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We study the axial anomaly of Dirac spinors on gravitational instanton backgrounds in the context of
nonlinear electrodynamics. In order to do so, we consider Einstein gravity minimally coupled to a recently
proposed conformal electrodynamics that enjoys duality transformation invariance. These symmetries
allow us to generalize the Eguchi-Hanson configuration while preserving its geometry. We then compute
the Dirac index of the nonlinearly charged Eguchi-Hanson and Taub-NUT configurations. We find that
there is an excess of positive chiral Dirac fermions over the negative ones which triggers the anomaly.
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I. INTRODUCTION

The axial anomaly is a remarkable phenomenon that
occurs when the axial symmetry of a classical system is
broken due to quantum effects, providing one of the most
interesting examples where the nontrivial topology of fiber
bundles has direct and measurable consequences in phys-
ics. It has been observed through the anomalous decay
π0 → γγ in the standard model, which would have been
otherwise forbidden at the classical level since a two-
photon state does not couple to an axial current [1–6]. On
the other hand, in condensed matter systems, the axial
anomaly is a universal phenomenon that appears in three-
dimensional metals in presence of electric and magnetic
fields, producing a longitudinal magnetoresistance which is
absent in the classical theory of magnetotransport [7].
Additionally, it has been shown that the topological trans-
port and the chiral magnetic effect can be understood in
terms of the axial anomaly in Weyl semimetals [8]. Indeed,
the latter has been detected in zirconium pentatelluride [9]
and particle colliders have presented experimental evidence
in favor of their existence by analyzing the quark-gluon

plasma [10,11]. In topological insulators [12–16], the
effective field theory describing the electromagnetic
responses are governed by the axial anomaly [17]. These
materials have exotic properties such as spin-momentum
locking [18], the presence of Majorana states in the
superconducting phase [19], and the quantum spin hall
effect [15]; crucial features for spintronic devices and
dissipationless transistors in quantum computing.
The origin of the axial anomaly can be traced back to the

imbalance of the number of spinors with different chirality,
produced by their interaction with gauge fields possessing
nontrivial topology; this usually happens in presence of
instantons [20,21]. For instance, the Atiyah-Patodi-Singer
theorem [22,23] provides a deep connection between two
topological indices of differential operators acting on
spinors, giving a concrete prescription to know if the
background fields would break the axial symmetry. This
fact led Fujikawa to conclude that the axial anomaly is a
nonperturbative effect that arises from the nontrivial trans-
formation of the fermionic measure in the path-integral
formulation of gauge theories [24,25].
Charap and Duff noticed that when gauge theories are

coupled to gravity, the topology of the matter content may
be dictated by the background [26]. Moreover, different
instantons exist on spacetimes with inequivalent topol-
ogies. In particular, there are solutions of the Yang-Mills
equations which cannot exist in flat space or would
otherwise be singular [27]. These conclusions were reached
by analyzing (anti-)self-dual fields on Euclidean space. In
such a scenario, the energy-momentum tensor vanishes by
virtue of the matter’s conformal symmetry in addition to
(anti-)self duality. Their lack of backreaction on these
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backgrounds renders their gravitational effect quite subtle.
Some physical aspects that involve nontrivial gravitational
and matter fields are even less obvious, such is the case of
the axial anomaly as showcased by Pope in Refs. [28,29].
In this paper, we study the axial anomaly in electro-

magnetism beyond Maxwell’s theory. On the one hand, it is
well-known that the effective theory of quantum electro-
dynamics induces nonlinear effects when the fermionic
degrees of freedom are integrated out, capturing quantum
effects at one-loop level produced by virtual fermions [30].
On the other hand, nonlinear constitutive relations have
also been constructed to render the self-energy of charged
point particles finite [31–33]. Moreover, when coupled to
gravity, nonlinear electrodynamics has been considered an
interesting framework to study black holes [34–45], con-
served charges [46], holographic superconductors [47,48]
and black strings [49], among others [50–54]. A standard
reference is Plebański’s work [55], while a recent review is
given in Ref. [56].
Given that the nature of the axial anomaly has proved to be

fine-drawn, in this work, we opt to carry out our exploration
on (anti-)self-dual fields for a conformal nonlinear electro-
dynamics which, by definition, satisfy the electrodynamic
equations of motion automatically. However, a duality
transformation does not necessarily leave the constitutive
relation of the theory invariant. There are, however, ways to
test if a given theory is invariant under duality rotations, see
for example Refs. [57,58]. As it turns out, if one imposes
duality rotation invariance on arbitrary nonlinear electrody-
namics it can be concluded that there are infinitely many of
them, as many as real functions of a single variable [59,60].
Among this class of theories is the recently proposed one-
parameter family of Lagrangians dubbedModMax [61]. This
constitutes the only nonlinear extension of Maxwell’s
equations that is invariant under both duality and conformal
transformations. The only other theory known to possess
such symmetries is the strictly non-linear Białynicki-Birula
electrodynamics whose Lagrangian vanishes as a conse-
quence of its constraints; for further details see Ref. [62]. Not
only is that theory conformal and invariant under duality
rotations but also under a larger SLð2;RÞ duality trans-
formation group.
Very recently, explicit Lagrangians for all duality-sym-

