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The detection of gravitational waves from the coalescences of binary compact stars by current
interferometry experiments has opened up a new era of gravitational-wave astrophysics and cosmology.
The search for a stochastic gravitational-wave background is underway by correlating signals from a pair of
detectors in the detector network formed by the LIGO, Virgo, and KAGRA. In a previous work, we have
developed a method based on spherical harmonic expansion to calculate the overlap reduction functions of
the LIGO-Virgo-KAGRA network for a polarized stochastic gravitational-wave background. In this work,
we will apply the method to calculate the overlap reduction functions of third-generation detectors such as
a ground-based network linking the Einstein Telescope, the Cosmic Explorer, and the LISA-Taiji joint
space mission.
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I. INTRODUCTION

The successful detection of gravitational waves (GWs)
from compact binary coalescences in the LIGO-Virgo-
KAGRA collaboration [1] has accelerated the implementa-
tion of third-generation detectors such as the ground-based
Einstein Telescope [2] and Cosmic Explorer [3], as well
as the space-borne LISA [4], DECIGO [5], Taiji [6], and
Tianqin [7].
Stochastic gravitational-wave background (SGWB) is

one of the main goals in GW experiments [8]. Many
astrophysical and cosmological sources for SGWB at
various frequency ranges have been proposed, including
distant merging compact binaries, early phase transitions,
cosmic string or domain wall networks, second-order
density perturbations, and inflationary GWs. These relic
GWs provide a powerful probe into the production mech-
anisms deep in the early Universe; however, they still
remain elusive in detection. It is indeed a big challenge to
observation because the background level is highly uncer-
tain and dependent on the origin of the sources as well as
the frequency ranges. Recently, using the data from
Advanced LIGO’s and Advanced Virgo’s third observing
run (O3), combined with the earlier O1 and O2 runs, upper
limits have been derived on an isotropic SGWB with the
spectral energy density of ΩGWðfÞ ≤ 3.4 × 10−9 at a
reference frequency of f ¼ 25 Hz for a fα power-law
spectrum with a spectral index of α ¼ 2=3 and ΩGW ≤
5.8 × 10−9 for a frequency independent SGWB [9].
In general, the SGWB can be anisotropic and polarized.

There have been a lot of works that provide mechanisms to

generate intensity and polarization anisotropies in the
SGWB. A net circular polarization of the SGWB is
predicted when helical GWs are produced in specific axion
inflation models involving axion-gauge-field interactions
[10–13]. Intensity anisotropies of the SGWB has been
recently explored [14,15]. Furthermore, linear polarization
can be generated through multiple gravitational Compton
scattering processes off of massive compact objects during
the GW propagation across the large scale structures of the
Universe [16,17]. The Advanced LIGO and Advanced
Virgo has further placed an upper limit on an anisotropic
SGWB, ranging from ΩGWðfÞ < ð0.57 − 9.3Þ × 10−9 sr−1

at f ¼ 25 Hz, depending on observational direction and
spectral index [18]. Recently, there has been a search for a
nonzero circular polarization in the LIGO-Virgo O3 data,
concluding that there is no preference for helical versus
nonhelical GWs in the SGWB [19].
The current method in GW interferometry experiments

for detecting SGWB is to correlate the responses of a pair
of detectors with a fixed baseline to the GW strain
amplitude. This allows us to reduce uncorrelated detector
noises and obtain a large GW signal [8]. The correlation is a
mapping of the SGWB sky with the overlap reduction
functions (ORFs) of the detector pair [13,20–30], thus
encoding the intensity and polarization anisotropies or the
Stokes parameters of the SGWB in the correlation data. In
our previous work [31], we have provided a method based
on spherical harmonic expansion of the polarization basis
tensors, from which a fast numerical algorithm is developed
to compute ORF multipoles of the detector pair with
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respect to the SGWB Stokes parameters. This fast compu-
tation of the ORFs will be necessary for constructing data
pipelines to extract the anisotropy and polarization power
spectra in future SGWB measurements. In this paper, we
will apply this method to calculate the ORF multipoles of
the detector pairs formed by the LISA and the Taiji space
missions, as well as the Einstein Telescope and the Cosmic
Explorer (ET-CE) ground-based detectors.
The paper is organized as follows. The next section

introduces SGWB, whose correlated signals and ORFs in
interferometers are recapitulated in Secs. III and IV,
respectively. The long-wavelength limit for the response
of an equilateral triangle of interferometers will be dis-
cussed in Sec. V. In Secs. VI and VII, we will work out the
ORF multipoles for the Einstein Telescope-Cosmic
Explorer network and the LISA-Taiji network, respectively.
Section IX is our conclusion.

