
Adaptive hp refinement for spectral elements in numerical relativity

Sarah Renkhoff ,1 Daniela Cors ,1 David Hilditch,2 and Bernd Brügmann 1

1Theoretical Physics Institute, University of Jena, 07743 Jena, Germany
2CENTRA, Departamento de Física, Instituto Superior Técnico IST, Universidade de Lisboa UL,

Avenida Rovisco Pais 1, 1049 Lisboa, Portugal

(Received 8 February 2023; accepted 20 April 2023; published 18 May 2023)

When a numerical simulation has to handle a physics problem with a wide range of time-dependent
length scales, dynamically adaptive discretizations can be the method of choice. We present a major
upgrade to the numerical relativity code BAMPS in the form of fully adaptive, physics-agnostic hp
refinement. We describe the foundations of mesh refinement in the context of spectral element methods,
the precise algorithm used to perform refinement in BAMPS, as well as several indicator functions used to
drive it. Finally, we test the performance, scaling, and the accuracy of the code in treating several 1D and
2D example problems, showing clear improvements over static mesh configurations. In particular, we
consider a simple nonlinear wave equation, the evolution of a real scalar field minimally coupled to gravity,
as well as nonlinear gravitational waves.

DOI: 10.1103/PhysRevD.107.104043

I. INTRODUCTION

At the heart of many numerical methods for differential
equations lies discretization, the transfer of a problem posed
on a continuum to a finite set of values. For spatial
discretization especially, many approaches exist, from equi-
distant Cartesian sampling for use with finite-difference
methods, to frequency-space decompositions on irregularly
shaped subdomains used with finite-element methods.
The choice of discretization has direct impacts on the

results of any given simulation, since the discretization
determines the solution space itself. A poor choice of
sample points might fail to resolve high-frequency com-
ponents of the solution, or it might cause unphysical
numerical noise to accumulate. This poses an inherent
challenge to physics applications seeking to resolve a priori
unknown solutions, which may contain features at different
scales.
Using a variable resolution offers a solution to this

problem. High resolution can be used in areas where it is
required to resolve the physics to a given accuracy—in
particular, to resolve features on short length scales, high-
frequency modes, steep gradients, or small features requiring
high precision, while a lower resolution is used elsewhere,
saving resources. If the areas of interest are known before-
hand—for example, the center of the domain—fixed mesh
refinement (FMR) can be applied “by hand.” In a more
general setting, however, automatically detecting features of
interest is desirable. Allowing such a heuristic detection to
determine the discretization used is then referred to as
adaptive mesh refinement (AMR). Although originating
in finite-element methods, which are naturally suited to

combining elements of different shapes and sizes, AMR is
used in other types of methods as well.
Developments in numerical relativity were strongly

influenced by Ref. [1], which describes a framework for
using a flexible AMR scheme for finite-difference methods
using rectangular boxes, recursively overlapping each
other. Of particular note is the PAMR/AMRD toolset used
by Choptuik to pioneer the use of AMR in numerical
relativity [2,3] for the study of scalar field collapse in
spherical symmetry, which motivated the first application
of AMR in 3þ 1 dimensions for black holes [4,5]. Box-
based AMR approaches are used in GRChombo [6,7] and
HAD [8], and nested-box AMR is the basis of many
numerical relativity codes to this day, such as BAM [9],
AMSS-NCKU [10], CACTUS [11], and the Einstein Toolkit [12]. A
recent implementation of block-structured AMR for the
Einstein Toolkit called GRaM-X is based on CarpetX and AMReX;
see Ref. [13]. See also Ref. [14] for a discussion of the
challenges involved in Berger-Oliger-type AMR.
As an alternative to overlapping grids, one can subdivide

a given domain into nonoverlapping grids, leading to
various types of finite-element methods; see, for example,
Ref. [15] for time-dependent partial differential equations
(PDEs). Examples of this type of refinement for numerical
relativity include SpECTRE [16], dendro-GR [17], GR-Athena++
[18], and Nmesh [19].
Spectral element (SE) methods choose a set of basis

functions for each element, so that the approximate solution
is given by an expansion in a finite set of basis functions.
Examples for SE methods include pseudospectral methods
and Galerkin methods. When applying AMR to spectral
elements, an additional distinction must be made.

PHYSICAL REVIEW D 107, 104043 (2023)

2470-0010=2023=107(10)=104043(20) 104043-1 © 2023 American Physical Society

https://orcid.org/0000-0002-1233-2593
https://orcid.org/0000-0002-0520-2600
https://orcid.org/0000-0003-4623-0525
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.104043&domain=pdf&date_stamp=2023-05-18
https://doi.org/10.1103/PhysRevD.107.104043
https://doi.org/10.1103/PhysRevD.107.104043
https://doi.org/10.1103/PhysRevD.107.104043
https://doi.org/10.1103/PhysRevD.107.104043


Refinement in that case is possible both in terms of element
size (h refinement), or in terms of the order of the spectral
series (p refinement). Both techniques can be, and fre-
quently are, used at the same time. Different approaches to
dynamical meshes include specially constructed meshes
coinciding with physical features, as used, for example,
in SpEC [20].
Focusing on applications of AMR in numerical relativity,

experience has shown that the use of AMR of some kind is
crucial in order to tackle various problems of current
interest, such as black hole or neutron star binaries
including mergers, and the study of critical collapse.
Specifically in the latter case, it is known that solutions
near criticality contain features of ever-decreasing scale,
which would be inaccessible without the use of progressive
mesh refinement (or in some special cases, adapted
coordinate systems).
In this paper, we present a major technical upgrade to the

numerical relativity code BAMPS, adding hp refinement to
its pseudospectral method. While simulations of critical
collapse are the science driver for these developments, the
theoretical considerations and technical insights are appli-
cable to a much wider class of problems involving time-
dependent PDEs. We describe the refinement algorithm in
detail, as well as the heuristics used to drive it. The new
version of BAMPS enables us to explore certain critical
collapse spacetimes with unprecedented efficiency and
accuracy; see Ref. [21] for results on the collapse of
gravitational waves.
The paper is organized as follows: Section II introduces

basic theoretical considerations of convergence and effi-
ciency for hp refinement. In Sec. III, we describe the code
used, including the overall structure in Sec. III A, and the
AMR algorithm used in Sec. III B. The scaling behavior of
the code is described in Sec. III C. Sections IV, V, and VI
describe the application of the code to solving a nonlinear
wave equation, the collapse of a real scalar field, and the
collapse of gravitational waves, respectively.

II. BASICS OF HP REFINEMENT

In this section, we collect general statements about hp
refinement regarding error estimates, convergence, and
efficiency in the context of high-order spectral element
methods. High-order pseudospectral methods are dis-
cussed, for example, in Refs. [22–24], but not with a focus
on hp refinement, while, for example, Ref. [25] considers
hp refinement, but not for high-order elements. Concretely,
our focus is on pseudospectral methods with a polynomial
order of around 10 or higher, which are applied to
predominantly smooth solutions.
The goal of AMR and hp refinement is to optimize

efficiency by adjusting the numerical method locally in
space (and possibly also in time, which we would call
hpt refinement). To prepare for the discussion of hp
refinement, we show in Fig. 1 an elementary example

of the discretization of a function uðxÞ, here uðxÞ ¼
1=½1þ 100ðx − 1

5
Þ2�, on spectral elements. There are vary-

ing numbers of K elements, and each element may be
discretized by varying numbers of n collocation points.
For K ¼ 4, n ¼ 17, high-order convergence is visible, but
the element near the peak in uðxÞ shows rather slow but
exponential convergence. For K ¼ 8, n ¼ 17, which is
one step of h refinement compared to the previous panel,
errors become smaller, but the outer region could be
considered over-resolved, while the region near the peak
is still somewhat inaccurate. For K ¼ 8, n ¼ 9, there is
systematic convergence, but errors are comparatively
large. In the bottom panel, K ¼ 13 elements with varying
h levels and p levels are used for an efficient representa-
tion with a target absolute error of around 10−7.
For hp refinement, we have to define refinement criteria,

which requires defining a measure of the local efficiency, so
that we can optimize the global efficiency. The efficiency of

FIG. 1. Example of hp refinement with spectral elements. A
function uðxÞ is discretized on K elements with n collocation
points, where n can vary across elements. The top panel shows
the function uðxÞ along the x axis, while the lower panels show
the falloff of the coefficients of the polynomial expansion in each
element on a logarithmic scale. The panels are aligned such that
the horizontal axes for x and for the falloff with increasing index
match for each element. In the bottom panel, the result of a
specific hp refinement is shown for a target error of 10−7.

RENKHOFF, CORS, HILDITCH, and BRÜGMANN PHYS. REV. D 107, 104043 (2023)

104043-2



a numerical discretization can be defined in different ways:
for example, (a) accuracy per number of grid points,
(b) accuracy per number of floating point operations,
(c) accuracy per memory usage, or (d) accuracy per run
time. We introduce several of these theoretical consider-
ations here before turning to a practical implementation
in Sec. III.

A. Errors and convergence in a hp method

For simplicity, consider scalar functions on the real line.
Consider a numerical approximation uðxÞ to a sufficiently
smooth function u0ðxÞ that converges at order p in the grid
spacing h, u ¼ u0 þOðhpÞ. More explicitly,

uh;pðxÞ ¼ u0ðxÞ þ cpðxÞhp þOðhpþ1Þ; ð1Þ

where the coefficient cpðxÞ is a function independent of h
(as suggested by a Taylor expansion), and

ϵðx; h; pÞ ¼ cpðxÞhp ð2Þ

is the leading-order error term. Here, we introduce h as a
small parameter that characterizes the discretization of
the domain, the derivatives, and/or the PDE equation, as
opposed to just a displacement in x.
For concreteness, we consider a discretization where

h ¼ L=K, L is the length of a 1D interval, and K is the
number of cells or elements in the interval, such that each
cell has size h. For finite difference (FD) methods, h is
the “grid spacing” with one point per cell, and p is, in
particular, the order of the FD approximation of derivatives.
For a spectral element method [pseudospectral (PS), but
also discontinuous Galerkin (DG)], each cell of size h
can be discretized by n ¼ N þ 1 collocation points xi.
Polynomials of polynomial order up to N are used, so that
p ¼ n is the typical order of convergence. (In this notation,
a linear function has N ¼ 1, and the term beyond linear is
at n ¼ 2.)
For example, a second-order FD method with error

Oðh2Þ becomes 4 times as accurate with 2 times the
number of grid points, since h ∼ 1