metric nonlinear electrodynamics were derived in Ref. [63]
using a democratic formulation where duality invariance is
manifest. This approach has been further discussed in
Ref. [64]. We mention that these works were built on
the democratic formulation of the free Maxwell theory
established in Ref. [65]; for earlier work on the subject see
Ref. [66]. Outside of this setting, ModMax has been studied
in the context of black holes, birefringence, supersym-
metry, gravitational instantons, wormholes and the ’t Hooft
anomaly, among other applications [67–73].
In thiswork,we show that gravitational instantons coupled

to (anti-)self-dual fields in nonlinear electrodynamics trigger

the axial anomaly of charged Dirac spinors. This represents
the first concrete example of the axial anomaly in ModMax
theory. To this end, we study the field equations of the
Einstein-ModMax system when the background has an
underlying nontrivial circle fibration over a Kähler manifold.
Such is the case of the Taub-NUT and Eguchi-Hanson
spaces. We begin reviewing the former case as it has already
been discussed in the literature [72,73].We then formulate an
ansatz of Eguchi-Hanson type and find a new self-gravitating
ModMax configuration. Both the electromagnetic and gravi-
tational curvatures satisfy (non-linear) self-duality relations.
The difference between positive and negative chiral charged
fermions is computed through the Atiyah-Patodi-Singer
theorem taking into account the boundary contribution.
Particular attention is paid to the computation of the
ηD-invariant that measures the difference between positive
and negative eigenvalues of the Dirac operator evaluated on
the tangential components of the boundary. We find that the
nonlinearly charged Eguchi-Hanson and Taub-NUT instan-
tons induce an imbalance between Dirac spinors of different
chirality, triggering the anomaly. We comment on possible
applications regarding other types of anomalies.
The article is organized as follows: in Sec. II, we briefly

review the nonlinear electrodynamics that we shall couple
to Einstein gravity. The Einstein-ModMax system consti-
tute our main theoretical setup. Then, in Sec. III, we study
gravitational instantons as configurations that solve these
equations. We analyze their properties paying close atten-
tion to (anti-)self-duality. Section IV is devoted to comput-
ing the index of the Dirac operator in presence of nonlinear
electromagnetic fields. Final comments and discussions are
given in Sec. V.

II. NONLINEAR ELECTRODYNAMICS

Departing from the superposition principle of electro-
magnetic fields leads to a generalization of the source-free
Maxwell’s equations given by

∇μPμν ¼ 0 and ∇μF̃μν ¼ 0; ð1Þ

where Pμν ¼ PμνðFαβÞ has a nonlinear dependence on the
Maxwell’s field strength and F̃μν ¼ 1

2
εμνλρFλρ. The non-

linear electrodynamics dubbed ModMax is the unique
nonlinear extension of Maxwell theory that preserves both
conformal symmetry and SOð2Þ duality invariance [61].
Originally the theory was formulated in a Legendre dual
formulation and its Lagrangian was derived afterwards,
However, a straightforward derivation has been given in
Ref. [74]. An additional symmetry of ModMax theory is
that it is Legendre self-dual [67], similar to Born-Infeld
theory [75]. In this sense, both electrodynamics are some-
what similar, however, the Born-Infeld case is among the
few theories where birefringence is absent [76]. Indeed,
the ModMax electrodynamics exhibits birefringence of
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electromagnetic waves when the field equations are lin-
earized around nonvacuum configurations of constant
electromagnetic fields [61]. Nevertheless, the theory is
continuously connected to Maxwell electrodynamics in the
linear limit.
It should be kept in mind that further below we use

ModMax theory as the matter source of the Einstein
equations. Thus, we find it convenient to formulate it
using the following action principle

IM ¼ −
Z
M

d4x
ffiffiffiffiffi
jgj

p
LM; ð2Þ

where g ¼ det gμν is the determinant of the metric and the
Lagrangian is given by

LM ¼ X cosh γ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − Y2

p
sinh γ: ð3Þ

Here, X ¼ 1
4
FμνFμν and Y ¼ 1

4
F̃μνFμν are the two standard

independent Euclidean invariants that can be constructed
with the field strength and its dual.1 Notice that X has even
parity, while, Y is odd. Thus, ModMax theory is a parity
preserving nonlinear extension of Maxwell’s; yet another
similarity with the Born-Infeld case. Additionally, the
parameter γ measures the degree of nonlinearity of the
electromagnetic fields. When γ ¼ 0 the theory becomes
the standard linear Maxwell electrodynamics. Notice that
the parameter is dimensionless, as required by conformal
symmetry. In the Lorentzian formulation, causality con-
straints impose that γ ≥ 0 [61].
As usual, the Bianchi identity allows for the gauge

potential A ¼ Aμdxμ to be defined by Fμν ¼ ∂μAν − ∂νAμ.
Moreover, by performing arbitrary variations of the action
(2) with respect to Aμ, yields Eq. (1) with the constitutive
relation

Pμν ¼
�
cosh γ −

X sinh γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − Y2

p
�
Fμν þ

Y sinh γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − Y2

p F̃μν: ð4Þ

A straightforward calculation shows that the latter satisfies
F̃μνFμν ¼ P̃μνPμν, a sufficient condition for it to be
invariance under duality rotations as shown in Ref. [60].
The stress-energy tensor, on the other hand, is defined as
the variation of the ModMax action with respect to the
metric; in particular, using the definitions in Eqs. (3) and
(4), it gives

