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We extract the Hubble law by the frequency-shift considerations of test particles revolving the Kerr black
hole in asymptotically de Sitter spacetime. To this end, we take into account massive geodesic particles
circularly orbiting the Kerr-de Sitter black holes that emit redshifted photons towards a distant observer
which is moving away from the emitter-black hole system. By considering this configuration, we obtain an
expression for redshift in terms of the spacetime parameters, such as mass, angular momentum, and the
cosmological constant. Then, we find the frequency shift of photons versus the Hubble constant with the
help of some physically motivated approximations. Finally, some exact formulas for the Schwarzschild
black hole mass and the Hubble constant in terms of the observational redshift of massive bodies circularly
orbiting this black hole are extracted. Our results suggest a new independent general relativistic approach to
obtaining the late-time Hubble constant in terms of observable quantities.
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I. INTRODUCTION

Black holes are the densest massive objects known in
nature and are among the most important and interesting
solutions to the Einstein field equations. By now, they have
been directly detected through gravitational waves pro-
duced by the coalescence events captured in the LIGO
and Virgo observatories [1] as well as the shadow images
of supermassive black holes hosted at the center of the
Milky Way galaxy and the M87 galaxy revealed by the
EHT Collaboration [2,3]. Therefore, nowadays, exploring
various aspects of black holes’ physics attracts much
attention in the context of the general relativity theory.
Among others, inventing and developing methods to

determine the black hole parameters, such as mass, charge,
and angular momentum has a special place. One of the robust
methods to obtain the black hole parameters was initially
suggested in [4], and then developed to analytically express
the mass and spin parameters of the Kerr black hole in terms
of a few directly observable quantities [5]. In this general
relativistic formalism, the observables are frequency shifts of
photons emitted by massive geodesic particles orbiting the
central black holes along with their orbital parameters.

From the theoretical point of view, the method of [4] has
been applied to several black hole spacetimes, such
as higher-dimensional Myers-Perry black holes [6], Kerr-
Newman black holes in de Sitter (dS) spacetime [7], the
Plebanski-Demianski background [8], and spherically
symmetric regular black holes [9]. In addition, the boson
stars [10] as well as black holes in modified gravity [11],
coupled to nonlinear electrodynamics [12], and immersed
in a strong magnetic field [13] have been investigated by
employing a similar procedure, i.e., finding a relation
between frequency shift and compact object parameters.
However, all the aforementioned attempts were based on
the kinematic redshift which is not a directly measured
observational quantity, unlike the total frequency shift of
photons. Thus, this fact has motivated us to take into
account the total redshifts of photons and obtain concise
and elegant analytic formulas for the mass and spin of the
Kerr black hole in terms of these directly observable
elements [5]. More recently, this method was also applied
to express the parameters of static polymerized black holes
in terms of the total frequency shifts [14].
From a practical point of view, the developed prescrip-

tion of this general relativistic approach has been employed
to estimate the mass-to-distance ratio of some supermassive
black holes hosted at the core of active galactic nuclei
(AGNs), like NGC 4258 [15], TXS-2226-184 [16], and an
additional 15 galaxies [17,18]. These AGNs enjoy accre-
tion disks consisting of water vapor clouds that are
circularly orbiting the central supermassive black hole
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and emitting photons toward the distant observer, hence
enabling us to estimate the mass-to-distance ratio and
quantify the gravitational redshift produced by the space-
time curvature that is a general relativistic effect.
On the other hand, the so-called Λ-cold dark matter

cosmological standard model successfully explains the
current epoch in the evolution of the cosmos. The field
equations of Einstein gravity in the presence of a cosmo-
logical constant Λ along with an energy-momentum tensor
Tm
μν that accounts for the matter content of the Universe read

Gμν þ Λgμν ¼ Tm
μν; ð1Þ

where Gμν is the Einstein tensor. Thus, in order to explain
the current accelerated expansion of the Universe, taking
into account the contribution of the dark energy, and thus
adding the Λ-term to the Einstein field equations is
inevitable [19,20]. Indeed, although the observations in
small scales could be explained by the first term of the left-
hand side of Eq. (1), a consistent description of the large-
scale structure of the Universe requires considering the
second term. Therefore, it is quite natural to attempt to
quantitatively clarify the influence of the repulsive cosmo-
logical constant on the detected redshift and blueshift of
photons coming from massive geodesic particles—stars for
instance—orbiting the Kerr black hole.
In order to advance work in this direction, we shall

consider the field equations (1) in the absence of matter
content as the first step. A family of solutions to these
simplified field equations describes black holes in asymp-
totically dS spacetime. Moreover, the rotating black hole
solutions to the Einstein-Λ field equations are described by
theKerr-dS (KdS) line element [21] and the properties of the
geodesic motion in this background have been investigated
in [22–24] (see [7] as well). Thus, by taking into account the
Universe expansion effect encoded in the cosmological
constant through the explicit appearance of the Λ term in
the metric, we push forward the formalism developed in
[4,5] for expressing the Kerr black hole parameters in terms
of purely observational quantities to the case in which the
Hubble constant can also be determined.
The consideration of the accelerated expansion of the

Universe in the redshift due to a cosmological constant has
potential interest in terms of astrophysical applications,
since many of the AGNs with megamaser disks orbiting its
central black hole are within the Hubble flow [25–33].
Therefore, this modeling includes the contribution of the
expansion of the Universe in the metric, making it suitable
for describing this effect on the total redshift of photons
emitted by test particles and detected on Earth. Thus, this
new form of accounting for the dS accelerated expansion of
the Universe in the expression for total redshift allows us to
extract the Hubble law as well. Finally, it is worth noticing
that this approach differs from the previous ones in which
the expansion effect is taken into account in the total

redshift through a composition of redshifts that has no
metric origin (see, for instance, [17,18,31,33]).
The outline of this paper is as follows. The next section

is devoted to a brief review of the geometrical properties
of the KdS black holes and the geodesic motion in this
background. Additionally, we analytically obtain the valid
parameter space for havingKdS black holes, and also review
our general relativistic formalism that allows expressing the
black hole parameters in terms of observational redshift. In
Sec. III, we express the redshift of emitters that are circularly
orbiting the KdS black holes in terms of the parameters of
spacetime while the detector is in radial motion. Then, by
considering a physicallymotivated configuration,we extract
the Hubble law in its original formulation from the obtained
frequency shift relation. Finally, we find analytic expres-
sions for the Schwarzschild black hole mass and the Hubble
constant in terms of the observational frequency shifts of
photons emitted by massive particles orbiting circularly a
Schwarzschild black hole. We finish our paper with some
concluding remarks.

II. KERR-DE SITTER SPACETIME

Here, we give a short review of the geometrical proper-
ties of the rotating black holes in the dS background and
analytically obtain valid parameter space for having KdS
black holes in Sec. II A. Then, we study the geodesic
motion of massless/massive particles in this geometry in
Sec. II B and derive equations that are important for our
next purposes. Finally, in Sec. II C, we briefly review our
general relativistic formalism that allows us to express the
black hole parameters in terms of observational redshift and
orbital parameters of massive geodesic particles orbiting
around the black holes. We shall use the general results of
this section for a special configuration in Sec. III to extract
the Hubble law.

