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In this work we study static neutron stars in the context of several inflationary models which are popular
in cosmology. These inflationary models are nonminimally coupled scalar theories which yield a viable
inflationary phenomenology in both Jordan and Einstein frames. By considering the constraints from
inflationary theories, which basically determine the values of the potential strength, usually considered as a
free parameter in astrophysical neutron star works, we construct and solve the Tolman-Oppenheimer-
Volkoff equations using a solid Python-3 LSODA integrator. For our study we consider several popular
inflationary models, such as the universal attractors, the Rp attractors (three distinct model values), the
induced inflation, the quadratic inflation, the Higgs inflation and the a-attractors (two distinct model
values) and for the following popular equations of state the WFF1, the SLy, the APR, the MS1, the AP3, the
AP4, the ENG, the MPA1 and the MS1b. We construct the M − R diagram and we confront the resulting
theory with theoretical and observational constraints. As we demonstrate, remarkably, all the neutron stars
produced by all the inflationary models we considered are compatible with all the constraints for the MPA1
equation of state. It is notable that for this particular equation of state, the maximum masses of the neutron
stars are in the mass-gap region with M > 2.5M⊙, but lower than the three solar masses causal limit.
Another important feature of our work is that it may be possible to discriminate inflationary attractors
which at the cosmological level are indistinguishable using the M − R graphs of static neutron stars,
however we point out the limitations in discriminating the inflationary attractors. Also we show that the
WFF1, MS1 and MS1b seem to be entirely ruled out, regarding a viable description of static neutron stars.
We also make the observation that as the NICER constraints are pushed towards larger radii, as for example
in the case of the black widow pulsar PSR J0952-0607, it seems that equations of state that produce neutron
stars with maximummasses in the mass gap region, withM > 2.5M⊙, but lower than the three solar masses
causal limit, are favored and are compatible with the modified NICER constraints. Finally we question the
ability of the MPA1 equation of state to pass all the theoretical and observational constraints and we impose
the question whether this equation of state plays any fundamental role in static neutron star physics.
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I. INTRODUCTION

Direct gravitational waves observations have utterly
changed the perspective of physicists on how they under-
stand the Universe. Starting with the kilonova event
GW170817 [1,2], theorists coming from cosmology and
particle physics had to revise which theories can describe a
realistic theory of cosmology, narrowing down signifi-
cantly the available theories, since the event excluded all
massive gravity theories [3–6]. Refinements to theories that
predict a massive tensor spectrum were offered in the
literature [7–9], however, everything in the literature now is
abundantly clear which theories are cosmologically viable.

Thus a single kilonova event already had a serious impact
on the phenomenology of cosmological theories. It is
highly anticipated from future observations of neutron
stars (NSs) to see whether alternative information can be
gained from gravitational systems in extreme gravitational
environments. The main question is whether modified
gravity [10–13] can play some fundamental role in extreme
gravity environments, such as NSs and cosmology. At the
moment, we only have hints and indications that this might
be the case, but these hints are premature to justify a
concrete definite answer to the problem. More observations
are required on these issues. To date, there are two main
events and observations that point in the direction of having
heavy NSs, the GW190814 event [14] which points having
NSs inside the mass-gap region M > 2.5M⊙, and also the
black-widow binary pulsar PSR J0952-0607 with mass
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M ¼ 2.35� 0.17 [15]. The latter does not predict a neutron
star (NS) mass inside the mass-gap region, but still the NS
is quite heavier that the NICER predictions of ∼2 solar
masses. These are the hints that we believe nature might
have some near future surprises with NSs inside the mass-
gap region, for which the simple general relativistic (GR)
description might not suffice. So for heavy NSs the only
optimal and Occam’s razor based approach is to assume
that modified gravity in some form of it controls the
hydrodynamic stability of the NS and drives its maximum
mass to regions which are extremely unreachable by GR,
even for the stiffest and not justifiable equations of state
(EOSs). From these considerations, it is apparent that NSs
[16–20]) and similar astrophysical compact objects have
become the test bed of future gravitational and to some
extent particle physics theories. These are a virtual labo-
ratory at the sky in which high energy particle physics,
particle astrophysics and cosmology theories can be tested.
Obviously we live in the golden era of NSs and future
illuminating observations are highly anticipated. Many
distinct scientific areas can be studied in NSs, for example
nuclear theories of extreme matter conditions [21–31], high
energy theoretical and particle physics [32–36], studies in
modified gravity of various forms, [37–46] and finally
theoretical astrophysics studies [47–59]. Modified gravity
can eventually play a fundamental role in NS physics, but
this is still questionable. Indeed, in cosmology one of the
alternative and theoretically consistent ways to describe
dark energy in all the experimentally allowed values of the
dark energy EOS, can be done by modified gravity in its
various forms, while in the context of simple GR, one
should resort to phantom scalar fields, a rather unappealing
description of nature, for the moment at least. Apart from
that, if the inflationary era ever existed, the GR description
of inflation with a scalar field has many shortcomings, the
most important being the excess of the inflaton’s couplings
to the Standard Model particles, which are needed for the
thermalization of the Universe. In modified gravity, the
instability of the inflationary attractor at the end of inflation
causes oscillatory solutions to the curvature that may
directly reheat the particle content of the Universe directly,
without resorting to thermalization via particle interactions.
Thus modified gravity in its various forms seems a viable
description of nature, at least for the time being. In the
literature there exists a vast stream of articles studying NSs
in the context of modified gravity [40,41] and also in the
context of scalar-tensor theories [60–80]. Among the many
scalar-tensor theories, the inflationary theories are deemed
the most important from multiple aspects, mainly though
because they can generate a viable inflationary era com-
patible with the Planck data [81]. Here we shall consider an
important class of inflationary theories, the inflationary
attractors [82–120]. These theories are called attractors
because although they originate for a different Jordan frame
scalar field theory, they result to the same inflationary
phenomenology in the Einstein frame, so essentially they

are attracted to the same phenomenology in the Einstein
frame. By taking also into account the constraints from
inflationary theories, which essentially determine the val-
ues of the potential strength, the coefficient of the scalar
potential, usually considered as a free parameter in
astrophysical NS works, we construct and solve the
Tolman-Oppenheimer-Volkoff (TOV) equations using a
well-known Python-3 LSODA integrator. For our study
we shall consider several popular and viable inflationary
models, such as the universal attractors, the Rp attractors
(three distinct model values), the induced inflation, the
quadratic inflation, the Higgs inflation and the a-attractors
(two distinct model values), and regarding the EOS we
shall use nine different EOSs in order to describe the
nuclear matter inside the NS. We shall use a piecewise
polytropic approach [121,122] for all the EOS we will use,
in which the low-density part can be one of the follow-
ing EOSs: the SLy [123] which is a potential method EOS,
the AP3-AP4 [124] which is a variational method EOS, the
WFF1 [125] which is also a variational method EOS, the
ENG [126] and the MPA1 [127] which are relativistic
EOSs, the MS1 andMS1b [128] which are relativistic mean
field theory EOSs, with the MS1b being identical to the
MS1 with a low symmetry energy of 25 MeV and finally
the APR EOS [129]. Our aim for solving the TOV
equations is to obtain the masses and radii of NSs in the
Jordan frame eventually, and construct the M − R graphs.
Regarding the gravitational mass, we shall consider the
Arnowitt-Deser-Misner (ADM) masses [130] and we shall
provide an explicit formula on this. We shall eventually
confront our results with the observational data, using
theoretical and observational constraints. Particularly, we
shall consider three types of constraints, which we call CSI,
CSII and CSIII. The CSI was first introduced in Ref. [47]
and indicates that the radius of a 1.4M⊙ mass NS must be
R1.4M⊙

¼ 12.42þ0.52
−0.99 while the radius of a 2M⊙ mass NS

must be R2M⊙
¼ 12.11þ1.11

−1.23 km. The second constraint we
shall consider is CSII and was introduced in Ref. [56] and
indicates that the radius of a 1.4M⊙ mass NS must be
R1.4M⊙

¼ 12.33þ0.76
−0.81 km. Furthermore, we shall consider a

third constraint, namely CSIII, which was first introduced
in Ref. [51] and indicates that the radius of a 1.6M⊙ mass
NS must be larger than R1.6M⊙

> 10.68þ0.15
−0.04 km, while

when the radius of a NS with maximummass is considered,
it must be larger than RMmax

> 9.6þ0.14
−0.03 km. A graphical

representation of the constraints CSI, CSII and CSIII can be
found in Fig. 1.
In addition to these constraints, we shall also include the

NICER I constraints [131] valid forM ¼ 1.4M⊙ NSs,which
constrains the radius to be R1.4M⊙

¼ 11.34–13.23 km.
Furthermore, we shall also consider a theoretical refinement
of theNICERconstraint recently introduced in [58] by taking
into account the heavy black-widow binary pulsar PSR
J0952-0607 with massM ¼ 2.35� 0.17 [15]. We shall call
this constraint NICER II. TheNICER II constrains the radius
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of a M ¼ 1.4M⊙ to be R1.4M⊙
¼ 12.33–13.25 km. After

performing a thorough analysis of all the models and EOSs,
we show that the MPA1 EOS, shows remarkable compat-
ibility properties with all the constraints. We discuss in detail
the phenomenological implications of our results.

II. NEUTRON STAR PHYSICS
AND COSMOLOGICAL ASPECTS

OF INFLATIONARY ATTRACTORS:
NOTATION, FORMALISM AND EOSs

In general, there is a different notation between neutron
star physics applications of nonminimally coupled scalar
theories and inflationary nonminimally coupled theories. In
this section we shall bridge the gap between the two distinct
approaches and we shall make a direct correspondence
between the notation of the two approaches. We first
consider the inflationary attractors context, see [82–120].
See also Refs. [132–135] regarding the conformal trans-
formations in inflationary theories. We first consider the
Jordan frame gravitational action of a nonminimally
coupled scalar field,

SJ ¼
Z

d4x

�
fðϕÞR −

ωðϕÞ
2

gμν∂μϕ∂νϕ − UðϕÞ
�

þ Smðgμν;ψmÞ; ð1Þ

where we also took into account the presence of perfect
matter fluids quantified by the action Smðgμν;ψmÞ, and we
denote the pressure of the perfect matter fluids as P while

their energy density as ϵ. For cosmological applications
it is customary to use natural units (c ¼ ℏ ¼ 1), while in
contrast for NS applications one uses geometrized units. In
the minimally coupled version of the Jordan frame case,
one has the Einstein frame theory at hand, with

fðϕÞ ¼ 1

16πG
¼ M2

p

2
; ð2Þ

and the reduced Planck mass in natural units is defined as

Mp ¼ 1ffiffiffiffiffiffiffiffiffi
8πG

p ; ð3Þ

with G being the Jordan frame Newton’s gravitational
constant. Regarding the nonminimally coupled Jordan
frame theory, we perform the conformal transformation,

g̃μν ¼ Ω2gμν; ð4Þ

and one obtains the Einstein frame gravitational action,
and we use the “tilde” to denote the Einstein frame physical
quantities. In the Einstein frame, one obtains the minimally
coupled scalar field theory by choosing the function Ω
entering the conformal transformation as follows [132,133]:

Ω2 ¼ 2

M2
p
fðϕÞ; ð5Þ

therefore, by making the conformal transformation in the
action (1), and by also making the choice (5), the Einstein
frame action is obtained, which reads

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
M2

p

2
R̃ −

ζðϕÞ
2

g̃μνe∂μϕe∂νϕ − VðϕÞ
�

þ SmðΩ−2g̃μν;ψmÞ; ð6Þ
and theEinstein frame scalar field potentialVðϕÞ is related to
the corresponding Jordan frame scalar field potentialUðϕÞ in
the following way:

VðϕÞ ¼ UðϕÞ
Ω4

; ð7Þ

and furthermore the definition of the function ζðϕÞ is

ζðϕÞ ¼ M2
p

2

�
3ðdfdϕÞ2
f2

þ 2ωðϕÞ
f

�
: ð8Þ

By appropriately choosing the kinetic term of the scalar field,
namely the function ζðϕÞ, one can render the Einstein frame
scalar theory canonical. This can be done in terms of the
following transformation:�

dφ
dϕ

�
¼

ffiffiffiffiffiffiffiffiffiffi
ζðϕÞ

p
; ð9Þ

FIG. 1. An illustrative presentation of the constraints CSI [47]
R1.4M⊙

¼ 12.42þ0.52
−0.99 and R2M⊙

¼ 12.11þ1.11
−1.23 km, the constraint

CSII [56] in which case R1.4M⊙
¼ 12.33þ0.76

−0.81 km and the con-
straint CSIII [51] in which case the radius of an 1.6M⊙ mass NS
must be larger than R1.6M⊙

> 10.68þ0.15
−0.04 km and for the maxi-

mum mass of a NS, the corresponding radius must be large than
RMmax

> 9.6þ0.14
−0.03 km. This illustrative figure is edited based on a

public image of ESO, which can be found freely.1

1ESO/L.Calçada: https://www.eso.org/public/images/eso0831a/.
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and thus, the Einstein frame scalar field theory acquires its
well-known canonical form,

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
M2

p

2
R̃ −

1

2
g̃μνe∂μφe∂νφ − VðφÞ

�
þ SmðΩ2g̃μν;ψmÞ ð10Þ

with

VðφÞ ¼ UðφÞ
Ω4

¼ UðφÞ
4M4

pf2
: ð11Þ

An important feature of the Einstein frame theory is the fact
that the matter fluids are no longer perfect fluids, and the fact
that can be seen by the energy momentum tensor which
satisfies

e∂μT̃μν ¼ −
d
dφ

½lnΩ�T̃e∂νϕ: ð12Þ

Furthermore, the energy density and the pressure of the
matter fluids have the following transformation properties
between the Jordan and the Einstein frame:

ε̃ ¼ Ω−4ðφÞε; P̃ ¼ Ω−4ðφÞP; ð13Þ

where recall that the tilde denotes Einstein frame physical
quantities. A useful notation for the Einstein frame scalar
field theory is the following:

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
M2

p

2
R̃ −

1

2
g̃μνe∂μφe∂νφ − VðφÞ

�
; ð14Þ

which can be further cast as follows:

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
1

16πG
R̃ −

1

2
g̃μνe∂μφe∂νφ −

16πGVðφÞ
16πG

�
;

ð15Þ

with M2
p ¼ 1

8πG. The expression of (15) is useful for NS
physics. We need to note that all these theories seen as
Jordan frame theories generally violate theweak equivalence
principle, see for example [136,137]. Specifically, the
Jordan frame scalar theory transformed in the Einstein frame
generally exactly violates the weak equivalence principle
[136] unless the coupling of the scalar field to gravity in the
Jordan frame is conformal. Let us note that if the scalar field
disappears from the Universe due to its decays during the
radiation domination era to the Standard Model particles,
which is actually the mechanism of reheating in inflaton
based inflationary theories, the violation of the equivalence
principle has eventually disappeared from the Universe
and has no effect on the Solar System experiments. Else,

a fifth force should be present so in these theories the post-
Newtonian parameters are affected, but to date for most
scalar-tensor theories no important violation of the equiv-
alence principle is predicted. Such strong deviations would

be present for theories in which d2 lnAðφÞ
dφ2 ≤ −4 [see below

Eq. (20) for a definition], a constraint which does not hold
true for the theories which we shall study. Caution is needed
for theories in which the coupling function AðφÞ is sinus-
oidal. Of course all these issues could be avoided if the
inflationary theory is generated geometrically via some fðRÞ
gravity, but still we should have these issues into account if
one uses the conformally transformed version of the theory in
the Einstein frame.
Now let us proceed to the formalism and notation of

nonminimally coupled scalar field theories in the Jordan
frame, customary for NS applications. We shall adopt the
notation of [60] and we shall derive the TOV equations in
general format for scalar field theories with potential. In
theoretical astrophysics contexts it is customary to use
geometrized units (G ¼ c ¼ 1), so let us express the Jordan
frame gravitational action of a nonminimally coupled
inflationary theory we presented previously, in a theoretical
astrophysics context, which is the following:

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

16π

�
ΩðϕÞR −

1

2
gμν∂μϕ∂νϕ −UðϕÞ

�
þ Smðψm; gμνÞ; ð16Þ

and by making the following conformal transformation,

g̃μν ¼ A−2gμν; AðϕÞ ¼ Ω−1=2ðϕÞ; ð17Þ

we obtain the Einstein frame scalar field action,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
R̃
16π

−
1

2
g̃μν∂μφ∂νφ −

VðφÞ
16π

�
þ Smðψm; A2ðφÞgμνÞ; ð18Þ

where φ denotes the Einstein frame canonical scalar field in
the Einstein frame canonical scalar field, with its potential
in the Einstein frame VðφÞ being related to the Jordan
frame potential UðϕÞ as follows:

VðφÞ ¼ UðϕÞ
Ω2

: ð19Þ

We also define the useful function αðφÞ,

αðφÞ ¼ d lnAðφÞ
dφ

; ð20Þ

which will enter in the final expressions of the TOV
equations, along with the scalar potential VðφÞ and the
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function AðφÞ ¼ Ω−1=2ðϕÞ. For the description of space-
time around and in static NSs, we shall use the following
spherically symmetric metric:

ds2 ¼ −eνðrÞdt2 þ dr2

1 − 2mðrÞ
r

þ r2ðdθ2 þ sin2 θdϕ2Þ; ð21Þ

where the function mðrÞ describes the NS gravitational
mass and r denotes the circumferential radius. One of the
aims of solving the TOV equations is to determine in a
numerical way the two functions νðrÞ and 1

1−2mðrÞ
r

. Let us

describe in brief the physics of the NS for the scalar-tensor
theory at hand. The metric function νðrÞ has a nonzero
value at the center of the NS, and beyond the NS surface,
contrary to the GR case, the metric is no longer matched to
the Schwarzschild metric, because the functions νðrÞ and
mðrÞ have additional contributions from the scalar field.
Thus in the present case, the matching of the spherically
symmetric metric (21) with the Schwarzschild metric will
only be performed at numerical infinity. The latter will be
appropriately determined during the numerical manipula-
tion of the TOVequations, by checking which values of the
radial parameter r optimize the scalar field solutions at
large distance beyond the surface of the star. The TOV
equations for the Einstein frame scalar field theory for the
metric spherically symmetric metric (21) take the following
form:

dm
dr

¼ 4πr2A4ðφÞεþ r
2
ðr − 2mðrÞÞω2 þ 4πr2VðφÞ; ð22Þ

dν
dr

¼ rω2 þ 2

rðr − 2mðrÞÞ
h
4πA4ðφÞr3P − 4πVðφÞr3

i

þ 2mðrÞ
rðr − 2mðrÞÞ ; ð23Þ

dω
dr

¼ 4πrA4ðφÞ
r − 2mðrÞ

�
αðφÞðϵ − 3PÞ þ rωðϵ − PÞ

�

−
2ωðr −mðrÞÞ
rðr − 2mðrÞÞ þ

8πωr2VðφÞ þ r dVðφÞ
dφ

r − 2mðrÞ ; ð24Þ

dP
dr

¼ −ðϵþ PÞ
�
1

2

dν
dr

þ αðφÞω
�
; ð25Þ

ω ¼ dφ
dr

; ð26Þ

where the definition of the function αðφÞ is given in
Eq. (20). Also the pressure and the energy density P
and ϵ denote Jordan frame quantities, and we shall keep
these until the end of the calculations. Now for the solution
of the TOV equations, we need to solve these numerically

for the interior and the exterior of the NS, independently,
and we shall solve the following initial conditions:

Pð0Þ ¼ Pc; mð0Þ ¼ 0; νð0Þ ¼ −νc;

φð0Þ ¼ φc; ωð0Þ ¼ 0: ð27Þ

Note that the values νc and φc are initially arbitrary and
their exact correct value will be determined by using a
double shooting method which will determine which values
νc and φc yield the correct behavior of the scalar field at
numerical infinity.
Regarding the EOS, we shall use nine distinct EOSs in

order to describe the nuclear matter inside the NS. We
shall adopt a piecewise polytropic approach [121,122] for
all the EOSs, in which the low-density part can be one
of the following EOSs: the SLy [123] which is a potential
method EOS, the AP3-AP4 [124] which is a variational
method EOS, the WFF1 [125] which is also a variational
method EOS, the ENG [126] and the MPA1 [127] which
are relativistic EOSs, the MS1 and MS1b [128] which are
relativistic mean field theory EOSs, with the MS1b being
identical to the MS1 with a low symmetry energy of
25 MeV and finally the APR EOS [129]. As we shall
demonstrate, the MPA1 EOS leads to remarkable results
regarding the compatibility of all the attractor models with
all the constraints. The MPA1 is a relativistic EOS based on
relativistic Brueckner-Hartree-Fock calculations. We need
to note that all the EOSs we mentioned above and which we
shall consider, lead to a subluminal maximum speed of
sound speed, save for the WFF1. But as we will show, the
WFF1 is excluded for most of the models, when the
observational data are confronted.
The use of a piecewise polytropic EOS is highly

motivated by our lack of knowledge of the actual relation
between the pressure and the baryon mass density beyond
the nuclear density and, moreover, it is still uncertain of
what matter is composed of in the core of NS. What we
know though is that the Fermi energy of the matter particles
that compose the NSs is much higher than the temperature
of NSs. The piecewise polytropic EOS is constructed by
using phenomenological data on nuclear matter, this is why
it is considered to be a complete EOS. In principle, the NSs
temperature is much lower compared to the Fermi energy of
the particles that constitute NSs, thus in general NS matter
can be described by a single-parameter polytropic EOS that
may accurately describe cold matter when densities higher
than the nuclear density are considered. However, the
uncertainty of the EOS problem always emerges, which
is of course higher as the NS central density is increased.
The pressure considered as a function of the NS baryonic
mass density is in general ill defined and it is unknown to at
least 1 order of magnitude, when densities above the
nuclear density are considered. In addition to this issue,
the actual nature of the matter phase at the core of NS is
unknown; is it made of quarks, hyperons? Nobody can
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answer these questions rigorously. Thus, by using a para-
metrized EOS engineered to function at high densities can
serve as an optimal scientific choice for the description of
the EOS of NSs. The piecewise polytropic EOS is exactly
this type of EOS. For the construction of the piecewise
polytropic EOS, theoretical and observational astrophysical
constraints are considered, including the very important
causality constraint [121,122]. The piecewise polytropic
EOS is constructed by using a low density part with density
ρ satisfying ρ < ρ0 with ρ0 being the nuclear saturation
density, and by construction a well-known tabulated EOS is
used, like the SLy or other EOSs. Also a large density part
composes the piecewise polytropic EOS. In fact, the actual
differences between the NS physical quantities, like the
Jordan frame mass and radius, using the piecewise poly-
tropic EOSs and their ordinary counterparts is of the order
Oð0.1Þ% in the context of GR, but still the piecewise
polytropic equation of state approach is more complete
from a phenomenological standpoint for the reasons we
discussed above. We need to note though that there exist
studies in the literature that, for medium or low-mass
neutron stars, the error of piecewise polytropic EOSs with
ordinary polytropic EOSs can be of the order ∼Oð10%Þ for
the Jordan frame mass M and of the order ∼Oð2%Þ for the
Jordan frame radius R [138]. Also alternative spectral EOS
studies exist [139] which do not yield high errors at lower
masses. Later on we shall present a table in which we shall
compare the Jordan frame masses and radii of NSs with
polytropic and piecewise polytropic EOSs choosing the
MPA1 EOS.
In order to maintain the article self-contained, we shall

briefly describe the piecewise polytropic EOS, which is
constructed by using a low-density part describing the
crust, with ρ < ρ0, and ρ0 being obtained by matching the
high density part with the low-density part. The piecewise
polytropic EOS also contains two high densities ρ1 ¼
1014.7 g=cm3 and ρ2 ¼ 1015.0 g=cm3, and the intermediate
pressures and densities ρi−1 ≤ ρ ≤ ρi satisfy the following
relation:

P ¼ Kiρ
Γi : ð28Þ

Also we need to require the continuity constraint in each
intermediate patch of the piecewise polytropic EOS,

PðρiÞ ¼ Kiρ
Γi ¼ Kiþ1ρ

Γiþ1 : ð29Þ

From the continuity constraint, by employing Eq. (29) the
parametersK2 andK3 are derived, given the parametersK1,
Γ1, Γ2, Γ3, which are basically determined by the low-
density part EOS. Each distinct EOS has a different set of
parameters K1 (or equivalently an initial pressure p1), Γ1,
Γ2, and Γ3. The energy density of the piecewise polytropic
EOS as a function of the pressure can be obtained by using

d
ϵ

ρ
¼ −Pd

1

ρ
; ð30Þ

considering always a barotropic fluid, and due to the
continuity equation we get

ϵðρÞ ¼ ð1þ αiÞρþ
Ki

Γi − 1
ρΓi ; ð31Þ

which is valid for Γi ≠ 1, and furthermore the parameter
αi is

αi ¼
ϵðρi−1Þ
ρi−1

− 1 −
Ki

Γi − 1
ρΓi−1
i−1 : ð32Þ

Having discussed the EOSs we shall use, now let us focus
on the gravitational mass of the static NSs, which is
essentially what we shall calculate numerically when we
shall solve the TOVequations. We shall consider the ADM
mass, and the solution of the TOVequations shall yield the
Einstein frame ADM mass, but in the end we shall
transform it to the Jordan frame counterpart. The Jordan
frame ADM is basically what is relevant for weak field
approximation Keplerian orbits. Let us present the Jordan
frame ADM mass expressed in terms of the Einstein frame
mass, so let us introduce KE and KJ which in geometrized
units are defined as follows:

KE ¼ 1 −
2m
rE

; ð33Þ

KJ ¼ 1 −
2mJ

rJ
: ð34Þ

The quantities KE and KJ are related as follows:

KJ ¼ A−2KE; ð35Þ

and the radii of the NSs in the Jordan and Einstein frames
are related as follows:

rJ ¼ ArE; ð36Þ

and the ADMmass of the NS in the Jordan frame is defined
as follows:

MJ ¼ lim
r→∞

rJ
2
ð1 −KJÞ; ð37Þ

and the Einstein frame counterpart is

ME ¼ lim
r→∞

rE
2
ð1 −KEÞ: ð38Þ
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By taking the asymptotic limit of Eq. (35), we get the
following formula:

KJðrEÞ ¼
�
1þ αðφðrEÞÞ

dφ
dr

rE

�
2

KEðφðrEÞÞ; ð39Þ

where rE denotes the Einstein frame radius at distances
far away from the surface of the NS, and furthermore
dφ
dr ¼ dφ

dr jr¼rE . Using Eqs. (34)–(39) we obtain the final
relation of the Jordan frame ADM mass,

MJ ¼ AðφðrEÞÞ
�
ME −

r2E
2
αðφðrEÞÞ

dφ
dr

×
�
2þ αðφðrEÞÞrE

dφ
dr

��
1 −

2ME

rE

��
; ð40Þ

where recall that dφ
dr ¼ dφ

dr jr¼rE . Hereafter we shall denote
the Jordan frame ADM mass MJ as M ¼ MJ and the
central part of our calculation will be the determination of
this mass given in Eq. (40). Regarding the radius of the
neutron star, we need to evaluate the Jordan frame one R
from the Einstein frame one Rs, which are related by

R ¼ AðφðRsÞÞRs; ð41Þ

and the Einstein frame NS mass is determined by
PðRsÞ ¼ 0. In the following we shall numerically calculate
the Jordan frame masses and the radii of the NS for several
inflationary attractor potentials and we shall construct the
M − R graphs. In the following subsections we shall
present in brief the inflationary models we shall consider
in this article.

A. Inflation and NSs physics with a attractors

The a attractors [82–120] are perhaps the most popular
class of inflationary models, because most of the well-
known inflationary models compatible with the latest
Planck data [81] fall under this category. These models
produce identical observational indices of inflation with the
Starobinsky model and with the Higgs inflation, although
they originate from distinct Jordan frame theories. The
analysis of NSs physics for some EOSs, which will be
studied in this work, can be found in Ref. [74]. Using the
notation of the previous sections, the a attractors corre-
spond to the following choice of the kinetic term in the
Jordan frame,

ωðϕÞ ¼ 1

4ξ

1

f

�
df
dϕ

�
2

; ð42Þ

and furthermore the scalar field potential in the Jordan
frame is

UðϕÞ ¼ U0f2
�
1 −

1

f

�
2n
: ð43Þ

Then we get

dφ
dϕ

¼
ffiffiffiffiffiffiffiffi
3a
16π

r
1

f

�
df
dϕ

�
; ð44Þ

where a is equal to

a ¼ 1þ 1

6ξ
: ð45Þ

Upon integration of Eq. (44) we obtain

f ¼ e
ffiffiffiffi
16π
3a

p
φ; ð46Þ

which remarkably holds true irrespectively of the actual
form of the function f. The Jordan and Einstein frame
potentials are related by

VðφÞ ¼ UðϕÞ
f2

; ð47Þ

thus from Eqs. (43) and (46), the Einstein frame scalar field
potential is obtained,

VðφÞ ¼ U0ð1 − e−
ffiffiffiffi
16π
3a

p
φÞ2n; ð48Þ

and we shall use the above for NS physics for the a-
attractor models, in geometrized units. The conformal
factor AðϕÞ in terms of φ reads

AðφÞ ¼ eαφ; ð49Þ

with α in the case at hand being

α ¼ −
1

2

ffiffiffiffiffiffiffiffi
16π

3a

r
; ð50Þ

and therefore the function αðφÞ defined in Eq. (20) reads,
hence in the case at hand,

aðφÞ ¼ α ¼ −
1

2

ffiffiffiffiffiffiffiffi
16π

3a

r
; ð51Þ

and accordingly, the Einstein frame scalar field potential in
terms of the parameter α reads

VðφÞ ¼ U0ð1 − e2αφÞ2n; ð52Þ

which will be used for solving the TOV equations later on.
One important feature of inflationary theories, when study-
ing NSs, usually not taken into account in the existing
literature, is the fact that the values of U0 are not freely
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chosen, but these are constrained by the inflationary
theories. The correct value of U0 which must be taken
into account can be found by directly matching the infla-
tionary theory with the corresponding one in geometrized
units, used in NS physics. Then we get that U0 appearing in
Eq. (52) is U0 ¼ 16πV0. Now V0 is severely constrained by
the inflationary theory, so let us develop the inflationary
theory and thereafter we shall obtain the actual value of U0

to be used in the numerical study of the TOVequations. The
a attractors have the following Jordan frame inflationary
potential in natural units:

UðϕÞ ¼ V0f2
�
1 −

1

f

�
2n
; ð53Þ

and the corresponding Einstein frame scalar potential is

VðφÞ ¼ V0

�
1 −

1

f

�
2n

¼ Ṽ0M4
p

�
1 −

1

f

�
2n
; ð54Þ

with V0 ¼ Ṽ0M4
p in natural units, and also Ṽ0 ¼ V0

4
,

therefore Ṽ0 is essentially dimensionless in natural units
and furthermore V0 has mass dimensions ½m�4. The scalar
potentials of the form (53) are widely known as E-model
potentials, and for n ¼ 2 one obtains the a-attractor
potentials. For all the values that the parameter a can take,
the a attractors and E models remarkably yield the same
observational indices of inflation, namely the same scalar
spectral index ns and the same tensor-to-scalar ratio r [85].
For our analysis we shall be interested in values a ∼Oð10Þ
and also we shall consider values of the order a ∼Oð104Þ,
and the inflationary theory is still viable. For small values
of a, the observational indices acquire the following form at
leading order in terms of the e-foldings number N:

ns ≃ 1 −
2

N
; r ¼ 12a

N2
; ð55Þ

while for large values of a (a ≫ 8N
3
), the observational

indices take the form [85]

ns ¼ 1 −
2

N
; r ¼ 8

N
: ð56Þ

Now let us demonstrate the allowed values of Ṽ0 given in
Eq. (54), which eventually will determine the allowed
values of U0 given in (52). The actual values of Ṽ0 are
constrained by the amplitude of the scalar perturbations for
a minimally coupled scalar field, denoted as Δ2

s , which is
defined to be

Δ2
s ¼

1

24π2
VðφfÞ
M4

p

1

ϵðφfÞ
; ð57Þ

the values of which are constrained to be [81]

Δ2
s ¼ 2.2 × 10−9; ð58Þ

where φf denotes the scalar field value at the end of the
inflationary era, and furthermore ϵ denotes the first slow-
roll index of inflation. For the case at hand,

V0 ¼ Ṽ0M4
p ∼ 9.6 × 10−11M4

p: ð59Þ

Thus, in view of the fact that Mp ¼ 1=
ffiffiffiffiffiffi
8π

p
in geometrized

units, we have for U0,

U0 ¼ 7.62094 × 10−12: ð60Þ
This is the actual value of U0 which we shall use in
geometrized units.

B. Inflation and NS physics with quadratic
and induced inflation attractors

Now let us consider another mainstream class of infla-
tionary attractor potentials, namely the quadratic and
induced inflation attractors class which again belong to a
wider class of attractors [82–120]. These models in the
Einstein frame lead to the same minimally coupled scalar
field theory, with similar inflationary properties, although
originating from distinct nonminimally coupled Jordan
frame theories. The analysis of NSs in this kind of theories,
for some of the EOSs used in this article, can be found in
Ref. [140]. For both models, the Jordan frame nonmini-
mally coupled theory is

SJ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
ΩðϕÞR −

1

2
gμν∂μϕ∂νϕ − UðϕÞ

�
þ Smðgμν;ψmÞ; ð61Þ

and note that in the case of induced inflation and quadratic
attractors, the kinetic term of the scalar field in the Jordan
frame is canonical. The Jordan frame functions ΩðϕÞ and
UðϕÞ have the form [82]

ΩðϕÞ ¼ ð1þ ξfðϕÞÞ; UðϕÞ ¼ M4
pλðΩðϕÞ − 1Þ2: ð62Þ

The free parameters λ, ξ and the nonminimal coupling
function fðϕÞ have no mass dimensions in natural units.
The values of the parameter ξ, to which we shall refer to as
nonminimal coupling, at strong and weak coupling limit
yield the two distinct models, the induced inflation and the
quadratic attractors. The strong coupling theory ξ ≫ 1
corresponds to the induced inflation theory, while the weak
coupling theory ξ ≪ 1 yields the quadratic attractors. For
the induced inflation attractors, the nonminimal coupling
function ΩðϕÞ and the scalar field potential are

ΩðϕÞ ¼ ξfðϕÞ; UðϕÞ ¼ λM4
pξ

2fðϕÞ2: ð63Þ
The Einstein frame scalar field potential VðφÞ is

VðφÞ ¼ Vsð1 − e−
ffiffi
2
3

p
φ

MpÞ2; ð64Þ
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with Vs ¼ M4
pλ

ξ2
, which is constrained to be

Vs ∼ 9.6 × 10−11M4
p; ð65Þ

and in effect, the free parameters λ and ξ of the induced
inflation are chosen so that λ