Tμν ¼ PðμλFνÞλ − gμνLM: ð5Þ

Notice that the latter reduces to the standard Maxwell
stress-energy tensor in the limit γ → 0. Since the theory is

conformal, the trace of Eq. (5) vanishes. Whenever this
condition is broken at the quantum level it is known as the
trace anomaly [77–79].
To couple the theory with the Einstein-Hilbert action, we

consider

I½gμν; Aμ� ¼ κ

Z
M

d4x
ffiffiffiffiffi
jgj

p
ðR − 2ΛÞ þ IM; ð6Þ

where κ ¼ ð16πGÞ−1 with G being Newton’s constant, Λ is
the cosmological constant and R ¼ gμνRλ

μλν is the Ricci
scalar. In this case, the field equations for the metric are

Rμν −
1

2
gμνRþ Λgμν ¼

1

2κ
Tμν: ð7Þ

Taking the trace on the latter and using the fact that Tμ
μ ¼ 0

one obtains R ¼ 4Λ. Therefore, all solutions to the field
equations of Einstein-ModMax theory have constant Ricci
scalar and Eq. (7) reduces to Rμν ¼ Λgμν þ 8πGTμν. Thus,
the system of second-order non-linear partial differential
equations given by (1) and (7) determines the dynamics of
the theory.

III. (ANTI-)SELF-DUAL INSTANTONS

Central to our calculation of the Dirac index are systems
with non-trivial Pontryagin invariants. Indeed, whenever
the electric and magnetic components of the Weyl tensor
are orthogonal, the Pontryagin density vanishes. Thus
backgrounds with (anti-)self-dual curvature are of particu-
lar interest to us. In this section, we study nonlinearly
charged self-gravitating systems with a nonvanishing
Pontryagin term. These configurations solve Einstein’s
field equations (7) and are described geometrically as
inhomogeneous metrics on complex line bundles over
Kähler manifolds [80]. The gauge potential is aligned
along the fiber which allows the eletromagnetic fields to
simultaneously satisfy the ModMax constitutive relation
(4) and field equations (1).
In particular, we focus on metrics of the Taub-NUT

[81,82] and Eguchi-Hanson [83,84] class. These Euclidean
spaces are known as gravitational instantons [83–91] due to
their close resemblance with Yang-Mills pseudoparticle
configurations.

A. Taub-NUT

The Lorentzian Taub-NUT spacetime is a one-parameter
generalization of the Schwarzschild black hole that is
usually interpreted as a gravitational dyon, in the sense
that it is endowed with an electric and magnetic mass; see
for instance Refs. [92,93]. They source the electric and
magnetic components of the Weyl tensor, respectively. In
Euclidean signature, metrics of this type are described by

1In the Lorentzian version of the theory one should change
Y2 → −Y2 in Eq. (2) and variations thereof.
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ds2 ¼ fðrÞðdψ þ 2nBðkÞÞ2 þ
dr2

fðrÞ þ ðr2 − n2ÞdΣ2
ðkÞ; ð8Þ

where fðrÞ is determined from the field equations. Here,
BðkÞ is the Kähler potential 1-form that defines the
Hermitian symplectic exact form ΩðkÞ ¼ dBðkÞ associated
to the Einstein-Kähler base manifold of constant curvature
dΣ2

ðkÞ. For k ¼ 1; 0;−1, the base manifold is topologically

S2, T2, and H2, respectively, and their Kähler potential and
line element can be parametrized as shown in Table I.
The first chargedmetric in the Taub-NUT class was found

by Brill in Ref. [94]. More recently, higher-dimensional
versions have been constructed in Ref. [95]. In these
configurations, the Maxwell field is assumed to be propor-
tional to their associated Kähler potential 1-form, namely,

A ¼ Aμdxμ ¼ αðrÞðdψ þ 2nBðkÞÞ: ð9Þ

From hereon, we shall assume the same structure for the
metric and Maxwell fields as those given in Eqs. (8) and (9),
respectively.
Inserting these ansätze into the field equations (1)

and (7), the linearly independent ordinary differential
equations are

0 ¼ α00 þ 2rα0

ðr2 − n2Þ −
4n2e−2γα
ðr2 − n2Þ2 ; ð10Þ

0 ¼ 4κ

�
rf0 þ

�
r2 þ n2

r2 − n2

�
f þ Λðr2 − n2Þ − k

�

− ðr2 − n2Þeγα02 þ 4n2e−γα2

ðr2 − n2Þ ; ð11Þ

respectively, where α ¼ αðrÞ and f ¼ fðrÞ, with prime
denoting differentiation with respect to the radial coordi-
nate. The system is solved by integrating first Eq. (10) and
then replacing its solution into Eq. (11) to solve for the
metric function; this yields

fðrÞ ¼ k

�
r2 þ n2

r2 − n2

�
−

2mGr
r2 − n2

−
e−γ

4κ

�
q2 − p2

r2 − n2

�

−
Λ
3

�
r4 − 6n2r2 − 3n4

r2 − n2

�
; ð12aÞ

αðrÞ ¼ 1

2n
½q sinhΦðrÞ þ p coshΦðrÞ�; ð12bÞ

where m, q, and p are integration constants and we have
defined

ΦðrÞ ¼ e−γ ln
�
r − n
rþ n

�
: ð13Þ

This solution was first found in Refs. [72,73] and it is
generically endowed with a conical defect wherever the
metric function f vanishes. Moreover, when k ¼ 1 an
additional defect is present at ϑ ¼ 0 and ϑ ¼ π known as
a Misner string [96]. In Lorentzian signature, the latter may
lead to closed timelike curves. Due to this, it has been
extensively studied in Euclidean signature; where it bears a
close resemblance with Yang-Mills instantons. Remarkably,
it has been established that the presence of the Misner string
contributes to the entropy in a nontrivial way [97–102]. The
reason for this is that it represents an obstruction to the
foliation of the space with a scalar function that represents
the Hamiltonian evolution of the system [103]. Nevertheless,
recently the Lorentzian case has attracted a lot of interest
since it has been shown that the Misner string is transparent
for geodesic observers [104]. This, in turn, has lead to a new
thermodynamic treatment of the spacetime, where the nut
charge behaves as a genuine thermodynamic variablewith its
respective conjugated pair, enlarging the phase space of the
system [105–109].
Let us focus on the case when k ¼ 1. First, notice that by

