratio c2r2;even=B2 at large distances

by using the following asymptotic solution of Eq. (5.46):

f ¼ h ¼ 1 −
2M
r

þ q2

r2
þ 4αGBM2

r4
−
4αGBq2M

r5
þOðr−6Þ:

ð5:49Þ

Then, we obtain the following asymptotic behavior:

c2r2;even
B2

¼ −2 −
3ð3M2 þ q2Þ

2Mr
þOðr−2Þ: ð5:50Þ

This means that both c2r2;even and B2 cannot be simulta-
neously positive at large distances, so either of the linear
stability conditions c2r2;even > 0 or B2 > 0 is violated. The
same instability was also found for hairy BH solutions with
q ¼ 0 [52].
In the vicinity of the outer horizon rþ ¼ Mþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − q2 − αGB

p
, the metric components can be ex-

panded as

f ¼ h ¼ r2þ − q2 − αGB
rþðr2þ þ 2αGBÞ

ðr − rþÞ −
r6þ − ð2q2 þ 3αGBÞr4þ − 2αGBðq2 þ 3αGBÞr2þ − αGBðq2 þ αGBÞ2

r2þðr2þ þ 2αGBÞ3
ðr − rþÞ2

þOðr − rþÞ3: ð5:51Þ

On using this expanded solution with Eqs. (5.42) and (5.44), the product FKB2 yields

FKB2 ¼ −
16α2GB½r4þ þ ðr2þ þ q2ÞαGB þ α2GB�2

r2þðr2þ þ 2αGBÞ4
ðr − rþÞ−2 þOððr − rþÞ−3=2Þ: ð5:52Þ

Hence the leading-order term of FKB2 is negative around
r ¼ rþ. This means that either F , K, or B2 must be
negative, so the hairy BH is unstable in the vicinity of
the outer horizon. For q ¼ 0, the leading-order term of
FKB2 coincides with the one derived in Ref. [52].
For the specific case r2þ ¼ q2 þ αGB, there is a single

horizon located at rþ ¼ M. Since the first term on the right-
hand side of Eq. (5.51) vanishes in such a case, the leading-
order contribution to FKB2 is not necessarily negative.
However the properties (5.48) and (5.50) still hold, so the
problems of strong coupling as well as large-distance
Laplacian instability are unavoidable for the hairy BH
present in regularized 4DEGB gravity.

VI. CONCLUSIONS

In Maxwell-Horndeski theories given by the action (2.2),
we derived BH linear stability conditions on the static

and spherically symmetric background (2.3). We incorpo-
rated a Uð1Þ gauge-invariant vector field Aμ coupled to a
scalar field ϕ with the Lagrangian G2ðϕ; X; FÞ, where F ¼
−FμνFμν=4 is the gauge field strength. Due to the gauge
invariance, the vector field equation has an integrated
solution of the form (2.15), where q0 corresponds to an
electric charge. As we observe in Eqs. (2.7) and (2.8), the
temporal component of Aμ modifies the background
equations in the gravitational sector. The scalar field
Eq. (2.11) can be also generally affected by the coupling
with Aμ through the existence of G2-dependent terms
such as G2;ϕ.
In Sec. III, we first showed that the second-order

Lagrangian of odd-parity perturbations is expressed as
Eq. (3.7). Introducing an auxiliary field χ defined by
Eq. (3.12), the Lagrangian for the multipoles l ≥ 2 can
be expressed in terms of the two dynamical fields χ and δA.
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They correspond to the perturbations arising from the
gravitational and vector field sectors, respectively. We
found that the propagation of χ is analogous to the case
of Horndeski theories without the vector field [49]. In the
limit l ≫ 1, the propagation speeds of δA are luminal in
both radial and angular directions. In the odd-parity sector,
there are neither ghost nor Laplacian instabilities under the
conditions G > 0, G2;F > 0, F > 0, andH > 0. For l ¼ 1,
δA is the only propagating DOF, whose stability does not
require additional conditions.
In Sec. IV, we obtained the second-order action of even-

parity perturbations in the form (4.11) with the sum of
(4.12) and (4.13). The auxiliary field V introduced in
Eq. (4.15) plays a role of the dynamical vector field
perturbation in the even-parity sector. There are also two
dynamical perturbations ψ and δϕ arising from the gravi-
tational and scalar field sectors, respectively. For l ≥ 2, we
showed that the second-order action can be expressed in the

form (4.25) with X⃗ ¼ tðψ ; δϕ; VÞ. Under the stability
conditions F > 0 and G2;F > 0 for odd-parity perturba-
tions, the ghosts in the even-parity sector are absent under
the condition K ¼ 2P1 − F > 0, where P1 is defined
in Eq. (4.30).
The squared propagation speeds of even-parity pertur-