A. Properties of the Kerr-dS background

The KdS line element in the standard Boyer-Lindquist
coordinates ðt; r; θ;φÞ reads [21] (we use c ¼ 1 ¼ G units)

ds2 ¼ gttdt2 þ 2gtφdtdφþ gφφdφ2 þ grrdr2 þ gθθdθ2;

ð2Þ

with the metric components

gtt ¼ −
�
Δr −Δθa2 sin2 θ

ΣΞ2

�
; grr ¼

Σ
Δr

; gθθ ¼
Σ
Δθ

;

ð3Þ

gφφ ¼ sin2 θ
ΣΞ2

½Δθðr2 þ a2Þ2 − Δra2 sin2 θ�; ð4Þ

gtφ ¼ −
a sin2 θ
ΣΞ2

½Δθðr2 þ a2Þ − Δr�; ð5Þ
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where the functions ΔrðrÞ, ΔθðθÞ, Σðr; θÞ, and Ξ have the
following explicit form

Δr ¼ r2 þ a2 − 2Mr −
Λr2

3
ðr2 þ a2Þ; ð6Þ

Δθ ¼ 1þ Λ
3
a2cos2θ; ð7Þ

Σ ¼ r2 þ a2 cos2 θ; ð8Þ

Ξ ¼ 1þ Λ
3
a2; ð9Þ

and M is the total mass of the black hole, a is the angular
momentum per unit mass a ¼ J=M, and Λ is the cosmo-
logical constant related to dS radius ldS as Λ ¼ 3=l2dS.
The KdS metric (2) describes an axially symmetric and
stationary spacetime (between the event horizon and the
cosmological horizon) that reduces to the standard Kerr
black hole in the limit Λ ¼ 0 and the Schwarzschild-dS
(SdS) black hole for a ¼ 0. The coordinate singularities of
this spacetime are characterized by Δr ¼ 0 (the four roots
correspond to horizons), while calculation of the invariant
curvature scalar reveals that the intrinsic singularity is given
by Σ ¼ 0 where located at fr ¼ 0; θ ¼ π=2g for a ≠ 0.
Therefore, the presence of a cosmological horizon, char-
acterized by the largest root of Δr, is one of the conse-
quences of nonvanishing Λ.
In order to find the extreme values of a and Λ for having

black holes, we found that it is convenient to introduce the
normalized variables x, α, and λ as below

x ¼ r
M

; α ¼ a
M

; λ ¼ ΛM2

3
; ð10Þ

and express the Δr function in terms of the new variables as
follows:

M−2Δr ¼ x2 þ α2 − 2x − λx2ðx2 þ α2Þ: ð11Þ

Generally, one can show that Δr has (at most) four
distinct roots that can be regarded as the cosmological
horizon (x ¼ xc), the event horizon (x ¼ xþ), the inner
horizon (x ¼ x−), and a negative root (x ¼ x0 < 0) so that
x− < xþ < xc (see Fig. 1). Therefore, we can express Δr in
terms of these quantities in the following form

M−2Δr ¼ λðx − x0Þðx − x−Þðx − xþÞðxc − xÞ: ð12Þ

Now, by equating the equations for Δr given in (11) and
(12), the following relations between parameters are found

α2 ¼ λx−xþxcðx− þ xþ þ xcÞ; ð13Þ

λ ¼ 2

ðx− þ xþÞðx− þ xcÞðxþ þ xcÞ
; ð14Þ

x0 ¼ −ðx− þ xþ þ xcÞ; ð15Þ

where x−, xþ, and xc are considered as three fundamental
parameters of spacetime. Similar to the Kerr case, there
should be a maximum value for the rotation parameter, say
αmax, such that we have black holes in the range 0 ≤ α2 ≤
α2max and a naked singularity for α2 > α2max. By considering
(13) and (14), and also, the condition x− < xþ < xc
between roots, we find that the maximum αmax happens
whenever x− ≲ xþ ≲ xc, hence all the horizons are closely
spaced for αmax. Therefore, we should take into account the
approximation x− ≈ xþ ≈ xc to obtain αmax. On the other
hand, 0 ≤ α2 ≤ α2max and (13) show that the cosmological
constant should obey the following interval as well

0 ≤ λ ≤ λcrit; λcrit ¼
α2max

x−xþxcðx− þ xþ þ xcÞ
: ð16Þ

Note that in order to have black holes, there is always a
maximum cosmological constant, say λmax, which corre-
sponds to an arbitrary rotation parameter α in the range
0 ≤ α ≤ αmax. The maximum value of λ, in the general case,
is corresponding to αmax which is denoted as critical
cosmological constant λcrit in the aforementioned inequal-
ity. Therefore, generally speaking, there is an interval for

λmax that depends on the rotation parameter α, as λðSdSÞmax ðα ¼
0Þ ≤ λmax ≤ λcritðα ¼ αmaxÞ so that its lower bound repre-
sents the maximum value of λ for the SdS black hole and

FIG. 1. The general behavior of Δr function given in (11)
versus the radial coordinate x for four black hole types; namely,
Schwarzschild, SdS, Kerr, and KdS. Δr is positive between xþ
and xc as well as before x−, whereas is negative otherwise. By
increasing λðαÞ, xc (x−) approaches xþ (not shown here).
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λ ≈ λðSdSÞmax characterizes the near-extremal SdS solution. In
other words, there is a maximum value of λ for an arbitrary
rotation parameter α, and similarly, there is a maximum
value of α for an arbitrary cosmological constant λ (for
example, for the SdS black hole with α ¼ 0, the cosmo-

logical constant ranges within 0 ≤ λ ≤ λðSdSÞmax ).

Now, in order to obtain αmax, and then λ
ðSdSÞ
max and λcrit, we

need to take into account the condition x− ≲ xþ ≲ xc, as we
mentioned above. To do so, we first equate Eqs. (11) and
(12) while considering xþ and xc as two independent
variables to obtain the following relations

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4xþxc þ Π −ϒ
2ðxþ þ xcÞ

s
; ð17Þ

x− ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðxc þ xþ − 2Þðxc þ xþÞ

p fx4c þ x4þ þ 4Πþ 2ϒ

þ 2xþxc½2ðxþ þ xc þ 1Þ − xcxþ�g1
2

−
1

2
ðxþ þ xcÞ; ð18Þ

x0 ¼ −ðx− þ xþ þ xcÞ; ð19Þ

λ ¼ −Πþϒ
2x2þx2cðxþ þ xcÞ

; ð20Þ

with Π and ϒ being

Π ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϒ2 − 4x2þx2cðxþ þ xc − 2Þðxþ þ xcÞ

q
; ð21Þ

ϒ ¼ x3þ þ xþxcðxþ þ 2Þ þ x2cðxþ þ xcÞ: ð22Þ

Then,we take into account the near-extremal regime xc →
xþ in the above-mentioned formulas, i.e., when the cosmo-
logical horizon xc is very close to the black hole event
horizon xþ (xc − xþ ≪ xþ). Hence, we obtain the following
relations for α, x−, x0, and λ in the nearly extreme regime

α ≈
ffiffiffiffiffiffi
xþ
2

r
ð1 − 2xþ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8xþ
p Þ12; ð23Þ

x− ≈ −xþ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xþ
2ðxþ − 1Þ

r �
1þ 2xþ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8xþ
p �1

2; ð24Þ

x0 ≈ −2xþ − x−; ð25Þ

λmax ≈
1þ 2xþ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8xþ

p
2x3þ

; ð26Þ

where we replaced λ with λmax since xc ≈ xþ. Now, the
maximum value of the rotation parameter, αmax, can be
obtained by taking the limit xþ → x− in the aforementioned

relations. By considering x− ≈ xþ in (24), we obtain a
maximum value for the event horizon as below

xþ ¼ 3þ 2
ffiffiffi
3

p

4
; ð27Þ

that is indeed a coincidental point for all the three horizons
(xc ≈ xþ ≈ x− ≈ ð3þ 2

ffiffiffi
3

p Þ=4), hence it maximizes the
rotation parameter in Eq. (23). Therefore, by substituting
(27) in (23), we obtain

αmax ¼
1

4
ð9þ 6

ffiffiffi
3

p
Þ12 ≈ 1.101; ð28Þ

that is slightly higher than unity for the standard Kerr black
hole (αmax > αKerrmax ¼ 1). It is worthwhile tomention that this
value corresponds to the maximum possible value of the
cosmological constant, λcritðα ¼ αmaxÞ, and therefore, it will
be less for lower values of the cosmological constant. Thus,
the rotation parameter ranges