II. POLARIZED SGWB

In the Minkowskian spacetime ðt; x⃗Þ, the metric pertur-
bation hij in the transverse traceless gauge depicts traveling
GWs at the speed of light c ¼ ω=k. It can be expanded by
Fourier modes as

hijðt; x⃗Þ ¼
X
A

Z
∞

−∞
df

Z
S2
dk̂hAðf; k̂ÞeAijðk̂Þe−2πifðt−k̂·x⃗=cÞ;

ð1Þ

where A stands for the polarization of GWs with the basis
tensors eAijðk̂Þ, which are transverse to the propagation

direction, k̂. Here hij is treated as real, so the Fourier
components with negative frequencies are given by
hAð−f; k̂Þ ¼ h�Aðf; k̂Þ for all f ≥ 0. We define a SGWB
as a collection of GWs satisfying the condition that hij are
random Gaussian fields with a statistical behavior com-
pletely characterized by the two-point correlation function
hhijðt; x⃗1Þhijðt; x⃗2Þi, where the angle brackets denote their
ensemble averages. The ensemble averages of the Fourier
modes have the following form:

hhAðf; k̂Þh�A0 ðf0; k̂0Þi ¼ δðf − f0Þδðk̂ − k̂0ÞPAA0 ðf; k̂Þ; ð2Þ

where the spatial translational invariance dictates the delta

function of their 3-momenta, δðk⃗ − k⃗0Þ. Note that the power
spectra PAA0 ðf; k̂Þ remain to be direction dependent.
For GWs coming from the sky direction −k̂ with wave

vector k⃗, it is customary to write the polarization basis
tensors in terms of the basis vectors in the spherical
coordinates,

eþðk̂Þ ¼ êθ ⊗ êθ − êϕ ⊗ êϕ;

e×ðk̂Þ ¼ êθ ⊗ êϕ þ êϕ ⊗ êθ; ð3Þ
in which êθ, êϕ, and k̂ form a right-handed orthonormal
basis. Also, we can define the complex circular polarization
basis tensors as

eR ¼ ðeþ þ ie×Þffiffiffi
2

p ; eL ¼ ðeþ − ie×Þffiffiffi
2

p ; ð4Þ

where eR stands for the right-handed GW with a positive
helicity while eL stands for the left-handed GW with a
negative helicity. The corresponding amplitudes in Eq. (1)
in the two different bases are related to each other via

hR ¼ ðhþ − ih×Þffiffiffi
2

p ; hL ¼ ðhþ þ ih×Þffiffiffi
2

p : ð5Þ

The coherency matrix PAA0 in Eq. (2) is related to the
Stokes parameters, I, Q, U, and V as

I ¼ ½hhRh�Ri þ hhLh�Li�=2;
Qþ iU ¼ hhLh�Ri;
Q − iU ¼ hhRh�Li;

V ¼ ½hhRh�Ri − hhLh�Li�=2; ð6Þ

which are functions of the frequency f and the propagation
direction k̂. I is the intensity, Q and U represent the linear
polarization, and V is the circular polarization.

III. SIGNAL CORRELATION

The signal haðta; x⃗aÞ in a 90° GW interferometer a, such
as LIGO, Virgo, or KAGRA, located at x⃗a can be expressed
as the contraction of the metric perturbation hijðt; x⃗Þ and

the detector tensor dija of the detector:

haðta; x⃗aÞ ¼ dija hijðta; x⃗aÞ;

¼ dija
X
A

Z
∞

−∞
df

Z
S2
dk̂hAðf; k̂ÞeAijðk̂Þe−2πifðta−k̂·x⃗a=cÞ; ð7Þ

where the detector tensor is

dija ¼ 1

2
ðXi

aX
j
a − Yi

aY
j
aÞ; ð8Þ

GUO-CHIN LIU and KIN-WANG NG PHYS. REV. D 107, 104040 (2023)

104040-2



with Xi
a being the ith component of the unit vector along the X arm of the detector, while Yi

a represents the Y arm.
The correlation of signals in a pair of detectors a and b can be expressed in terms of the baseline vector r⃗≡ x⃗a − x⃗b and

the time delay τ≡ ta − tb. In frequency domain, we have

ξabðf; r⃗Þ ¼
Z

T=2

−T=2
dτhhaðta; x⃗aÞh�bðtb; x⃗bÞie2πifτ;

¼ dija dklb

Z
S2
dk̂

X
AA0

PAA0 ðf; k̂ÞeAijðk̂Þe�A0
kl ðk̂Þe2πifðk̂·r⃗=cÞ;

¼
X

S¼fI;V;Q�iUg

Z
S2
dk̂Sðf; k̂ÞijklDabES

ijklðk̂Þe2πifðk̂·r⃗=cÞ; ð9Þ

where the Fourier integral is taken over an interval T within
which the orientation and the condition of the detectors are
approximately fixed. In addition, the interval T has to be
large enough when compared with the period of GW
signals in the detectors. In Eq. (9), the polarization tensors
ES associated with the corresponding Stokes parameters are
defined as

EI
ijklðk̂Þ ¼ eRijðk̂Þe�Rkl ðk̂Þ þ eLijðk̂Þe�Lkl ðk̂Þ;

EV
ijklðk̂Þ ¼ eRijðk̂Þe�Rkl ðk̂Þ − eLijðk̂Þe�Lkl ðk̂Þ;

EQþiU
ijkl ðk̂Þ ¼ eLijðk̂Þe�Rkl ðk̂Þ;

EQ−iU
ijkl ðk̂Þ ¼ eRijðk̂Þe�Lkl ðk̂Þ; ð10Þ

whileDab denotes the direct product of two detector tensors

ijklDab ¼ dija ðθa;ϕa; σaÞdklb ðθb;ϕb; σbÞ; ð11Þ

where the coordinate angles are illustrated in Fig. 1. We
further define the ORFs as

γSðk̂; f; r⃗Þ ¼ D · ESðk̂Þe2πifðk̂·r⃗=cÞ: ð12Þ

In our previous work [31], we compute the correlation
(9) in the spherical harmonic basis:

