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We study the homoclinic orbit and the violation of chaos bound, which are obtained by particle motions
around a black hole that coexist with anisotropic matter fields. The homoclinic one is associated with an
unstable local maximum of the effective potential. By perturbing a particle located slightly away from the
homoclinic one, we numerically compute Lyapunov exponents indicating the sensitivity of the initial value.
Our results demonstrate that the violation of the chaos bound increases with higher angular momentum, and
the anisotropic matter gives rise to violating the chaos bound further, even in the case of the nonextremal
black hole. We utilize the Hamiltonian-Jacobi formalism to explicitly illustrate how the geodesic motion of
a particle can be integrable in the procedure of obtaining our findings.
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I. INTRODUCTION

Black holes are not only theoretically predicted in the
theory of gravitation but also become real celestial objects
to exist in the Universe by indirect observations. In the
observational aspect, it was reported that gravitational
waves generated by the collision of two black holes were
detected [1,2], and the existence of black holes was
indirectly observed by the detection of light (so-called
black hole shadow) passing through around a supermassive
black hole located in the center of a galaxy [3–7]. Thanks to
these observations, a black hole has unveiled its reality.
Studying the geodesic motions and orbits of particles

around a black hole is a great way to understand the
geometry around a black hole and the phenomena occur-
ring. The study of these geodesic motions and orbits by
light and massive particles shows that the geometry around
a black hole can be very different from the geometry around
a massive object in Newtonian mechanics [8–14].
Most motions of objects that occur in nature are not only

nonlinear but also could be chaotic [15–17]. Actual particle
motions described by the theory of gravitation in curved
spacetime are nonlinear, and we want to know how chaotic
behavior occurs in those motions. In the particle motion
around the black hole, the nonchaotic motion of particles is
more regular, periodic, and less complicated. Thus, most of
the cases we study are integrable, geodesic, and not chaotic
[18–28]. In this situation, it is natural to ask how can we

know that the particle motions are chaotic around the black
hole with a strong gravity effect. To answer this question,
one could explore two kinds of characteristics showing
chaos phenomena. One corresponds to the Poincare sec-
tion in the phase space, while the other to the Lyapunov
exponent [29–32]. In this work, we will focus on the
Lyapunov exponent and the violation of chaos bound by the
particle motion around the black hole with anisotropic
matter fields.
To arrive at this stage, as a nonchaotic motion, we

analyze the case corresponding to the homoclinic orbit
[18,33] of the particle. The homoclinic orbit refers to one
that approaches two different ones in the infinite future and
the infinite past. This one corresponds to the separatrix
between the bound geodesic and the falling geodesic. The
existence of an unstable local maximum of the potential
plays the role of giving a separatrix of the particle motion.
We perturb the particle located slightly away from the

position of the homoclinic orbit. One of the consequences
of the perturbation in the background of the black hole is
that the geodesic equation loses its complete integrability. If
this integrability is lost, the dynamical system exhibits
chaotic behavior [16,34–38]. On the other hand, if the
motion of the perturbed particle is integrable again, it may
not be the chaotic one. With the assumption of the particle
motion being still geodesic, we analyze the numerically
calculated Lyapunov exponents that indicate how sensitive
this motion of the perturbed particle is to its initial position.
Since the universal upper bound of the Lyapunov

exponent defined in thermal quantum systems was conjec-
tured [39], there have been many related studies [40–45].
Here the upper bound is determined by the temperature of the
system, and the study was soon extended to the black hole
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system. It has been also studied for cases showing the chaotic
behavior of the spinning particle around the black hole
[46,47]. In the black hole system, the temperature can be
obtained by the existence of the event horizon, and it can
be anticipated that the upper bound may be violated in an
extremal black hole system where the temperature of
the black hole vanishes [48]. After that, there have been
many studies related to this case in various black hole
geometries [49–54].
We study the motion of charged particles around a static