0 ≤ α ≤ αmax ð29Þ

with αmax given by (28).
Now, we obtain bounds on maximum values of the

cosmological constant λmax, namely λðSdSÞmax ðα ¼ 0Þ and
λcritðα ¼ αmaxÞ. The maximum value for the event horizon
is given in Eq. (27) that corresponds to maximally rotating
black holes with α ¼ αmax. Therefore, by substituting
Eq. (27) in Eq. (26), we obtain λcritðα ¼ αmaxÞ ¼
16=ð3þ 2

ffiffiffi
3

p Þ3.
On the other hand, since SdS is static α ¼ 0, we set

x− ¼ 0 in (24) and obtain the maximum value of the event

horizon as xþ ¼ 3≡ xðSdSÞþmax for this case (we set x− ¼ 0

because SdS black holes have no inner horizon). By
replacing this value in Eq. (26), one can find the maximum
value of the cosmological constant for the static case as

λmaxðα ¼ 0Þ ¼ 1=27≡ λðSdSÞmax . We summarized the results
of this section on the bounds of KdS parameters as follows:

8>><
>>:

0 ≤ α ≤ αmax;

λðSdSÞmax ≤ λmax ≤ λcrit;

xðSdSÞþmax ≤ xþmax ≤ xþcrit;

ð30Þ

with

8>>><
>>>:

αmax ¼ 1
4
ð9þ 6

ffiffiffi
3

p Þ12;
λðSdSÞmax ¼ 1

27
; λcrit ¼ 16

ð3þ2
ffiffi
3

p Þ3 ;

xðSdSÞþmax ¼ 3; xþcrit ¼ 3þ2
ffiffi
3

p
4

:

ð31Þ

Therefore, the maximum value of the cosmological
constant in the Kerr geometry must be in the
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aforementioned interval. For instance, the relation of λ

given in (14) must obey 0 ≤ λ ≤ λðSdSÞmax for the static case
α ¼ 0, while λ ¼ 0 represents the standard Schwarzschild

solution and λ ≈ λðSdSÞmax denotes nearly extreme SdS black
holes. Other cases far from these two extreme values and
within this range are known as SdS black holes while we

have a naked singularity for λ > λðSdSÞmax .
On the other hand, one may note that for an arbitrary

value of the rotation parameter in the range 1 < ᾱ ≤ αmax, λ
acquires a minimum value as well and must obey λmin ≤
λ ≤ λmax for a given ᾱ. Obtaining these bounds on the
parameters of KdS black holes is important since they will
help us to find valid values of the redshifted photons
emitted by massive particles orbiting a KdS black hole.
Various regions of KdS black holes in the α − λ plane are

illustrated in Fig. 2. In this figure, the continuous vertical
blue line α ¼ 0 represents SdS black holes, the continuous
horizontal red line λ ¼ 0 shows the standard Kerr black
holes, and there are standard Schwarzschild solutions

where they join fα ¼ 0; λ ¼ 0g. Extreme points fα ¼
0; λ ¼ λðSdSÞmax g and fα ¼ αmax; λ ¼ λcritg that we have
obtained analytically in (30) are shown on the top corners.
To obtain the λmax-dashed line on the top of the shaded
green area, we used Eqs. (23) and (26) while one can
employ the relations (17)–(20) in order to find the λmin-
dashed line on the right of the shaded green area assuming
x− ¼ xþ. Thus, we derived all the marginal points of KdS
black holes in the parameter space α − λ analytically that
are presented in Eqs. (17)–(20), (23)–(26), and (30). Note

that some of these bounds have been found in [22] from a
different approach.
It is worthwhile mentioning that we have a naked

singularity for λ > λmax, whereas for α > αmax, the inner
and outer horizons vanish and there is just a cosmological
horizon assuming λ ≠ 0. One can see that the nonvanishing
cosmological constant introduces two important modifica-
tions to the standard Kerr geometry: (i) It leads to a new
horizon, known as the cosmological horizon, and (ii) allows
having higher values for the rotation parameter. As we shall
see in Sec. III A, the cosmological constant also modifies
the particles’ motion and leads to an upper bound on the
radius of stable emitters in circular motion.

B. Geodesics of timelike and null particles
in the Kerr-dS background

The equation of motion of test massless/massive par-
ticles in the rotating spacetimes is described by the geodesic
equations. In this regard, the geodesic equations can be
obtained by using the separation of variables of the
Hamilton-Jacobi equation. The Hamilton-Jacobi equation,
for a given background gμνðxρÞ, leading to the geodesic
equations can be written as [34]

2
∂S
∂τ

¼ −gμν
∂S
∂xμ

∂S
∂xν

; ð32Þ

where S represents Hamilton principal function. In this
relation, τ is the proper time that parametrizes the particle
worldline and is related to the affine parameter σ by τ ¼ σm
which m is the particle rest mass (τ represents the affine
parameter in the case of photons). For the KdS spacetime,
the Hamilton principal function S can be separated as

S ¼ 1

2
ητ − Ētþ L̄φþ SrðrÞ þ SθðθÞ; ð33Þ

for both timelike (η ¼ 1) and null (η ¼ 0) particles, and
SrðrÞ is a function of r while SθðθÞ is a function of θ only.
The constants of motion Ē and L̄, respectively, correspond
to conserved energy E0 and angular momentum L0 of
massive particles obtained through the following equations

Ē ¼ E0

m
¼ −gμνξμUν; ð34Þ

L̄ ¼ L0

m
¼ gμνψμUν; ð35Þ

where ξμ ¼ δμt is the timelike Killing vector field and ψμ ¼
δμφ is the rotational Killing vector field of the spacetime, and
Uμ is the 4-velocity of particles which is normalized to
unity UμUμ ¼ −1.
On the other hand, by substituting the decomposition

(33) into the Hamilton-Jacobi equation (32), we get the
following equality

FIG. 2. The valid area of KdS black holes in α − λ parameter
space. The shaded green region belongs to KdS black holes while
the marginal points on the left indicate SdS black holes and on the
bottom represent standard Kerr solutions. This figure also shows
how a background cosmological constant extends the parameter
space.
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ηa2 cos2 θ þ Δθ

�
dSθðθÞ
dθ

�
2

þ Ξ2

Δθ sin2 θ
ðaĒ sin2 θ − L̄Þ2

¼ −ηr2 − Δr

�
dSrðrÞ
dr

�
2

þ Ξ2

Δr
½ðr2 þ a2ÞĒ − aL̄�2; ð36Þ

where the lhs is a function of θ only and the right-hand side
just depends on the r-coordinate. Therefore, either side is
equal to a constant of motion, known as the Carter constant
C with the following form [34]:

C ¼ Kþ ðL̄ − aĒÞ2Ξ2; ð37Þ

which K is a constant that arises from the contraction of
the Killing tensor field Kμν of Kerr-dS spacetime with the
4-velocity as K ¼ KμνUμUν. Now, by making use of
(34)–(37), and the unity condition UμUμ ¼ −1, we can
obtain the 4-velocity components of massive particles
(η ¼ 1) in terms of constants ofmotion Ē, L̄, andK as follows

Ut ¼ Ξ2

ΣΔθΔr
fa½Δr − ða2 þ r2ÞΔθ�L̄

þ ½ða2 þ r2Þ2Δθ − a2 sin2 θΔr�Ēg; ð38Þ

Σ2ðUrÞ2 ¼ Ξ2½ða2 þ r2ÞĒ − aL̄�2
− Δr½Kþ r2 þ Ξ2ðL̄ − aĒÞ2�

≡ VrðrÞ; ð39Þ

Σ2ðUθÞ2 ¼ ΔθðK − a2 cos2 θÞ − a2Ξ2ðsin2 θ − ΔθÞĒ2

− Ξ2

�
1

sin2 θ
− Δθ

�
L̄2 þ 2aΞ2ð1 − ΔθÞĒ L̄

≡ VθðθÞ; ð40Þ

Uφ ¼ Ξ2

ΣΔθΔr sin2 θ
fðΔr − a2Δθ sin2 θÞL̄

þ a sin2 θ½ða2 þ r2ÞΔθ − Δr�Ēg; ð41Þ

where the rhs of Eq. (39) is a function of r and the rhs of
Eq. (40) is a function of θ only. Note that Eqs. (34) and (35)
have been used to obtain Eqs. (38) and (41), while Eqs. (36),
(37), and the unity condition UμUμ ¼ −1 have been
employed to get the relations (39) and (40).
From Eq. (40), it is clear that the constant of motion K