ξabðfÞ ¼
X

S¼fI;V;Q�iUg

X
lm

SlmðfÞγSlmðfÞ; ð13Þ

where we have expanded the Stokes parameters in terms of
ordinary and spin-weighted spherical harmonics as

Iðf; k̂Þ ¼
X
lm

IlmðfÞYlmðk̂Þ;

Vðf; k̂Þ ¼
X
lm

VlmðfÞYlmðk̂Þ;

ðQþ iUÞðf; k̂Þ ¼
X
lm

ðQþ iUÞlmðfÞþ4Ylmðk̂Þ;

ðQ − iUÞðf; k̂Þ ¼
X
lm

ðQ − iUÞlmðfÞ−4Ylmðk̂Þ; ð14Þ

so, as the ORFs,

γI;VlmðfÞ ¼
Z
S2
dk̂Ylmðk̂ÞγI;Vðk̂; fÞ; ð15Þ

γQ�iU
lm ðfÞ ¼

Z
S2
dk̂�4Ylmðk̂ÞγQ�iUðk̂; fÞ: ð16Þ

By plugging Eq. (12) into Eqs. (15) and (16), expanding
the polarization basis tensors as

EI
ijklðk̂Þ ¼

X
leme

ijklE
I
leme

Yleme
ðk̂Þ;

EV
ijklðk̂Þ ¼

X
leme

ijklE
V
leme

Yleme
ðk̂Þ;

EQþiU
ijkl ðk̂Þ ¼

X
leme

ijklE
QþiU
leme −4Yleme

ðk̂Þ;

EQ−iU
ijkl ðk̂Þ ¼

X
leme

ijklE
Q−iU
leme

þ4Yleme
ðk̂Þ; ð17Þ

and using the spherical wave expansion:

FIG. 1. Convention of angles. x⃗a, x⃗b represent the positions of
detector a and detector b, respectively. r⃗ is the baseline. σa and σb
are the angles between the great circle connecting the pair a − b
and the X arms of detector a and detector b, respectively.
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eik⃗·r⃗ ¼ 4π
X∞
l¼0

Xl
m¼−l

iljlðkrÞY�
lmðk̂ÞYlmðr̂Þ; ð18Þ

where jlðxÞ is the spherical Bessel function, we obtain the ORF multipoles as

γI;VlmðfÞ ¼ ð4πÞ
X
m0

Dl
m0mð−α;−θa;−ϕaÞ

X
leme

D0 · E
I;V
leme

X
LM

iLjL

�
2πfr
c

�
YLMðr̂0Þ

�
L le l

M 0me 0m0

�
; ð19Þ

γQ�iU
lm ðfÞ ¼ ð4πÞ

X
m0

Dl
m0mð−α;−θa;−ϕaÞ

X
leme

D0 · E
Q�iU
leme

X
LM

iLjL

�
2πfr
c

�
YLMðr̂0Þ

�
L le l

M ∓4me �4m0

�
; ð20Þ

where we have used the shorthand notation for the integral of three spherical harmonics given by

�
L l1 l2
M s1m1 s2m2

�
≡

Z
dk̂Y�

LMðk̂Þs1Yl1m1
ðk̂Þs2Yl2m2

ðk̂Þ;

¼ ð−1ÞM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Lþ 1Þð2l1 þ 1Þð2l2 þ 1Þ

4π

r �
L l1 l2
0 −s1 −s2

��
L l1 l2
−M m1 m2

�
; ð21Þ

which involves two Wigner-3j symbols [32]. In Eqs. (19)
and (20), D0 · ES are the antenna pattern functions evalu-
ated in a coordinate system by placing the detector a at the
north pole of the Earth and the detector b on the ϕ ¼ 0
meridian. They are listed in Appendix B. In this coordinate
system, the corresponding baseline direction r̂0 is

r̂0 ¼ ðθr0 ;ϕr0Þ ¼
�
β − π

2
; 0

�
¼

�
π − β

2
; π

�
: ð22Þ

The Wigner-D matrices Dl
m0mð−α;−θa;−ϕaÞ, where

ðθa;ϕaÞ is the spherical coordinates of the detector a
and α is the angle between its meridian and the great
circle connecting the pair a − b as shown in Fig. 1, account
for the rotation of the whole pair of detectors to their actual
positions. They are related to the spin-weighted spherical
harmonics by

Dl
smðα; β; γÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
−sYlmð−β;−γÞe−isα: ð23Þ

Also, the ORF multipoles have the conjugate relations:

γI;Vl−m ¼ ð−1ÞlþmγI;V�lm ; ð24Þ

γQ�iU
l−m ¼ð−1ÞlþmγQ�iU�

lm : ð25Þ

IV. OVERLAP REDUCTION FUNCTIONS

A. Isotropic SGWB

For an isotropic SGWB, the only relevant ORFs are γI00
and γV00. From Eq. (19) and Appendix B, we reproduce the
known analytic results found in Ref. [28]:

γI00ðfÞ ¼
ffiffiffiffiffiffi
4π

p X
leme

D0 · EI
leme

ilejle

�
2πfr
c

�
Yleme

ðr̂0Þ;