black hole that coexists with matter that has an electric
charge and an additional anisotropic matter field [55–57].
Recently, we noticed a reference one [54], in which the
authors studied chaos bound and its violation in the charged
black hole [55] with different metric functions compared
with our present cases. In Ref. [54], the authors focused on
the effect of angular momentum, while we wish to inves-
tigate the effect of both anisotropic matter fields and
angular momentum in this paper. When a particle has a
charge, there exists an interaction between a particle’s one
and a black hole’s one. For that reason, the shape of the
effective potential that describes the particle’s motion could
be modified and then more complicated according to the
amount of charge compared with the neutral particle
motion. We investigate how the violation of chaos bound
occurs through the values of Lyapunov exponents when
approaching an extremal black hole by adjusting the
parameter values in a nonextremal one. Increasing angular
momentum is also known to give rise to the violation of the
chaos bound, and we also analyze this one.
This paper is organized as follows: In Sec. II, we show the

black hole solutions with anisotropic matter fields. We
analyze the geodesic motion of a particle around a black
hole as a homoclinic orbit. In Sec. III, we perform numerical
calculations and analyze the calculated Lyapunov exponents
and the chaos bound. In Sec. IV, we summarize and discuss
our results.

II. HOMOCLINIC ORBITS

In this section, we introduce a well-known black hole
solution coexisting with anisotropic matters and analyze
particle motions as the homoclinic orbit around a black hole.

A. Black hole solution

We consider the action,

I ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16π
ðR − FμνFμνÞ þ Lam

�
þ Ib; ð1Þ

where R is the Ricci scalar of the spacetime, Fμν is the
electromagnetic field tensor, we take G ¼ 1 for simplicity,
Lam denotes the effective anisotropic matter fields, and Ib
corresponds to the boundary term [58,59]. We obtain the
Einstein equations,

Rμν −
1

2
Rgμν ¼ 8πTμν; ð2Þ

where Tμν ¼ 1
4π ðFμαFα

ν − 1
4
gμνFαβFαβÞ − 2 δLam

δgμν þ Lamgμν,
and the source-free Maxwell equations,

∇νFμν ¼ 1ffiffiffiffiffiffi−gp ½∂νð
ffiffiffiffiffiffi
−g

p
FμνÞ� ¼ 0: ð3Þ

We consider a static spherically symmetric black hole
solution as the form,

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΩ2

2; ð4Þ

where we chose the equation of state is pr ¼ −ρ ¼
−ðρe þ ρamÞ and pθ ¼ pϕ ¼ ρe þ wρam. The solution is
given by [55–57,60,61]

fðrÞ ¼ 1 −
2M
r

þQ2

r2
−

K
r2w

; ð5Þ

whereM and Q represent the Arnowitt-Deser-Misner mass
and the total charge of the black hole, respectively, and K is
a constant. The energy density is given by

ρðrÞ ¼ ρe þ ρam ¼ Q2

8πr4
þ r2wo
8πr2wþ2

; ð6Þ

where ro is a chargelike quantity of dimension of length
and defined by r2wo ¼ ð1 − 2wÞK. One can see Ref. [56] for
an analysis with w ¼ 1=2 case.
We now check the classical energy conditions [56].

The energy density is always non-negative when Q2 þ
ð1− 2wÞKr2ð1−wÞ ≥ 0 [60]. And pr þ ρ ¼ 0, which implies
that the radial null energy condition is satisfied. For the
tangential pressures, the null energy condition is satisfied
when w ≥ −1. The anisotropic matter fields are those in
which the radial and tangential pressures are not equal. The
radial pressure could be negative, and this property allows
matter fields or fluids to coexist with the black hole outside
the black hole horizon. There have been various studies on
stars and astrophysical objects composed of these aniso-
tropic matter fields or fluids [62–67].