[that is related to the Carter constant by Eq. (37)] represents
a measure of how much the geodesic of particles deviates
from the equatorial plane θ ¼ π=2, where this constant
vanishes. Therefore, the test particles moving in the
equatorial plane have zero K, whereas it is nonvanishing
whenever particles cross the equatorial plane.
The first-order differential equations presented in

Eqs. (38)–(41) show the geodesic equations of massive
particles for every direction in the KdS background in terms

of the constants of motion Ē, L̄, and K. These equations
reduce to the corresponding relations given in [4] for Kerr
geometry in the limit Λ → 0, as it should be. Therefore, the
cosmological constant encodes deviations of KdS black
holes from the standard Kerr background.
On the other hand, a similar strategy can be followed to

obtain the null geodesics of photons with 4-momentum kμ

moving between the event horizon and cosmological
horizon of the KdS spacetime. For massless test particles,
the conserved energy Ēγ and angular momentum L̄γ of
particles can be found through the following relations

Ēγ ¼ −gμνξμkν; ð42Þ

L̄γ ¼ gμνψμkν; ð43Þ

where the 4-momentum kμ of null particles satisfies
kμkμ ¼ 0. Besides, the equality (36) takes the form

Δθ

�
dSθðθÞ
dθ

�
2

þ Ξ2

Δθ sin2 θ
ðaĒγ sin2 θ − L̄γÞ2

¼ −Δr

�
dSrðrÞ
dr

�
2

þ Ξ2

Δr
½ðr2 þ a2ÞĒγ − aL̄γ�2; ð44Þ

for the null particles (η ¼ 0). Now, by making use of
Eqs. (42)–(44) and kμkμ ¼ 0, we obtain the various
components of the 4-momentum in terms of the constants
of motion Ēγ, L̄γ, and Kγ as follows:

kt ¼ Ξ2

ΣΔθΔr
fa½Δr − ða2 þ r2ÞΔθ�L̄γ

þ ½ða2 þ r2Þ2Δθ − a2 sin2 θΔr�Ēγg; ð45Þ

Σ2ðkrÞ2 ¼ Ξ2½ða2 þ r2ÞĒγ − aL̄γ�2
− Δr½Kγ þ Ξ2ðL̄γ − aĒγÞ2�

≡ VrðrÞ; ð46Þ

Σ2ðkθÞ2 ¼ ΔθKγ − a2Ξ2ðsin2 θ − ΔθÞĒ2
γ

− Ξ2

�
1

sin2 θ
− Δθ

�
L̄2
γ þ 2aΞ2ð1 − ΔθÞĒγL̄γ

≡ VθðθÞ; ð47Þ

kφ ¼ Ξ2

ΣΔθΔr sin2 θ
fðΔr − a2Δθ sin2 θÞL̄γ

þ a sin2 θ½ða2 þ r2ÞΔθ − Δr�Ēγg; ð48Þ

where the rhs of Eq. (46) is a function of r, the rhs of
Eq. (47) is a function of θ, and Cγ ¼ Kγ þ ðL̄γ − aĒγÞ2Ξ2 is
the corresponding Carter constant for photons.
It is worthwhile mentioning that the equations given in

(38)–(41) and (45)–(48), respectively, fully describe any

MOMENNIA, HERRERA-AGUILAR, and NUCAMENDI PHYS. REV. D 107, 104041 (2023)

104041-6



geodesic motion of massive and massless particles in the
background of KdS black holes for given sets of constants
of motion fĒ; L̄;Kg and fĒγ; L̄γ;Kγg. Hence, these rela-
tions govern the most general orbits of massive bodies,
namely nonequatorial elliptic trajectories, and one can
obtain arbitrary particular cases, such as nonequatorial
circular orbits, elliptic equatorial paths, elliptic non-
equatorial orbits, nonelliptic trajectories, and equatorial
circular orbits by imposing some suitable boundary
conditions.

C. Frequency shift

In this section, we briefly review our previous results on
the frequency shift of photons emitted by massive particles
moving in an axially symmetric spacetime, a construction
based on a general relativistic method [4,5].
This formalism allows one to express the frequency shift

of photons in terms of orbital parameters of radiant massive
objects (stars, for instance), and the free parameters of the
spacetime (the set of parameters fM;a;Λg in our black
hole case study). In this scenario, the probe particles feel
the curvature of spacetime produced by the black hole and
encode the properties of spacetime, characterized by black
hole parameters, in the frequency shift of emitted photons.
This capability allows us to estimate the black hole
parameters through measuring the shift in the frequency
of photons and solving an inverse problem.
The orbiting massive particles can emit electromagnetic

waves towards us such that the corresponding photons
travel along null geodesics from emission till detection
while the information of the geometry is encoded in their
frequency shift. The frequency of this photon at some
position xμp ¼ ðxt; xr; xθ; xφÞjp reads

ωp ¼ −ðkμUμÞjp; ð49Þ

where the index p refers to either the point of emission xμe
or detection xμd of the photon.
One can see that, in contrast to the commonly used radial

velocities in Newtonian gravity which are coordinate-
dependent observables, ωp is a general relativistic invariant
quantity that keeps memory of photons from emission
at xμe till detection at xμd. Therefore, in the transition from
Newtonian gravity to general relativity, it is logical to take
advantage of shifts in the frequency (49) rather than redshift
due to changes in speed. This is because, in addition to the
redshift due to speed changes, the frequency shift due to
curvature of spacetime is also encoded in the observable
quantity ωp.
The most general expression for shifts in the frequency

ωp in axially symmetric backgrounds of the KdS form (2)
can be written as [4]

1þ zKdS ¼
ωe

ωd

¼ ðEγUt − LγUφ − grrUrkr − gθθUθkθÞje
ðEγUt − LγUφ − grrUrkr − gθθUθkθÞjd

; ð50Þ

where the 4-velocity Uμ (of emitter/detector) and the
4-momentum kμ (at emitter/detector position) are given
in Eqs. (38)–(41) and Eqs. (45)–(48), respectively. Hence,
zKdS is the frequency shift that light signals emitted by
massive particles orbiting a KdS black hole experience in
their path along null geodesics towards a detecting
observer. Since we have general forms of Uμ and kμ, the
KdS shift (50) includes arbitrary stable orbits, such as
circular, elliptic, irregular, equatorial, nonequatorial, etc.
Therefore, the frequency shifts of these photons, that are
directly measured observational quantities, along with the
orbital parameters of the emitter and the observer can be
used to determine the black hole parameters [5].
In the rest of the paper, we shall focus on equatorial

circular orbits for emitters (an important situation describ-
ing accretion disks orbiting supermassive black holes at the
core of AGNs and circularly orbiting binary compact stars)
and on radial motion of detectors due to the accelerated
expansion of the Universe produced by the cosmological
constant.

III. FREQUENCY SHIFT IN TERMS OF BLACK
HOLE PARAMETERS

In Sec. III A, we obtain the 4-velocity of emitters in
equatorial circular motion in terms of the black hole
parameters. Then, in Sec. III B, we express the 4-velocity
of the detector in radial motion with respect to the emitter-
black hole system versus the KdS parameters. We shall use
these results in Sec. III C to obtain the redshift of the KdS
black holes zKdS in terms of the parameters of spacetime for
this special configuration and extract the Hubble law from
some physically motivated approximations. Finally, we
express the Schwarzschild mass and the Hubble constant in
terms of observational redshift in Sec. III D.