performing the coordinate transformation ψ → ψ
2n, the line

element (8) can be written as

ds2 ¼ dr2

fðrÞ þ ðr2 − n2Þ
�
σ21 þ σ22 þ

4n2fðrÞσ23
ðr2 − n2Þ

�
; ð14Þ

where σi are the left-invariant Maurer-Cartan one-forms of
SUð2Þ satisfying dσi þ 1

2
ϵijkσj ∧ σk ¼ 0. Using the basis

of Euler angles with 0 ≤ ϑ ≤ π, 0 ≤ φ ≤ 2π and
0 ≤ ψ ≤ βψ , they can be explicitly represented as

σ1 ¼ cosψdϑþ sinϑ sinψdφ; ð15aÞ

σ2 ¼ − sinψdϑþ sin ϑ cosψdφ; ð15bÞ

σ3 ¼ dψ þ cosϑdφ: ð15cÞ

In presence of a negative cosmological constant, say
Λ ¼ − 3

l2, we find that, if the conditions

p ¼ �q and mG ¼ 1 −
4n2

l2
; ð16Þ

are met, the metric (14) possesses an (anti-)self-dual Weyl
tensor, i.e.,Wμνλρ ¼ �W̃μνλρ, and the Killing vector field ∂ψ

TABLE I. Line element of the transverse sections and Kähler
potential 1-form for S2, T2, and H2 topologies, respectively.

k ¼ 1 k ¼ 0 k ¼ −1

BðkÞ cos ϑdφ ϑdφ cosh ϑdφ
dΣ2

ðkÞ dϑ2 þ sin2ϑdφ2 dϑ2 þ dφ2 dϑ2 þ sinh2ϑdφ2

FRANCISCO COLIPÍ-MARCHANT et al. PHYS. REV. D 107, 104042 (2023)

104042-4



acquires a zero-dimensional set of fixed points at r ¼ n.
Then, the solution becomes

fnutðrÞ ¼
r − n
rþ n

þ ðr − nÞ2ðrþ 3nÞ
l2ðrþ nÞ ; ð17Þ

αnutðrÞ ¼
q
2n

�
r − n
rþ n

�
e−γ

: ð18Þ

This is the (anti-)self-dual Taub-NUT-AdS space coupled to
a ModMax field. Notice that the latter does not backreact
on the metric since Tμν vanishes identically, even though
the field strength is nontrivial. This is a unique feature of
conformal theories whenever the fields are (anti-)self dual.
In nonlinear electrodynamics, the latter condition is
described by

Fμν ¼ �P̃μν: ð19Þ

In this case, the range of coordinates is n ≤ r < ∞, 0 ≤
ϑ ≤ π and 0 ≤ φ ≤ 2π. The absence of conical singular-
ities, in turn, implies that 0 ≤ ψ ≤ 4π. Then, this metric is
topologically equivalent to R4 near the zero-dimensional
set of fixed points. Additionally, in the limit γ → 0, one
recovers the charged Euclidean (anti-)self-dual Taub-NUT
solution of Ref. [94]. Moreover, the ModMax field is
asymptotically Maxwell, e.g., αðrÞ → q=ð2nÞ as r → ∞.
Thus, although the nonlinearly charged ModMax Taub-
NUT solution is locally inequivalent to the Einstein-
Maxwell one, they have the same asymptotic behavior.
Another instanton within the same class as discussed

above is the one called Taub-Bolt. It is obtained when the
Killing vector field ∂ψ has a two-dimensional set of fixed
points at r ¼ rb, with rb > n, defined as the largest root of
the polynomial fðrbÞ ¼ 0. Such set of fixed points are
known as bolts, in contrast to the zero-dimensional variety
which are called nuts. The ModMax case has been studied
in detail before but not its contribution to the axial anomaly.
Here, however, we shall focus on the globally (anti-)self-
dual Taub-NUT solution presented in Eq. (17) for the sake
of simplicity. Notwithstanding, outside of the Taub-NUT
class there is another configuration with a bolt that interests
us and we devote the following section to it.