K and error ϵ ∼ 1
K2. For

a SE method with error OðϵÞ for p points per cell, 2 times
the number of collocation points implies an error of Oðϵ2Þ,
since ϵðpÞ ∼ hp, and ϵð2pÞ ∼ h2p ∼ ϵðpÞ2.
Consider now an hp refinement method using spectral

elements, where both h and p can be varied freely. A key
question is under which conditions it is more efficient to
decrease h or to increase p in order to reduce the error.
In terms of the computational degrees of freedom, or

simply in terms of the number of grid points, there are a
total of Ntotal ¼ Kn grid points for the interval of size L,
assuming K equal-sized cells with n points each. Given
Ntotal ¼ Kn, we ask the question of how the error changes
if we double the degrees of freedom by using either 2K
cells with n points or K cells with 2n points for the same

total of 2Kn points overall. Since h ¼ L=K and p ¼ n, this
corresponds to the calculation of ϵðh; pÞ for different h and
p. For an example, see Fig. 1.
The short answer is that spectral methods always win, or

that p refinement is always more efficient than h refine-
ment, assuming certain conditions are met. In particular,
the functions we consider (i) are smooth, u0 ∈ C∞; (ii) fit
the convergent regime, where ϵ ≪ 1; and (iii) have infinite
numerical precision.
Let us first assume that conditions (i)–(iii) are satisfied

and consider the error estimate given in Eq. (1). For the
comparison of different methods, we have to include the
coefficients cpðxÞ in the calculation. Restricted to a single
location x, we have

ϵðh; pÞ ¼ cphp; ð3Þ

ϵ

�
h
2
; p

�
¼ cp

�
h
2

�
p
¼ 1

2p
ϵðh; pÞ; ð4Þ

ϵðh; 2pÞ ¼ c2ph2p ¼ c2p
cp

hpϵðh; pÞ: ð5Þ

This implies that for the relative changes

ϵðh
2
; pÞ

ϵðh; pÞ ¼
1

2p
;

ϵðh; 2pÞ
ϵðh; pÞ ¼ c2p

cp
hp; ð6Þ

and for the comparison of h and p refinement

ϵðh; 2pÞ
ϵðh

2
; pÞ ¼ c2p

cp
2php; ð7Þ

p refinement is more efficient than h refinement if the last
expression is less than 1. In particular, this is the case if we
are in the “convergent regime” (assuming c2p

cp
< 1) and if

2h < 1. Furthermore, for decreasing h, the condition on the
coefficients, which are derived from the function u0,
becomes less restrictive. For exponential convergence,
we in fact expect c2p

cp
≪ 1. As an aside, doubling p is a

rather large step for spectral methods, but similar relations
hold for increasing the order p in increments of þ1 or þ2,
etc. We consider doubling here to use the same number of
degrees of freedom in both cases.
With regard to condition (i), for nonsmooth functions

u0 ∈ Ck, a spectral method may lead to algebraic con-
vergence of order (for example) kþ 2 [22]. Other algebraic
orders are possible, including half-integer powers like
kþ 3

2
. Sufficient smoothness of u0 is an obvious criterion

for the applicability of spectral methods, while nonsmooth-
ness does not automatically rule out spectral methods,
because they still converge. A large class of problems deals
with shocks and conservation laws, which is beyond our
discussion here (see, for example, Ref. [26]).

ADAPTIVE HP REFINEMENT FOR SPECTRAL ELEMENTS IN … PHYS. REV. D 107, 104043 (2023)

104043-3



With regard to condition (ii), while for large K and n the
exponential convergence is stronger than any polynomial
factor, for small K and n there may be a regime where h
refinement and p refinement offer comparable gains. In
other words, spectral methods win beyond some minimal
number of grid points. This minimum tends to be rather
small, but it depends on the function u0.
Let us assume that the convergent regime for some

functions u0 starts only beyond a specific nconv. For
example, u0 could be constructed from just high-order
components in a polynomial basis. Only when p ¼ n
is sufficiently large, n ≥ nconv, can the error start to
decrease exponentially. A special example would be
u0ðxÞ ¼ sinðkxÞ, which is only captured accurately if a
Fourier series includes sufficiently high frequencies. For a
single Fourier mode, h refinement might help, since on
a cell of size h=2 fewer cycles have to be resolved,
and relative to the smaller cell, short wavelengths have
become longer wavelengths. Another special case is a well-
localized wave packet. Suppose this wave packet is well
resolved for n points in a cell of size h. If the same packet is
placed in a single cell with h0 ¼ 10h, then n0 > n points are
probably needed to resolve the packet. The localized wave
packet suggests hp refinements that vary with position. A
function u0 may be optimally approximated by a pair ðh; pÞ
in some region, where it varies slowly on the scale of ðh; pÞ,
while in another region u0 may exhibit high-frequency
features that require smaller h and/or larger p for optimal
efficiency.
With regard to condition (iii), spectral element methods

are usually implemented with finite numerical accuracy.
Depending on the calculations required to, for example,
find the approximate solution u of a PDE, round-off errors
may be the dominant, limiting factor for the accuracy of the
final result. This leads to the typical result that a spectral
method may show an exponential drop in the error as n is
increased—say, down to ϵ ≈ 10−12 for n ≈ 20—but increas-
ing n further does not decrease the error further; instead, the
error ϵðnÞ levels off and may even increase for increasing n.
From the perspective of hp-refinement criteria, if the round-
off floor has been reached by increasing n for p refinement,
it should be more efficient to switch to h refinement. While
the overall accuracy may be the same, computations on
two cells of size h=2 with n points can be expected to be
more computationally efficient than for a single cell of
size h with 2n points. See the discussion of computational
efficiency that follows.
For FD methods, it may be hard to reach this level of

round-off error, while for SE methods, reaching round-off
may be straightforward, but a major design objective is to,
say, lower the round-off floor from 10−5 to 10−12 by an
improvement of the spectral method. A concrete example is
given by the optimized spectral methods for certain elliptic
problems by Ansorg et al. [27], which achieve this in part
by a clever choice of coordinates.

In conclusion, theoretical estimates for errors and the
convergence of SE methods are available. Their applicabil-
ity, however, depends on the smoothness of u0, and on
application in the convergent regime, which may require
reaching some minimal resolution, as well as avoiding the
numerical round-off for high-order schemes.

B. Operation count for hp refinement

In a spectral element method for the numerical solution
of a PDE, the most expensive part of the calculation is often
the computation of the numerical derivatives. For a 1D
problem with n grid points, the algebraic (nonderivative)
part of the right-hand-side computation requires typically
on the order of OðnÞ floating point operations, while
computing derivatives can require Oðn2Þ operations for
direct matrix methods. In special cases, this may be
Oðn log nÞ—say, for FFT-Chebychev methods—but since
n in many examples is comparatively small (n < 50), direct
matrix methods for correspondingly small n are more
efficient—for example, Refs. [22,28]. Hence, we will
restrict the discussion to the case Oðn2Þ.
In d dimensions, consider a cube with the same number

of collocation points in each direction and

V ¼ nd ð8Þ

points in total. We define the vector of function values ui
with a linear index i ¼ 0;…; V − 1. Multiplication of a
vector with V elements by a square V × V matrix is in
general an OðV2Þ operation. However, let us consider
spectral methods for first-order PDEs that involve only
the standard partial derivatives ∂j in each direction. For
d ¼ 1, the n × n derivative matrix D is dense (full). For
d ¼ 2, we define sparse derivative matrices D1 ¼ I ×D
andD2 ¼ D × I, which are n2 × n2 matrices defined by the
Kronecker product of D with the n × n identity matrix.
Assuming that the sparsity is utilized in the computation,
computing derivatives is not an OðV2Þ operation, but
one of order

nopsðnÞ ¼ OðnVÞ ¼ Oðndþ1Þ: ð9Þ

Using an estimate for the number of floating point
operations in a spectral method, we can define efficiency
as “accuracy per work,” or inefficiency as “work per
accuracy”; or, since accuracy is the inverse of error (the
smaller the error, the higher the accuracy), inefficiency is
error times work. For the hp method as described above,
with K cells in each dimension, error times work is

αineff ¼ OðhpÞnopsðnÞ ¼ OðK−nÞOðndþ1Þ: ð10Þ

Comparing SE methods in terms of αineff takes the work in
terms of the operation count into account.

RENKHOFF, CORS, HILDITCH, and BRÜGMANN PHYS. REV. D 107, 104043 (2023)

104043-4



For p refinement, with K and d constant, αineff is the
product of an exponential in −n and a polynomial with
leading order ndþ1. Therefore, assuming that we consider
the regime of exponential convergence for the spectral
method, the exponential reduction of the error out-
weighs the polynomial increase of the operation count.
Incidentally, since d is constant, this would also hold if
the operation count for derivatives were Oðn2dÞ instead
of Oðndþ1Þ.
For h refinement, the work for 1D derivatives per

element remains constant, while for p refinement, the work
for 1D derivatives increases, which may be compensated by
faster convergence. For h refinement with a factor 2, the
operation count is 2dnopsðnÞwhen ignoring overhead at cell
interfaces, while the error decreases by a factor of 1=2n.
The overall gain in efficiency (reduction in inefficiency) is
1=2n−d. For p refinement by a factor of 2, the operation
count increases by a factor of order 2dþ1, while the error
decreases by a factor of c2p

cp
hp.

For hp refinement, h refinement is cheaper in terms of
additional operations, but overall, p refinement is still
favored in the regime defined by conditions (i)–(iii) in
the previous section. In practical applications, some mea-
sure of the work should be included, and the balance
between h and p refinement can then be based on the actual
values of n, K, and the work estimate.
Similar considerations hold for specific time-stepping

algorithms. On the one hand, the clustering of points on
spectral elements may require smaller time steps—for
example, for explicit Runge-Kutta time-stepping. On the
other hand, this is rewarded with smaller errors in the time
discretization, which in turn affects the work and accuracy
balance of hp refinement.

C. Memory usage of hp refinement

Another aspect of efficiency is memory usage. FD and
SE methods often have comparable memory usage of order
OðVÞ. In particular, the additional storage for differentia-
tion matrices is often small compared to the storage of
OðnvarVÞ function values for nvar variables. We can ask
which method requires the least resources to achieve a fixed
error bound—say, a maximum pointwise error of ϵ ¼ 10−9.
Considering hp refinement for such an error bound, in
principle we can also balance h refinement and p refine-
ment to minimize V.
However, in many of our applications, memory (RAM)

size limitations of hardware are not an issue. With BAMPS,
we rarely perform time evolutions that use the maximum
memory available per node; rather, we utilize more nodes
than required for memory to gain access to more CPUs for
faster execution. Employing more nodes also implies a
higher memory bandwidth for accessing the same total
memory.