ξ2
∼ 10−11, hence for ξ ∼ 105

and for λ ∼ 1 a viable inflationary era is produced.
Furthermore, the nonminimal coupling function ΩðφÞ is

ΩðφÞ ¼ e
ffiffi
2
3

p
φ
Mp : ð66Þ

The observational indices for inflation at leading order in
terms of the e-foldings number read

ns ¼ 1 −
2

N
; r ¼ 12

N2
: ð67Þ

As it can be seen, the inflationary phenomenology of the
induced inflation attractors is indistinguishable from the
Starobinsky and Higgs inflation model. It is notable that
for the induced inflation attractors, one does not even
need to define the functional form of the Jordan frame
function fðϕÞ.
Regarding the quadratic attractors, the weak coupling

limit of the same Jordan frame theory, the function ΩðφÞ
and the Einstein frame scalar potential are at leading
order [82],

ΩðφÞ ¼ ξ

�
ξ−1 þ g1

Mp
φ

�
; VðφÞ ¼ λ

g21
M2

p
φ2; ð68Þ

where g1 ≪ ξ−1, and g1 denotes the expansion parameter.
For the quadratic attractors, the observational indices of
inflation at leading order in the e-foldings number N take
the form

ns ¼ 1 −
2

N
; r ¼ 8

N
; ð69Þ

and note that this result does not depend on the functional
form of fðϕÞ. From the Einstein frame potential, due to
the constraints on the amplitude of the scalar perturbations,
the parameter λ must satisfy λg21 ∼ 10−11 and we can easily
satisfy this by using λ ∼Oð1Þ and g1 ∼Oð10−5Þ, while the
parameter ξ can be chosen to be ξ ∼ 10−2.
Regarding the NSs analysis, for the induced inflation

we have

AðφÞ ¼ e−
1
2

ffiffi
2
3

p
φ; ð70Þ

and αðϕÞ is

aðφÞ ¼ −
1

2

ffiffiffi
2

3

r
; ð71Þ

while the scalar potential in the Einstein frame is

VðφÞ ¼ Vsð1 − e−
ffiffi
2
3

p
φÞ2: ð72Þ

Regarding the quadratic attractors, the Einstein frame scalar
potential is

VðφÞ ¼ λg21φ
2; ð73Þ

and AðφÞ is

AðφÞ ¼ ð1þ ξg1φÞ−1=2; ð74Þ

while αðφÞ is

aðφÞ ¼ −
1

2

ξg1
1þ ξg1φ

: ð75Þ

Let us recapitulate the values of the free parameters for the
two inflationary attractors, and for the induced inflation
case, we must choose ξ ∼Oð105Þ, λ ∼Oð1Þ while for the
quadratic attractors we choose ξ ∼Oð10−2Þ, λ ∼Oð1Þ and
g1 ∼Oð10−4Þ. Usually, in the astrophysics literature, these
parameters would be chosen freely, but these are not free
parameters and are severely constrained by the correspond-
ing inflationary theories.

C. Inflation and NSs physics with Rp attractors

The Rp attractors is a special class of inflationary
attractors which were developed in Ref. [141], and are
based on the following Einstein frame scalar potential:

VðφÞ ¼ V0M4
pe

−2
ffiffi
2
3

p
κφðe

ffiffi
2
3

p
κφ − 1Þ

p
p−1: ð76Þ

In the Jordan frame, the Rp attractors correspond to the
following FðRÞ gravity:

FðRÞ ¼ Rþ βRp; ð77Þ

with β being a free parameter with mass dimensions ½β� ¼
½m�2−2p in natural units. The analysis of NSs in this kind of
theories, for some of the EOSs used in this article, can be
found in Ref. [80]. The terminology attractors for the Rp

attractors is justified when considering the Jordan frame
nonminimally coupled theory that these originate from. The
action in the Jordan frame of such nonminimally coupled
scalar theory is

SJ ¼
Z

d4x

�
ΩðϕÞ
2κ2

R −
ωðϕÞ
2

gμν∂μϕ∂νϕ − VJðϕÞ
�
; ð78Þ

with the coupling function having the general form
ΩðϕÞ ¼ 1þ ξfðϕÞ and ξ, fðϕÞ are arbitrary dimensionless
coupling and dimensionless function respectively. The
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Jordan frame scalar theory of the Rp attractors correspond
to the following scalar field potential:

VJðϕÞ ¼ V0ðΩðϕÞ − 1Þ p
p−1; ð79Þ

and the kinetic term ωðϕÞ is

ωðϕÞ ¼ 1

4ξ

ðdΩðϕÞdϕ Þ2
ΩðϕÞ : ð80Þ

Thus the terminology attractors are justified, since multiple
theories with arbitrary functions fðϕÞ correspond to the
same scalar theory in the Einstein frame, with action

SE ¼
ffiffiffiffiffiffi
−g̃

p �
R̃
2κ2

− g̃μν∂μφ∂νφ − VðφÞ
�
: ð81Þ

The scalar potentials in the Jordan and Einstein frames are
related in the following way:

VðφÞ ¼ Ω−2ðϕÞVJðϕÞ: ð82Þ

Note that the general relation between the Jordan and
Einstein frame scalar fields is

�
dφ
dϕ

�
2

¼ 3

2

ðdΩðϕÞdϕ Þ2
ΩðϕÞ þ ωðϕÞ

ΩðϕÞ ; ð83Þ

therefore, for the Rp attractors case, with the kinetic term
function ωðϕÞ being given in Eq. (80), we have

ΩðϕÞ ¼ e
ffiffiffi
2
3α

p
φ; ð84Þ

where α is

α ¼ 1þ 1

6ξ
: ð85Þ

Upon substitution of Eq. (84) in Eq. (82) we get the Rp-
attractor potential. Moreover, the phenomenologically
important case α ¼ 1 is obtained when ξ → ∞, or analo-

gously when ΩðϕÞ ≪ 3
2

ðdΩðϕÞdϕ Þ2
ωðϕÞ . The Rp attractor theories

result to a viable inflationary phenomenology [141], with
the observational indices of inflation being

ns ¼
ð3αþ ð3α− 2Þp2 þ ð8− 6αÞp− 8Þe2

ffiffi
2
3

p ffiffi
1
α

p
κφ − 2ðp− 1Þð−3αþ ð3α− 2Þpþ 8Þe

ffiffi
2
3

p ffiffi
1
α

p
κφ þ ð3α− 8Þðp− 1Þ2

3αðp− 1Þ2ðe
ffiffi
2
3

p ffiffi
1
α

p
κφ − 1Þ2

; ð86Þ

r ¼ 16ððp − 2Þe
ffiffi
2
3

p ffiffi
1
α

p
κφ − 2pþ 2Þ2

3αðp − 1Þ2ðe
ffiffi
2
3

p ffiffi
1
α

p
κφ − 1Þ2

; ð87Þ

and the parameter V0 in the potential is constrained as
follows:

V0 ∼ 9.6 × 10−11: ð88Þ

In this article, we shall consider two limiting cases of α,
namely α ∼ 0.1 and α ¼ 108, with the latter covering the
strong coupling limit of the theory. Also the parameter p
will be assumed to take values in 1.91 ≤ p ≤ 1.99, which
are the most relevant for NS studies, see Ref. [80] for
details. Let us present the relevant functions for the TOV
equations study; the function AðφÞ for the Rp attractors is

AðφÞ ¼ e−
1
2

ffiffiffi
2
3α

p
φ; ð89Þ

hence αðϕÞ reads

aðφÞ ¼ −
1

2

ffiffiffiffiffiffi
2

3α

r
: ð90Þ

In addition, the Einstein frame scalar potential is

VðφÞ ¼ V0e
−2

ffiffiffi
2
3α

p
φðe

ffiffiffi
2
3α

p
φ − 1Þ

p
p−1; ð91Þ

and expressed in geometrized units, the V0 constraint is

V0 ≃ 7.62 × 10−12: ð92Þ

D. Inflation and NS physics with Higgs model

The Higgs inflation scalar model is very popular in
cosmological contexts [142], and the NSs study in this kind
of inflationary potentials was developed in Ref. [75]. The
Jordan frame action for the Higgs model is

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

16π

�
fðϕÞR −

1

2
gμν∂μϕ∂νϕ −UðϕÞ

�
þ Smðψm; gμνÞ; ð93Þ

where fðϕÞ and UðϕÞ for the Higgs model are

fðϕÞ ¼ 1þ ξϕ2; ð94Þ

UðϕÞ ¼ λϕ4: ð95Þ

For the Higgs model, the function AðϕÞ is
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AðϕÞ ¼ f−1=2ðϕÞ; ð96Þ

and in view of Eq. (94) we get

AðϕÞ ¼ ð1þ ξϕ2Þ−1=2: ð97Þ

The scalar potential reads

VðϕÞ ¼ UðϕÞ
f2ðϕÞ ; ð98Þ

and expressed in terms of ϕ we have

VðϕÞ ¼ λϕ4

ð1þ ξϕ2Þ2 : ð99Þ

The Higgs model in cosmological contexts is obtained for

ξ2ϕ2 ≫ 1; ð100Þ

and at the same time when

ξ2ϕ2 ≫ ξϕ2; ð101Þ

with Eq. (101) being valid for ξ ≫ 1. Then we get

dφ
dϕ

≃
ffiffiffiffiffi
12

pffiffiffiffiffiffiffiffi
16π

p ξϕ

1þ ξϕ2
¼

ffiffiffiffiffi
12

p

2
ffiffiffiffiffiffiffiffi
16π

p f0ðϕÞ
fðϕÞ ; ð102Þ

and by integrating, Eq. (102) the φ and ϕ relation is
obtained,

φ ¼
ffiffiffiffiffi
12

p

2
ffiffiffiffiffiffiffiffi
16π

p ln ðfðϕÞÞ ¼
ffiffiffiffiffi
12

p

2
ffiffiffiffiffiffiffiffi
16π

p ln ð1þ ξϕ2Þ; ð103Þ

therefore,

1þ ξϕ2 ¼ e
2
ffiffiffiffi
16π

pffiffiffi
12

p φ: ð104Þ

Thus by using Eq. (97), the function AðϕÞ can be expressed
in terms of φ,

AðφÞ ¼ eαφ; ð105Þ

with α being

α ¼ −2
ffiffiffi
π

3

r
; ð106Þ

and furthermore,

aðφÞ ¼ α ¼ −2
ffiffiffi
π

3

r
: ð107Þ

Finally, the Einstein frame Higgs potential is

V 0ðφÞ ≃ 4αλ

ξ2
e2αφðe2αφ − 1Þ: ð108Þ

The constraints on the scalar amplitude of curvature
perturbations are in the Higgs model the following:

λM4
p

4ξ2
∼ 9.6 × 10−11M4

p; ð109Þ

and in geometrized units we have

λ

ξ2
∼ 16π × ð1.51982 × 10−13Þ; ð110Þ

therefore for λ ¼ 0.1 we have ξ ∼ 11.455 × 104.