B. Homoclinic orbits

To obtain the geodesic equations, we first examine
the symmetry and separability structure of the spacetime
[68,69]. The relevant quantities correspond to Killing
vectors and Killing tensors [70], and which are known
as ξμðtÞ, ξ

μ
ðzÞ, g

μν and Kμν. They mutually commute under

the Schouten-Nijenhuis bracket. As a result, the geo-
metry admits the separability structure. Thanks to the
spherical symmetry of the geometry, there exist four
Killing vectors and two Killing tensors. Among them,
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K≡Kμνpμpν ¼ p2
θ þ L2

z= sin2 θ is equal to L2, in
which ξμðxÞ ¼ ð0; 0;− cosϕ; cot θ sinϕÞ, ξμðyÞ ¼ ð0; 0; sinϕ;
cot θ cosϕÞ, and ξμðzÞ ¼ ð0; 0; 0; 1Þ [71]. Without loss of
generality, we restrict the analysis to equatorial orbits
θ ¼ π=2 thanks to the spherical symmetry of the geometry.
Then K becomes L2

z , thus the three quantities ξ
μ
ðtÞ, ξ

μ
ðzÞ and

gμν are sufficient to show the separability structure and
obtain the geodesic equations.
We now drive the expressions for a homoclinic orbit as

the separatrix. We consider a test particle with charge e and
mass m moving in the black hole geometry (5).
There exit four conserved quantities. Two are related to

Killing vectors,

ξμðtÞπμ ¼ −E ¼ −fðrÞ dt
dλ

−
eQ
r

;

ξμðzÞπμ ¼ Lz ¼ r2 sin2 θ
dϕ
dλ

; ð7Þ

where E and Lz correspond to the energy and the angular
momentum of the test particle at infinity, while the other
two are related to Killing tensors,

gμνpμpν ¼ −m2; Kμνpμpν ¼ K ¼ p2
θ þ

L2
z

sin2 θ
¼ L2;

ð8Þ

where L corresponds to the total angular momentum of the
test particle.
We investigate the geodesic motion around the black

hole by adopting the Hamilton-Jacobi formalism [72]. The
geodesic equations as four first-order differential equations
are given by

r2pt ≡ r2
dt
dλ

¼ PðrÞ
fðrÞ ; ð9Þ

r2pϕ ≡ r2
dϕ
dλ

¼ Lz

sin2 θ
; ð10Þ

r2pr ≡ r2
dr
dλ

¼ �
ffiffiffiffiffiffiffiffiffi
RðrÞ

p
; ð11Þ

r2pθ ≡ r2
dθ
dλ

¼ �
ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
; ð12Þ

where signsþ1ð−1Þ in Eqs. (11) and (12) correspond to the
outgoing (ingoing) geodesics and

ΘðθÞ¼QþL2
z −

L2
z

sin2θ
; PðrÞ¼ r2E−eQr;

RðrÞ¼P2− r2fðrÞ½m2r2þL2
z þQ�; Q¼p2

θþ
cos2θL2

z

sin2θ
:

ð13Þ

We can take m ≠ 0 for timelike geodesics and m ¼ 0 for
null geodesics.
From Eq. (11), we obtain the radial equation for the

geodesic motion,

1

2
m

�
dr
dτ

�
2

þ VeffpðrÞ ¼ 0; ð14Þ

where the effective potential in the equatorial plane is
given by

VeffpðrÞ ¼
fðrÞ½m2 þ L2

z

r2 � − ðE − eQ
r Þ2

2m
: ð15Þ

Here, Q is vanished. The effective potential depends on E,
Lz and K. For different values of them, VeffpðrÞ s are
different ones. The local maximum of the potential deter-
mines the radii of unstable circular orbits. For those

orbits, Veffp ¼ 0 and dVeffp

dr ¼ 0, which is equivalent to find
RðrÞ ¼ 0 and dRðrÞ=dr ¼ 0.
We note that finding homoclinic orbits correspond to

finding the unstable circular orbits. The location of a peak
is determined as

ruco ¼
�
3M −

2Q2

ruco
þ Kð1þ wÞrð1−2wÞuco

�
þ 1

L2
z
½ðm2M − eQEÞr2uco þQ2ðe2 −m2Þruco þ Kwm2rð3−2wÞuco �: ð16Þ

This reduces to the case of the null geodesic motion when m ¼ e ¼ 0, while this reduces to the case of the neutral particle
motion when e ¼ 0. This reduces to the case of Reissner–Nordström black hole (RN BH) when K ¼ 0.
For unstable circular orbits, one could obtain