D. Run-time of hp refinement

Having discussed convergence with h and p, operation
counts for typical hp methods, and memory constraints, we
turn to another important metric for performance: How
quickly does the code run? In particular, for large simu-
lations on supercomputers, the bottom line may be how
many CPU hours are required.
While the number of floating-point operations required

to complete a simulation is a relevant metric, different
methods implemented by different codes and run on
different hardware typically show run times that are not
trivially correlated with flops (floating-point operations per
second). This is not that surprising, because in a compli-
cated code like BAM or BAMPS, solving complicated
problems (Einstein equations), there are many nontrivial
issues like maintaining an optimal load of floating-point
units (including vector units like AVX, etc.), paralleliza-
tion, and memory access.
As a key example, even when considering just the

right-hand-side calculation (and not complications of
AMR or parallelization) of the Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) or generalized harmonic
gauge (GHG) formulations, BAM and BAMPS seem to be
significantly bound by memory access speed, rather than by
the flops achievable by the hardware. Typical (3þ 1)-
dimensional simulation codes are often memory-bound
rather than compute-bound (in significant parts of the
calculation). Consider arithmetic intensity—that is, the
number of floating operations performed on each byte
read from RAM into the CPU—or work per memory
traffic. For current CPU/RAM platforms, and for the
large number of 3D variables in a typical BSSN or
GHG calculation, the arithmetic intensity is often compa-
ratively low, so that the memory channels are saturated,
while the CPUs/FPUs are not. Note that this is the case
even when using differentiation matrices in our spectral
methods. SE methods tend to be more compute intensive
than FD methods, but in typical examples even the
BAMPS code is in part memory-bound, and not compute-
bound. See Ref. [28] on BAMPS, where there are indications
that the strong performance gain on a GPU compared to a
CPU can be attributed mostly to the much faster memory
interface of the GPU, rather than the increased flops for
the GPU.
In conclusion, for dynamic AMR with hp refinement,

it is worthwhile to include either offline or live bench-
marks that measure the speed of execution for different
parts of the code. While the theoretical considerations
above can be a good guideline for some aspects of
performance, the optimal balance of h and p refinement
to reach a certain error criterion should also consider
run-time benchmarks. Furthermore, benchmarks of this
type can be helpful for load balancing of parallel hp
refinement.

ADAPTIVE HP REFINEMENT FOR SPECTRAL ELEMENTS IN … PHYS. REV. D 107, 104043 (2023)

104043-5



III. THE BAMPS CODE

This section first gives a high-level overview before
describing specific parts of the algorithm in detail, such as
refinement indicators and load balancing.

A. Grid setup

In BAMPS, the numerical domain is organized in a
hierarchical structure. The full total of the domain is
divided into up to 13 different “patches,” with each patch
being defined by a patch type (cube, spherical shell, or
transitional patch) and a direction (positive X, negative Y,
etc.), corresponding to its position and orientation on the
overall domain. Each patch is constructed as a cube in
patch-local coordinates ðu; v; wÞ. Depending on the patch
type, specific coordinate transformations are used to map
the patch-local coordinates to a global set of Cartesian
coordinates ðx; y; zÞ. These transformations are constructed
such that they match at the boundaries between patches.
Finally, the boundaries of patches with different orienta-
tions are connected so as to form an overall spherical
domain, referred to as a “cubed sphere” [29]. The particular
construction used in BAMPS is described in more detail
in Ref. [30].
Each patch contains any number of “grids,” which are

self-contained spectral elements. On each grid, every
spatial dimension is discretized using a nodal spectral
grid of points, using either Chebyshev-Gauss-Lobatto or
Legendre-Gauss-Lobatto collocation points in the ðu; v; wÞ
coordinates. Data are transmitted between these grids using
a penalty method [24,31,32], which aims to ensure energy
conservation. This treatment of grid boundaries is not
unique; see Refs. [33–35] for discussion and examples
of other approaches to data transmission.
For the present work, we consider parallelization

with the MPI (message-passing interface). In a normal
parallelized operation, a variable list of grids is distributed
across a fixed number of MPI processes. Each MPI process
contains roughly the same number of grids (see Sec. III B 4
on how this is achieved). Each process stores its grids and
their metadata in its own copy of a singleton data structure,
which also contains global properties of the domain. While
some metadata are used to track grids not local to a
particular process, no part of the state vector is duplicated
between different processes.
Since the publication of Ref. [30], several changes to the

grid structure have been made: most notably, that symmetry
boundaries—that is, those boundaries of the domain on
which symmetry conditions are enforced—are located in
between grids, rather than being implemented using “half
grids” overlapping the symmetry plane.
This necessitates more care to preserve the parity of the

solution, since without extra steps, the filtering mechanism
used to prevent the growth of unphysical high-frequency
modes will lead to parity violations, which in some cases

seems to lead to unstable behavior at the outer boundaries.
We partially counteract this by providing such boundaries
with virtual neighbor grids, containing data that exactly
fulfill the parity conditions. We can then apply the same
penalty method used between all internal grids as a
boundary condition. Additionally, parity conditions on
derivatives are generally enforced explicitly by setting
the derivatives of fields with even parity to zero at the
boundary.

B. Adaptive mesh refinement

The general grid structure described above serves as
the base mesh, onto which AMR is then applied. Using
the algorithm described in Sec. III B 2, we recursively
generate new grids in order to supply additional resolution
where needed to adequately represent the solution, we
and consolidate these fine grids back into fewer coarser
ones once the additional resolution is no longer required
(h refinement). The per-grid resolution is also adjusted
according to a separate refinement indicator (p refinement).
To determine which areas of the domain require refine-

ment or coarsening, we employ different indicator func-
tions, as described in Sec. III B 3, which are evaluated
periodically during the evolution, typically every 100
time steps.

1. Data structures

A popular data structure for h refinement in three
dimensions uses oct-trees (or octrees)—for example,
Refs. [16–18,36]—which are natural for recursive, local
domain decomposition. A given grid, the “parent” grid, is
subdivided in each spatial direction by a factor of 2,
resulting in eight (in 3D), four (in 2D), or two (in 1D)
“child” grids. Given a set of root grids, which in BAMPS

corresponds to an initial grid configuration based on
coordinate patches, each child grid has a unique parent
grid, and the data structure also keeps track of neighbor-
hood relations between grids.
In essence, BAMPS implements a set of distributed,

parallelized trees of grids, which is similar, for example,
to the forest of octrees in Ref. [37]. Incidentally, some
versions of the numerical relativity code BAM starting with
Ref. [38] were internally based on octrees as well, which
provided experience with a prototype for a MPI-parallel
octree implementation. However, fully local mesh refine-
ment was rarely used; rather, the octree was configured for
the nested, moving box algorithm for compact binaries as
in Ref. [9], and later replaced by a more efficient box-based
algorithm for large, nested boxes [39].
For BAMPS, we decided to explore a nonstandard

implementation of octrees, where the data structures do
represent a virtual tree, but the actual implementation is
directly based on lists and local list operations. Assuming
familiarity with elementary data structures like lists and
linked lists, a tree is a specific graph of nodes with links

RENKHOFF, CORS, HILDITCH, and BRÜGMANN PHYS. REV. D 107, 104043 (2023)

104043-6



between parent and child nodes. A binary tree is an efficient
way to store and retrieve data in an ordered list of nodes.
For AMR, the ordering is given by the geometry of the
domain decomposition in 3D (or 2D, 1D). Since for PDEs,
a key operation is the exchange of information between
neighboring nodes across grid interfaces, for convenience
and efficiency, an implementation may also store links
(pointers) between nodes and their neighbors (“siblings”
and “cousins”); see, for example, the “fully threaded
trees” in Ref. [36], even though some of this information
is redundant and can be deduced from the parent/child
links. An alternative to linked lists and linked trees is
based on hash-based node identification, which can be
combined efficiently with the concept of space-filling
curves [40,41].
In BAMPS, we do not implement a general-purpose octree,

but guided by the actual requirements of parallelized,
adaptive hp refinement, we arrived at the following—in
some aspects simpler—model of a list of grids. The
construction is based on the following observations and
application-specific simplifications.
First, the physical domain is covered by a collection of

elements (or grids), which for the purpose of parallelization
is organized as a global, ordered list corresponding to a
space-filling curve; see the discussion in Sec. III B 4. By
ordering the elements in this way, each can be uniquely
identified by its position, or index, in the list. This makes it
possible to encode information about neighborhood rela-
tions between elements simply by storing the list indices of
neighboring elements. We choose to maintain this ordered
list of grids directly in all AMR operations.
Second, notice that AMR operations like refining and

coarsening correspond to local list operations, assuming
a well-formed octree and a z-ordered space-filling curve.
In particular, the creation of child grids corresponds to
replacing a single node in the list with several nodes, which
by construction of the z-ordered curve for an octree places
the new elements next to each other in the list. Coarsening
means replacing several child grids with a single (parent)
grid, which again is a local operation in the z curve—in
particular, since only children without children of their own
can be removed. This allows us to maintain the congruency
of all stored list indices by adding and subtracting pre-
computed offsets to and from stored indices, based on the
refinement and coarsening operations of each element and
its neighbors.
Third, given a list of n elements stored contiguously in

memory, inserting and removing n elements is potentially
an order-Oðn2Þ operation. For the h refinement considered
here, however, we build the list of refinement flags ahead
of time, and the construction of the new list can then be
performed by a single sweep of Oðn1Þ operations. In
practice, two sweeps are required—one to determine new
element indices, and one to assemble the new array—but
overall, this is still an OðnÞ operation.

While this method of a global list, implementing “a tree
without a tree,” works efficiently (see Sec. III C on the
performance and scaling of BAMPS), we leave it to future
work to investigate whether there are significant differences
in performance and/or simplicity compared to other octree
implementations.

2. Algorithm

The AMR procedure consists of several steps:
(1) Evaluate the h-refinement indicator function on

each grid.
(2) Generate a set of initial h-refinement flags.
(3) Modify the h-refinement flags to satisfy refinement

constraints.
(4) Apply h-refinement operations.
(5) Perform load balancing to consolidate grids that are

marked to be coarsened together.
(6) Apply h-coarsening operations.
(7) Evaluate the p-refinement indicator function on

each grid.
(8) Apply p-refinement and p-coarsening operations.
(9) Apply final load balancing.
We choose to use refinement indicators that are purely

grid-local functions, and as such can be evaluated by each
MPI process on all local grids without the need for
interprocess communication. This precludes indicators
based on large-scale feature detection, or preemptive
refinement based on indicator values of neighboring grids.
The generated indicator function values are then com-

pared to an interval of values deemed acceptable. This
interval is set by the user as an external parameter, and
appropriate values depend strongly on the chosen indicator
function. For example, the interval ½10−12; 10−9� has been
found to give good results for the truncation error estimator
(Sec. III B 3 a). Suitable estimator bounds for the smooth-
ness heuristic (Sec. III B 3 b) depend strongly on the
equations and quantities being evolved. See Table I for
examples.
If the indicator value is above the allowed maximum,

the grid is flagged for refinement. Vice versa, if the value is
below the set minimum, it is flagged for coarsening.
Typically, the smoothness heuristic is chosen as the

TABLE I. Examples of refinement indicator settings that are
known to generate useful amounts of refinement for evolving
linear and nonlinear wave equations, as well as the generalized
harmonic gauge (GHG) formulation of GR.