B. Eguchi-Hanson

Having reviewed a known nonlinearly charged gravita-
tional instanton, we are now in a better position to present a
new one. Our objective in this section is to generalize the
Eguchi-Hanson solution to the Einstein-Maxwell equations
found in Ref. [84]. That configuration is strictly Euclidean,
that is, it has no Lorentzian analog. Its underlying topology
is that of the sphere’s tangent bundle and so its asymptotic
boundary is a lens space. Geometrically, the background is

described by a Uð1Þ fibration over a 2-dimensional Kähler
manifold. Thus, we consider an Eguchi-Hanson type line
element given by

ds2 ¼ r2fðrÞ
4

ðdψ þ BðkÞÞ2 þ
dr2

fðrÞ þ
r2

4
dΣ2

ðkÞ; ð20Þ

where BðkÞ and dΣ2
ðkÞ are defined in Table I. Once more, it is

fruitful to assume that the gauge field is proportional to the
Kähler one-form potential, namely,

A≡ Aμdxμ ¼ αðrÞðdψ þ BðkÞÞ: ð21Þ

The linearly independent differential equations obtained
from the ModMax and Einstein field equations are

0 ¼ α00 þ α0

r
−
4αe−2γ

r2
; ð22Þ

0 ¼ κ½rf0 þ 4ðf − kÞ þ Λr2� − α02eγ þ 4α2e−γ

r2
; ð23Þ

respectively. The solution of this system is obtained
following a similar prescription as in the Taub-NUT case,
giving

fðrÞ ¼ k −
a4

r4
−
8pqe−γ

κr2
−
Λr2

6
; ð24aÞ

αðrÞ ¼ qr−2e
−γ þ pr2e

−γ
; ð24bÞ

with a, p, and q being integration constants. This solution
has a bolt at the largest root of the polynomial fðrbÞ ¼ 0,
subject to the condition rb ∈ R>0.
Similar to the Taub-NUT case, when k ¼ 1, the metric

(20) can be written in terms of the left-invariant Maurer-
Cartan forms of SUð2Þ [cf. Eq. (15)]

ds2 ¼ dr2

fðrÞ þ
r2

4
ðσ21 þ σ22 þ fðrÞσ23Þ: ð25Þ

Notice that the hypersurfaces of constant radial coordinate
are conformally equivalent to the Berger’s sphere.
Although this solution has a bolt, the Weyl tensor of this
space is globally (anti-)self dual only if Λ ¼ 0 for arbitrary
values of p and q. This is different from the Taub-Bolt
solution with ModMax electrodynamics, which is asymp-
totically (anti-)self dual even in presence of a nonvanishing
cosmological constant [73]. Nevertheless, the gauge field is
(anti-)self dual in the sense of Eq. (19) if and only if p ¼ 0.
Thus, we shall focus on the case p ¼ Λ ¼ 0 in Eq. (24)
from hereon, where the bolt radius becomes rb ¼ a. In that
case, the range of coordinates is a ≤ r < ∞, 0 ≤ ϑ ≤ π,
and 0 ≤ φ ≤ 2π. On the other hand, the absence of conical
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singularities at the bolt implies that 0 ≤ ψ ≤ 2π. Therefore,
the degenerate hypersurface r ¼ a is topologically
S3=Z2 ¼ RP3, while the asymptotic behavior is R4=Z2

being asymptotically locally Euclidean.
Before closing this section, let us recall that the Eguchi-

Hanson space has been used to solve orbifold singularities of
Calabi-Yau spaces in string theory [110]. It has also been
used as a seed metric to study gravitational solitons pos-
sessing nontrivial topology on the hypersurfaces of constant
time [111–116]. Additionally, higher-curvature corrections
to the Eguchi-Hanson metric have been studied in
Refs. [117,118] and the backreaction of conformally coupled
scalar fields was considered in Ref. [119]. Thus, future
applications of the present configuration are plausible.
In the next section, we study how the nonlinearly

charged gravitational instantons presented here contribute
to the axial anomaly of Dirac spinors. We compute the
Dirac index explicitly, taking care of the boundary
contributions.

IV. INDEX THEOREM AND AXIAL ANOMALY

The Atiyah-Singer index theorem for the Dirac operator
D≡ γaEμ

aDμ relates the number of positive and negative
chiral spinors labeled by N� with topological invariants of
the Pontryagin class [22].2 If the index of the Dirac operator
is different from zero, one concludes that the nontrivial
topology of the gauge connection induces a difference
between the number chiral spinors. The aim of this section
is to see whether the gravitational instantons studied in
Sec. III induce the axial anomaly or not.
For noncompact manifolds, the Atiyah-Singer theorem is

modified by boundary integrals of the Chern-Simons form
and nonlocal terms related to the spectrum of the Dirac
operator [23]. Moreover, if the spinors are charged under
some gauge group, the index theorem receives additional
contributions coming from their second Pontryagin class.
For example, in four dimensions, the index theorem of
the Dirac operator coupled to Uð1Þ gauge fields, i.e.,
D ¼ γcEμ

cð∂μ þ 1
4
ωab

μγab þ iAμÞ, yields [91,120]

Nþ − N− ¼ −
1

24

�
1

32π2

Z
M

d4x
ffiffiffiffiffi
jgj

p
εμνλρR

λρ
στRστμν −

1

4π2

Z
∂M

d3x
ffiffiffiffiffiffi
jhj

p
nμεμνλρKσν∇λKρ

σ

�

þ 1

32π2

Z
M

d4x
ffiffiffiffiffi
jgj

p
εμνλρFμνFλρ −

1

2
½ηDð∂MÞ þ hDð∂MÞ�; ð26Þ

where ωab ¼ ωab
μdxμ is the spin connection 1-form, γab ≡

γ½aγb� are the generators of the Lorentz group in the
spinorial representation, hμν ¼ gμν − nμnν is the induced
metric at the boundary ∂M with spacelike unit normal
nμ and we have defined the extrinsic curvature as
Kμν ¼ hλμh