E. Inflation and NS physics with universal attractors

The NSs study of universal attractor potentials was
developed in Ref. [76], and in this case, the function
fðϕÞ has the form

fðϕÞ ¼ M2
p

2
ð1 − ξϕ2Þ; ð111Þ

with ξ being a positive coupling. The Jordan frame scalar
potential is

UðϕÞ ¼ U0f2ðϕÞ
�

ϕ

Mp

�
2n
; ð112Þ

where n > 0. For the universal attractors we have

Ω2 ¼ 2

M2
p
fðϕÞ; ð113Þ

and the Einstein frame action is

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
M2

p

2
R̃ −

ζðϕÞ
2

g̃μνe∂μϕe∂νϕ − VðϕÞ
�

þ SmðΩ−2g̃μν;ψmÞ; ð114Þ

with

ζðϕÞ ¼ M2
p

2

�
3ðdfdϕÞ2
f2

þ 2ωðϕÞ
f

�
; ð115Þ

while the potentials in the two frames are related as follows:

VðϕÞ ¼ UðϕÞ
Ω4

; ð116Þ

with
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VðϕÞ ¼ U0M4
p

4

�
ϕ

Mp

�
2n
: ð117Þ

In the case of universal attractors, the observational indices
of inflation are, again,

ns ¼ 1 −
2

N
; r ¼ 12

N2
; ð118Þ

just like in the Higgs inflation and several other attrac-
tors cases.
For the universal attractor models, it is assumed that

ΩðϕÞ ≪ 3M2
p

2
Ω0ðϕÞ; ð119Þ

and this can be written as follows:

1 −
ξϕ2

M2
p
≪

6ξ2ϕ2

M2
p

: ð120Þ

Using

dφ
dϕ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξϕ2

M2
p
þ 6ξ2ϕ2

M2
p

q
1þ ξϕ2

M2
p

; ð121Þ

and also Eq. (119), we get

φ ¼ −
ffiffiffi
3

2

r
Mp ln

�
1 −

ξϕ2

M2
p

�
; ð122Þ

which can be rewritten,

ϕ2

M2
p
¼ 1 − e−

ffiffi
2
3

p
φ

Mp

ξ
: ð123Þ

Thus the Einstein frame scalar potential has the final form
in terms of φ,

VðφÞ ¼ U0M4
p

4ξn
ð1 − e−

ffiffi
2
3

p
φ

MpÞn; ð124Þ

and by setting V0 ¼ U0M4
p

4ξn , due to the inflationary con-
straints on the amplitude of scalar perturbations, V0 is
constrained,

V0 ∼ 9.6 × 10−11M4
p; ð125Þ

which constrains in effect the parameter ξ to be
ξ ¼ 36.2239 × 104. Now regarding the functions that enter
in the TOV equations for the universal attractors case, we
have, for AðφÞ,

AðφÞ ¼ e2
ffiffi
π
3

p
φ; ð126Þ

while aðφÞ reads

aðφÞ ¼ α ¼ 2

ffiffiffi
π

3

r
: ð127Þ

F. Results and confrontation with the data

Let us now present the results of our numerical analysis
we performed using the LSODA technique for solving the
TOV equations. We analyzed all the inflationary attractors
we mentioned in the previous sections, namely, the a
attractors for two characteristic values of the free param-
eters, the Rp attractors for three characteristic values of the
free parameters, the universal attractors, the quadratic
attractors, the Higgs and induced inflation cases. We used
the following EOSs, as we mentioned earlier: the SLy [123]
which is a potential method EOS, the AP3-AP4 [124]
which is a variational method EOS, the WFF1 [125] which
is also a variational method EOS, the ENG [126] and the
MPA1 [127] which are relativistic EOSs, the MS1 and
MS1b [128] which are relativistic mean field theory EOSs,
with the MS1b being identical to the MS1 with a low
symmetry energy of 25 MeV and finally the APR EOS
[129]. We constructed theM − R graphs for all these cases,
and we confronted the extracted data on masses and radii of
the resulting static NSs with the three following constraints
CSI, CSII and CSIII, also appearing in Fig. 1: the CSI
constraint appeared first in Ref. [47] and indicates that the
radius of an 1.4M⊙ mass NS must be R1.4M⊙

¼ 12.42þ0.52
−0.99

while the radius of a 2M⊙ mass NS must be
R2M⊙

¼ 12.11þ1.11
−1.23 km. With regard to CSII, it appeared

first in Ref. [56] and indicates that the radius of an 1.4M⊙
mass NS must be R1.4M⊙

¼ 12.33þ0.76
−0.81 km. With regard to

the CSIII constraint, it appeared first in Ref. [51] and
indicates two things: first that the radius of a 1.6M⊙ mass
NS has to be larger than R1.6M⊙

> 10.68þ0.15
−0.04 km and,

second, the radius of a NS corresponding to its maximum
mass must satisfy RMmax

> 9.6þ0.14
−0.03 km. The TOVequations

are solved numerically in order to extract the Jordan frame
masses and radii of the NSs and in order to construct the
corresponding M − R graphs. We used a Python-3-based
numerical codewhich is based on the PYTOV-STT code [143].
We shall use the LSODA integration technique, and a double
shooting method in order to find the optimal values of the
initial conditions νc andφc defined in Eq. (27), which render
the scalar field zero at numerical infinity. Let us further
elaborate on the numerical integration technique. As we
quoted above, the method we shall use is the LSODA, which
is more powerful compared to the Runge-Kutta technique,
due to the fact that the LSODA integration method is more
appropriate for stiff differential equation problems. We
solved separately the TOV equations for the interior and
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the exterior of the star, using approximately 160 values of the
central density, and nearly 20000 grid points. The method is
quite reliable becauseweused a double shooting technique to
determine the accurate values for the νc and φc defined in
Eq. (27), and specifically we optimized their values accord-
ing to the rule that, for the optimal values, the scalar field
vanishes at numerical infinity. The numerical infinity is
actually determined by exactly this rule.
For all the M − R graphs we shall plot, we included the

NICER I constraint for M ¼ 1.4M⊙ NSs which is 90%

credible [131] and constrains the radius of an M ¼ 1.4M⊙
to be R1.4M⊙

¼ 11.34–13.23 km. Also recently, a more
refined extension of the NICER constraint was introduced
in [58] by taking into account the heavy black-widow
binary pulsar PSR J0952-0607 with massM ¼ 2.35� 0.17
[15]. The black widow pulsar PSR J0952-0607 is the
heavier known NSs and we need to note that the NICER II
constraint takes this into account. The results of our
analysis are quite interesting, aligned with the NICER II
constraints and indicate that these are satisfied only for

FIG. 2. The M − R graphs for the universal attractors and the Rp attractors (three distinct model values), the induced inflation and
Higgs inflation for the EOSs WFF1, SLy, APR, MS1, AP3, AP4, ENG, MPA1, MS1b versus the NICER I [131] and NICER II [58]
constraints.
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EOSs which yield the maximum masses of NSs inside the
mass-gap region, but still lower that the causal three solar
masses limit. The NICER II constrains the radius of aM ¼
1.4M⊙ to be R1.4M⊙

¼ 12.33–13.25 km. We shall refer to
this new constraint as NICER II for simplicity hereafter.
Also in the following Table VIII we present the two NICER
I and NICER II constraints for reading convenience. The
M − R graphs of our analysis are presented in Figs. 2–5. In
Fig. 2 we present the M − R graphs for the universal
attractors and the Rp attractors (three distinct model
values), the induced inflation and Higgs inflation for the
EOSs WFF1, SLy, APR, MS1, AP3, AP4, ENG, MPA1,
MS1b versus the NICER I [131] and NICER II [58]
constraints. In Fig. 3 we present the M − R graphs for
the universal attractors and the Rp attractors (three distinct
model values), the induced inflation and Higgs inflation for
the EOSs WFF1, SLy, APR, MS1, AP3, AP4, ENG,
MPA1, MS1b versus the NICER I and NICER II con-
straints. In Fig. 4 we present the M − R graphs for the
universal attractors, the Rp attractors (three distinct model
values), the induced inflation, the quadratic inflation, the
Higgs inflation and the a attractors (two distinct model
values) for the EOSs WFF1, SLy, APR, MS1 versus the

NICER I and NICER II constraints, and finally in Fig. 5,
the M − R graphs are presented for all the aforementioned
attractor models, for the EOSs AP3, AP4, ENG, MPA1,
MS1b, confronted again with the NICER I, II constraints.
Also in Table I we present the EOSs and the inflationary
attractor models which yield a maximum NS mass inside
the mass-gap region. In Tables II and III we present the
confrontation of the radii of the NSs with the constraint CSI
regarding M ∼ 2M⊙ NSs. In Tables IV and V we present
the confrontation of the radii of the NSs with the constraint
CSI regarding M ∼ 1.4M⊙ NSs. In Tables VI and VII we
present the confrontation of the radii of the NSs with the
constraint CSII regarding M ∼ 1.4M⊙ NSs. In Tables IX
and X we present the confrontation of the radii of the NSs
with the constraint CSIII regardingM ∼ 1.6M⊙ NSs, while
in Tables XI and XII we present the confrontation of the
radii of the NSs with the constraint CSIII regarding
maximum mass NSs.
Now let us analyze the extracted data, and the results

are deemed quite interesting. The most important result is
that all the inflationary models are compatible with the
NICER I and NICER II, and all the CSI, CSII, CSIII
constraints, for the MPA1 EOS. More importantly, for

FIG. 3. The M − R graphs for the universal attractors and the Rp attractors (three distinct model values), the induced inflation and
Higgs inflation for the EOSs WFF1, SLy, APR, MS1, AP3, AP4, ENG, MPA1, MS1b versus the NICER I [131] and NICER II [58]
constraints.
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this particular EOS, the maximum predicted NS masses
are inside the mass gap region 2.5–5M⊙, but well below
the causal three solar masses limit of GR, which is
respected. Recall that the causal EOS limit is very
important so let us briefly recall what the causal EOS
limit is, and why our result is aligned with this extreme
GR limit, which also holds true in modified gravity
theories [38]. The causality constraint is an important
constraint for most reliable EOSs, which must be
respected in order for an EOS to be considered reliable,
In principle, when dP=dρ > 1 in natural units, the EOS
can be rendered superluminal, while when P > ρ, the
EOSs can become ultrabaric. A related question of course
is whether a superluminality predicting an EOS in terms
of its sound speed can be incompatible with Lorentz
invariance and of course causality. The answer to this
question is no, nevertheless, the EOSs which become
superluminal, do become superluminal for NSs energy
densities for which the NSs are rendered hydrodynami-
cally unstable [16], and this applies for stiff EOSs too. If
we take into consideration the nuclear matter stability
condition at high densities dP

dρ > 0, in conjunction with

the subluminality condition dP
dρ ≤ 1 (in natural units), a

very well established GR originating limit for the
maximum mass of static NSs is the so-called causal
maximum mass limit [144,145],

MCL
max ¼ 3M⊙

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 × 1014 g=cm3

ρu

s
; ð128Þ

with ρu being the maximum density up to which the EOS
is well known and the corresponding pressure is PuðρuÞ.
The causal limit EOS is the following:

PsnðρÞ ¼ PuðρuÞ þ ðρ − ρuÞc2: ð129Þ

Another well-known bound in astrophysics, also support-
ing the causal maximum mass limit, is the bound based
on the maximum baryon mass of a static NS (all NSs
with periods P ≽ 3 ms),

Mmax ≤ 3M⊙: ð130Þ

The causal maximum mass of a NS when rotation is
taken into account is

FIG. 4. The M − R graphs for the universal attractors, the Rp attractors (three distinct model values), the induced inflation, the
quadratic inflation, the Higgs inflation and the a attractors (two distinct model values) for the EOSs WFF1, SLy, APR, MS1 versus the
NICER I [131] and NICER II [58] constraints.
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MCL;rot
max ¼ 3.89M⊙

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 × 1014 g=cm3

ρu

s
: ð131Þ

In our case it is remarkable that the MPA1 EOS produces
results compatible with all the constraints for all the
inflationary attractors and it is also compatible with the
causal limit of maximum mass (128). The only EOSs
which produce maximum masses beyond the causal limit

of maximum mass (128) are the MS1 and MS1b, and
remarkably, neither of the two produces M − R graphs
which are compatible with the constraints. In fact, neither
of the two is compatible with even a single constraint.
Another important feature of our analysis is the fact that
if the NICER II constraints are taken into account, which
recall that generated based on the heavier PSR J0952-
0607, it seems that compatibility with the data comes
hand in hand with models and EOSs which predict

FIG. 5. The M − R graphs for the universal attractors, the Rp attractors (three distinct model values), the induced inflation, the
quadratic inflation, the Higgs inflation and the a attractors (two distinct model values) for the EOSs AP3, AP4, ENG, MPA1, MS1b
versus the NICER I [131] and NICER II [58] constraints.
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TABLE I. Maximum masses for inflationary attractor NSs in the mass gap region.