Smoothness Truncation error

Wave eq. (linear) [0.005, 0.05] ½10−12; 10−9�
Wave eq. (nonlinear) [0.001, 0.01] ½10−12; 10−10�
GHG (Kerr) [0.001, 0.01] ½10−12; 10−9�
GHG (Brill wave) [0.001, 0.005] ½10−15; 10−9�
GHGþ scalar field [0.001, 0.0025] ½10−12; 10−9�

ADAPTIVE HP REFINEMENT FOR SPECTRAL ELEMENTS IN … PHYS. REV. D 107, 104043 (2023)

104043-7



h-refinement indicator, to make sure each grid represents a
sufficiently small part of the solution as to be smooth. If this
cannot be achieved, at least the use of this indicator should
contain any nonsmooth parts of the solution in as small a
region as possible, and help to preserve the overall quality
of the solution. Our notion of “smoothness” here is not
related to the smoothness of the continuum solution, but
rather to the quality of its numerical approximation. The
above procedure will assign each grid a “target h level” that
falls within �1 of its current h-refinement level. Note that
while each application of the AMR algorithm will only
raise or lower the refinement level of a given grid by 1, it
can be applied iteratively until all indicator bounds are
satisfied on all grids.
As the next step requires information about the flags of

neighboring grids, which might be stored on different
MPI processes, these initial h-refinement flags are then
synchronized across all MPI processes. The flags generated
by this procedure are then modified to ensure that the end
state satisfies the constraints for a “legal” BAMPS grid. As
illustrated in Fig. 2, we impose a 1∶2 condition on the grid
structure, meaning that in crossing any boundary between
grids, the h-refinement level may only change by 0 or �1:

This constraint makes the structure of possible grids
conform to the leaves of an octree. Since grids do not
overlap, only the leaves of that tree actually exist as grids.
However, coarsening operations require knowledge of
which groups of grids correspond to “siblings” in the
virtual grid tree. For this reason, each grid is assigned a
unique sequence of numbers that mark its position in the
tree: for example, a grid marked with the sequence f0; 3; 2g
is the second child of the third child of a parent grid with
the ID 0.
At the same time, refinement is given precedence over

coarsening and nonrefinement. In combination, these
principles lead to potentially propagating refinement into
grid regions that were not originally flagged as needing
refinement. Since coarsening is given the least precedence,
it will only be applied if an entire group of sibling grids—
meaning grids that share a parent node in the virtual grid

octree—is flagged for coarsening. Otherwise, the coarsen-
ing flags are disregarded.
After the refinement flags have been modified to satisfy

the constraints, all h-refinement operations can take place.
To perform h refinement on a grid, 2d new grids are

created, with d being the dimension of the domain, to fill
the region currently represented by their parent grid. The
solution is then interpolated from the parent grid onto its
children, using Lagrange interpolation with barycentric
weights [42]. Finally, the metadata about the parent’s
neighbor grids is transferred to the generated children.
This includes their position in the global grid list, their
level, and the patch they belong to, as well as information
about the size and orientation of neighboring grids. The
new metadata depend on both the current refinement level
and the refinement flags of any neighboring grids. A set of
nested lookup tables is used to generate the metadata that
correspond to the grid state after all refinement and
coarsening has taken place.
Because refining a grid into several children is always a

process-local operation, and it generates new grids that
must be taken into account and potentially moved during
load balancing, all refinement operations can and must
happen before load balancing.
Similarly, because coarsening a group of grids requires

all grids involved to be local to a single process, coarsening
operations must happen after a pass of load balancing,
during which grids flagged for coarsening are shifted
to consolidate all sibling grids on the same MPI process.
To facilitate this, the grid-weighting system of the load-
balancing procedure is used. Within a group of grids
flagged for coarsening, all but one are assigned a weight
of 0, since they will cease to exist. The other grids are
assigned a weight depending on their individual resolution

FIG. 2. A grid structure that conforms to an octree, but is not
compatible with the 2∶1 refinement condition, and a modified
structure which is compatible, demonstrating the resulting refine-
ment propagation, both with labels denoting the refinement level.

Algorithm 1. Satisfying the 2∶1 condition for h refinement.

l ← lmax
while l ≥ 0 do

for each grid do
for each neighbor of grid do

if neighbor:level < l − 1 then
neighbor:level ← l − 1

end if
end for

end for
l ← l − 1

end while

RENKHOFF, CORS, HILDITCH, and BRÜGMANN PHYS. REV. D 107, 104043 (2023)

104043-8



(see Sec. III B 4). This results in such sibling grids always
being assigned to the same grid list segment.
The coarsening procedure functions like the refinement

procedure in reverse; one new grid is created, and data from
the old grids are interpolated onto it. Like in the refinement
step, all metadata from the old grids must be consolidated
and modified to reflect the end state of the AMR operation.
Here, too, a set of nested lookup tables is used to generate
the correct metadata.
Once all h-refinement operations are complete, the

refinement indicator selected for p refinement is evaluated
on the resulting grids, and refinements are performed
wherever indicated. In contrast to h refinement, p refine-
ment can be performed as a fully grid-local operation,
without the need for intermittent communication between
processes. Only once all refinement and coarsening oper-
ations have been completed are the resulting refinement
levels communicated between neighboring grids to ensure
the proper allocation of boundary data buffers.
Finally, a second load-balancing step is performed, as the

relative computational load of grids may have changed
when their resolution was changed.

3. Refinement indicators

To determine whether a grid should be refined, coars-
ened, or kept at its current level, one or more indicator
functions are used.
Each indicator fulfills the following criteria:
(1) It is grid-local, meaning it requires only data from a

single grid to be evaluated.
(2) It evaluates to a single real number for each grid,

which can be compared against bounds set by the
user. Values higher than a set threshold trigger
refinement, while values lower than a set threshold
allow for coarsening.

(3) It returns a dimensionless value, so it can be used in
a problem-agnostic way.

Indicators can be used interchangeably to drive either h
or p refinement, or both. Both h and p refinement are
assigned their own indicator function with their own
bounds for the returned value. See Figs. 3 and 4 for
examples of different refinement indicator functions
applied to a Gaussian at different h-refinement levels.

Truncation error estimate.—One tool to gauge the quality
of data representation on spectral grids is to consider the
decay of the coefficients of the spectral series. For a smooth
function, when using an appropriate polynomial basis,
these coefficients will decrease exponentially as the order
increases, given enough resolution to capture high orders
[22]. The magnitude of the highest-order coefficient can
thus be used to estimate the truncation error of the series.
We use this to construct a refinement indicator similar
to that described in Ref. [43], which aims to keep the

estimated truncation error below a specified value every-
where on the domain.
To compute this indicator, we extract the spectral

coefficients ci from the nodal representation. For a given
function basis fφiðxÞg and nodes fxig,

uðxÞ ¼
X
j

cjφjðxÞ; ui ¼ uðxiÞ; Vij ¼ φjðxiÞ;

ð11Þ

ui ¼ Vijcj; ci ¼ V−1
ij uj: ð12Þ

Figure 1 shows an example of the ci. For the indicator, we
first compute the spectral coefficients ci along each line of
grid points. By default, these coefficients are then normal-
ized with respect to c0, which results in a measure of

FIG. 3. Values returned by the smoothness-estimation-based
refinement indicator evaluating a Gaussian (blue), at different
grid sizes.

FIG. 4. Values returned by the truncation-error-based refinement
indicator evaluating a Gaussian (blue), at different grid sizes.

ADAPTIVE HP REFINEMENT FOR SPECTRAL ELEMENTS IN … PHYS. REV. D 107, 104043 (2023)

104043-9



relative truncation error. This can optionally be disabled to
estimate the absolute error instead. Some of the higher
modes are effectively eliminated due to filtering, and their
coefficients are therefore removed from consideration.
For the remaining coefficients, we construct a single
sequence

c̃i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
k¼1

ðcki Þ2
vuut i ¼ 1; 2;…; ñ ð13Þ

of the root mean square of the ith coefficient, where ñ is the
highest nonfiltered mode, and k enumerates all N lines of
grid points, so N ¼ d · nd−1 for a d-dimensional grid of nd

points.
We then fit a simple model of exponential decay to the c̃i,

and we evaluate the resulting function at the highest
nonfiltered order to obtain the final indicator value,

ε ¼ 10añþb; ð14Þ

where a and b are the slope and offset as obtained by a
linear least-squares fit on the logarithm of the c̃i. This ε is
returned as the indicator value.
Because the exponential decay of coefficients only sets

in at sufficiently high order, and accumulated round-off
errors due to finite machine precision prevent the accurate
computation of coefficients for very high orders, resulting
in a “round-off plateau,” this method overall tends to
underestimate the slope of the decay, thus overestimating
the total truncation error.
This type of indicator is naturally suited for driving p

refinement, since it directly corresponds to the success or
failure of a series of particular polynomial order to
represent the data.

Smoothness estimate.—A well-tested heuristic for deter-
mining the need for mesh refinement in an area is an
estimate of the form

ϵ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i

P
k;l

�
∂
2u

∂xk∂xl

���
xi

�
2

P
k;l

�
j ∂u
∂xk

j
L
þj ∂u

∂xk
j
R

Δl
þ εj ∂

2

∂xk;∂xl
jjujjxi

�
2

vuuuuut ; ð15Þ

similar to the indicator originally described in Ref. [44],
and adapted to spectral grids.
Here, j ∂u

∂xk
j
L
and j ∂u

∂xk
j
R
refer to the first derivatives of the

solution at the left and right boundaries of the spectral
element, respectively, and Δl is the size of the element
along the lth dimension. The term following ε is computed
by taking the absolute value of the derivative matrix Dkl ¼
Dk ·Dl elementwise, and applying it to the piece of the
state vector containing the variable u, also taking the

absolute value elementwise. Effectively, we compute a
normalized version of the second derivatives on the grid,
where the normalization is based on an upper bound on first
derivatives. If the first derivatives are small, then the term
proportional to ε provides an alternative normalization.
It acts as a filter to prevent small high-frequency “ripples”
from triggering unwanted, and potentially cascading,
refinement.
This type of indicator originates in finite element

methods using linear elements, where the magnitude of
second derivatives is justified as an error estimate. Because
a spectral element of order n > 2 can still represent second-
order polynomials exactly, it is less obvious why the
indicator would give meaningful results. In practice, how-
ever, using it as a heuristic leads to refinement in exactly
those regions that are “nonsmooth,” as well as the regions
where the solution shows the strongest features.
It is a natural choice as the indicator used by the

h-refinement portion of the algorithm, as it pushes the
algorithm to subdivide grids until each represents an
approximately linear piece of the solution.

Static indicators.—Instead of using the data on a grid to
determine its refinement status, it is also possible to
construct indicators that result in a static, yet heterogeneous
grid structure—for example, a domain with high resolution
near one or more defined centers, and progressively lower
resolution further away from them. Such a scheme can be
described in terms of a target level l which depends on the
distance d from the closest center—for example,

l ¼
�
log2

�
a
d

�	
; ð16Þ

where a determines the size of the refined region. Schemes
such as this, which directly result in a target level, can
easily be made to fit the above paradigm of returning a real
number to be compared to a set interval by returning, for
example,þ1 if the current level is below the target level, −1
if the current level is above it, and 0 if the current level
matches the target level. Setting the accepted interval to
½−0.5; 0.5� then results in the desired refinement operations
being applied (see Fig. 5 for an example of the resulting
grid structure). Applying this type of refinement indicator
in combination with, for example, a center-of-mass detec-
tion will result in an AMR scheme that guarantees that
regions of physical interest, such as orbiting compact
objects, are always covered by highly resolved mesh
regions that dynamically follow them.