ρ
ν∇λnρ. Here, ηDð∂MÞ is the Atiyah-Patodi-

Singer invariant that measures the difference between
positive and negative eigenvalues of the Dirac operator
on ∂M while hDð∂MÞ captures the zero eigenvalues
thereof [23]. The former has been recently interpreted as
the axial charge of physical states [121] and it can be
obtained by performing the analytic continuation of the
meromorphic function ηDðsÞ to s ¼ 0, namely ηDð∂MÞ ¼
ηDðsÞjs¼0, where

ηDðsÞ ¼
X
λ≠0

signðλÞjλj−s; ð27Þ

with λ being the eigenvalues of the Dirac operator D
evaluated on the tangential components of ∂M. The
integral representation of Eq. (27) is given by

ηDðsÞ ¼
1

Γðsþ1
2
Þ
Z

∞

0

dx x
s−1
2 trðDe−xD

2Þ: ð28Þ

Then, if IndexðDÞ ¼ 0, there is no axial anomaly what-
soever. This is the case, for instance, of Dirac fermions on

the (anti-)self-dual Taub-NUT background of general
relativity [122]. Nevertheless, it was shown by Pope that
this is no longer true in presence of (anti-)self-dual
Maxwell fields [28,29]. This implies that the axial sym-
metry is broken at the quantum level for charged Dirac
spinors on the (anti-)self-dual Taub-NUT space. We will
see here that this is the case in presence of nonlinear
electrodynamics as well.
Equivalently, the Atiyah-Patodi-Singer ηD-invariant can

be computed geometrically through the Hitchin formula
[123]. This can be done by writing the induced boundary
metric on a hypersurface of constant radial coordinate, say
r ¼ r0, conformally as the Berger’s sphere, namely,

ds2 ¼ Ωðr0Þ½σ21 þ σ22 þ μ2ðr0Þσ23�; ð29Þ

where Ωðr0Þ and μðr0Þ are positive definite functions of r0.
It is worth mentioning that ηDðsÞ is invariant under a
constant rescaling of the eigenvalues λ, as it can be seen
explicitly from its definition in Eq. (27). Since the Dirac
operator scales uniformly under conformal transformations
of the boundary metric (29), one can set Ωðr0Þ ¼ 1 without
loss of generality [124]. Then, in vacuum, the Hitchin’s

2Here, we denote by Eμ
a the inverse vierbein of eaμ which itself

is defined through gμν ¼ eaμebνδab, and it satisfies eaμE
μ
b ¼ δab and

eaμEν
a ¼ δνμ.
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formula establishes that the ηD-invariant can be computed
from the boundary metric (29) through [123]

ηDð∂MÞ þ hDð∂MÞ ¼ 1

6
ð1 − μ20Þ2; ð30Þ

where μ0 ¼ μðr0Þ. This provides a convenient prescription
to obtain the axial anomaly of Dirac spinors from a
geometrical viewpoint.
To compute the ηD-invariant in presence of ModMax

fields, we consider the induced boundary metric (29) over a
hypersurface of constant radius. Since the Dirac operator is
invariant under a constant rescaling of the eigenvalues,
without loss of generality we can choose a dreibein basis
1-form ea ¼ eaμdxμ as

e1 ¼ σ1; e2 ¼ σ2; e3 ¼ μ0σ3: ð31Þ
The dual vector basis Ea ¼ Eμ

a∂μ can be computed from the
orthogonality condition with the dreibein one-forms, that
is, hea; Ebi ¼ δab. Then, we obtain

E1 ¼ Σ1; E2 ¼ Σ2; E3 ¼ μ−10 Σ3; ð32Þ

where Σi ¼ Σμ
i ∂μ with i ¼ 1, 2, 3 are the dual vector basis

to the left-invariant Maurer-Cartan one-forms of SUð2Þ
(15); that is,

Σ1 ¼ − cotϑ sinψ∂ψ þ cosψ∂ϑ þ
sinψ
sinϑ

∂φ; ð33aÞ

Σ2 ¼ − cotϑ cosψ∂ψ − sinψ∂ϑ þ
cosψ
sin ϑ

∂φ; ð33bÞ

Σ3 ¼ ∂ψ : ð33cÞ

On the other hand, the nontrivial components of the spin
connection can be obtained by solving the torsion-free
condition dea þ ωa

b ∧ eb ¼ 0, giving

ω12 ¼
�
μ20 − 2

2μ0

�
e3; ω13 ¼ μ0e2

2
; ω23 ¼ −

μ0e1

2
:

ð34Þ
For the Dirac matrices, we choose the representation in a
co-dimension 1 hypersurface of constant radius as

γ1¼
�
0 1

1 0

�
; γ2 ¼

�
0 −i
i 0

�
; γ3 ¼

�
1 0

0 −1

�
: ð35Þ

Additionally, we denote the Uð1Þ connection 1-form evalu-
ated at r ¼ r0 by A ¼ bðr0Þσ3 ≡ b0σ3.