¼ cosð2ðσ1 − σ2ÞÞC1ðfÞ
þ cosð2ðσ1 þ σ2Þ þ πÞC2ðfÞ; ð26Þ

γV00ðfÞ ¼
ffiffiffiffiffiffi
4π

p X
leme

D0 · EV
leme

ilejle

�
2πfr
c

�
Yleme

ðr̂0Þ;

¼ − sinð2ðσ1 þ σ2Þ þ πÞC3ðfÞ; ð27Þ
which do not depend on the orientation of the detector pair
as expected for an isotropic source, and where

C1ðfÞ ¼
4

ffiffiffi
π

p
5

��
j0 þ

5j2
7

þ 3j4
112

�
cos4

�
β

2

��
;

C2ðfÞ ¼
4

ffiffiffi
π

p
5

��
−3j0
8

þ 45j2
56

−
169j4
896

�
þ
�
j0
2
−
5j2
7

−
27j4
224

�
cosðβÞ þ

�
−
j0
8
−
5j2
56

−
3j4
896

�
cosð2βÞ

�
;

C3ðfÞ ¼
4

ffiffiffi
π

p
5

sin

�
β

2

���
−j1 þ

7j3
8

�
þ
�
j1 þ

3j3
8

�
cosðβÞ

�
:
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B. SGWB anisotropy and polarization

Numerical results of the ORF multipole moments for
l ≤ 4 in Eqs. (19) and (20) for the pair formed by LIGO-
Hanford and LIGO-Livingston are obtained in Ref. [31],
where γIlms and γV00 match those made in Ref. [30], and the
ORF multipoles for circular and linear polarizations are
also found.

V. EQUILATERAL TRIANGULAR DETECTOR

Third-generation GW detectors such as the Einstein
Telescope [2] and LISA [4] have three arms in an
equilateral triangular shape. This allows the detectors to
resolve both GW polarizations and have better detector
noise characterization. At each vertex of the triangle, a
Michelson interferometer is placed to measure the differ-
ence between the time taken for a laser light to go a round
trip along one interferometer arm and that along the
other arm.
In an ideal situation, the covariance noise matrix of the

three interferometers is symmetric and thus can be dia-
gonalized to form three orthogonal A, E, and T channels
[33,34]. In the low frequency limit (fd=c ≪ 1), where d is
the arm length, the T channel is suppressed and only the A
and E channels are sensitive to GW signals. These two
channels behave as two 90° interferometers separated by
45° with detector tensors dijA and dijE , respectively [35,36].
Figure 2 shows an equilateral triangular GW detector and
the orientation of dA and dE relative to the triangle.
In this paper, we study the observation of the SGWB

made by the ET-CT and the LISA-Taiji detector pairs. The
separation distance r between the pair detectors is typically
much larger than the arm lengths of the detectors. In the
following, we consider GWs in the frequency range that
satisfies the low frequency limit, fd=c ≪ 1, but fr=c is not
necessarily small. This allows us to treat each equilateral
triangular detector as 90° interferometers and use the well-
established method to correlate the signals from the
detector pairs.

VI. EINSTEIN TELESCOPE-COSMIC
EXPLORER PAIR

The Einstein Telescope has equilateral triangular inter-
ferometers of 10 km arm length. The two underground
candidate sites for the ET are under consideration: one in
Sardinia and one at the Euregio Meuse-Rhine. The Cosmic
Explorer has two sites in the United States, one 40 km in
length and a second 20 km in length, each with a 90°
interferometer. The increase in arm length in addition to
new detector technologies will greatly improve the sensi-
tivity and bandwidth of the instruments.
The actual locations and arm orientations for the ET and

the CE are yet to be determined. Suppose the separation
distance between ET and CE be approximately given by
r ≃ 7500 km; then the separation angle will be β ≃ 36°. For
GW frequencies f ≪ 3 × 104 Hz, this network will pro-
vide us with two distinct correlation signals: the CE’s 90°
interferometer with the ET’s dA and dE detector tensors,
respectively. The former has the antenna pattern functions
D0 · ES listed in Appendix B with σ1 ¼ σET;A and σ2 ¼
σCE. The σET;A is the angle between the great circle
connecting ET-CE and the X arm of the ET’s dA, which
is 15° shifted clockwise from one side of the ET triangle as
shown in Fig. 2. The σCE is the angle between the great
circle connecting ET-CE and the X arm of the CE
interferometer in either site. The latter has σ1 ¼ σET;E
and σ2 ¼ σCE, where σET;E ¼ σET;A þ 45°.
Lastly, to compute the ORF multipoles in Eqs. (19) and

(20), one needs theWigner-DmatricesDl
m0mð−α;−θa;−ϕaÞ,

where ðθa;ϕaÞ is the spherical coordinates of the ETand α is
the angle between its meridian and the great circle connecting
ET-CE. Once all the configurational angles are determined,
the ORF multipoles can be readily produced using the same
algorithm developed in Ref. [31]. Since ORFs are oscillatory
functions of the product fr, except some phase differences
due to different configurational angles, the results for the
ORF multipole moments get similar to those for the LIGO’s
Hanford-Livingston pair (whose separation distance is
3002 km) obtained in Ref. [31] by simply rescaling the
frequencybya factor of3002=7500.Hereweare therefore not
to explicitly show the ET-CE ORFs by assuming some
arbitrary configurational angles.