4. Load balancing

In order to ensure an even distribution of computational
work across the available CPU cores, grids are shifted
between processes during AMR operations. Since each
boundary shared by two or more processes necessitates

RENKHOFF, CORS, HILDITCH, and BRÜGMANN PHYS. REV. D 107, 104043 (2023)

104043-10



data exchange between these processes, we also seek to
minimize the amount of such boundaries, or maximize data
locality.
This is achieved by arranging all grids into a list in the

order of their intersection with a space-filling z-order curve,
also known as a Morton curve [45], and then partitioning
this list into as many sections as processes are used (see
Fig. 6). Similar partitioning schemes are used in other
codes; for example, Ref. [18] also uses a Morton curve for
domain partitioning. See also Ref. [46] for a comprehensive
treatment of space-filling curves and their numerical
applications. We specifically use a z-order curve over
the more common Hilbert curve in order to simplify the
application of grid index offsets for neighbor tracking

during refinement operations. We find that this simple
mechanism fulfills both of the goals set out for load
balancing.
As mesh refinement operations modify the grid structure

(see Sec. III B), the ordering of grids in this list is
maintained such that it always corresponds to a traversal
of the domain along the z-order curve.
In numerical experiments, we empirically find that the

runtime necessary to evolve a grid scales as

t ¼ nw; ð17Þ

where n is the total number of grid points, with powers w
between 1.14 and 1.27, depending on the equations being
evolved, as well as the number of dimensions (see Fig. 7).
Consequently, each grid is assigned a weight, according to

ρi ¼ ðniÞw; ð18Þ

where ni is the total number of grid points on the ith grid,
and w is chosen appropriately for the equations being solved.
The partitioning of the grid list is then done such that each
segment contains grids with approximately the same total
weight. It should be noted that this represents a simplified
model which combines both the amount of pointwise
arithmetic, which depends on the particular system being
evolved, and independent per-grid overhead (for example,
computation of derivatives), depending on the particular
equations being solved, into a single empirical parameter, w.

5. Boundary data exchange

The pseudospectral method used by BAMPS requires the
exchange of data on the internal boundaries between grids.
The optimal way to accomplish this can and will depend
on the particular MPI implementation used. We use the
following algorithm, applied in synchronous phases across
all MPI processes:
(1) Determine how many boundaries the MPI process

shares with each other MPI process.

FIG. 5. A grid structure resulting from the use of a static
refinement indicator such as Eq. (16).

FIG. 6. An example of a grid configuration with the z-order
curve determining the internal ordering of grids. Different colors
show a possible division of 22 grids among 5 processes,
demonstrating approximate data locality.

FIG. 7. Scaling of the workload associated with evolving a grid
for different numbers of points per grid.

ADAPTIVE HP REFINEMENT FOR SPECTRAL ELEMENTS IN … PHYS. REV. D 107, 104043 (2023)

104043-11



(2) For each MPI process with shared boundaries,
generate a list of identifiers t, from which the details
of the necessary MPI message can be uniquely
determined:

t ¼ 24 · ng þ 4 · ndir þ nne; ð19Þ

where ng is the index of the sending grid, ndir is a
number between 0 and 5 which encodes a direction,
and nne is a number between 0 and 3 which specifies
which of up to four neighboring grids information
is sent to. This creates a pair of identifiers for each
shared boundary: one for sending the local data, and
one for receiving data from a remote MPI process.
These identifier pairs are stored together as a single
entry in the list of messages, which can be sorted by
either one.

(3) Sort all lists of communications with MPI processes
of higher rank by the send identifier, and sort the
other lists by the receive identifier. This ensures that
MPI processes sharing several boundaries will have
identical lists of communication identifiers, in the
same order.

(4) Sort the list of lists by length, to ensure that the
shortest ones are handled first. We find that this
significantly reduces the time other processes spend
waiting on communications to be initiated, in some
cases by up to 40%.

(5) For each list of communications, initiate both send-
ing and receiving operations as asynchronous MPI
calls, using the list index as the MPI message tag.

(6) While MPI communications are ongoing, perform
all boundary data exchanges that are entirely local to
each MPI process.

(7) Wait for all MPI communications to finish.
Once all boundary information has been transferred to

the neighboring grids, the data are interpolated to match the
resolution of the receiving grid. Note that performing the
interpolation at the receiver is an arbitrary design decision,
and it could equivalently be performed at the sender before
any communication occurs. As this process results in data
on coincident grid points, we are able to use the same
penalty method as was used in Ref. [30] for equally
sized grids.
For np different grid resolutions accessible by p refine-

ment, there are n2p possible combinations between equally
sized grids, each requiring a different interpolation matrix.
Since grids may also share boundaries with other grids
either half or twice their size, which may overlap in either
the upper or lower halves of their respective extents, this
number is further multiplied to give a total of 5n2p possible
cases. In practice, only a small subset of these cases will be
reached during any given simulation. Therefore, we do not
compute every possible interpolation matrix in advance,
and instead generate them on demand. We then utilize

memoization (caching) to minimize the duplication of
work—that is, each MPI process keeps a cache of pre-
viously required interpolation matrices, to be reused if the
same case appears again later. Each interpolation matrix
that is required is thus only generated once on each process
where it is needed, and unneeded matrices are never
generated.

C. Performance and scaling

To evaluate the performance and scaling behavior of
BAMPS, a series of benchmark runs was performed on a
varying number of CPU cores. For these runs, static grid
configurations were chosen in order to control the amount
of work per CPU core. Each configuration was run three
times, and the measured times were averaged. The times
themselves were measured using built-in timers, capable
of profiling specific sections of the code, including the
runtime of the entire main routine. With this, both strong
and weak scaling tests were performed. We use an
axisymmetric subcritical Brill wave collapse simulation
as our test case; see Sec. VI for details on the evolution
system.
Strong scaling refers to the performance increase, as

measured by the lower runtime (speedup), when distribut-
ing the same amount of work over more CPU cores. Ideal
strong scaling would be achieved if a doubling of the
number of CPU cores resulted in halving the necessary time
for the same simulation. In practice, most programs have a
nonparallelizable part, which leads to their speedup follow-
ing Amdahl’s law, with diminishing returns for increasing
numbers of CPU cores.
Weak scaling refers to the ability to solve larger

problems efficiently when provided with more CPU cores.
It is measured by increasing both the problem size and the
number of CPU cores by the same factor, and observing the
change in computation time. Ideal weak scaling would be
achieved if the required time remained the same under this
change. Weak scaling is often measured by the weak
scaling efficiency, determined by

e ¼ t0
t
·
n
n0

; ð20Þ

where t is the total computation time summed over all CPU
cores, and n is the number of utilized CPU cores. t0 and n0
are those quantities for a selected (small) reference run.
In Fig. 8, both the strong and weak scaling of BAMPS are

shown. The solid lines represent series of runs showing
strong scaling, as the computation time required decreases
at the same rate at which the number of CPU cores is
increased. The dotted lines show a series of runs demon-
strating weak scaling, as the amount of work per CPU core
remains constant along them, and the amount of compu-
tation time required also remains almost constant.

RENKHOFF, CORS, HILDITCH, and BRÜGMANN PHYS. REV. D 107, 104043 (2023)

104043-12



The strong scaling behavior of BAMPS is also shown
separately in Fig. 9, and Fig. 10 shows the weak scaling
efficiency. Provided the workload of a single CPU core
is chosen to be sufficiently large (eight grids per CPU core
for the GHG simulations studied here), we consistently
observe a weak scaling efficiency above 90%.
With AMR enabled, the scaling behavior is expected to

be slightly worse, since the refinement algorithm involves
global communication between all MPI processes during
the load-balancing procedure. However, because the AMR
algorithm is only invoked every 100 time steps (or even
more rarely), we do not expect it to have a noticeable
impact on the overall scaling behavior.

Given the complexity of hp refinement even for fixed
refinements, in this particular example, the scaling of
BAMPS is excellent up to 1000 CPU cores and satisfactory
up to 6000 CPU cores. These numbers change when
considering runs with more grids, and in particular when
moving from 2D to 3D spatial grids.
Overall, the strategy to consider MPI parallelization with

single grids defining data granularity is successful for a
wide range of configurations, down to even a few 2D grids
per process. In part, this is a feature of the complexity of the
Einstein equations, since the amount of data and work per
grid tends to be large compared to the parallelization
overhead. In general, this is also expected for spectral
element methods, if only face-local data is exchanged
at element interfaces. More fine-grained algorithms are
available—for example, task-based parallelism as employed
in Refs. [16,18]—but for the present applications of BAMPS,
the single-grid granularity performs well.

IV. NONLINEAR WAVE EQUATION MODEL

To evaluate the capability of the AMR system in
resolving strongly varying data during an evolution, we
consider the nonlinear wave equation

□ψ þ A1∇a∇aψ ¼ 0; ð21Þ

which corresponds to “model 1” in Ref. [47], choosing
A1 ¼ 1. We apply a first-order reduction using the reduc-
tion variables Π ¼ ∂tψ and ϕi ¼ ∂iψ , resulting in the
system

∂tψ ¼ −Π; ð22Þ

∂tϕi ¼ −∂iΠþ γ2∂iψ − γ2ϕi; ð23Þ

FIG. 8. Strong and weak scaling of BAMPS for different static
grid configurations, based on benchmarks performed on Super-
MUC-NG, evolving the GHG system in 2D. Solid lines represent a
constant total number of grids, and dotted lines represent a
constant number of grids per CPU core.

FIG. 9. Strong scaling of BAMPS for a static grid configuration
of 9216 grids.

FIG. 10. Weak scaling efficiency of BAMPS for a static grid
configuration.