Model MPA1 EOS MS1b EOS AP3 EOS ENG EOS MS1 EOS

Universal attractors MMAX MMPA1 ¼ 2.771M⊙ MMS1b ¼ 3.167M⊙ MAP3 ¼ 2.638M⊙ MENG ¼ x MMS1 ¼ 3.174M⊙
Rp-8 attractors MMAX MMPA1 ¼ 2.749M⊙ MMS1b ¼ 3.118M⊙ MAP3 ¼ 2.6359M⊙ MENG ¼ x MMS1 ¼ 3.126M⊙
Rp-10−1 attractors MMAX MMPA1 ¼ 2.765M⊙ MMS1b ¼ 3.158M⊙ MAP3 ¼ 2.6357M⊙ MENG ¼ x MMS1 ¼ 3.166M⊙
Rp-10−3 attractors MMAX MMPA1 ¼ 2.778M⊙ MMS1b ¼ 3.179M⊙ MAP3 ¼ 2.643M⊙ MENG ¼ x MMS1 ¼ 3.186M⊙
Induced attractors MMAX MMPA1 ¼ 2.788M⊙ MMS1b ¼ 3.174M⊙ MAP3 ¼ 2.659M⊙ MENG ¼ 2.51M⊙ MMS1 ¼ 3.182M⊙
Higgs model MMAX MMPA1 ¼ 2.771M⊙ MMS1b ¼ 3.167M⊙ MAP3 ¼ 2.638M⊙ MENG ¼ x MMS1 ¼ 3.175M⊙
α-104 attractors MMAX MMPA1 ¼ 2.749M⊙ MMS1b ¼ 3.117M⊙ MAP3 ¼ 2.636M⊙ MENG ¼ x MMS1 ¼ 3.126M⊙
α-0.6 attractors MMAX MMPA1 ¼ 2.784M⊙ MMS1b ¼ 3.189M⊙ MAP3 ¼ 2.647M⊙ MENG ¼ 2.500M⊙ MMS1 ¼ 3.197M⊙
Quadratic attractors MMAX MMPA1 ¼ 2.749M⊙ MMS1b ¼ 3.117M⊙ MAP3 ¼ 2.636M⊙ MENG ¼ x MMS1 ¼ 3.126M⊙

TABLE II. Inflationary attractors vs CSI for NS masses M ∼ 2M⊙, R2M⊙
¼ 12.11þ1.11

−1.23 km, for the SLy, APR, WFF1, MS1 and AP3
EOSs.

Model SLy EOS APR EOS WFF1 EOS MS1 EOS AP3 EOS

Universal attractors radii RSLy ¼ 11.64 km RAPR ¼ 11.63 km RWFF1 ¼ x RMS1 ¼ x RAP3 ¼ 12.46 km
Rp-8 attractors radii RSLy ¼ 11.15 km RAPR ¼ 11.08 km RWFF1 ¼ x RMS1 ¼ x RAP3 ¼ 11.89 km
Rp-10−1 attractors radii RSLy ¼ 11.54 km RAPR ¼ 11.52 km RWFF1 ¼ x RMS1 ¼ x RAP3 ¼ 12.35 km
Rp-10−3 attractors radii RSLy ¼ 11.78 km RAPR ¼ 11.785 km RWFF1 ¼ 11.01 km RMS1 ¼ x RAP3 ¼ 12.66 km
Induced attractors radii RSLy ¼ 11.17 km RAPR ¼ 11.08 km RWFF1 ¼ x RMS1 ¼ x RAP3 ¼ 11.94 km
Higgs model radii RSLy ¼ 11.64 km RAPR ¼ 11.60 km RWFF1 ¼ x RMS1 ¼ x RAP3 ¼ 12.47 km
α-104 attractors radii RSLy ¼ 11.17 km RAPR ¼ 11.00 km RWFF1 ¼ x RMS1 ¼ x RAP3 ¼ 11.86 km
α-10−1 attractors radii RSLy ¼ 11.96 km RAPR ¼ 11.96 km RWFF1 ¼ 11.16 km RMS1 ¼ x RAP3 ¼ 12.85 km
Quadratic attractors radii RSLy ¼ 11.17 km RAPR ¼ 11.06 km RWFF1 ¼ x RMS1 ¼ x RAP3 ¼ 11.89 km

TABLE III. Inflationary attractors vs CSI for NS masses M ∼ 2M⊙, R2M⊙
¼ 12.11þ1.11

−1.23 km, for the AP4, ENG, MPA1 and MS1b.

Model AP4 EOS ENG EOS MPA1 EOS MS1b EOS

Universal attractors radii RAP4 ¼ 11.60 km RENG ¼ 12.22 km RMPA1 ¼ 13.01 km RMS1b ¼ x
Rp-8 attractors radii RAP4 ¼ 11.05 km RENG ¼ 11.74 km RMPA1 ¼ 112.44 km RMS1b ¼ x
Rp-10−1 attractors radii RAP4 ¼ 11.52 km RENG ¼ 12.14 km RMPA1 ¼ 12.89 km RMS1b ¼ x
Rp-10−3 attractors radii RAP4 ¼ 11.82 km RENG ¼ 12.42 km RMPA1 ¼ 13.21 km RMS1b ¼ x
Induced attractors radii RAP4 ¼ 11.15 km RENG ¼ 11.82 km RMPA1 ¼ 12.46 km RMS1b ¼ x
Higgs model radii RAP4 ¼ 11.63 km RENG ¼ 12.24 km RMPA1 ¼ 13.02 km RMS1b ¼ x
α-104 attractors radii RAP4 ¼ 11.08 km RENG ¼ 11.74 km RMPA1 ¼ 12.44 km RMS1b ¼ x
α-10−1 attractors radii RAP4 ¼ 12.01 km RENG ¼ 12.61 km RMPA1 ¼ 13.42 km RMS1b ¼ x
Quadratic attractors radii RAP4 ¼ 11.08 km RENG ¼ 11.68 km RMPA1 ¼ 12.44 km RMS1b ¼ x

TABLE IV. Inflationary attractors vs CSI for NS masses M ∼ 1.4M⊙, R1.4M⊙
¼ 12.42þ0.52

−0.99 , for the SLy, APR, WFF1, MS1 and AP3
EOSs.

Model SLy EOS APR EOS WFF1 EOS MS1 EOS AP3 EOS

Universal attractors radii RSLy ¼ 11.93 km RAPR ¼ 11.64 km RWFF1 ¼ x RMS1 ¼ x RAP3 ¼ x
Rp-8 attractors radii RSLy ¼ 11.73 km RAPR ¼ x RWFF1 ¼ x RMS1 ¼ x RAP3 ¼ x
Rp-10−1 attractors radii RSLy ¼ 11.85 km RAPR ¼ 11.55 km RWFF1 ¼ x RMS1 ¼ x RAP3 ¼ 12.18 km
Rp-10−3 attractors radii RSLy ¼ 12.04 km RAPR ¼ 11.80 km RWFF1 ¼ x RMS1 ¼ x RAP3 ¼ 12.43 km
Induced attractors radii RSLy ¼ 11.77 km RAPR ¼ x RWFF1 ¼ x RMS1 ¼ x RAP3 ¼ 11.96 km
Higgs model radii RSLy ¼ 11.93 km RAPR ¼ 11.64 km RWFF1 ¼ x RMS1 ¼ x RAP3 ¼ 12.28 km
α-104 attractors radii RSLy ¼ 11.73 km RAPR ¼ x RWFF1 ¼ x RMS1 ¼ x RAP3 ¼ 11.96 km
α-10−1 attractors radii RSLy ¼ 12.18 km RAPR ¼ 11.95 km RWFF1 ¼ x RMS1 ¼ x RAP3 ¼ 12.65 km
Quadratic attractors radii RSLy ¼ 11.75 km RAPR ¼ 11.64 km RWFF1 ¼ x RMS1 ¼ x RAP3 ¼ 11.96 km
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maximum masses beyond 2.5 solar masses, thus in the
mass gap region and at the same time below the three
solar masses causal limit. This for example becomes true
for all the inflationary models studied, only for the MPA1
EOS, so the question is, is this EOS so important? Is it

possible that this EOS describes NSs at a fundamental
level? The future observations will show, but for the
moment we report this interesting behavior. Of course
there are other EOSs that are compatible with the NICER
II constraint, such as the ENG and AP3, which remark-
ably also predict maximum masses inside the mass gap
region and below the three solar masses causal limit, but
in these EOSs, only some inflationary attractors produce
viable results, for example the Higgs, the a attractors and
the Rp attractors, but in the case of the MPA1 EOS, all
the inflationary models are compatible with the NICER II
observations. Another major outcome of this work is that

TABLE V. Inflationary attractors vs CSI for NS masses M ∼ 1.4M⊙, R1.4M⊙
¼ 12.42þ0.52

−0.99 , for the AP4, ENG, MPA1 and MS1b.

Model AP4 EOS ENG EOS MPA1 EOS MS1b EOS

Universal attractors radii RAP4 ¼ 11.64 km RENG ¼ 12.23 km RMPA1 ¼ 12.74 km RMS1b ¼ x
Rp-8 attractors radii RAP4 ¼ 11.93 km RENG ¼ x RMPA1 ¼ 12.41 km RMS1b ¼ x
Rp-10−1 attractors radii RAP4 ¼ 11.55 km RENG ¼ 12.16 km RMPA1 ¼ 12.64 km RMS1b ¼ x
Rp-10−3 attractors radii RAP4 ¼ 11.80 km RENG ¼ 12.38 km RMPA1 ¼ x RMS1b ¼ x
Induced attractors radii RAP4 ¼ x RENG ¼ 11.97 km RMPA1 ¼ 12.38 km RMS1b ¼ x
Higgs model radii RAP4 ¼ 11.64 km RENG ¼ 12.23 km RMPA1 ¼ 12.74 km RMS1b ¼ x
α-104 attractors radii RAP4 ¼ x RENG ¼ 11.97 km RMPA1 ¼ 12.41 km RMS1b ¼ x
α-10−1 attractors radii RAP4 ¼ 11.95 km RENG ¼ 12.55 km RMPA1 ¼ x RMS1b ¼ x
Quadratic attractors radii RAP4 ¼ 11.93 km RENG ¼ 11.97 km RMPA1 ¼ 12.41x RMS1b ¼ x

TABLE VI. Inflationary attractors radii vs CSII for NS massesM ∼ 1.4M⊙, R1.4M⊙
¼ 12.33þ0.76

−0.81 km, for the SLy, APR, WFF1, MS1
and AP3 EOSs.

Model SLy EOS APR EOS WFF1 EOS MS1 EOS AP3 EOS

Universal attractors radii RSLy ¼ 11.93 km RAPR ¼ 11.64 km RWFF1 ¼ x RMS1 ¼ x RAP3 ¼ 11.36 km
Rp-8 attractors radii RSLy ¼ 11.73 km RAPR ¼ x RWFF1 ¼ x RMS1 ¼ x RAP3 ¼ x
Rp-10−1 attractors radii RSLy ¼ 11.85 km RAPR ¼ 11.55 km RWFF1 ¼ x RMS1 ¼ x RAP3 ¼ 12.18 km
Rp-10−3 attractors radii RSLy ¼ 12.04 km RAPR ¼ 11.80 km RWFF1 ¼ x RMS1 ¼ x RAP3 ¼ 12.43 km
Induced attractors radii RSLy ¼ 11.77 km RAPR ¼ x RWFF1 ¼ x RMS1 ¼ x RAP3 ¼ 11.96 km
Higgs model radii RSLy ¼ 11.93 km RAPR ¼ 11.64 km RWFF1 ¼ x RMS1 ¼ x RAP3 ¼ 12.28 km
α-104 attractors radii RSLy ¼ 11.73 km RAPR ¼ x RWFF1 ¼ x RMS1 ¼ x RAP3 ¼ 11.96 km
α-10−1 attractors radii RSLy ¼ 12.18 km RAPR ¼ 11.95 km RWFF1 ¼ x RMS1 ¼ x RAP3 ¼ 12.65 km
Quadratic attractors radii RSLy ¼ 11.75 km RAPR ¼ 11.64 km RWFF1 ¼ x RMS1 ¼ x RAP3 ¼ 11.96 km

TABLE VII. Inflationary attractors vs CSII for NS masses M ∼ 1.4M⊙, R1.4M⊙
¼ 12.33þ0.76

−0.81 km, for the AP4, ENG, MPA1 and
MS1b.