VII. LISA-TAIJI PAIR

LISA has three spacecrafts located at the corners of
an equilateral triangle in space, with each side,
d ¼ 2.5 × 106 km, trailing behind the Earth by 20° in a
heliocentric orbit. The detector plane is inclined to the ecliptic
plane by 30°. The triangle is spinning clockwise as viewed
from the Sun, around its center and synchronous with the
Earth’sorbitwithaperiodof1yr.Taiji’smissionconfiguration
is similar toLISA’s, except that itmoves20° aheadof theEarth
with longer arm length d ¼ 3 × 106 km. Their separation
distance is given by r ¼ 2RE sin 20° ≃ 0.68 AU, where

15o
45o

dA

dE

FIG. 2. An equilateral triangular GW detector. It behaves as two
90° interferometers in the low frequency limit, represented by dA
and dE.
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RE ¼ 1 AU ¼ 1.5 × 108 km. As a result, both detector
planes are tangential to the surface of a sphere centered at
O of radiusR ¼ RE=cos 30° ≃ 1.55 AU, and their separation
angle isβ ¼ 2 sin−1½r=ð2RÞ� ≃ 34.5°. SeeFig. 3 for theLISA-
Taiji network.
Figure 4 shows the dA and dE detector tensors of the

LISA-Taiji pair in the low frequency limit, f ≪ 0.1 Hz.
There are four correlations: A-A, A-E, E-A, and E-E, where
A-A denotes the correlation between the LISA’s dA and the
Taiji’s dA, and so on. Let the angle between the great circle
connecting LISA-Taiji and the X arm of the LISA’s dA be
ϕðtÞ. Then, the angle between the great circle connecting
LISA-Taiji and the X arm of the Taiji’s dA will be given by
ϕðtÞ − ϕ0, where ϕ0 is a constant phase angle difference yet
to be fixed by the mission design. Note that ϕðtÞ is a time-
dependent angle with a spinning period of 1 yr. In Table I,
we summarize the assignment of the angles of the antenna
pattern functions D0 · ES in Appendix B for the four
correlations.

A. Isotropic SGWB

From Eqs. (26) and (27), we have

γI00;AAðfÞ ¼ cosð2ϕ0ÞC1ðfÞ− cosð4ϕ− 2ϕ0ÞC2ðfÞ;
γI00;AEðfÞ ¼ sinð2ϕ0ÞC1ðfÞþ sinð4ϕ− 2ϕ0ÞC2ðfÞ;
γI00;EAðfÞ ¼−sinð2ϕ0ÞC1ðfÞþ sinð4ϕ− 2ϕ0ÞC2ðfÞ;
γI00;EEðfÞ ¼ cosð2ϕ0ÞC1ðfÞþ cosð4ϕ− 2ϕ0ÞC2ðfÞ; ð28Þ

and

γV00;AAðfÞ ¼ −γV00;EEðfÞ ¼ sinð4ϕ − 2ϕ0ÞC3ðfÞ;
γV00;AEðfÞ ¼ γV00;EAðfÞ ¼ cosð4ϕ − 2ϕ0ÞC3ðfÞ: ð29Þ

Note that in general γI00;AE ≠ γI00;EA.
Generally, we can take the sum of A-A and E-E

correlations to obtain from Eq. (13) that

ξabðfÞ ¼ 2I00 cosð2ϕ0ÞC1ðfÞ; ð30Þ

which is sensitive to I00 only. Furthermore, the sum of A-E
and E-A correlations gives

ξabðfÞ ¼ 2I00 sinð4ϕ − 2ϕ0ÞC2ðfÞ
þ 2V00 cosð4ϕ − 2ϕ0ÞC3ðfÞ; ð31Þ

where the C2 and C3 terms are orthogonal to each other, so
I00 and V00 can be extracted from ξab by sine and cosine
transforms in the time-varying ϕðtÞ, respectively.

B. SGWB anisotropy and polarization

To compute the ORF multipoles in Eqs. (19) and (20),
one need the Wigner-D matrices Dl

m0mð−α;−θa;−ϕaÞ,
where ðθa;ϕaÞ is the spherical coordinates of the LISA
and α is the angle between its meridian and the great
circle connecting LISA-Taiji. From Fig. 3, θa ¼ 120°
and α ¼ 79.7°. Without loss of generality, we choose
ϕa ¼ ϕðtÞ, because the orbital and spinning periods are
the same. Overall, the ORF multipoles are dependent on a
single time-varying angle ϕðtÞ. We have made some plots
of the ORF multipoles in Figs. 5–10 for γIlm, Figs. 11–14
for γVlm, and Figs. 15–16 for γQ�iU

lm , by selecting some
representative values for ϕðtÞ and ϕ0.
For an isotropic unpolarized SGWB, it is expected that it

carries a dipole anisotropy due to the Doppler motion of the
detector with respect to the background. Figure 6 shows
that the E-A correlation can select this dipole component.
Furthermore, we can use the A-E correlation to detect
quadrupole or higher-multipole anisotropy, if there is any.
Similarly, Fig. 9 shows that either A-A or E-E correlation
can select the dipole component. Taking the sum of A-A
and E-E correlations can detect quadrupole or higher-
multipole anisotropy.

TABLE I. Angles in the antenna pattern functions for the LISA-
Taiji correlation. σ1;2 are the angles between the great circle
connecting LISA-Taiji and the X arms of the LISA’s and Taiji’s
detector tensors, respectively. A and E denote the A and E
channels, respectively.