ADAPTIVE HP REFINEMENT FOR SPECTRAL ELEMENTS IN … PHYS. REV. D 107, 104043 (2023)

104043-13



∂tΠ ¼ −∂iϕi − A1ðϕiϕ
i − Π2Þ: ð24Þ

Solutions to this equation can be built analytically, by
first constructing a solution to the linear equation □ψ ¼ 0
from partial waves as

φ ¼
X∞
l¼0

Xl

m¼−l
φlmðt; rÞYm

l ðθAÞ; ð25Þ

where ðr; θAÞ are the usual spherical coordinates, and
YlmðθAÞ are the spherical harmonics. Applying the defor-
mation function

DðφÞ ¼ A−1
1 logð1þ A1φÞ ð26Þ

then yields the solution ψ ¼ DðφÞ.
For this comparison, we evolve data built from a pure

ðl ¼ 2; m ¼ 0Þ wave, such that

φðt; r;ϑÞ ¼ 1

4

ffiffiffi
5

π

r �
3

r3
½Fðt−Þ−FðtþÞ�þ

3

r2
½F0ðt−ÞþF0ðtþÞ�

þ 1

r
½F00ðt−Þ−F00ðtþÞ�

�
ð3cos2ϑ−1Þ; ð27Þ

where t− ¼ t − r and tþ ¼ tþ r are the retarded and
advanced time, respectively (see Ref. [48] for details on
this construction).
For the seed function FðtÞ, we choose an offset Gaussian

FðtÞ ¼ Ae−ðtþ1Þ2 : ð28Þ

For sufficiently high amplitudes, this solution is known to
“blow up” after finite time [47], while for smaller ampli-
tudes, the solution continues to exist. We refer to these
cases as supercritical and subcritical, respectively. In order
to obtain strong features in the solution, we choose an
amplitude of A ¼ 1.6784366869120966, which we find
to be barely subcritical when evolved with the highest
resolution used here.
For a systematic convergence test, we employ the

concept of a refinement schedule. A run is performed
for a specific choice of hp-refinement parameters (typically
for the lowest feasible resolution), and the time-dependent
sequence of h refinements is recorded. Subsequent runs can
use the same “h-refinement schedule” while varying the p
refinement. Using this technique, we find the expected
exponential convergence of the numerical solution as grid
points are added, which corresponds to adding terms to the
spectral series (see Fig. 11).
To determine the impact of AMR on the accuracy of the

time evolution, we evolve this system using
(i) AMR, as well as static grid configurations corre-

sponding to,
(ii) the lowest resolution accessible to AMR,

(iii) the highest resolution accessible to AMR, and
(iv) the average resource use of the AMR configuration.
To determine an appropriate average resolution for

configuration (iv), the grid structure generated by AMR
was analyzed post hoc, and the total number of points used
at any given time step was averaged over the whole
evolution. A static, approximately uniform grid configu-
ration using a similar amount of points was then found by a
brute force search over all possible grid configurations.
We find that the use of AMR results in a lowering of the

total numerical error by up to 3 orders of magnitude,
compared to using a similar number of grid points spread
uniformly over the domain. Perhaps surprisingly, the
evolution using configuration (iii) shows by far the largest
numerical error after the solution forms strong features,
several orders of magnitude higher than even configuration
(ii). This is likely due to large amounts of round-off error
piling up due to both a very large number of time steps
necessary to satisfy the Courant-Friedrichs-Lewy condition
[49], and gridwise operations such as derivative computa-
tion requiring multiplication with very large matrices. This
effect is amplified in regions with large absolute values of
the solution, decreasing the absolute numerical precision.
We also observe the formation of nonphysical features
caused by large amounts of noise at the boundaries between
grids. This suggests that spacetime configurations with
strong, but highly localized features, as often encountered
close to criticality, are only accessible using AMR, as
neither low nor high static resolutions are capable of
resolving them accurately.
Apart from the final numerical error resulting from an

evolution, we also consider the amount of computational
work necessary to evolve a given grid configuration. Here,
we use the workload [Eq. (17)] to compute the total work
necessary to evolve data up to a given time step as

FIG. 11. Nonlinear wave model, convergence of the numerical
solution at different per-grid resolutions, as compared to a reference
simulation with 35 × 35 points per grid. For the sake of compari-
son, the same h-refinement schedule was applied to all runs.

RENKHOFF, CORS, HILDITCH, and BRÜGMANN PHYS. REV. D 107, 104043 (2023)

104043-14



WðkÞ ¼
Xk
j¼1

XNj

i¼1

ðniÞw; ð29Þ

where i enumerates all Nj grids present at a given step i, ni
is the number of points on each particular grid, and w is the
appropriate weighting power as shown in Table II.
The product of numerical error and the work required

to reach it can then be used as a measure of numerical
efficiency (where a lower value corresponds to a higher
efficiency). This measure is shown in Fig. 12. The addi-
tional overhead of the AMR mechanism initially makes the
evolution less efficient than a comparable but homo-
geneous resolution, but once strong features form in the
solution, the additional accuracy gained via AMR leads to
the full evolution being not only more accurate by several
orders of magnitude, but also more efficient in terms of
work expended to obtain this accuracy.

V. REAL SCALAR FIELD

After testing AMR with a nontrivial toy model, we test
how it performs in physical scenarios of interest. First, we
consider a real massless scalar field minimally coupled to
the Einstein field equations, in spherical symmetry.

Denoting gab as the 4D metric and Rab as the Ricci
tensor, the Einstein equations read as

Rab ¼ 8π

�
Tab −

1

2
gabT

�
; ð30Þ

where T ¼ gabTab, and

Tab ¼ ∇aφ∇bφ −
1

2
gabð∇cφ∇cφþm2φ2Þ ð31Þ

is the energy-momentum tensor corresponding to a scalar
field φ.
We evolve initial data in time according to the 3þ 1

decomposition

ds2 ¼ −α2dt2 þ γijðβidtþ dxiÞðβjdtþ dxjÞ; ð32Þ

where γij is the 3D spatial metric, α is the lapse, and βi is
the shift. The normal unit vector is then na ¼ α−1ð1;−βiÞ.
We write 4D component indices with latin letters starting
from a and 3D spatial indices with letters starting from i.
The evolution equations for the matter part of the

Einstein field equations follow the first-order Einstein-
Klein-Gordon system, which for m ¼ 0 reads as

∂tφ ¼ απ þ βiχi; ð33Þ

∂tπ ¼ βi∂iπþ γijðχj∂iαþ α∂iχj − αΓk
ijχkÞ þ απKþ σβiSi;

ð34Þ

∂tχi ¼ π∂iαþ α∂iπ þ χj∂iβ
j þ βj∂jχi þ σαSi; ð35Þ

where π is the time reduction variable þna∂aφ, χi is the
spatial reduction variable associated with the reduction
constraint Si ≔ ∂iφ − χi, and σ is a damping term.
Similarly, the metric is evolved following the generalized
harmonic gauge formalism of the Einstein field equations,

∂tgab ¼ βi∂igab − αΠab þ γ1β
iCiab; ð36Þ

∂tΠab ¼ βi∂iΠab − αγij∂iΦjab þ γ1γ2β
iCiab

þ 2αgcdðγijΦicaΦjdb − ΠcaΠdb − gefΓaceΓbdfÞ

− 2α

�
∇ðaHbÞ þ γ4Γc

abCc −
1

2
γ5gabΓcCc

�

−
1

2
αncndΠcdΠab − αncγijΠciΦjab

þ αγ0ð2δcðanbÞ − gabncÞCc

− 16πα

�
Tab −

1

2
gabTc

c

�
; ð37Þ

TABLE II. Runtime scaling behavior based on the number of
grid points.

Type w

Wave eq. (2D) 1.20
Wave eq. (3D) 1.22
Nonlinear wave eq. (2D) 1.27
GHG (2D) 1.22
GHG (3D) 1.14

FIG. 12. Efficiency for the nonlinear wave model. Shown is the
numerical error during the evolution of a nonlinear wave equation
for several static resolutions, as well as using AMR, adjusted for
the amount of work W necessary (lower values are better).

ADAPTIVE HP REFINEMENT FOR SPECTRAL ELEMENTS IN … PHYS. REV. D 107, 104043 (2023)

104043-15



∂tΦiab ¼ βj∂jΦiab − α∂iΠab þ γ2αCiab

þ 1

2
αncndΦicdΠab þ αγjkncΦijcΦkab; ð38Þ

where the evolved variables are the metric gab, the time
reduction variable Πab corresponding to þnd∂dgab, and the
spatial reduction variable Φiab associated with the reduc-
tion constraint Ciab ¼ ∂igab −Φiab. The constraint damp-
ing parameters are γ1¼−1, γ0¼ γ2¼2, and γ4¼ γ5¼0.5.
Ca ¼ Ha þ Γa is the harmonic constraint, where Ha is a
gauge source function.
The type of scalar field initial data we use for these

simulations has a Gaussian profile of the form

φ ¼ Aðe−ðr−R0Þ2 þ e−ðrþR0Þ2Þ; ð39Þ

withR0 ¼ 3 and with a vanishing gradient along the normal
vector na,

na∇aφ ¼ 0: ð40Þ

A conformal decomposition of the metric allows us to solve
the ADM constraints via the extended conformal thin
sandwich (XCTS) equations [50,51]. We consider a flat
conformal spatial metric γ̄ij ¼ δij, with a vanishing time
derivative ∂tγ̄ij ¼ 0, as well as maximal slicing K ¼ 0,
∂tK ¼ 0. With these choices, the XCTS equations con-
stitute a set of coupled elliptic PDEs for the conformal
factor ψ and the gauge variables βi and α. The latter are
simply solved by βi ¼ 0 and α ¼ 1, thanks to the choice in
Eq. (40). The remaining XCTS equation to solve for ψ is

0 ¼ δij∂i∂jψ þ πψδij∂iφ∂jφ: ð41Þ

We use Robin outer boundary conditions compatible with a
1=r decay. The XCTS equation (41) is then solved by
means of the hyperbolic relaxation method [52] provided
by BAMPS.
Similarly to Sec. IV, we evolve this initial data using

configurations (i)–(iv), where again configuration (iv) is
determined by analyzing the results of (i), in order to find a
setup using a comparable total amount of work to evolve.
As no analytic solution is known, we use the integral of the
constraint monitor Cmon, which aggregates both physical
and reduction constraint violations, as a proxy for numeri-
cal error.
We find that the constraint violation during early times is

larger by around 3 orders of magnitude when using AMR,
compared to the static “average” resolution. However, once
strong features develop in the solution, constraint violations
on the low resolution and average resolution static meshes
increase significantly. The constraint violations of the
adaptive grid, while increasing as well, stay between 5
and 9 orders of magnitude below those on the static meshes.
Figure 13 shows the total constraint violation over time,

adjusted for cumulative necessary work. Notably, the
highest-resolution static mesh shows the lowest constraint
violations after the formation of strong features, staying at a
constant level determined by finite floating-point precision.
This suggests that in 1D simulations, using a very high
resolution is still feasible, due to the much lower amount of
arithmetic involved in operations on one-dimensional grids,
avoiding the accumulation of large round-off errors that we
observe in the two-dimensional examples. After adjusting
the constraint violation for the computational workload,
the high-resolution run retains the best efficiency, as the
decreased cost of running with AMR (in this example, the
AMR configuration required less than 0.6% of the work
needed for the high-resolution run) is not sufficient to make
up for the decrease in overall accuracy.
For this example as well, we observe exponential

convergence as the polynomial order of each element is
increased (see Fig. 14), up to the point that saturation is
reached and numerical round-off errors dominate.

VI. BRILL WAVES

Finally, we consider the case of vacuum gravitational
collapse in axisymmetry. We choose initial data analogous
to those used in Ref. [21], specifically picking an off-center
prolate Brill wave which is known to be subcritical. We
evolve this data using the GHG evolution system [Eq. (36)],
this time with αγ0 ¼ γ2 ¼ 1 and using the cartoon method
[53] to suppress the angular dimension corresponding to
the symmetry.
To gauge the efficiency of the AMR, we choose a

representative simulation of an off-center Brill wave, with
initial data parameters of ρ0 ¼ 5 and A ¼ 0.06410. This
configuration is known to disperse in finite time [21].