bations ψ , δϕ, V along the radial direction are given,
respectively, by Eqs. (4.34), (4.37), and (4.38). While the
expression of cr1;even coincides with that derived in
Ref. [50,51], the vector field coupled to ϕ modifies the
propagation speed cr2;even of δϕ. Along the angular
direction, the squared propagation speed of V in the large
l limit is given by Eq. (4.43), which is different from 1 in
the presence of nonlinear functions of F in G2. The angular
squared propagation speeds c2Ω�;even of ψ and δϕ are
expressed as Eq. (4.45) with B1 and B2 given by
Eqs. (4.48) and (4.49). These expressions of B1 and B2

are of the same forms as those derived in Ref. [51] without
a perfect fluid, but there are modifications to c2Ω�;even

arising from the vector field through the term a04 [see
Eq. (4.35)]. We also studied the dynamics of monopole
(l ¼ 0) and dipole (l ¼ 1) perturbations and showed that
there are no additional conditions to those derived for l ≥ 2.
In Table I, we summarized all the linear stability conditions
of odd- and even-parity perturbations.
In Sec. V, we applied the linear stability conditions

to hairy BH solutions present in Maxwell-Horndeski

theories. In Einstein-Maxwell-dilaton theory, which is
given by the action (5.9), there is the exact solution (5.10)
where the dilaton acquires a secondary hair through a
coupling with the vector field. In this case, we showed that
all the linear stability conditions are satisfied with luminal
propagation speeds of odd- and even-parity perturbations.
In Einstein-BI-dilaton gravity with the action (5.15), the
angular propagation speed of vector field perturbation is
subluminal without a scalar ghost for η > 0. The exact
BH solution (5.21) present in Einstein-BI theory (η ¼ 0,
μðϕÞ ¼ 1) has neither ghost nor Laplacian instabilities.
In Einstein-Maxwell-dilaton-GB theory with the action
(5.22), we showed that the hairy BH solution derived
under a small α expansion can be consistent with all the
linear stability conditions. In regularized 4DEGB gravity,
however, the exact BH solution (5.46) is prone to the
strong coupling and instability problems. As shown in
Ref. [52], this conclusion also holds for an uncharged
exact BH solution present in the same theory without the
Maxwell field.
We thus showed that the linear stability conditions

derived in this paper are useful to exclude some BH
solutions or to put constraints on stable parameter spaces.
It will be of interest to apply our general framework of BH
perturbations to the computation of quasinormal modes of
BHs. The analysis can be also extended to the case in which
a perfect fluid is present in Maxwell-Horndeski theories.
This will allow us to study the stability of hairy neutron
stars along the line of Refs. [51,83–85]. The scalar field
coupling with the Uð1Þ gauge-invariant vector field can be
further generalized by preserving the second-order property
of equations of motion. Such theories are known as
Uð1Þ gauge-invariant scalar-vector-tensor theories [115],
in which vector and scalar fields have nonminimal and
derivative couplings to gravity. Hairy BH solutions in these
theories were derived in Refs. [116,117] and the odd-parity
stability was studied in Refs. [96,118]. It would be also
of interest to address the stability of even-parity BH
perturbations in such theories. These issues are left for
future works.
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APPENDIX A: COEFFICIENTS IN THE SECOND-ORDER ACTION OF
EVEN-PARITY PERTURBATIONS

The coefficients in Eqs. (4.12) and (4.13) are given by

a1 ¼
ffiffiffiffiffiffi
fh

p ��
G4;ϕ þ

1

2
hðG3;X − 2G4;ϕXÞϕ02

�
r2 þ 2hϕ0

�
G4;X −G5;ϕ −

1

2
hð2G4;XX −G5;ϕXÞϕ02

�
r

þ 1

2
G5;XXh3ϕ04 −

1

2
G5;Xhð3h − 1Þϕ02

�
;

a2 ¼
ffiffiffiffiffiffi
fh

p �
a1ffiffiffiffiffiffi
fh

p
�0

−
�
ϕ00

ϕ0 −
1

2

f0

f

�
a1 þ

r
ϕ0

�
f0

f
−
h0

h

�
a4 þ

A0
0

2
v4; a3 ¼ −

1

2
ϕ0a1 − ra4;

a4 ¼
ffiffiffiffiffiffi
fh

p
2

H; a5 ¼ a02 − a001 −
�
A0
0

2
v4

�0
þ A0

0

2
v5; a6 ¼ −

ffiffiffi
f

p

2
ffiffiffi
h

p
ϕ0

�
H0 þH

r
−
F
r

�
;

a7 ¼ a03 −
A02
0

2
v1 −

ϕ0A0
0

4
v4; a8 ¼ −

1

2

a4
h
; a9 ¼ a04 þ

�
1

r
−
1

2

f0

f

�
a4;