Model AP4 EOS ENG EOS MPA1 EOS MS1b EOS

Universal attractors radii RAP4 ¼ 11.64 km RENG ¼ 12.23 km RMPA1 ¼ 12.74 km RMS1b ¼ x
Rp-8 attractors radii RAP4 ¼ 11.93 km RENG ¼ x RMPA1 ¼ 12.41 km RMS1b ¼ x
Rp-10−1 attractors radii RAP4 ¼ 11.55 km RENG ¼ 12.16 km RMPA1 ¼ 12.64 km RMS1b ¼ x
Rp-10−3 attractors radii RAP4 ¼ 11.80 km RENG ¼ 12.38 km RMPA1 ¼ x RMS1b ¼ x
Induced attractors radii RAP4 ¼ x RENG ¼ 11.97 km RMPA1 ¼ 12.38 km RMS1b ¼ x
Higgs model radii RAP4 ¼ 11.64 km RENG ¼ 12.23 km RMPA1 ¼ 12.74 km RMS1b ¼ x
α-104 attractors radii RAP4 ¼ x RENG ¼ 11.97 km RMPA1 ¼ 12.41 km RMS1b ¼ x
α-10−1 attractors radii RAP4 ¼ 11.95 km RENG ¼ 12.55 km RMPA1 ¼ x RMS1b ¼ x
Quadratic attractors radii RAP4 ¼ 11.93 km RENG ¼ 11.97 km RMPA1 ¼ 12.41x RMS1b ¼ x

TABLE VIII. NICER I AND NICER II constraints for the
radius of a M ¼ 1.4M⊙ NS.

NICER I 11.34 km < R1.4M⊙
< 13.23 km [131]

NICER II 12.33 km < R1.4M⊙
< 13.25 km [58]
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cosmologically indistinguishable inflationary attractors
become distinguished in NSs. This feature, however,
seems to be EOS and model dependent, since for
example for the APR EOS, the quadratic attractors, the

a attractors and the Rp-8 attractors produce overlapping
results. Regarding the constraint CSI, the WFF1, the
MS1 and MS1b EOS are excluded completely (apart for
some cases of the a attractors and Rp attractors regarding

TABLE IX. Inflationary attractors vs CSIII for NS masses M ∼ 1.6M⊙, R1.6M⊙
> 10.68þ0.15

−0.04 km, for the SLy, APR, WFF1, MS1 and
AP3 EOSs.

Model SLy EOS APR EOS WFF1EOS MS1 EOS AP3 EOS

Universal attractors radii RSLy ¼ 11.92 km RAPR ¼ 11.70 km RWFF1 ¼ 11.68 km RMS1 ¼ 13.99 km RAP3 ¼ 12.41 km
Rp-8 attractors radii RSLy ¼ 11.89 km RAPR ¼ 11.28 km RWFF1 ¼ 10.40 km RMS1 ¼ 14.93 km RAP3 ¼ 11.97 km
Rp-10−1 attractors radii RSLy ¼ 11.85 km RAPR ¼ 11.61 km RWFF1 ¼ x RMS1 ¼ 15.11 km RAP3 ¼ 12.29 km
Rp-10−3 attractors radii RSLy ¼ 11.80 km RAPR ¼ 11.59 km RWFF1 ¼ x RMS1 ¼ 15.20 km RAP3 ¼ 12.34 km
Induced attractors radii RSLy ¼ 11.68 km RAPR ¼ 11.32 km RWFF1 ¼ x RMS1 ¼ 14.92 km RAP3 ¼ 11.97 km
Higgs model radii RSLy ¼ 11.92 km RAPR ¼ 11.70 km RWFF1 ¼ 10.89 km RMS1 ¼ 14.92 km RAP3 ¼ 11.93 km
α-104 attractors radii RSLy ¼ 11.64 km RAPR ¼ 11.29 km RWFF1 ¼ x RMS1 ¼ 14.94 km RAP3 ¼ 11.97 km
α-10−1 attractors radii RSLy ¼ 12.20 km RAPR ¼ 12.04 km RWFF1 ¼ 11.23 km RMS1 ¼ 15.49 km RAP3 ¼ 12.76 km
Quadratic attractors radii RSLy ¼ 11.64 km RAPR ¼ 11.29 km RWFF1 ¼ x RMS1 ¼ 14.94 km RAP3 ¼ 11.97 km

TABLE X. Inflationary attractors vs CSIII for NS massesM ∼ 1.6M⊙, R1.6M⊙
> 10.68þ0.15

−0.04 km, for the AP4, ENG, MPA1 and MS1b.

Model AP4 EOS ENG EOS MPA1 EOS MS1b EOS

Universal attractors radii RAP4 ¼ 11.70 km RENG ¼ 12.30 km RMPA1 ¼ 12.87 km RMS1b ¼ 14.90 km
Rp-8 attractors radii RAP4 ¼ 11.28 km RENG ¼ 11.94 km RMPA1 ¼ 12.45 km RMS1b ¼ 14.59 km
Rp-10−1 attractors radii RAP4 ¼ 11.61 km RENG ¼ 12.21 km RMPA1 ¼ 12.79 km RMS1b ¼ 14.78 km
Rp-10−3 attractors radii RAP4 ¼ 11.86 km RENG ¼ 12.45 km RMPA1 ¼ 12.15 km RMS1b ¼ 15.04 km
Induced attractors radii RAP4 ¼ 11.32 km RENG ¼ 11.96 km RMPA1 ¼ 12.44 km RMS1b ¼ 14.49 km
Higgs model radii RAP4 ¼ 11.70 km RENG ¼ 12.30 km RMPA1 ¼ 12.87 km RMS1b ¼ 14.90 km
α-104 attractors radii RAP4 ¼ 11.28 km RENG ¼ 11.95 km RMPA1 ¼ 12.44 km RMS1b ¼ 14.55 km
α-10−1 attractors radii RAP4 ¼ 10.99 km RENG ¼ 12.63 km RMPA1 ¼ 13.22 km RMS1b ¼ 15.22 km
Quadratic attractors radii RAP4 ¼ 11.28 km RENG ¼ 11.95 km RMPA1 ¼ 12.44 km RMS1b ¼ 14.55 km

TABLE XI. Inflationary attractors maximum NS masses and the corresponding radii vs CSIII, RMmax
> 9.6þ0.14

−0.03 km, for the SLy, APR,
WFF1, MS1 and AP3 EOSs.

Model APR EOS SLy EOS WFF1 EOS MS1 EOS AP3 EOS

Universal attractors Mmax MAPR ¼ 2.41M⊙ MSLy ¼ 2.27M⊙ MWFF1 ¼ 2.32M⊙ MMS1 ¼ 3.17M⊙ MAP3 ¼ 2.63M⊙
Universal attractors radii RAPR ¼ 10.54 km RSLy ¼ 10.56 km RWFF1 ¼ 9.91 km RMS1 ¼ 13.93 km RAP3 ¼ 11.35 km
Rp-8 attractors Mmax MAPR ¼ 2.41M⊙ MSLy ¼ 2.24M⊙ MWFF1 ¼ 2.34M⊙ MMS1 ¼ 3.12M⊙ MAP3 ¼ 2.63M⊙
Rp-8 attractors radii RAPR ¼ 9.91 km RSLy ¼ 9.96 km RWFF1 ¼ 9.28 km RMS1 ¼ 13.30 km RAP3 ¼ 10.67 km
Rp-10−1 attractors Mmax MAPR ¼ 2.41M⊙ MSLy ¼ 2.26M⊙ MWFF1 ¼ 2.31M⊙ MMS1 ¼ 3.16M⊙ MAP3 ¼ 2.63M⊙
Rp-10−1 attractors radii RAPR ¼ 10.49 km RSLy ¼ 10.43 km RWFF1 ¼ 9.83 km RMS1 ¼ 13.81 km RAP3 ¼ 11.24 km
Rp-10−3 attractors Mmax MAPR ¼ 2.42M⊙ MSLy ¼ 2.27M⊙ MWFF1 ¼ 2.32M⊙ MMS1 ¼ 3.18M⊙ MAP3 ¼ 2.64M⊙
Rp-10−3 attractors radii RAPR ¼ 10.77 km RSLy ¼ 10.72 km RWFF1 ¼ 10.09 km RMS1 ¼ 14.09 km RAP3 ¼ 11.55 km
Induced attractors Mmax MAPR ¼ 2.44M⊙ MSLy ¼ 2.28M⊙ MWFF1 ¼ 2.36M⊙ MMS1 ¼ 3.18M⊙ MAP3 ¼ 2.66M⊙
Induced attractors radii RAPR ¼ 10.04 km RSLy ¼ 10.10 km RWFF1 ¼ 9.42 km RMS1 ¼ 13.36 km RAP3 ¼ 10.80 km
Higgs model Mmax MAPR ¼ 2.41M⊙ MSLy ¼ 2.27M⊙ MWFF1 ¼ 2.32M⊙ MMS1 ¼ 3.17M⊙ MAP3 ¼ 2.63M⊙
Higgs model radii RAPR ¼ 10.57 km RSLy ¼ 10.56 km RWFF1 ¼ 9.91 km RMS1 ¼ 13.91 km RAP3 ¼ 11.35 km
α-104 attractors Mmax MAPR ¼ 2.41M⊙ MSLy ¼ 2.24M⊙ MWFF1 ¼ 2.34M⊙ MMS1 ¼ 3.12M⊙ MAP3 ¼ 2.63M⊙
α-104 attractors radii RAPR ¼ 9.89 km RSLy ¼ 9.98 km RWFF1 ¼ 9.29 km RMS1 ¼ 13.31 km RAP3 ¼ 10.65 km
α-10−1 attractors Mmax MAPR ¼ 2.42M⊙ MSLy ¼ 2.28M⊙ MWFF1 ¼ 2.32M⊙ MMS1 ¼ 3.19M⊙ MAP3 ¼ 2.64M⊙
α-10−1 attractors radii RAPR ¼ 10.89 km RSLy ¼ 10.81 km RWFF1 ¼ 10.22 km RMS1 ¼ 14.29 km RAP3 ¼ 11.72 km
Quadratic attractors Mmax MAPR ¼ 2.41M⊙ MSLy ¼ 2.24M⊙ MWFF1 ¼ 2.34M⊙ MMS1 ¼ 3.12M⊙ MAP3 ¼ 2.63M⊙
Quadratic attractors radii RAPR ¼ 9.89 km RSLy ¼ 9.96 km RWFF1 ¼ 9.28 km RMS1 ¼ 13.31 km RAP3 ¼ 10.67 km
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the WFF1) and the same applies for the CSII constraint.
Regarding the CSIII constraints, only the WFF1 EOS
produces results which are in most cases of inflationary
attractors, incompatible with CSIII. The full results of the
incompatibility of certain inflationary attractor models
and EOSs, with the observational data and the existing
constraints, can be found in the presented tables. We
highlighted the most significant outcomes of this work,
and as it seems, the MPA1 EOS seems to play an
important role, while the WFF1, MS1 and MS1b seem to
be entirely out of the equation, regarding a viable
description of static NSs.
Before closing, let us discuss an important issue related

with the discrimination of inflationary attractors on NSs,
the % difference between the NS masses for different
models of attractors and the differences in NS masses
corresponding to piecewise polytropic and polytropic

EOSs. It is vital that the differences between the masses
using piecewise polytropic EOSs and ordinary polytropic
EOSs to be lower than the differences between NS masses
corresponding to inflationary attractors. In Table XIII we
present the maximum masses of all the inflationary
attractors for the piecewise polytropic MPA1 EOS and
for the ordinary polytropic MPA1 EOS. The difference in
the maximum mass between the different attractors for the
piecewise polytropic MPA1 EOS varies from the minimum
value ∼Oð0.8%Þ to the maximum value ∼Oð1.27%Þ, while
the average differences between the piecewise polytropic
and the ordinary polytropic MPA1 EOS is of the order
∼Oð0.1%Þ. Thus this feature may somehow obscure the
discrimination of different attractors in NSs and it is a
reportable feature, because the differences in maximum
masses may be within the limits of errors in determining the
mass of the NS.