FIG. 13. Integral of the internal constraint violation monitor,
multiplied by the cumulative workload W, during the time
evolution of a real scalar field using AMR, as compared to
the base resolution used by the AMR, a static resolution with
comparable total workload, and the highest resolution accessible
to the AMR system.

RENKHOFF, CORS, HILDITCH, and BRÜGMANN PHYS. REV. D 107, 104043 (2023)

104043-16



Figure 15 shows a snapshot of the grid structure as well as
the Kretschmann scalar during the time evolution of these
data with AMR enabled. We perform the same comparison
as in Secs. IV and V, first evolving this initial data with
AMR [configuration (i)], and then determining a configu-
ration of static grids that takes a comparable total workload
to evolve [configuration (iv)]. To evolve configuration (ii),
the per-grid resolution had to be raised from 21 × 21 to
23 × 23 points, otherwise the evolution would become
unstable after only a short time. For this comparison, it was
not feasible to also evolve configuration (iii), as this
configuration also quickly developed instabilities. This
may be caused by excessive round-off error accumulation,
similar to the results shown in Fig. 12.
We again use the constraint monitor variable Cmon as a

proxy for numerical error. In this example, too, the adaptive

mesh vastly outperforms the static configuration, showing
more than 6 orders of magnitude smaller constraint
violations. The total constraint violation adjusted by
necessary work is shown in Fig. 16, showing the higher
efficiency of AMR even as higher overall accuracy is
achieved.
To verify the convergence of the method, we evolve

identical initial data on several different per-grid resolu-
tions. To make the results comparable, the h refinement is
in each case driven by a predetermined refinement sched-
ule, generated by a reference run using 21 × 21 points per
grid. We again use the integral of the constraint monitor
Cmon as a proxy for numerical error. Figure 17 shows the

FIG. 15. Kretschmann scalar K and the grid structure generated
by AMR during the time evolution of a Brill wave, based on the
“smoothness” heuristic.

FIG. 16. Integral of the internal constraint violation monitor,
multiplied by the cumulative workload W, during the time
evolution of a Brill wave using AMR, as compared to the base
resolution used by the AMR and a static resolution with
comparable total workload.

FIG. 14. Integral of the internal constraint violation monitor
during the time evolution of a real scalar field using a fixed
h-refinement schedule, with differing static per-grid resolutions.

FIG. 17. Integral of the internal constraint violation monitor
during the time evolution of a Brill wave using a fixed
h-refinement schedule, with differing static per-grid resolutions,
as well as a dynamic resolution determined by the p-refinement
scheme.

ADAPTIVE HP REFINEMENT FOR SPECTRAL ELEMENTS IN … PHYS. REV. D 107, 104043 (2023)

104043-17



integrated constraint violations for a variety of resolutions,
showing exponential convergence of the solution.
Also in Fig. 17, we show the constraint violations for a

run with dynamic, local p refinement. For this, we use the
same fixed h-refinement schedule as for the static reso-
lutions, and additionally enable p refinement, using the
truncation error estimate, evaluated on all metric compo-
nents, as well as Cmon itself. This results in overall
constraint violations that are at times lower than the highest
static resolution of 35 × 35 points per grid, despite this also
being the highest resolution available to the AMR system.
By the end of the evolution, the constraint violations are
comparable between high-resolution static and dynamic
resolutions. However, evolving the system with p refine-
ment enabled requires only roughly 22% of the computa-
tional work required by evolving with static 35 × 35 points
per grid, demonstrating the much higher efficiency
obtained by dynamic p refinement.

VII. CONCLUSIONS

We have successfully implemented fully adaptive hp
refinement into the BAMPS code and demonstrated the
spectral convergence of simulations on the grid structures
generated by adaptive h refinement, as well as the gains
in accuracy and efficiency obtained through the use of p
refinement. Using this new system, numerical evolutions
for several physical systems show improvements in accu-
racy by several orders of magnitude when compared to
evolutions using static resolutions requiring similar
amounts of work.
In the case of two-dimensional evolutions, the adaptive

resolutions show increased numerical efficiency—that is,
less work is needed to reach a specific accuracy, even while
greater total accuracy is achieved. This does not hold true,
however, for the one-dimensional example we studied.
Here, while using an adaptive resolution is computationally
cheaper by several orders of magnitude, these savings do
not make up for the decrease in overall accuracy.
It must be noted that the proxy used to measure numerical

error, the integral of overall constraint violations, is an
imperfect indicator of overall accuracy. We also observe that
using very high resolutions is not feasible in some cases, as
the accumulated round-off errors due to large amounts of
arithmetic performed in the course of matrix multiplications
destroys the accuracy of the simulation.

We find that BAMPS shows near-perfect scaling up to
1000 CPU cores, and satisfactory scaling up to 6000 cores.
Current production runs using BAMPS in 1D and 2D do not
exceed 1000 CPU cores. While we focused here on 1D and
2D tests, the design of BAMPS is aimed at fully three-
dimensional simulations. In 3D, the ratio of overhead to
work is more favorable, in particular for scaling, which we
have confirmed in preliminary tests.
A previous version of BAMPS only supporting h refine-

ment has already been used successfully to further the study
of the critical collapse of gravitational waves [21], and the
full hp-refinement algorithm is currently being applied
in simulations of the critical collapse of real scalar fields,
as well as the time evolution of complex scalar fields. In
particular, the evolution of boson stars represents an ideal
use case of the methods presented here. These sample
applications focus on smooth fields. AMR is also a de facto
necessary feature to effectively study problems involving
general relativistic hydrodynamics (GRHD). However,
more work is necessary to fully manage emerging shocks
and other discontinuities in conjunction with AMR (see
Ref. [54] for an exploration of GRHD in BAMPS using
nonadaptive meshes). A technique that remains to be
implemented is that of local time stepping to obtain hpt
refinement, where elements of different resolutions are
advanced in time at different rates, which offers great
potential for increased efficiency. Spectral element methods
are well suited to local time stepping due to the discon-
tinuous coupling of elements. Local time-stepping schemes
generally require significant changes to the underlying time
evolution infrastructure, which are currently underway.
The technical upgrade of BAMPS will benefit most, if

not all, future projects using the code. Furthermore, the
methods developed for this purpose and the insights gained
here can serve as a case study with a wide range of
applicability.

ACKNOWLEDGMENTS

We are grateful to F. Atteneder, H. R. Rüter, and I. Suárez
Fernández for helpful discussions and for collaboration on
other aspects of BAMPS. This work was partially supported by
the FCT (Portugal) IF Program No. IF/00577/2015, Projects
No. UIDB/00099/2020 and No. PTDC/MAT-APL/30043/
2017, and in part by the Deutsche Forschungsgemeinschaft
(DFG) under Grant No. 406116891 within RTG 2522/1 and
DFG Grant BR No. 2176/7-1.

RENKHOFF, CORS, HILDITCH, and BRÜGMANN PHYS. REV. D 107, 104043 (2023)

104043-18



[1] M. J. Berger and J. Oliger, Adaptive mesh refinement for
hyperbolic partial differential equations, J. Comput. Phys.
53, 484 (1984).

[2] PAMR & RNPL Website, http://laplace.physics.ubc.ca/
Group/Software.html.

[3] M.W. Choptuik, Universality and Scaling in Gravitational
Collapse of Massless Scalar Field, Phys. Rev. Lett. 70, 9
(1993).

[4] B. Brügmann, Adaptive mesh and geodesically sliced
Schwarzschild spacetime in 3þ 1 dimensions, Phys. Rev.
D 54, 7361 (1996).

[5] B. Brügmann, Binary black hole mergers in 3D numerical
relativity, Int. J. Mod. Phys. D 08, 85 (1999).

[6] K. Clough, P. Figueras, H. Finkel, M. Kunesch, E. A. Lim,
and S. Tunyasuvunakool, GRChombo: Numerical relativity
with adaptive mesh refinement, Classical Quantum Gravity
32, 245011 (2015).

[7] T. Andrade et al., GRChombo: An adaptable numerical
relativity code for fundamental physics, J. Open Source
Softwaare 6, 3703 (2021).

[8] S. L. Liebling, The singularity threshold of the nonlinear
sigma model using 3D adaptive mesh refinement, Phys.
Rev. D 66, 041703(R) (2002).

[9] B. Brügmann, J. A. González, M. Hannam, S. Husa, U.
Sperhake, and W. Tichy, Calibration of moving puncture
simulations, Phys. Rev. D 77, 024027 (2008).

[10] Z.-j. Cao, H.-J. Yo, and J.-P. Yu, A reinvestigation of
moving punctured black holes with a new code, Phys.
Rev. D 78, 124011 (2008).

[11] Cactus Website, Cactus Computational Toolkit, http://www
.cactuscode.org.

[12] F. Löffler, J. Faber, E. Bentivegna, T. Bode, P. Diener, R.
Haas, I. Hinder, B. C. Mundim, C. D. Ott, E. Schnetter,
G. A. Allen, M. Campanelli, and P. Laguna, The Einstein
Toolkit: A community computational infrastructure for rela-
tivistic astrophysics, Classical Quantum Gravity 29, 115001
(2012).

[13] S. Shankar, P. Mösta, S. R. Brandt, R. Haas, E. Schnetter,
and Y. de Graaf, GRaM-X: A new GPU-accelerated dynami-
cal spacetime GRMHD code for Exascale computing with the
Einstein Toolkit, arXiv:2210.17509.

[14] M. Radia, U. Sperhake, A. Drew, K. Clough, P. Figueras,
E. A. Lim, J. L. Ripley, J. C. Aurrekoetxea, T. França, and T.
Helfer, Lessons for adaptive mesh refinement in numerical
relativity, Classical Quantum Gravity 39, 135006 (2022).

[15] H. O. Kreiss and G. Scherer, Finite element and finite
difference methods for hyperbolic partial differential equa-
tions, inMathematical Aspects of Finite Elements in Partial
Differential Equations, edited by C. D. Boor (Academica
Press, New York, 1974).

[16] L. E. Kidder et al., SpECTRE: A task-based discontinuous
Galerkin code for relativistic astrophysics, J. Comput. Phys.
335, 84 (2017).

[17] M. Fernando, D. Neilsen, E. W. Hirschmann, and H. Sundar,
A scalable framework for adaptive computational general
relativity on heterogeneous clusters, in Proceedings of the
ACM International Conference on Supercomputing, ICS
’19 (Association for Computing Machinery, New York, NY,
USA, 2019), p. 1–12.

[18] B. Daszuta, F. Zappa, W. Cook, D. Radice, S. Bernuzzi, and
V. Morozova, GR-ATHENA++: Puncture evolutions on
vertex-centered oct-tree adaptive mesh refinement, Astro-
phys. J. Suppl. Ser. 257, 25 (2021).

[19] W. Tichy, L. Ji, A. Adhikari, A. Rashti, and M. Pirog, The
new discontinuous Galerkin methods based numerical
relativity program Nmesh, Classical Quantum Gravity 40,
025004 (2023).

[20] B. Szilagyi, L. Lindblom, and M. A. Scheel, Simulations of
binary black hole mergers using spectral methods, Phys.
Rev. D 80, 124010 (2009).