A. Emitters in circular and equatorial orbits

Usually, the accretion disks orbiting black holes can be
well described by the equatorial circular motion of massive
test particles around the rotating black holes and even
any tilted disk should be driven to the equatorial plane of
the rotating background [35]. Hence, in what follows, we
concentrate our attention on the equatorial circular orbits
of emitters characterized by θ ¼ π=2 and Ur ¼ 0 ¼ Uθ, to
find the relations between KdS black hole parameters
fM; a;Λg and measured redshifts/blueshifts of light signals
detected by an observer located far away from their source.
We also assume that the observer detects the photons in the
equatorial plane θ ¼ π=2 since accretion disks can be
detected mostly in an edge-on view from Earth [26,36],
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and therefore kθ ¼ 0 identically. With this assumption, we
place the detector in the equatorial plane as well.
At this stage, we express the 4-velocity Uμ for the

equatorial circular orbits in terms of the KdS black hole
parameters fM; a;Λg in order to substitute in the frequency
shift relation (50), hence find a connection between
observational redshift/blueshift and KdS parameters.
Therefore, by considering Eqs. (38)–(41), the nonvanishing
components Ut

e and Uφ
e of the emitter read

Ut
e¼

aðΔe−a2−r2eÞLeþ½ða2þr2eÞ2−a2Δe�Ee

r2eΔe
Ξ; ð51Þ

Uφ
e ¼ ðΔe − a2ÞLe þ aða2 þ r2e − ΔeÞEe

r2eΔe
Ξ; ð52Þ

where Le ¼ ΞL̄e, Ee ¼ ΞĒe, Δe ¼ Δrðr ¼ reÞ, and re is
the radius of the emitter. In this case, the Carter constant
vanishes whereas the constants of motion Ee and Le can be
obtained by taking into account the conditions

VrðrÞ ¼ 0;
dVrðrÞ
dr

¼ 0; ð53Þ

simultaneously for having circular orbits while VrðrÞ is
given in Eq. (39). Therefore, one can solve these conditions
to get [22]

Ee ¼
r
3
2
e

h
1 − Λ

3
ða2 þ r2eÞ

i
− 2Mr

1
2
e � a

�
M − Λr3e

3

�1
2

r
3
4
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
3
2
e

�
1 − Λa2

3

�
− 3Mr

1
2
e � 2a

�
M − Λr3e

3

�1
2

r ; ð54Þ

Le ¼
ða2 þ r2eÞ

h
�
�
M − Λr3e

3

�1
2 − aΛ

3
r
3
2
e

i
− 2aMr

1
2
e

r
3
4
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
3
2
e

�
1 − Λa2

3

�
− 3Mr

1
2
e � 2a

�
M − Λr3e

3

�1
2

r ; ð55Þ

in terms of the KdS black hole parameters while the upper
sign corresponds to a corotating object and the lower sign
refers to a counterrotating object with respect to the angular
velocity of the black hole, and we shall use this convention
in the upcoming equations.
Now, by substituting relations (54) and (55) into

Eqs. (51) and (52), we can obtain rather simple equations
as follows:

Ut
eðre; π=2Þ ¼

r
3
2
e � a

�
M − Λr3e

3

�1
2

X�
Ξ; ð56Þ

Uφ
e ðre; π=2Þ ¼ �

�
M − Λr3e

3

�1
2

X�
Ξ; ð57Þ

with

X�¼ r
3
4
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
3
2
e

�
1−

Λa2

3

�
−3Mr

1
2
e�2a

�
M−

Λr3e
3

�1
2

s
: ð58Þ

From Eqs. (56)–(58), it is obvious that one should follow
the conditions 3M − Λr3e ≥ 0 and X2

� > 0 in order to have
the equatorial circular orbits. The former puts an upper
bound on the emitter radius as r3e ≤ 3M=Λ, a quantity that
must be located within the cosmological horizon. We call
this special distance r̄ ¼ ð3M=ΛÞ1=3 as zero gravity radius
(ZGR), a radius where the effective gravity vanishes, as we
shall show below. With the quantities given in (56)–(58) at
hand, we can also obtain the angular velocity of an emitter
orbiting around the KdS black hole in a circular and
equatorial orbit as below

Ω� ¼ Uφ
e

Ut
e
¼ �

�
M − Λr3e

3

�1
2

r
3
2
e � a

�
M − Λr3e

3

�1
2

: ð59Þ

Besides, the nonvanishing components of the 4-momen-
tum of photons kμ, given in equations (45)–(48), in the
equatorial plane reduce to

kt ¼ aðΔr − a2 − r2ÞLγ þ ½ða2 þ r2Þ2 − a2Δr�Eγ

r2Δr
Ξ; ð60Þ

r2ðkrÞ2 ¼ ½ða2 þ r2ÞEγ − aLγ�2 − ΔrðLγ − aEγÞ2; ð61Þ

kφ ¼ ðΔr − a2ÞLγ þ aða2 þ r2 − ΔrÞEγ

r2Δr
Ξ; ð62Þ

with Lγ ¼ ΞL̄γ and Eγ ¼ ΞĒγ .
On the other hand, the condition for having stable orbits

in KdS geometry is given by

V 00
r ≡ d2VrðrÞ

dr2
¼ −½r2 þ ðL − aEÞ2�Δ00

r − 4rΔ0
r

− 2Δr þ 4ð3r2 þ a2ÞE2 − 4aLE ≤ 0;

ð63Þ

where prime denotes ∂r and one can use either upper/lower
sign of Eqs. (54) and (55) to obtain radii of stable circular
orbits of co/counter -rotating stars. However, the polyno-
mial expression (63) is of tenth order in r and could not be
solved analytically, unlike the standard Kerr case.
The general behavior of V 00

r is illustrated through Fig. 3
for various values of Λ and a as well as corotating/
counterrotating classes. As one can see from this figure,
the roots of relation (63) characterize the innermost stable
circular orbit (ISCO) rISCO and outermost stable circular
orbit (OSCO) rOSCO describing, respectively, the inner edge
of orbiting accretion disk and its outer edge. Therefore, we
expect that the lower constraint on the emitter radius as
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re ≥ rISCO leads to an upper bound on the redshift/blueshift
of orbiting objects, whereas the upper constraint re ≤
rOSCO puts a lower bound on the frequency shift.
Now, it is worthwhile to summarize the most important

radii in the KdS geometry as follows:

r0 < 0 < r− < rþ < rISCO < rOSCO < r̄ < rc; ð64Þ

where (i) the inner horizon r−, the event horizon rþ, and the
cosmological horizon rc are the solutions of Δr in Eq. (6),
(ii) rISCO and rOSCO are the solutions of the stability
condition in Eq. (63), and (iii) the ZGR r̄ ¼ ð3M=ΛÞ1=3
is a maximum radius for having the equatorial circular
orbits obtained through (56)–(58).
In this study, we are interested in stable orbits satisfying

rISCO ≤ re ≤ rOSCO for the emitter and far away detectors
with the condition

r̄ < rd < rc; ð65Þ

describing black hole systems in the Hubble flow.
However, note that some of the important radii (64) may
change/vanish under certain circumstances, as we dis-
cussed in Sec. II A (for r−, rþ, and rc) and in Fig. 3

(for rISCO and rOSCO). In addition, we restrict our calcu-
lations to Λ ≤ 10−4 in order to have stable orbits, in
consistency with Fig. 3.