b1 ¼
1

2f
a4; b2 ¼ −

2

f
a1; b3 ¼ −

2

f
ða2 − a01Þ þ

A0
0

f
v4; b4 ¼ −

2

f
a3; b5 ¼ −2b1;

c1 ¼ −
1

fh
a1;

c2 ¼
ffiffiffiffiffiffi
fh

p ��
1

2f

�
−
1

2
hð3G3;X − 8G4;ϕXÞϕ02 þ 1

2
h2ðG3;XX − 2G4;ϕXXÞϕ04 −G4;ϕ

�
r2

−
hϕ0

f

�
1

2
h2ð2G4;XXX −G5;ϕXXÞϕ04 −

1

2
hð12G4;XX − 7G5;ϕXÞϕ02 þ 3ðG4;X −G5;ϕÞ

�
r

þ hϕ02

4f
ðG5;XXXh3ϕ04 − G5;XXhð10h − 1Þϕ02 þ 3G5;Xð5h − 1ÞÞ

�
f0

þ ϕ0
�
1

2
G2;X −G3;ϕ −

1

2
hðG2;XX −G3;ϕXÞϕ02 þ hA02

0

2f
G2;XF

�
r2

þ 2

�
−
1

2
hð3G3;X − 8G4;ϕXÞϕ02 þ 1

2
h2ðG3;XX − 2G4;ϕXXÞϕ04 −G4;ϕ

�
r

−
1

2
h3ð2G4;XXX −G5;ϕXXÞϕ05 þ 1

2
hf2ð6h − 1ÞG4;XX þ ð1 − 7hÞG5;ϕXgϕ03 − ð3h − 1ÞðG4;X −G5;ϕÞϕ0

�
;

c3 ¼ −
1

2

ffiffiffi
f

p
r2ffiffiffi
h

p ∂E11

∂ϕ
;

c4 ¼
1

4

ffiffiffi
f

pffiffiffi
h

p
�
hϕ0

f

�
2G4;X − 2G5;ϕ − hð2G4;XX −G5;ϕXÞϕ02 −

hϕ0ð3G5;X − G5;XXϕ
02hÞ

r

�
f0

þ 4G4;ϕ þ 2hðG3;X − 2G4;ϕXÞϕ02 þ 4hðG4;X − G5;ϕÞϕ0 − 2h2ð2G4;XX −G5;ϕXÞϕ03

r

�
;

c5 ¼ −hϕ0c4 −
1

2

ffiffiffiffiffiffi
fh

p
r

G −
1

2

f0

f
a4;

c6 ¼
1

8

f0ϕ0

f
a1 þ

1

2

f0r
f

a4 −
1

4
ϕ0c2 þ

1

2
hϕ0rc4 þ

1

4

ffiffiffiffiffiffi
fh

p
Gþ A02

0

4
v1 þ

ϕ0A0
0

8
v4;
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d1 ¼
1

2f
a4; d2 ¼ 2hc4;

d3 ¼ −
1

r2

�
2ϕ00

ϕ0 þ h0

h

�
a1 þ

2f
ðf0r − 2fÞϕ0

�
2ϕ00

hϕ0r
þ f02

f2
−
f0h0

fh
−
2f0

fr
þ 2h0

hr
þ h0

h2r

�
a4

þ f0r − 2f
fr

∂a4
∂ϕ

þ
ffiffiffi
f

p

ϕ0 ffiffiffihp
r2
F −

f3=2ffiffiffi
h

p ðf0r − 2fÞϕ0

�
f0

fr
þ 2ϕ00

ϕ0r
þ h0

hr
−

2

r2

�
G;

d4 ¼
1

2

ffiffiffiffiffiffi
fh

p
r2

G;

e1 ¼
1

ϕ0fh

��
f0

f
þ 1

2

h0

h

�
a1 − 2a01 þ a2 − 2rha6 −

A0
0

2
v4

�
;

e2 ¼ −
1

2ϕ0

�
f0

f
a1 þ 2c2 þ 4hrc4 þ A0

0v4

�
; e3 ¼

1

4

ffiffiffi
f

p
r2ffiffiffi
h

p ∂Eϕ

∂ϕ
;

e4 ¼
1

ϕ0 c
0
4 −

1

2

f0

fϕ02h
a04 −

1

2

ffiffiffi
f

p

ϕ02 ffiffiffi
h

p
r
G0 þ 1

hϕ0r2

�
ϕ00

ϕ0 þ
1

2

h0

h

�
a1

þ 1

4hϕ02

�ðf0r − 6fÞf0
f2r

þ h0ðf0rþ 4fÞ
hrf

−
4fð2ϕ00hþ h0ϕ0Þ
ϕ0h2rðf0r − 2fÞ

�
a4 þ

1

2

h0

hϕ0 c4 −
1

2

f0r − 2f
fhrϕ0

∂a4
∂ϕ

þ 1

2

f0hr − f

r2
ffiffiffi
f

p
ϕ02h3=2

F þ 1

2

ffiffiffi
f

p
rϕ02h3=2

�
fð2ϕ00hþ h0ϕ0Þ
hϕ0ðf0r − 2fÞ þ 1

2

2f − f0hr
fr

�
G;