Correlation σ1 σ2 σ1 − σ2 σ1 þ σ2

A-A ϕ ϕ − ϕ0 ϕ0 2ϕ − ϕ0

A-E ϕ ϕ − ϕ0 þ π
4

ϕ0 − π
4

2ϕ − ϕ0 þ π
4

E-A ϕþ π
4

ϕ − ϕ0 ϕ0 þ π
4

2ϕ − ϕ0 þ π
4

E-E ϕþ π
4

ϕ − ϕ0 þ π
4

ϕ0 2ϕ − ϕ0 þ π
2

FIG. 3. The LISA-Taiji network.

FIG. 4. The LISA-Taiji detector tensors.
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FIG. 5. Real and imaginary parts of the multipole moments of the intensity A-A and E-E overlap reduction function γIlm for the LISA-
Taiji detector pair when ϕðtÞ ¼ 0° and the constant angle ϕ0 ¼ 0°. Plots of l ¼ 0; 1; 2; 3; 4 andm ≥ 0 are shown. Them < 0multipoles
can be obtained by using the conjugate relation in Eq. (24).
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FIG. 6. Real and imaginary parts of the multipole moments of the intensity A-E and E-A overlap reduction function γIlm for the LISA-
Taiji detector pair when ϕðtÞ ¼ 0° and the constant angle ϕ0 ¼ 0°. Plots of l ¼ 0; 1; 2; 3; 4 andm ≥ 0 are shown. Them < 0multipoles
can be obtained by using the conjugate relation in Eq. (24).
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FIG. 7. Same as in Fig. 5 except for γIlm when ϕðtÞ ¼ 0° and the constant angle ϕ0 ¼ 30°.
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FIG. 8. Same as in Fig. 6 except for γIlm when ϕðtÞ ¼ 0° and the constant angle ϕ0 ¼ 30°.
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FIG. 9. Same as in Fig. 5 except for γIlm when ϕðtÞ ¼ 0° and the constant angle ϕ0 ¼ 45°.
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FIG. 10. Same as in Fig. 6 except for γIlm when ϕðtÞ ¼ 0° and the constant angle ϕ0 ¼ 45°.
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FIG. 11. Real and imaginary parts of the multipole moments of the circular-polarization A-A and E-E overlap reduction function
γVlm for the LISA-Taiji detector pair when ϕðtÞ ¼ 0° and the constant angle ϕ0 ¼ 0°. Plots of l ¼ 0; 1; 2; 3; 4 and m ≥ 0 are shown.
The m < 0 multipoles can be obtained by using the conjugate relation in Eq. (24).
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FIG. 12. Real and imaginary parts of the multipole moments of the circular-polarization A-E and E-A overlap reduction function
γVlm for the LISA-Taiji detector pair when ϕðtÞ ¼ 0° and the constant angle ϕ0 ¼ 0°. Plots of l ¼ 0; 1; 2; 3; 4 and m ≥ 0 are shown.
The m < 0 multipoles can be obtained by using the conjugate relation in Eq. (24).
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FIG. 13. Same as in Fig. 11 except for γVlm when ϕðtÞ ¼ 0° and the constant angle ϕ0 ¼ 45°.
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FIG. 14. Same as in Fig. 12 except for γVlm when ϕðtÞ ¼ 0° and the constant angle ϕ0 ¼ 45°.
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FIG. 15. Real and imaginary parts of the multipole moments of the linear-polarization A-A and E-E overlap reduction function γQ�iU
lm

for the LISA-Taiji detector pair when ϕðtÞ ¼ 0° and the constant angle ϕ0 ¼ 0°. Plots of l ¼ 4 and m ¼ 0; 1; 2; 3; 4 are shown.
The m < 0 multipoles can be obtained by using the conjugate relations in Eq. (25).

OVERLAP REDUCTION FUNCTIONS FOR A POLARIZED … PHYS. REV. D 107, 104040 (2023)

104040-17



FIG. 16. Real and imaginary parts of the multipole moments of the linear-polarization A-E and E-A overlap reduction function γQ�iU
lm

for the LISA-Taiji detector pair when ϕðtÞ ¼ 0° and the constant angle ϕ0 ¼ 0°. Plots of l ¼ 4 and m ¼ 0; 1; 2; 3; 4 are shown.
The m < 0 multipoles can be obtained by using the conjugate relations in Eq. (25).
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For an isotropic circularly polarized SGWB, in Figs. 9
and 13, taking the sum of A-A and E-E correlations can
single out the circular-polarization dipole component.