B. Detectors in radial motion

Here, we should note that the situation for the KdS
geometry differs from the previous cases studied before
(see [4,5,9,11] and references therein) and we cannot
consider circular orbiting or static detectors since the
behavior of zKdS in Eq. (50) versus Λ turns out to be
unphysical once we take into account the circular orbits
beyond r̄. Indeed, because of the accelerated expansion of
the Universe due to the positive cosmological constant at
large scales, the detector should move away from the black
hole in the case of far-away detectors that we are interested
in. Therefore, in this case, we consider a detector that
radially moves away from the KdS black hole instead of
usual circularly orbiting or static detectors. This implies
that Uφ

d ¼ 0 ¼ Uθ
d, hence the nonvanishing components of

the 4-velocity of the detector read [see Eqs. (38)–(41)]

Ut
d ¼

ða2 þ r2dÞ2 − a2Δd

r2dΔd
EdΞ; ð66Þ

FIG. 3. The general behavior of V 00
r versus the radial coordinate for the corotating branch (upper panels) and counterrotating branch

(lower panels). V 00
r is negative between rISCO and rOSCO, indicating stable orbits area. rOSCO approaches rISCO as the cosmological

constant increases, and finally, there will be no stable equatorial circular orbits for sufficiently large Λ.
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ðUr
dÞ2 ¼

ða2 þ r2dÞ2E2
d − Δdðr2d þ a2E2

dÞ
r4d

; ð67Þ

where we have set Ld ¼ 0 due to the radial motion of the
detector, Ed ¼ ΞĒd, Δd ¼ Δrðr ¼ rdÞ, and rd is the dis-
tance between the black hole and the detector. Note that
Uφ

d ¼ 0 is just valid for far enough detectors, otherwise the
rotation nature of the spacetime drags the detector, as it can
be seen from Eq. (41).
As the next step, we need to obtain Ed in terms of the

parameters of the spacetime fM; a;Λg. One may note that
at some radius rd ¼ R, where the gravitational attraction
generated by the black hole mass is completely balanced by
the expansion of the Universe produced by the cosmologi-
cal constant, such that M ¼ MΛ, with MΛ being an
effective mass related to the cosmological constant.
Thus, the radial velocity Ur

d (67) vanishes at rd ¼ R
because the repulsive nature of the cosmological constant
is exactly cancelled by the gravitational attraction. We
obtain the effective massMΛ through the following integral

MΛ ¼
Z

R

0

4πρΛr2dr; ð68Þ

where the density of cosmological constant ρΛ is related to
the cosmological constant via ρΛ ¼ Λ=ð8πGÞ [20]. By
performing this integral and equatingM ¼ MΛ, we find the
vanishing velocity radius as R ¼ ð3M=ΛÞ1=3 that is exactly
equal to the ZGR r̄. Therefore, this is the radius at which
the cosmological constant compensates the gravitational
attraction of the black hole, and hence the effective gravity
vanishes as we discussed after Eq. (58). Note that the
angular velocity of the emitter (57) also vanishes for re ¼
ð3M=ΛÞ1=3 which means the emitter is static at this point
as well.
Now, by replacing rd ¼ R ¼ ð3M=ΛÞ1=3 in Eq. (67) and

solving Ur
dðrd ¼ RÞ ¼ 0, one can find the energy of the

detector as below

Ed ¼

0
BB@3a2

h�
3M
Λ

�
1=3

−M
i
− 9M

h�
3M
Λ

�
2=3

− 1
Λ

i
a2
�
3M
Λ

�
1=3ð3þ Λa2Þ þ 9M

�
a2 þ 1

Λ

�
1
CCA

1
2

: ð69Þ

In this way, the 4-velocity components (66) and (67) can
be written as

Ut
d ¼

0
BB@3a2

h�
3M
Λ

�
1=3

−M
i
− 9M

h�
3M
Λ

�
2=3

− 1
Λ

i
a2
�
3M
Λ

�
1=3ð3þ Λa2Þ þ 9M

�
a2 þ 1

Λ

�
1
CCA

1
2

×
ða2 þ r2dÞ2 − a2Δd

r2dΔd
Ξ; ð70Þ

ðUr
dÞ2 ¼

0
BB@3a2

h�
3M
Λ

�
1=3

−M
i
− 9M

h�
3M
Λ

�
2=3

− 1
Λ

i
a2
�
3M
Λ

�
1=3ð3þ Λa2Þ þ 9M

�
a2 þ 1

Λ

�
1
CCA

×
ða2 þ r2dÞ2 − Δda2

r4d
−
Δd

r2d
; ð71Þ

in terms of the black hole parameters.

C. Frequency shift versus parameters
of spacetime and the Hubble law

For this configuration, i.e. circularly orbiting emitters
and radial motion of detectors, the general expression for
the frequency shift of photons (50) reduces to

1þ zKdS1;2 ¼
ðEγUt −LγUφÞje
ðEγUt − grrUrkrÞjd

¼ Ut
e − beð∓ÞU

φ
e

Ut
d − gdUr

d

�
krd
Eγ

� ; ð72Þ

where we defined the light bending parameter b as b≡
Lγ=Eγ that represents the deflection of light due to
gravitational field in the vicinity of the KdS black hole.
Besides, gd ¼ grrðr ¼ rdÞ is given in (3) and the ratio
krd=Eγ can be written as [from Eq. (61)]

�
krd
Eγ

�
2

¼ ½ða2 þ r2dÞ − abdð∓Þ �2 − Δdðbdð∓Þ − aÞ2
r2d

: ð73Þ

Note that b, presented in Eqs. (72) and (73), is preserved
along the whole light path followed by photons from their
emission till their detection due to the fact that Eγ and Lγ

are constants of motion. Therefore, one can set be ¼ bd
without loss of generality. Moreover, the subscript ð∓Þ
signs refer to the deflection of light b at either side of the
line of sight, whereas the subindices 1 and 2 in Eq. (72)
correspond to the ð−Þ and ðþÞ signs, respectively.
On the other hand, the maximum value of the light

bending parameter is given by the condition kr ¼ 0, where
the position vector of orbiting stars with respect to the black
hole center is approximately orthogonal to the line of sight.
Thus, we substitute kt and kφ fromEqs. (42) and (43) as well
as the condition kr ¼ 0 in the photons’ equation of motion

kμkμ ¼ 0¼ gttktkt þ grrkrkr þ gφφkφkφ þ 2gtφktkφ; ð74Þ

to find themaximumvalue of the light bending parameter for
the rotating metric (2) as follows:

bð�Þ ¼ −
gtφð�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2tφ − gttgφφ

q
gtt

; ð75Þ

where in terms of the KdS black hole parameters, we have
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bð�Þ ¼
1

r
h
1 − Λ

3
ðr2 þ a2Þ

i
− 2M

×

"
−2Ma −

Λ
3
arðr2 þ a2Þ

ð�Þr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2 − 2Mr −

Λr2

3
ðr2 þ a2Þ

r #
; ð76Þ

for equatorial circular orbits. In this formula, the sign of b
denotes the redshifted and blueshifted photons when their
source is corotating with respect to the black hole angular
momentum, and vice versa if it is counterrotating. In other
words, in the frequency shift formulas [like Eq. (72)], the
minus sign enclosed in parentheses corresponds to the
redshifted photons, whereas the plus sign indicates blue-
shifted ones.
Now, we can substitute gd, Ut

e, U
φ
e , Ut

d, U
r
d, k

r
d=Eγ , and

beð∓Þ , respectivly, from Eqs. (3), (56), (57), (70), (71), (73),
and (76) into (72) to find the final expressions for the
redshift zKdS1 and blueshift zKdS2 of the KdS spacetime as
follows:

1þ zKdS1 ¼
r
3
2
e � a

�
M − Λr3e

3

�1
2 � be−

�
M − Λr3e

3

�1
2

ΓX�
; ð77Þ

1þ zKdS2 ¼ 1þ zKdS1fbe− → beþg; ð78Þ

with

Γ ¼ 1

r2dΔdΞ

�
½ða2 þ r2dÞ2 − a2Δd�EdΞ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ r2dÞ2E2

d − Δdðr2d þ a2E2
dÞ

q
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ða2 þ r2dÞ − abe− �2 − Δdðbe− − aÞ2

q �
; ð79Þ

where be− ¼ bð−Þjr¼re
, beþ ¼ bðþÞjr¼re

, and the upper

(lower) sign refers to a corotating (counterrotating) emitter.
Note that the explicit expressions of zKdS1;2 in terms of the
black hole parameters have cumbersome forms, but are not
hard to be found since it is a matter of substituting X�, Δd,
Ξ, be− , and Ed in the above-mentioned equations.
The general behavior of zKdS1;2 versus the detector radius

rd for different values of the cosmological constant is
illustrated in Fig. 4. Interestingly, one can see that the shift
in frequency of photons increases as the cosmological
constant Λ increases. On the other hand, the farther the
detector is from the source, the higher shift in frequency it
observes. This is because the amount of dark energy
between the emitter and detector increases by increasing
the distance leading to larger changes in the frequency. This

is what we expected from the repulsive nature of the
cosmological constant, and in this study, the change in the
frequency shift due to this effect is quantified through
Eqs. (77) and (78). This fact leads one to extract the Hubble
law in its original form from zKdS1;2 by taking into account
some physically motivated approximations as we shall
show below.
Before deriving the Hubble law, one may note that the

frequency shift of KdS black holes (72) contains two
components including the gravitational redshift zg as well
as kinematic redshifts and blueshifts zkin� so that (see [5]
for more details)

zKdS1;2 ¼ zg þ zkin� : ð80Þ

The gravitational redshift zg of circular motion in the
equatorial plane around the KdS background reads

zg ¼
Ut

e − bcU
φ
e

Ut
d − gdUr

d

�
krd
Eγ

� ; ð81Þ

where bc is the light-bending parameter of a light ray
emitted radially at the central point (on the line of sight).
The central light bending bc is a nonvanishing quantity in
rotating spacetimes due to the dragging effect and can be
obtained by considering the condition kφ ¼ 0 as follows:

bc ¼ −
gtφ
gtt

¼ −
6M þ Λreðr2e þ a2Þ

3re − 6M − Λreðr2e þ a2Þ a; ð82Þ

where the second equality refers to the equatorial circular
orbits around the KdS black hole. Having the gravitational
redshift zg (81) and the central light bending parameter bc
(82) at hand, we are able to quantify all three frequency
shift components, namely the KdS shift zKdS1;2 , the gravi-
tational redshift zg, and the kinematic redshift zkin� by
considering the relation (80) [note that bdð∓Þ in Eq. (73)
should also be modified to bc]. The importance of these
relations becomes more clear when one is going to quantify
the contribution of the gravitational redshift in the vicinity
of a compact object. However, in what follows, we
concentrate our attention on the KdS frequency shift
zKdS1;2 which is an observable quantity.
It is worth mentioning that for real astrophysical systems

consisting of supermassive black holes orbited by an
accretion disk containing photon sources in the form of
water vapor clouds (the so-called megamasers), usually, the
emitter radius is at subparsec scale (re < 1pc) while the
detector radius is at tens of megaparsec scale to be within
the Hubble flow (rd > 30 Mpc). On the other hand, the
mass and angular momentum of the black holes are of the
event horizon radius orderM;a ∼ rþ, and the cosmological
constant is of the order Λ ∼ 10−52m−2 [20]. Therefore, for a
configuration including a supermassive black hole of the
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order of 106 solar masses in the Hubble flow, we have
rþ ∼ 1010m, re < 106rþ, rd > 1013rþ, and Λ ∼ 10−32r−2þ
which leads to the following facts:

Λa2 ∼ 10−32; Λr2e < 10−20;
M
rd

< 10−13; ð83Þ

M
re

> 10−6; Λr2d > 10−6: ð84Þ

Hence, we can ignore the negligible terms
fΛa2;Λr2e;M=rdg and keep dominant terms fM=re;Λr2dg
for tracking the general relativistic effects. As the next
stage, we expand Eqs. (77) and (78) for fΛr2e → 0;Λa2 →
0;M=rd → 0;Λr2d → 0g and keep the first dominant term
in Λr2d, to get

1þ zKdS1;2 ≈ ð1þ zKerr1;2Þð1þ zΛÞ; ð85Þ

where zΛ ¼ ffiffiffiffiffiffiffiffiffi
Λ=3

p
rd is the contribution of the cosmologi-

cal constant in the redshift, and the factors 1þ zKerr1;2 have
the following explicit forms

1þ zKerr1 ¼
ð1 − 2M̃Þ � M̃1=2

�
ãþ

ffiffiffiffiffiffiffiffiffiffi
Δ̃Kerr

p �
ð1 − 2M̃Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M̃ � 2ãM̃1=2

p ; ð86Þ

1þ zKerr2 ¼
ð1 − 2M̃Þ � M̃1=2

�
ã −

ffiffiffiffiffiffiffiffiffiffi
Δ̃Kerr

p �
ð1 − 2M̃Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M̃ � 2ãM̃1=2

p ; ð87Þ

that are the frequency shifts in the standard Kerr
spacetime found in [5] with M̃ ¼ M=re, ã ¼ a=re, and
Δ̃Kerr ¼ 1þ ã2 − 2M̃.
The Hubble constant H0 is related to the cosmological

constant with [20]

FIG. 4. The redshift zKdS1 and blueshift zKdS2 versus the detector distance rd for the corotating branch (left panels) and counterrotating
branch (right panels). The emitter is orbiting circularly at the radius re ¼ 2rISCO for either curve, and we set M ¼ 1. The curves start at
ZGR rd ¼ r̄ ¼ ð3M=ΛÞ1=3 on the left and terminate before the cosmological horizon rd < rc on the right.
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H0 ¼
ffiffiffiffiffiffiffiffiffi
Λ

3ΩΛ

s
; ð88Þ

where ΩΛ is the cosmological constant density parameter.
For the special case of ΩΛ ¼ 1 (the Universe filled with
dark energy, i.e., in the absence of matter), we recover the
Hubble law from zΛ ¼ ffiffiffiffiffiffiffiffiffi

Λ=3
p

rd as

zΛ ¼ H0rd; ð89Þ

in which zΛ represents the velocity of the host galaxy going
away from the detector and rd is the distance between the
black hole and the observer. By introducing the relation
(88) in Eq. (85), we can obtain the frequency shift in the
KdS background in terms of the Kerr black hole parameters
and the Hubble constant as below

1þ zKdS1;2 ≈ ð1þ zKerr1;2Þ
�
1þ

ffiffiffiffiffiffiffi
ΩΛ

p
H0rd

�
; ð90Þ

an expression that can be employed to obtain H0 as well as
black hole parameters. Therefore, we extracted the Hubble
law by considering the frequency shift of stars orbiting
around Kerr black holes in asymptotically dS spacetime
detected by a far-away observer.
Note that the formula (90) does not constitute a simple

multiplication of 1þ zKerr1;2 and 1þ ffiffiffiffiffiffiffi
ΩΛ

p
H0rd by hand,

since here the second factor arose quite naturally as a
dominant term of the cosmological redshift from general
relativistic considerations, while the most general and
complicated expressions are given through the rhs of
Eqs. (77) and (78). This formula suggests that the photons
emitted from massive geodesic particles revolving KdS
black hole contain information about mass M, spin a, and
the cosmological constant Λ when they arrive at the
detector. This information is encoded in the frequency
shift of these photons, denoted by zKdS1;2 in Eq. (90), and is
a directly observable quantity. Hence, the set of spacetime
parameters fM; a;Λg can be estimated by performing a
statistical fit [15–18] and sometimes analytically
expressed by solving an inverse problem like in [5]. In
other words, the formula (90) allows extracting the
properties of spacetime characterized by the black hole
massM and spin a as well as the cosmological constant Λ
through measuring shifts in the frequency of pho-
tons zKdS1;2 .

D. Schwarzschild black hole mass and the Hubble
constant in terms of redshift/blueshift

Here, we obtain analytical formulas for the
Schwarzschild black hole mass and the Hubble constant
in terms of frequency shifts of photons. Then, we recover
the Hubble law from the latter analytic expression.