E ¼ AðrÞ � BðrÞ
2rð2Q2 þ r2 − 3MrÞ − 2Kr3−2wð1þ wÞ ;

Lz ¼
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðrÞ þDðrÞp

ffiffiffi
2

p ½2Q2 þ r2 − 3Mr − Kr2ð1−wÞð1þ wÞ� ; ð17Þ

where
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AðrÞ ¼ eQ½3Q2 þ r2 − 4Mr − Kr2ð1−wÞð1þ 2wÞ�;

BðrÞ ¼ ðQ2 þ r2 − 2Mr − Kr2ð1−wÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2Q2 þ 4m2½2Q2 − 3Mrþ r2 − Kr2ð1−wÞð1þ wÞ�

q
;

CðrÞ ¼ e2Q2½Q2 þ r2 − 2Mr − 2Kr2ð1−wÞð1þ wÞ� − 2m2ðQ2 −Mr − Kr2ð1−wÞwÞ½2Q2 þ r2 − 3Mr − Kr2ð1−wÞð1þ wÞ�;
DðrÞ ¼ −eQ

h
eQKr2ð1−wÞð1þ 2wÞ

� ðQ2 þ r2 − 2Mr − Kr2ð1−wÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2Q2 þ 4m2ð2Q2 − 3Mrþ r2Þ − 4Km2r2ð1−wÞð1þ wÞ

q i
: ð18Þ

FIG. 1. Effective potentials and particle trajectories.
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Figure 1 shows the effective potentials, given by (15), for
the cases of homoclinic orbits and a black hole with naked
singularity. In the potential figures, the vertical dotted line
indicates the location of the black hole outer horizon and
the local maximum is outside of that. The location of the
local maximum is satisfied to VeffpðrÞ ¼ 0. To do so, we
take the energy value of the particle as different in each
case. Thus, we show each figure separately since it does
not make much sense to put all data together in one figure
and compare them. The orbits show those in Schwarzschild
black hole (SBH), RNBH with K ¼ 0, and BH with
anisotropic matter fields with w¼ 2=3, w¼ 3=2, and w ¼ 2
in the equatorial plane. We take M ¼ 1, Q ¼ 0.5, m ¼ 1,
e ¼ 0.1 for all cases. We take the energy for w ¼ 2=3 with
E ¼ 1.0325 and L ¼ 3.7044, w ¼ 3=2 with E ¼ 0.8544
and L ¼ 4.5994, and w ¼ 2 with E ¼ 0.8744 and
L ¼ 4.8272, and K ¼ −0.2 for all cases except for SBH
and RNBH. If the energy is higher than we take the value,
then the test particle could directly enter the event horizon,
while if that is less, then the particle has different orbits
from the homoclinic one. In figures, we only drew them for
a finite time. However, it takes an infinite time to approach
a homoclinic orbit.
A localmaximumof the effective potential does not appear

in Newtonian mechanics. On top of that, a black hole with
naked singularity needs to be analyzed separately [12,14].
One could divide that into two types as the charge increases.
(i) Naked singularity will appear, but there exists still the
local maximum of the potential. (ii) Naked singularity exists
but there is no local maximum. As a result, the particle could
not have the homoclinic orbit. For instance, (k) and (l) in
Fig. 1 show such a case for RNBH. In the case of (ii), there is
no need to investigate the Lyapunov exponent.