3 Then, defining the

self-adjoint operator Ki ¼ iΣi and the ladder operator
K� ¼ K1 � iK2, one can show that they satisfy the Lie
algebra of angular momentum, i.e. ½Ki; Kj� ¼ iϵijkKk,
½K3; K�� ¼ �K�, and ½Kþ; K−� ¼ K3. Hence, the Dirac
operator acting on a two-component Dirac spinor expressed
in matrix notation can be written as

DΨ ¼
�
μ−10 ðK3 þ b0Þ K−

Kþ −μ−10 ðK3 þ b0Þ

��Ψ1

Ψ2

�

þ ðμ20 þ 2Þ
4μ0

�Ψ1

Ψ2

�
¼ 0: ð36Þ

In order to compute the spectrum of the Dirac operator,
we follow Ref. [29] and denote jsi≡ sYlmðϑ;φÞ, where
sYlmðϑ;φÞ stands for the spin-s spherical harmonics [125].
Then, the self-adjoint operator acting on the state jsi gives

K�jsi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl ∓ sÞðl� sþ 1Þ

p
js� 1i; ð37Þ

K3jsi ¼ sjsi; ð38Þ

for jsj ≤ l and jmj ≤ l. The eigenvectors of D can be
written as Ψ1 ¼ c1jsi and Ψ2 ¼ c2jsþ 1i, where c1 and c2
are constants. Thus, for −l ≤ s ≤ l − 1, the eigenvalues λ of
the Dirac operator D are [29]

λ ¼ μ0
2
� μ−10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2sþ 1þ 2b0Þ2 þ 4μ20ðl − sÞðlþ sþ 1Þ

q
;

ð39Þ

where, for each value of s, these eigenvalues have a
degeneracy of d ¼ 2lþ 1. Notice that there are two special
cases: (i) if s ¼ l, or (ii) if s ¼ −ðlþ 1Þ where c2 and c1
vanish, respectively. Then, their eigenvalues become

ðiÞ λ ¼ μ0
2
� μ−10 j2lþ 1þ 2b0j; ð40aÞ

ðiiÞ λ ¼ μ0
2
� μ−10 j2lþ 1 − 2b0j: ð40bÞ

We are interested in evaluating the ηD-invariant at the
asymptotic boundary, that is, as r0 → ∞. For the sake of
simplicity, from hereon we focus on the case with vanishing
cosmological constant or, equivalently, l → ∞. Then, for
the (anti-)self-dual Taub-NUT (TN) and Eguchi-Hanson
(EH) spaces, we have

TN∶ lim
r0→∞

μðr0Þ ¼ 0 ∧ lim
r0→∞

bðr0Þ ¼ q; ð41Þ

EH∶ lim
r0→∞

μðr0Þ ¼ 1 ∧ lim
r0→∞

bðr0Þ ¼ 0; ð42Þ

respectively. Notice that the ModMax field approaches
to its Maxwellian counterpart in the charged Euclidean

3In the Taub-NUT case, this definition implies that bðrÞ ¼
2nαðrÞ provided the coordinate transformation ψ → ψ

2n, while for
Eguchi-Hanson we have bðrÞ ¼ αðrÞ.
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Taub-NUT metric, as mentioned in Sec. III. On the other
hand, in the case of the Eguchi-Hanson instanton, the
ModMax field decays sufficiently fast toward the asymp-
totic boundary. Therefore, the ηD-invariant of the latter
coincides with the one computed in Ref. [84], giving

ηðEHÞD ð∂MÞ þ hðEHÞD ð∂MÞ ¼ 1

4
: ð43Þ

Although the boundary contributions to the Dirac index in
Eq. (26) vanishes for the charged Eguchi-Hanson solution
of Sec. III B, the bulk part gives

1

32π2

Z
M

d4x
ffiffiffiffiffi
jgj

p
εμνλρR

λρ
στRστμν ¼ −3 ð44Þ

1

32π2

Z
M

d4x
ffiffiffiffiffi
jgj

p
εμνλρFμνFλρ ¼ −

q2

a4e
−γ : ð45Þ

In this case, the topology of the bolt introduces a screening
factor on the topological charge (45) that can be controlled
with the nonlinear parameter γ. Indeed, in the limit γ → ∞,
the latter becomes equal to −q2. This point in the parameter
space is of particular interest as, in the manifest duality-
symmetric formulation of Ref. [63], the ModMax and
Białynicki-Birula electrodynamics are part of the same one-
parameter family. Moreover, that reformulation suggests
that the Białynicki-Birula electrodynamics roughly corre-
sponds to the ModMax limiting case γ → ∞.
In summary, for a finite γ, we find that the Dirac index

for the charged Eguchi-Hanson solution of Einstein-
Modmax theory is

Nþ − N− ¼ −
q2

a4e
−γ ; ð46Þ

which is nonvanishing for q ≠ 0 with γ ∈ R. Thus, we
conclude that this particular instantonic configuration does
contribute to the axial anomaly.
The computation of the ηD-invariant in the case of the

(anti-)self-dual Taub-NUT instanton is more subtle, since the
eigenvalues (39) are divergent as r0 → ∞. Nevertheless, one
can exploit the fact that the ηDðsÞjs¼0 is invariant under the
global rescaling λ → μ0λ to obtain finite eigenvalues. In order
to do so, we first perform the rescaling of the eigenvalues and
then take the limit r0 → ∞. This procedure yields [29]

λ ¼ �j2sþ 1þ 2b0j: ð47Þ

The symmetry between the positive and negative eigenvalues
derived from this equation implies that their sum will not
contribute to the ηD-invariant. However, this is not the case if
s ¼ l or if s ¼ −ðlþ 1Þ, which leads to the particular values
in Eq. (40). Thus, after rescaling the eigenvalues as λ → μ0λ
and taking the limit r0 → ∞, one obtains