C. Time-independent antenna pattern functions

For the ORFs in the LISA-Taiji network, we have
identified a single time-varying angle ϕðtÞ for the orbiting
spacecrafts and a phase angle difference ϕ0 between the
two triangular detectors. However, it would be more
convenient to use time-independent antenna pattern func-
tions in doing the correlation. This can be done by
introducing a phase rotation to the detector signals, similar
to a strategy adopted in full-sky observation of the CMB
anisotropy and polarization correlation [37]. As such, the
LISA detector tensors become�

dA0

dE0

�
¼

�
cos 2ϕðtÞ sin 2ϕðtÞ
− sin 2ϕðtÞ cos 2ϕðtÞ

��
dA
dE

�
; ð32Þ

and the Taiji’s are given by�
dA0

dE0

�
¼
�

cos2½ϕðtÞ−ϕ0� sin2½ϕðtÞ−ϕ0�
− sin2½ϕðtÞ−ϕ0� cos2½ϕðtÞ−ϕ0�

��
dA
dE

�
:

ð33Þ
This rotation makes the X arms of the LISA’s and Taiji’s A
channels be aligned with the great circle connecting LISA-
Taiji. Hence, the resulting ORFs for an isotropic SGWB are
given by the special case in Eqs. (28) and (29) when
ϕðtÞ ¼ ϕ0 ¼ 0:

γI
00;A0A0 ðfÞ ¼ C1ðfÞ − C2ðfÞ;
γI
00;E0E0 ðfÞ ¼ C1ðfÞ þ C2ðfÞ;
γV
00;A0E0 ðfÞ ¼ γV

00;E0A0 ðfÞ ¼ C3ðfÞ; ð34Þ
which correspond to the so-called virtually aligned chan-
nels that have been used to separate the I00 and V00

components [38]. Furthermore, the ORF multipoles for A0
and E0 correlations are given by those in Sec. VII B in the
case with ϕðtÞ ¼ ϕ0 ¼ 0.

VIII. CORRELATION SIGNAL
AND FREQUENCY FILTER

The LISA-Taiji network has an uniform sky coverage
that is a circular ring about the ecliptic pole resulted from
the Earth’s revolution. The correlation output is periodic in
the azimuthal angle ϕa ¼ ϕðtÞ with a period of 1 yr, given
by Eqs. (13), (19), (20), and (23) as

ξabðf; tÞ ¼
X
S

X
lm

SlmðfÞγSlmðfÞeimϕðtÞ; ð35Þ

where γSlm are the ORFmultipoles for A0 and E0 correlations
in Sec. VII C. We can use a filter function of frequency
QðfÞ to optimize the signal as [23]

SðtÞ ¼
Z

∞

−∞
dfξabðf; tÞQðfÞ: ð36Þ

Then the Fourier mode of SðtÞ is given by

Sm ¼ 1

2π

Z
2π

0

dϕðtÞe−imϕðtÞSðtÞ;

¼
Z

∞

−∞
dfQðfÞ

X
S

X∞
l¼jmj

SlmðfÞγSlmðfÞ: ð37Þ

It was shown that to maximize the signal to noise ratio for
Sm, the optimal choice of the filter function, here gener-
alized to including SGWB polarization anisotropies, is
given by [23]

QðfÞ ¼ 1

NaðfÞNbðfÞ
X
S

X∞
l¼jmj

S�lmðfÞγS�lmðfÞ; ð38Þ

where NaðfÞ and NbðfÞ are the LISA’s and Taiji’s noise
power spectra, respectively.
The situation in the ET-CE network is similar. The sky

coverage is a circular ring about the celestial pole and the
period is 1 day due to the Earth’s rotation. For the ET-CE
pair, γSlm are the ORF multipoles given in Sec. VI,
with ϕa ¼ 0.

IX. CONCLUSION

We have discussed using future gravitational-wave
interferometers to form detector pairs for measuring the
properties of the stochastic gravitational-wave background,
such as the Einstein Telescope-Cosmic Explorer detector
pair and the LISA-Taiji network. We have used a fast
algorithm developed in Ref. [31] to obtain the overlap
reduction functions for an anisotropic polarized stochastic
gravitational-wave background. The overlap reduction
functions of the Einstein Telescope-Cosmic Explorer pair
are similar to those of the pair formed by LIGO-Hanford
and LIGO-Livingston as obtained in Ref. [31]. For the
overlap reduction functions in the LISA-Taiji network, we
have identified a time-varying angle ϕðtÞ and a phase angle
difference ϕ0 between the two triangular detectors. We
emphasize that since the configurations of these detectors
have not been finalized, the results in the present work are
very useful to the detector and mission design targeting at
stochastic gravitational-wave background measurements.
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APPENDIX A: SPIN-WEIGHTED SPHERICAL HARMONICS

The explicit form of the spin-weighted spherical harmonics that we use is

sYlmðθ;ϕÞ ¼ ð−1Þmeimϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ
ð4πÞ

ðlþmÞ!ðl −mÞ!
ðlþ sÞ!ðl − sÞ!

s
sin2l

�
θ

2

�X
r

�
l − s

r

��
lþ s

rþ s −m

�
ð−1Þl−r−scot2rþs−m

�
θ

2

�
:

ðA1Þ

When s ¼ 0, it reduces to the ordinary spherical harmonics,

Ylmðn̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ
ð4πÞ

ðl −mÞ!
ðlþmÞ!

s
Plmðcos θÞeimϕ: ðA2Þ

Spin-weighted spherical harmonics satisfy the orthogo-
nal relation,Z

S2
dn̂sY�

lmðn̂ÞsYl0m0 ðn̂Þ ¼ δll0δmm0 ; ðA3Þ

and the completeness relation,X
lm

sY�
lmðn̂ÞsYlmðn̂0Þ ¼ δðn̂ − n̂0Þ;

¼ δðϕ − ϕ0Þδðcos θ − cos θ0Þ: ðA4Þ

Its complex conjugate is

sY�
lmðn̂Þ ¼ ð−1Þsþm−sYl−mðn̂Þ; ðA5Þ

and its parity is given by

sYlmð−n̂Þ≡ sYlmðπ − θ;ϕþ πÞ ¼ ð−1Þl−sYlmðn̂Þ: ðA6Þ

APPENDIX B: ANTENNA PATTERN
FUNCTIONS

In most literature, the inner product between the detector
tensor and the polarization basis tensor is referred as the
antenna pattern function.