TABLE XII. Inflationary attractors maximum NS masses and the correspondent vs CSIII, RMmax
> 9.6þ0.14

−0.03 km, for the AP4, ENG,
MPA1 and MS1b.

Model AP4 EOS ENG EOS MPA1 EOS MS1b EOS

Universal attractors Mmax MAP4 ¼ 2.41M⊙ MENG ¼ 2.49M⊙ MMPA1 ¼ 2.77M⊙ MMS1b ¼ 3.16M⊙
Universal attractors radii RAP4 ¼ 10.54 km RENG ¼ 11.00 km RMPA1 ¼ 11.94 km RMS1b ¼ 13.83 km
Rp-8 attractors Mmax MAP4 ¼ 2.41M⊙ MENG ¼ 2.47M⊙ MMPA1 ¼ 2.74M⊙ MMS1b ¼ 3.11M⊙
Rp-8 attractors radii RAP4 ¼ 9.91 km RENG ¼ 10.36 km RMPA1 ¼ 11.33 km RMS1b ¼ 13.21 km
Rp-10−1 attractors Mmax MAP4 ¼ 2.41M⊙ MENG ¼ 2.48M⊙ MMPA1 ¼ 2.76M⊙ MMS1b ¼ 3.15M⊙
Rp-10−1 attractors radii RAP4 ¼ 10.49 km RENG ¼ 10.92 km RMPA1 ¼ 11.82 km RMS1b ¼ 13.73 km
Rp-10−3 attractors Mmax MAP4 ¼ 2.42M⊙ MENG ¼ 2.49M⊙ MMPA1 ¼ 2.77M⊙ MMS1b ¼ 3.17M⊙
Rp-10−3 attractors radii RAP4 ¼ 10.77 km RENG ¼ 11.11 km RMPA1 ¼ 12.15 km RMS1b ¼ 14.06 km
Induced attractors Mmax MAP4 ¼ 2.44M⊙ MENG ¼ 2.51M⊙ MMPA1 ¼ 2.78M⊙ MMS1b ¼ 3.17M⊙
Induced attractors radii RAP4 ¼ 10.04 km RENG ¼ 10.49 km RMPA1 ¼ 11.41 km RMS1b ¼ 13.29 km
Higgs model Mmax MAP4 ¼ 2.41M⊙ MENG ¼ 2.49M⊙ MMPA1 ¼ 2.77M⊙ MMS1b ¼ 3.16M⊙
Higgs model radii RAP4 ¼ 10.57 km RENG ¼ 11.01 km RMPA1 ¼ 11.94 km RMS1b ¼ 13.83 km
α-104 attractors Mmax MAP4 ¼ 2.41M⊙ MENG ¼ 2.47M⊙ MMPA1 ¼ 2.342M⊙ MMS1b ¼ 2.417M⊙
α-104 attractors radii RAP4 ¼ 9.89 km RENG ¼ 10.36 km RMPA1 ¼ 12.44 km RMS1b ¼ 14.55 km
α-10−1 attractors Mmax MAP4 ¼ 2.42M⊙ MENG ¼ 2.50M⊙ MMPA1 ¼ 2.78M⊙ MMS1b ¼ 3.18M⊙
α-10−1 attractors radii RAP4 ¼ 10.89 km RENG ¼ 11.48 km RMPA1 ¼ 12.33 km RMS1b ¼ 14.22 km
Quadratic attractors Mmax MAP4 ¼ 2.41M⊙ MENG ¼ 2.47M⊙ MMPA1 ¼ 2.74M⊙ MMS1b ¼ 3.11M⊙
Quadratic attractors radii RAP4 ¼ 9.89 km RENG ¼ 10.36 km RMPA1 ¼ 11.32 km RMS1b ¼ 13.21 km

TABLE XIII. Comparison of the maximum masses for all the inflationary attractors NSs for the piecewise and
ordinary polytropic MPA1 EOS.

Model MPA1 piecewise polytropic EOS MPA1 ordinary polytropic EOS

Universal attractors MMAX Mpp
MPA1 ¼ 2.771M⊙ Mp

MPA1 ¼ 2.77433M⊙
Rp-8 attractors MMAX Mpp

MPA1 ¼ 2.749M⊙ Mp
MPA1 ¼ 2.74571M⊙

Rp-10−1 attractors MMAX Mpp
MPA1 ¼ 2.765M⊙ Mp

MPA1 ¼ 2.76804M⊙
Rp-10−3 attractors MMAX Mpp

MPA1 ¼ 2.778M⊙ Mp
MPA1 ¼ 2.78078M⊙

Induced attractors MMAX Mpp
MPA1 ¼ 2.788M⊙ Mp

MPA1 ¼ 2.79107M⊙
Higgs model MMAX Mpp

MPA1 ¼ 2.771M⊙ Mp
MPA1 ¼ 2.7735M⊙

α-104 attractors MMAX Mpp
MPA1 ¼ 2.749M⊙ Mp

MPA1 ¼ 2.74598M⊙
α-0.6 attractors MMAX Mpp

MPA1 ¼ 2.784M⊙ Mp
MPA1 ¼ 2.78707M⊙

Quadratic attractors MMAX Mpp
MPA1 ¼ 2.749M⊙ Mp

MPA1 ¼ 2.75175M⊙
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III. CONCLUDING REMARKS

In this work we studied static NS phenomenology in
the context of various inflationary attractors using a
large sample of EOSs adopting the piecewise polytropic
EOS approach. The inflationary attractors we considered
have a high cosmological significance and specifically
we considered the universal attractors, the Rp attractors
(three distinct model values), the induced inflation,
the quadratic inflation, the Higgs inflation and the a
attractors (two distinct model values). Regarding the
EOSs, we used the WFF1, the SLy, the APR, the MS1,
the AP3, the AP4, the ENG, the MPA1 and the MS1b
ones, each of which has its own phenomenological
significance. After numerically solving the TOV equa-
tions, we extracted the Jordan frame masses M and the
Jordan frame radii R for all the aforementioned models
and EOSs and we constructed the corresponding M − R
diagrams. We also confronted the models and EOSs
with the observational and theoretical constraints. We
considered the NICER constraints and also a modified
version of the NICER constraints, which we called
NICER II, introduced in [58], which was constructed
by taking into account the heavy black-widow binary
pulsar PSR J0952-0607 with mass M ¼ 2.35� 0.17
[15]. The NICER II constraint, indicates that the radius
of a M ¼ 1.4M⊙ must be R1.4M⊙

¼ 12.33–13.25 km. We
also considered several theoretical constraints which are
also based on observations, which we called CSI, CSII
and CSIII. The CSI was introduced in Ref. [47] and
indicates that the radius of an 1.4M⊙ mass NS must be
R1.4M⊙

¼ 12.42þ0.52
−0.99 while the radius of an 2M⊙ mass

NS must be R2M⊙
¼ 12.11þ1.11

−1.23 km. The second con-
straint we considered we named it CSII and was
introduced in Ref. [56] and indicates that the radius
of an 1.4M⊙ mass NS must be R1.4M⊙

¼ 12.33þ0.76
−0.81 km.

Moreover, we considered a third constraint, namely
CSIII, which was introduced in Ref. [51] and indicates
that the radius of an 1.6M⊙ mass NS must be larger
than R1.6M⊙

> 10.68þ0.15
−0.04 km, while when the radius of a

NS with maximum mass is considered, it must be larger
than RMmax

> 9.6þ0.14
−0.03 km.

Our results are deemed interesting and are listed below:
(i) In the context of our work, it is possible to

discriminate inflationary attractors which at the
cosmological level are indistinguishable using the
M − R graphs. This feature though is model depen-
dent and also EOS dependent, since for some EOSs
and some cosmological models, the M − R graphs
we produced are identical. This for example oc-
curred for the APR EOS and for the quadratic
attractors, the a attractors and the Rp-8 attractors.
Also the differences may be within the errors of the
experimental limits, thus the discrimination has
limitations.

(ii) Among all the EOSs, the only EOS which is
compatible with all the constraints, theoretical
and observational, is the MPA1, for all the
inflationary models considered in this work. It
is remarkable that the maximum masses for
this EOS are inside the mass-gap region, with
M > 2.5M⊙, but lower than the three solar
masses causal limit.

(iii) As the NICER constraints are pushed towards larger
radii, it seems that EOSs which produce maximum
masses in the mass gap region, with M > 2.5M⊙,
but lower than the three solar masses causal limit, are
favored and compatible with the modified NICER
constraints.

(iv) The only EOSs which produce maximum masses
beyond the causal limit of three solar masses [see
Eq. (128)] are the MS1 and MS1b, and remark-
ably, neither of the two produces M − R graphs
which are compatible with the constraints. In fact,
neither of the two is compatible with even a single
constraint.

(v) Among all EOSs we considered, the MPA1 EOS
seems to play an important role, while the WFF1,
MS1 and MS1b seem to be entirely ruled out,
regarding a viable description of static NSs.

An important feature to note is that, as the NICER
constraints are pushed to higher radii, by taking into
account the PSR J0952-0607, it seems that the compat-
ibility with the theoretical and observational constraints
comes hand in hand with models and EOSs which
generated maximum radii beyond the mass-gap region
with M > 2.5M⊙ and below the three solar masses
causal EOSs limit. In our case, this occurs in a flawless
way for the MPA1 EOS, which is compatible with all
the constraints. This feature of course can be met in
several other distinguished cases, for example for the
ENG and AP3 EOSs and for the Higgs, the a attractors
and the Rp attractor models, but in the case of the
MPA1 EOS we found that all the models we considered
are compatible with all the theoretical and observational
constraints we considered in this article. Thus the
question is, does the MPA1 EOS play an important
role in NS physics, or is this multicompatibility with
the constraints of this specific EOS accidental? Is this
EOS fundamental for the NSs nuclear matter? We
cannot tell, however it is reportable to say the least.
It is notable that in the literature there exist articles that
also find nice compatibility properties of the MPA1
EOS with the data, see for example Ref. [146]. We
anticipate future observations to see whether heavy NSs
exist in nature, heavier that the current 2.35M⊙ solar
masses limit corresponding to the PSR J0952-0607. If
NSs are found well inside the mass-gap region, beyond
the 2.5M⊙ limit, but to our opinion below the causal
three solar masses limit, this will be sensational and

INFLATIONARY ATTRACTORS PREDICTIONS FOR STATIC … PHYS. REV. D 107, 104039 (2023)

104039-21



decisive on whether modifications of GR are needed
or not. Nature will tell us whether GR is all that is
needed for the description of astrophysical pheno-
mena, or whether GR is a lower limit of some effective
theory active in extreme gravity astrophysical and
cosmological phenomena. For the moment GR suffices
though.
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