[21] I. Suárez Fernández, S. Renkhoff, D. Cors Agulló, B.
Brügmann, and D. Hilditch, Evolution of Brill waves with
an adaptive pseudospectral method, Phys. Rev. D 106,
024036 (2022).

[22] J. P. Boyd, Chebyshev and Fourier Spectral Methods
(Second Edition, Revised) (Dover Publications, New York,
2001).

[23] D. A. Kopriva, Metric identities and the discontinuous
spectral element method on curvilinear meshes, J. Sci.
Comput. 26, 301 (2006).

[24] J. S. Hesthaven, S. Gottlieb, and D. Gottlieb, Spectral
Methods for Time-Dependent Problems (Cambridge
University Press, Cambridge, England, 2007).

[25] G. Karniadakis and S. Sherwin, Spectral/hp Element Meth-
ods for Computational Fluid Dynamics (Oxford University
Press, Oxford, 2005).

[26] J. S. Hesthaven, Numerical Methods for Conservation
Laws: From Analysis to Algorithms (SIAM, Philadelphia,
2018).

[27] R. Meinel, M. Ansorg, A. Kleinwächter, G. Neugebauer,
and D. Petroff, Relativistic Figures of Equilibrium
(Cambridge University Press, Cambridge, England, 2008).

[28] B. Brügmann, A pseudospectral matrix method for time-
dependent tensor fields on a spherical shell, J. Comput.
Phys. 235, 216 (2013).

[29] C. Ronchi, R. Iacono, and P. Paolucci, The “cubed sphere”:
A new method for the solution of partial differential
equations in spherical geometry, J. Comput. Phys. 124,
93 (1996).

[30] D. Hilditch, A. Weyhausen, and B. Brügmann, Pseudo-
spectral method for gravitational wave collapse, Phys. Rev.
D 93, 063006 (2016).

[31] J. S. Hesthaven, Spectral penalty methods, Appl. Numer.
Math. 33, 23 (2000).

[32] N.W. Taylor, L. E. Kidder, and S. A. Teukolsky, Spectral
methods for the wave equation in second-order form, Phys.
Rev. D 82, 024037 (2010).

[33] D. A. Kopriva, A spectral multidomain method for the
solution of hyperbolic systems, Appl. Numer. Math. 2,
221 (1986), special Issue in Honor of Milt Rose’s Sixtieth
Birthday.

[34] D. A. Kopriva, Computation of hyperbolic equations on
complicated domains with patched and overset Chebyshev
grids, SIAM J. Sci. Stat. Comput. 10, 120 (1989).

[35] D. A. Kopriva, S. L. Woodruff, and M. Y. Hussaini,
Computation of electromagnetic scattering with a non-
conforming discontinuous spectral element method, Int. J.
Numer. Methods Eng. 53, 105 (2002).

ADAPTIVE HP REFINEMENT FOR SPECTRAL ELEMENTS IN … PHYS. REV. D 107, 104043 (2023)

104043-19

https://doi.org/10.1016/0021-9991(84)90073-1
https://doi.org/10.1016/0021-9991(84)90073-1
http://laplace.physics.ubc.ca/Group/Software.html
http://laplace.physics.ubc.ca/Group/Software.html
http://laplace.physics.ubc.ca/Group/Software.html
http://laplace.physics.ubc.ca/Group/Software.html
http://laplace.physics.ubc.ca/Group/Software.html
http://laplace.physics.ubc.ca/Group/Software.html
https://doi.org/10.1103/PhysRevLett.70.9
https://doi.org/10.1103/PhysRevLett.70.9
https://doi.org/10.1103/PhysRevD.54.7361
https://doi.org/10.1103/PhysRevD.54.7361
https://doi.org/10.1142/S0218271899000080
https://doi.org/10.1088/0264-9381/32/24/245011
https://doi.org/10.1088/0264-9381/32/24/245011
https://doi.org/10.21105/joss.03703
https://doi.org/10.21105/joss.03703
https://doi.org/10.1103/PhysRevD.66.041703
https://doi.org/10.1103/PhysRevD.66.041703
https://doi.org/10.1103/PhysRevD.77.024027
https://doi.org/10.1103/PhysRevD.78.124011
https://doi.org/10.1103/PhysRevD.78.124011
http://www.cactuscode.org
http://www.cactuscode.org
http://www.cactuscode.org
https://doi.org/10.1088/0264-9381/29/11/115001
https://doi.org/10.1088/0264-9381/29/11/115001
https://arXiv.org/abs/2210.17509
https://doi.org/10.1088/1361-6382/ac6fa9
https://doi.org/10.1016/j.jcp.2016.12.059
https://doi.org/10.1016/j.jcp.2016.12.059
https://doi.org/10.3847/1538-4365/ac157b
https://doi.org/10.3847/1538-4365/ac157b
https://doi.org/10.1088/1361-6382/acaae7
https://doi.org/10.1088/1361-6382/acaae7
https://doi.org/10.1103/PhysRevD.80.124010
https://doi.org/10.1103/PhysRevD.80.124010
https://doi.org/10.1103/PhysRevD.106.024036
https://doi.org/10.1103/PhysRevD.106.024036
https://doi.org/10.1007/s10915-005-9070-8
https://doi.org/10.1007/s10915-005-9070-8
https://doi.org/10.1016/j.jcp.2012.11.007
https://doi.org/10.1016/j.jcp.2012.11.007
https://doi.org/10.1006/jcph.1996.0047
https://doi.org/10.1006/jcph.1996.0047
https://doi.org/10.1103/PhysRevD.93.063006
https://doi.org/10.1103/PhysRevD.93.063006
https://doi.org/10.1016/S0168-9274(99)00068-9
https://doi.org/10.1016/S0168-9274(99)00068-9
https://doi.org/10.1103/PhysRevD.82.024037
https://doi.org/10.1103/PhysRevD.82.024037
https://doi.org/10.1016/0168-9274(86)90030-9
https://doi.org/10.1016/0168-9274(86)90030-9
https://doi.org/10.1137/0910010
https://doi.org/10.1002/nme.394
https://doi.org/10.1002/nme.394


[36] A. M. Khokhlov, Fully threaded tree algorithms for adaptive
refinement fluid dynamics simulations, J. Comput. Phys.
143, 519 (1998).

[37] C. Burstedde, L. C. Wilcox, and O. Ghattas, P4EST: Scalable
algorithms for parallel adaptive mesh refinement on forests of
octrees, SIAM J. Sci. Comput. 33, 1103 (2011).

[38] B. Brügmann, W. Tichy, and N. Jansen, Numerical Simu-
lation of Orbiting Black Holes, Phys. Rev. Lett. 92, 211101
(2004).

[39] M. Thierfelder, S. Bernuzzi, and B. Brügmann, Numerical
relativity simulations of binary neutron stars, Phys. Rev. D
84, 044012 (2011).

[40] M. Griebel and G. Zumbusch, Parallel multigrid in an
adaptive PDE solver based on hashing and space-filling
curves, Parallel Comput. 25, 827 (1999).

[41] G. Zumbusch, Parallel Multilevel Methods: Adaptive Mesh
Refinement and Loadbalancing, 2nd ed. (Springer Science
& Business Media, Berlin, 2012).

[42] J.-P. Berrut and L. N. Trefethen, Barycentric Lagrange
interpolation, SIAM Rev. 46, 501 (2004).

[43] B. Szilágyi, Key elements of robustness in binary black hole
evolutions using spectral methods, Int. J. Mod. Phys. D 23,
1430014 (2014).

[44] R. Löhner, An adaptive finite element scheme for transient
problems in CFD, Comput. Methods Appl. Mech. Eng. 61,
323 (1987).

[45] G. M. Morton, A Computer Oriented Geodetic Data Base
and a New Technique in File Sequencing (International
Business Machines Company, Ottawa, 1966).

[46] M. Bader, Space-Filling Curves: An Introduction with
Applications in Scientific Computing, Vol. 9 (Springer
Science & Business Media, Berlin, 2012).

[47] I. Suárez Fernández, R. Vicente, and D. Hilditch, Semilinear
wave model for critical collapse, Phys. Rev. D 103, 044016
(2021).

[48] C. Gundlach, R. Price, and J. Pullin, Late-time behaviour of
stellar collapse and explosions: I. Linearized perturbations,
Phys. Rev. D 49, 883 (1994).

[49] R. Courant, K. O. Friedrichs, and H. Lewy, Über die
partiellen Differenzengleichungen der mathematischen
Physik, Math. Ann. 100, 32 (1928).

[50] T. W. Baumgarte and S. L. Shapiro, Numerical Relativity:
Solving Einstein’s Equations on the Computer (Cambridge
University Press, Cambridge, England, 2010).

[51] W. Tichy, The initial value problem as it relates to numerical
relativity, Rep. Prog. Phys. 80, 026901 (2017).

[52] H. R. Rüter, D. Hilditch, M. Bugner, and B. Brügmann,
Hyperbolic relaxation method for elliptic equations, Phys.
Rev. D 98, 084044 (2018).

[53] M. Alcubierre, S. R. Brandt, B. Brügmann, D. Holz,
E. Seidel, R. Takahashi, and J. Thornburg, Symmetry
without symmetry: Numerical simulation of axisymmetric
systems using Cartesian grids, Int. J. Mod. Phys. D 10, 273
(2001).

[54] M. Bugner, T. Dietrich, S. Bernuzzi, A. Weyhausen, and B.
Brügmann, Solving 3D relativistic hydrodynamical prob-
lems with WENO discontinuous Galerkin methods, Phys.
Rev. D 94, 084004 (2016).

RENKHOFF, CORS, HILDITCH, and BRÜGMANN PHYS. REV. D 107, 104043 (2023)

104043-20

https://doi.org/10.1006/jcph.1998.9998
https://doi.org/10.1006/jcph.1998.9998
https://doi.org/10.1137/100791634
https://doi.org/10.1103/PhysRevLett.92.211101
https://doi.org/10.1103/PhysRevLett.92.211101
https://doi.org/10.1103/PhysRevD.84.044012
https://doi.org/10.1103/PhysRevD.84.044012
https://doi.org/10.1016/S0167-8191(99)00020-4
https://doi.org/10.1137/S0036144502417715
https://doi.org/10.1142/S0218271814300146
https://doi.org/10.1142/S0218271814300146
https://doi.org/10.1016/0045-7825(87)90098-3
https://doi.org/10.1016/0045-7825(87)90098-3
https://doi.org/10.1103/PhysRevD.103.044016
https://doi.org/10.1103/PhysRevD.103.044016
https://doi.org/10.1103/PhysRevD.49.883
https://doi.org/10.1007/BF01448839
https://doi.org/10.1088/1361-6633/80/2/026901
https://doi.org/10.1103/PhysRevD.98.084044
https://doi.org/10.1103/PhysRevD.98.084044
https://doi.org/10.1142/S0218271801000834
https://doi.org/10.1142/S0218271801000834
https://doi.org/10.1103/PhysRevD.94.084004
https://doi.org/10.1103/PhysRevD.94.084004