1. DEI

For the Stokes-I parts, the only nonvanishing
D0ðσ1; σ2; βÞ · EI

lm are 15 components with l ¼ 0; 2; 4,
which satisfy DEl−m ¼ ð−1ÞmDE�

lm.

DEI
00 ¼

4

5

ffiffiffi
π

p �
cos4

�
β

2

�
cosð2σ1 − 2σ2Þ þ sin4

�
β

2

�
cosð2σ1 þ 2σ2Þ

�
;

DEI
20 ¼

8

7

ffiffiffi
π

5

r �
cos4

�
β

2

�
cosð2σ1 − 2σ2Þ þ sin4

�
β

2

�
cosð2σ1 þ 2σ2Þ

�
;

DEI
21 ¼ −

2

7

ffiffiffiffiffiffi
6π

5

r
e−2iσ1 sinðβÞðcosðβÞ cosð2σ2Þ þ i sinð2σ2ÞÞ;

DEI
22 ¼

2

7

ffiffiffiffiffiffi
6π

5

r
e−2iσ1sin2ðβÞ cosð2σ2Þ;

DEI
40 ¼

2

105

ffiffiffi
π

p �
cos4

�
β

2

�
cosð2σ1 − 2σ2Þ þ sin4

�
β

2

�
cosð2σ1 þ 2σ2Þ

�
;

DEI
41 ¼ −

1

21

ffiffiffi
π

5

r
e−2iσ1 sinðβÞðcosðβÞ cosð2σ2Þ þ i sinð2σ2ÞÞ;

DEI
42 ¼

1

7

ffiffiffiffiffi
π

10

r
e−2iσ1sin2ðβÞ cosð2σ2Þ;

DEI
43 ¼

1

3

ffiffiffiffiffi
π

35

r
e−2iσ1 sinðβÞðcosðβÞ cosð2σ2Þ − i sinð2σ2ÞÞ;

DEI
44 ¼

1

6

ffiffiffiffiffi
π

70

r
e−2iσ1ððcosð2βÞ þ 3Þ cosð2σ2Þ − 4i cosðβÞ sinð2σ2ÞÞ:
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2. DEV

For the Stokes-V parts that correspond to the circular polarized signal, the only nonvanishing D0ðσ1; σ2; βÞ · EV
lm are 10

components with l ¼ 1; 3, which satisfy DEl−m ¼ ð−1Þmþ1DE�
lm.

DEV
10 ¼

8

5
i

ffiffiffi
π

3

r �
cos4

�
β

2

�
sinð2σ1 − 2σ2Þ þ sin4

�
β

2

�
sinð2σ1 þ 2σ2Þ

�
;

DEV
11 ¼

2

5

ffiffiffiffiffiffi
2π

3

r
e−2iσ1 sinðβÞðcosðβÞ cosð2σ2Þ þ i sinð2σ2ÞÞ;

DEV
30 ¼

2

5
i

ffiffiffi
π

7

r �
cos4

�
β

2

�
sinð2σ1 − 2σ2Þ þ sin4

�
β

2

�
sinð2σ1 þ 2σ2Þ

�
;

DEV
31 ¼

1

5

ffiffiffiffiffiffi
3π

7

r
e−2iσ1 sinðβÞðcosðβÞ cosð2σ2Þ þ i sinð2σ2ÞÞ;

DEV
32 ¼ −

ffiffiffiffiffiffi
3π

70

r
e−2iσ1sin2ðβÞ cosð2σ2Þ;

DEV
33 ¼ −

ffiffiffiffiffi
π

35

r
e−2iσ1 sinðβÞðcosðβÞ cosð2σ2Þ − i sinð2σ2ÞÞ:

3. DEQ�iU

For the linear polarized signal, the only nonvanishing D0ðσ1; σ2; βÞ · EQ�iU
lm are nine components with l ¼ 4, which

satisfy DEl−m ¼ ð−1ÞmDE�
lm.

DEQ�iU
40 ¼ 1

3

ffiffiffiffiffiffi
2π

35

r �
cos4

�
β

2

�
cosð2σ1 − 2σ2Þ þ sin4

�
β

2

�
cosð2σ1 þ 2σ2Þ

�
;

DEQ�iU
41 ¼ −

1

3

ffiffiffiffiffi
π

14

r
e−2iσ1 sinðβÞðcosðβÞ cosð2σ2Þ þ i sinð2σ2ÞÞ;

DEQ�iU
42 ¼ 1

2

ffiffiffi
π

7

r
e−2iσ1sin2ðβÞ cosð2σ2Þ;

DEQ�iU
43 ¼ 1

3

ffiffiffi
π

2

r
e−2iσ1 sinðβÞðcosðβÞ cosð2σ2Þ − i sinð2σ2ÞÞ;

DEQ�iU
44 ¼ 1

12

ffiffiffi
π

p
e−2iσ1ððcosð2βÞ þ 3Þ cosð2σ2Þ − 4i cosðβÞ sinð2σ2ÞÞ:
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