ðiÞ λ ¼ 2lþ 1þ 2b0; ð48aÞ

ðiiÞ λ ¼ 2lþ 1 − 2b0; ð48bÞ

both with degeneracy d ¼ 2lþ 1. These exceptional cases
are the main contribution to the ηD-invariant. To see this, let
us focus on the case when b0 is an integer with b0 > 0
without loss of generality; the case for noninteger b0 in
Einstein-Maxwell theory has been studied inRef. [29]. Then,
the eigenvalue (48a) is positive definite, while Eq. (48b)
could take negative values if 2lþ 1 < b0. Thus, considering
the contributions coming from the positive and negative
eigenvalues of the Dirac operator to the ηD-invariant in
Eq. (27), the latter can be expressed as

ηðTNÞD ð∂MÞ ¼ lim
s→0

�X∞
l¼0

ð2lþ 1Þð2lþ 1þ 2b0Þ−s −
X2b0−1
l¼0

ð2lþ 1Þð2lþ 1 − 2b0Þ−s þ
X∞
l¼2b0

ð2lþ 1Þð2lþ 1 − 2b0Þ−s
�

¼ −
1

6
− 2q; ð49Þ

where we have used the fact that hðTNÞD ð∂MÞ ¼ 0 and the
definition of the Riemann zeta function ζðsÞ ¼ P∞

p¼1 p
−s.

Additionally, some of its particular values has been taken
into account, e.g. ζð−1Þ ¼ −1=12 and ζð0Þ ¼ −1=2. Then,
inserting Eq. (49) into the Dirac index (26) and using the
bulk integrals

1

32π2

Z
M

d4x
ffiffiffiffiffi
jgj

p
εμνλρR

λρ
στRστμν ¼ 2; ð50Þ

1

32π2

Z
M

d4x
ffiffiffiffiffi
jgj

p
εμνλρFμνFλρ ¼ 2q2; ð51Þ

together with the fact that the boundary integral of the
Chern-Simons form vanishes for the (anti-)self-dual Taub-
NUT instanton, we find

Nþ − N− ¼ 2q

�
qþ 1

2

�
: ð52Þ
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Thus, we conclude that, in the case of the (anti-)self-dual
Taub-NUT solution of Einstein-ModMax theory, the axial
anomaly is sourced by the electric charge of the ModMax
field. Indeed, its value does not depend on the new
parameter γ that measures the nonlinearity of the electro-
magnetic fields and it coincides with the Maxwell case
[29]. This is related to the fact that the asymptotic behavior
of the ModMax field does not modify the ηD-invariant in
comparison to the linear Maxwell case. Moreover, theUð1Þ
Chern-Pontryagin index (51) has no dependence on the γ-
parameter whatsoever, in contrast to the Eguchi-Hanson
case. This is related to the fact that the latter is endowed
with a bolt and we expect that it will not be necessarily the
case in the Taub-Bolt instanton either that we aim to study
in the future.

V. DISCUSSION

In this work, we have shown that gravitational instantons
sourced by nonlinear conformal electrodynamics induce
the axial anomaly when coupled to Einstein gravity. For
doing so, we first review the Taub-NUT solution found in
this theory in Refs. [72,73]. In the asymptotic regime, we
verify that the solution of the ModMax field equations
approaches its Maxwellian counterpart in this background.
Moreover, the former is continuously connected to the
latter as γ → 0; this parameter measures the degree of
nonlinearity of the Uð1Þ gauge fields. Then, we obtain a
novel Eguchi-Hanson instantonic solution in Einstein-
ModMax theory. Similar to the Taub-NUT case, we find
that the γ-parameter screens the electric and magnetic
charge of the dyonic nonlinear Uð1Þ fields. By demanding
(anti-)self duality and the absence of conical singularities,
we find a nonlinearly charged, geodesically complete lens
space that is asymptotically locally Euclidean.
Then, by using the Atiyah-Patodi-Singer theorem, we

compute the index of the Dirac operator for nonlinearly
charged spinors. Although there is no contribution of the
ModMax field to the ηD-invariant in the Eguchi-Hanson
instanton, its nontrivial topology at the bolt induces a
nonvanishing Uð1Þ Chern-Pontryagin index that contrib-
utes to the anomaly, detecting the presence of the nonlinear

theory at the level of the topological charge. This effect of
the nonlinear electrodynamics is somewhat similar to
charge screening. Additionally, in the (anti-)self-dual
Taub-NUT case, the gauge potential contributes nontri-
vially to the ηD-invariant while the Chern-Pontryagin index
is trivial. We compute the former by performing the
analytic continuation of the meromorphic function (27)
to s ¼ 0 and evaluating the difference between the number
of positive and negative eigenvalues of the Dirac operator.
Then, we conclude that both instantons induce an excess of
positive chiral spinors in comparison with the negative ones
[cf. Eqs. (46) and (52)].
Interesting questions remain open. First, studying

harmonic forms and spinors for the nonlinearly charged
Taub-bolt is certainly of interest, similar to the analysis
performed in Ref. [126]. Additionally, even though the
computation in presence of a negative cosmological constant
is more involved, it could provide important insights regard-
ing the role of nonlinear Uð1Þ fields in the axial anomaly
from a conformal field theory viewpoint [127–129]. Some
advances in this direction have been done inRef. [130]where
the space of SUð2Þ-invariant harmonic 2-forms was deter-
mined for Taub-NUT-AdS solution in Einstein-Maxwell
theory. Finally, it isworth analyzingwhether quantumeffects
would break the conformal symmetry of ModMax fields.
This is of interest to us andwe postpone a deeper study of this
point to the future.
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