v1 ¼
r2

2

ffiffiffi
h
f

s �
G2;F þ hA02

0

f
G2;FF

�
; v2 ¼ A0

0v1; v3 ¼ −A0
0v1 −

ϕ0

2
v4; v4 ¼ −

r2h3=2ϕ0A0
0G2;XFffiffiffi

f
p ;

v5 ¼
r2

ffiffiffi
h

p
A0
0G2;ϕFffiffiffi
f

p ; v6 ¼
A02
0

4
v1; v7 ¼ −2hA0

0v8; v8 ¼
G2;F

2
ffiffiffiffiffiffi
fh

p ; v9 ¼ −fhv8; ðA1Þ

where E11 and Eϕ are defined in Eqs. (2.8) and (2.16),
respectively.

APPENDIX B: DERIVATION OF THE
GM-GHS BH SOLUTION

In theories given by the action (5.9), GHS [57] derived a
static and spherically symmetric BH solution given by the
line element

ds2 ¼ −fðr̂Þdt2 þ h−1ðr̂Þdr̂2 þ ζ2ðr̂ÞdΩ2; ðB1Þ

where ζðr̂Þ is a function of r̂. Varying the action (5.9) with
respect to f and h, we obtain the following two equations:

ζζ0hf0 ¼ f þ fhðϕ02ζ2 − ζ02Þ − e−2ϕhA02
0 ζ

2; ðB2Þ

f0

f
−
h0

h
¼ 2ðζ00 þ ϕ02ζÞ

ζ0
; ðB3Þ

where a prime in this Appendix B represents the derivative
with respect to r̂. We search for a BH solution satisfying the
relation

f ¼ h; ðB4Þ

under which Eq. (B3) gives

ζ00 þ ϕ02ζ ¼ 0: ðB5Þ

Exploiting this relation for the equation of motion of A0
0, we

obtain the integrated solution

A0
0 ¼

qe2ϕ

ζ2
; ðB6Þ

where q is a constant corresponding to an electric charge.
Varying the action (5.9) with respect to ζ and ϕ and using
the equations derived above, it follows that

ðfζ2Þ00 ¼ 2; ðB7Þ

ð2fζ2ϕ0 − f0ζ2Þ0 ¼ 0: ðB8Þ

These equations are integrated to give

fζ2 ¼ ðr̂ − 2MÞ2 þ C1ðr̂ − 2MÞ; ðB9Þ
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ϕ0 ¼ f0

2f
þ C2
2fζ2

; ðB10Þ

where M, C1, and C2 are constants. The BH event horizon
corresponds to r̂ ¼ 2M, at which f ¼ h ¼ 0. Taking the r̂
derivative of Eq. (B9) and using Eq. (B10), we obtain

fζ2ϕ0 ¼ r̂ − 2M − fζζ0 þ 1

2
ðC1 þ C2Þ: ðB11Þ

Provided that ϕ0 is finite on the horizon, the consistency of
Eq. (B11) at r̂ ¼ 2M requires that

C2 ¼ −C1: ðB12Þ

Now, we can eliminate A0
0, ζ, ζ

0, and ϕ0 in Eq. (B2) by using
Eqs. (B6), (B9), and (B10) with Eq. (B12). Then, we find
that the metric components

f ¼ h ¼ 1 −
2M
r̂

; ζ2 ¼ r̂ðr̂ − 2rqÞ ðB13Þ

are the solutions to the above system for

C1 ¼ 2M − 2rq; ðB14Þ

where rq is defined by Eq. (5.11). Integrating Eq. (B10)
with respect to r̂ and substituting the integrated solution
into Eq. (B6), the solutions to the scalar and vector fields
are given by

ϕ ¼ ϕ0 þ
1

2
ln

�
1 −

2rq
r̂

�
;

dA0

dr̂
¼ qe2ϕ0

r̂2
; ðB15Þ

where ϕ0 is the value of ϕ at spatial infinity. In the case of a
magnetic charge q, we just need to change the sign of the
scalar field, i.e., ϕ → −ϕ and ϕ0 → −ϕ0 [57,119,120].
To express this GM-GHS BH solution with respect to the

line element (2.3), we perform the transformation

ζ2 ¼ r̂ðr̂ − 2rqÞ → r2: ðB16Þ

We choose the branch r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2q

q
þ rq to have the

property r̂ → þ∞ as r → þ∞. Then, the above BH solution
is expressed in the form (5.10) for the coordinate (2.3).
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