For the static Schwarzschild black holes, the redshift
formula (90) reduces to (for ΩΛ ¼ 1)

1þ zSdS1;2 ≈ ð1þ zSchw1;2
Þð1þH0rdÞ; ð91Þ

where zSdS1;2 is the frequency shift of SdS black holes and
zSchw1;2

is the frequency shift of the Schwarzschild black
holes that can be determined by taking the limit ã → 0 in
(86) and (87) as follows:

1þ zSchw1;2
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3M̃
p

0
B@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M̃

1 − 2M̃

s 1
CA; ð92Þ

in which the upper (lower) sign refers to redshifted (blue-
shifted) particles [37]. Now, one can use Eqs. (91) and (92)
to get

RB ¼ ð1þH0rdÞ2
1 − 2M̃

; ð93Þ

R
B
¼ 1 − M̃ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M̃ð1 − 2M̃Þ

p
1 − 3M̃

; ð94Þ

where R ¼ 1þ zSdS1 and B ¼ 1þ zSdS2 . As the next step,
we solve the first equation (93) to obtain the Schwarzschild
black hole mass as below

M̃ ¼ RB − ð1þH0rdÞ2
2RB

; ð95Þ

in terms of the frequency shift andH0rd product. It is worth
noticing that when theH0 constant vanishes, we recover the
mass formula as a function of R and B obtained in [5]. In
order to find the dependency of H0rd-term on the redshift,
we replace (95) in Eq. (94) and solve for H0 as

H0 ¼
1

rd

 
−1þ ðRþ BÞ ffiffiffiffiffiffiffi

RB
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3R2 þ 3B2 − 2RB
p

!
; ð96Þ

which gives the Hubble constant in terms of the frequency
shift R and B of the massive geodesic particles on either
side of the Schwarzschild black hole as well as the detector
distance to the black hole rd. Therefore, the H0rd product
appearing in (96) can be used to expressed the mass relation
(95) in terms of the redshift and blueshift only.
Alternatively, from Eq. (94) it is straightforward to obtain
the following expression

M̃ ¼ ðR − BÞ2
3R2 þ 3B2 − 2RB

; ð97Þ

for the mass parameter defined by purely observational
quantities R and B.
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For the special case M̃ ≪ 1, we obtain R ≈ B [see
Eq. (94)]. In this situation, the redshift zSdS1 and blueshift
zSdS2 are almost equal zSdS1 ≈ zSdS2 ≡ z. Thus, we recover
the Hubble law for this case from the analytic expression
(96) by taking the limit R → B as follows:

z ¼ H0rd: ð98Þ

It is worthwhile to mention that finding a relation of the
form (91) [or Eq. (90) for the rotating case] has another
significant importance practically. For instance, in the case
of accretion disks circularly orbiting supermassive black
holes in the center of AGNs within the Hubble flow, the
total redshift of emitted photons is given by

1þ ztot1;2 ¼ ð1þ zSchw1;2
Þð1þ zrecÞ; ð99Þ

in which the recessional redshift of galaxies zrec is
composed by [38]

1þ zrec ¼ ð1þ zCosmÞð1þ zBoostÞ; ð100Þ

where zCosm is the cosmological redshift due to the
accelerated expansion of the Universe and zBoost is a special
relativistic redshift due to the peculiar motion produced by
the local gravity effects (see [15–18] when the geometry of
the central objects was described by the Schwarzschild line
element). In this relation, since zCosm and zBoost do not
depend on the metric, the cosmological redshift and the
peculiar redshift become degenerate and we can just obtain
zrec, but not zCosm and zBoost separately. On the contrary,
since the dependency of zCosm on the metric derived in (91)
as zCosm ¼ H0rd is explicit [or more completely in
Eqs. (77) and (78)], this fact can help to break the
degeneracy between zCosm and zBoost, allowing us to
estimate both of these frequency shifts separately.
As the final point, we would like to discuss how to

measure the black hole parameters by employing this
formalism a little bit. In order to apply the present method
to real astrophysical systems, like the megamasers orbiting
a central black hole in AGNs, one can use the approxi-
mation re ≈ δrd such that δ is the aperture angle of the
telescope that is a measurable quantity. Thus, in the case of
static Schwarzschild black holes, the total redshift is a
function of zSchw1;2

¼ zSchw1;2
ðM; rdÞ and we can employ

Eq. (97) to compute the mass-to-distance ratio M=rd in
terms of the observable quantities zSchw1

and zSchw2
, as it

was accomplished for the central black hole of NGC 4258
in [15] and more sixteen galaxies in [16–18]. Moreover, if
the distance to the central black hole of the galaxy rd is
known from a different astrophysical experiment, then we
can determine the Schwarzschild black hole mass M alone
(see [16] for the TXS 2226-184 galaxy, for instance).

Alternatively, the total redshift is a function of zSdS1;2 ¼
zSdS1;2ðM; rd;ΛÞ in the case of SdS black holes, hence one
can basically estimateM, rd, andΛ (orH0) with the aid of a
statistical fit for AGNs within the Hubble flow. In this case,
the Bayesian fitting method allows us to estimate M, rd,
and Λ separately (not the mass-to-distance ratio M=rd)
since the functional dependence of the total redshift on rd in
Eqs. (91) and (92) is different in the first term and the
second term. With observational data detected from areas
close enough to the black hole at hand, in principle we can
also try to estimate the rotation parameter a by employing
Eqs. (85)–(87).

IV. DISCUSSION AND FINAL REMARKS

In this paper, we have taken into account the KdS
solutions and analytically obtained valid parameter space
for having KdS black holes. Then, we have expressed the
frequency shift of photons emitted by massive geodesic
particles, stars for instance, that are circularly orbiting
the KdS black holes in terms of the parameters of
spacetime, such as the black hole mass, angular momen-
tum, and cosmological constant. For this purpose, we have
considered the detectors to be in radial motion with respect
to the emitter-black hole system and employed a general
relativistic formalism that was briefly described through
the text.
In addition, we have seen that the shift in frequency of

photons increases with an increase in the cosmological
constant as well as the detector distance to the emitter-black
hole system that was compatible with the repulsive nature
of the cosmological constant. Hence, this observation led us
to extract the Hubble law from the original redshift
formulas by taking into account some physically motivated
approximations.
Moreover, we have found analytic expressions for the

Schwarzschild black hole mass and the Hubble constant in
terms of the observational frequency shifts of massive
particles orbiting circularly this static spherically symmet-
ric black hole. Interestingly, we have also shown that the
Hubble law arose naturally from the exact formula of the
Hubble constant (96). The concise and elegant formulas
that we have found allow us to extract the properties of
spacetime characterized by the black hole mass and spin as
well as the cosmological constant through measuring shifts
in the frequency of photons.
Now, we finish our paper with a couple of suggestions

for future work. It would be interesting to employ and
generalize this work in some other directions. For instance,
in this study, we were interested in emitters in the range
re ∈ ½rISCO; rOSCO� and far-away detectors within
rd ∈ ðr̄; rcÞ, describing the black hole systems in the
Hubble flow. However, this formalism can be generalized
for circularly orbiting (or static) detectors as well for
possible local tests of the accelerated expansion of the
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Universe. On the other hand, the formula (91) can be
employed to estimate the Schwarzschild black hole mass
M, the distance rd to the black hole, and the Hubble
constant H0 (or the cosmological constant Λ) by using
accretion discs circularly orbiting supermassive black holes
hosted at the core of AGNs with the help of Bayesian fitting
methods. Our primary estimations of H0 based on the
observational data of galaxies within the Hubble flow show
that this approach could be a powerful tool to obtain the
Hubble constant alongside the black hole parameters. This
investigation is currently under consideration.
Finally, we would like to stress that the H0 expression,

that we obtained in (96) with the help of the KdS metric,
represents a first step towards a more realistic parametriza-
tion of H0 in terms of observable quantities that also

considers the matter content of the Universe, in consistency
with the Λ-cold dark matter cosmological standard model.
We are currently studying this problem and hope to report
on it in the near future.
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