III. LYAPUNOV EXPONENT AND THE
VIOLATION OF CHAOS BOUND

We now consider the small perturbation of a test particle
around the local maximum of the effective potential des-
cribed by the black hole metric (5). The slightly perturbed
orbit is described by rðλÞ ¼ ro þ εðλÞ. For the radial
perturbation, one could obtain the position of that extremum
ro by solving V 0

effpðrÞjr¼ro ¼ 0, in which the prime denotes
the derivatives with respect to r. We are interested in the
behavior of particle orbits near the black hole.
There is an issuewith choosing the time [33,73], resulting

in the changing in the potential shape due to choosing that
coordinate. We choose the proper time τ, when we consider
onegeodesic orbit as thehomoclinic orbit.Whenweconsider
the orbits of two particles,we take the coordinate time t rather
than the proper time τ as the independent variable, since the
two particles have different proper times. We note that the
coordinate time has to be adopted since one independent
variable should be adopted when their equations of motion
are integrated numerically. As a result, the shape of the
potential could be changed slightly.

We now investigate the Lyapunov exponent as a strong
indicator showing the violation of chaos bound. This one
measures the sensitivity to which orbits move away with
time. If its value is positive, it is worthwhile to investigate
the possibility of the violation of chaos bound.
We consider two initial points ro and ro þ ε. The

Lyapunov exponent λ corresponds to the measure showing
the average exponential growth per unit time between two
nearby trajectories, reflecting a high sensitivity to initial
conditions. The difference between two trajectories is
approximately given by

dðtÞ ∼ εeλt: ð19Þ
We note that if λ is negative, then the two orbits will
eventually converge, while if positive, they diverge.
In a thermal quantum system, the exponent λ is bounded

as [39]

λ ≤
2πT
ℏ

;

and it was applied to a black hole system [37],

λ ≤
2πTH

ℏ
¼ κ; ð20Þ

where TH denotes the black hole temperature and κ is the
surface gravity of the black hole. The Eq. (20) is equivalent
as follows:

κ2 − λ2 ≥ 0: ð21Þ
From Eqs. (9) and (11), we obtain the radial equation in

terms of the coordinate time,

1

2
m

�
dr
dt

�
2

þ VeffcðrÞ ¼ 0; ð22Þ

where the effective potential in the equatorial plane is
given by

VeffcðrÞ ¼
f2ðrÞ½fðrÞ½m2 þ L2

z

r2 � − ðE − eQ
r Þ2�

2mðE − eQ
r Þ2

: ð23Þ

The Eq. (22) becomes

0 ≃
1

2
m

�
dε
dt

�
2

þ
�
VeffcðroÞ þ

1

2
V 00
effcðroÞε2

�
þOðϵ3Þ

¼ 1

2
m

��
dε
dt

�
2

− λ2ε2
�
; ð24Þ

where we neglected the constant term and higher order
terms. The coefficient of ε2 corresponds to the Lyapunov
exponent as

λ2 ¼ −
V 00
effcðrÞjr¼ro

m
; ð25Þ
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where

V 00
effcðrÞ ¼

2fðrÞ3ðe2m2Q2 þ 2eEm2Qrþ 3E2L2
zÞ

2mðeQ − ErÞ4

þ 3fðrÞ2ðf00ðrÞðL2
z þm2r2ÞðeQ − ErÞ þ 4f0ðrÞðem2Qrþ EL2

zÞÞ
2mðeQ − ErÞ3

þ 6fðrÞf0ðrÞ2ðL2
z þm2r2Þ

2mðeQ − ErÞ2 − 2f0ðrÞ2 − 2fðrÞf00ðrÞ; ð26Þ

and

V 00
effcðroÞ ¼

fðroÞ3ðe2m2Q2 þ 2eEm2Qro þ 3E2L2
zÞ

mðeQ − EroÞ4
þ 3fðroÞ2f00ðroÞðL2

z þm2r2oÞ
2mðeQ − EroÞ2

− 2fðroÞf00ðroÞ; ð27Þ

where f0ðrÞ ¼ Mr−Q2þKwr2−2w

r3 , f00ðrÞ ¼ 2ð−2Mrþ3Q2−Kwð1þ2wÞr2−2wÞ
r4 . If V 00

effcðrÞ < 0, which implies λ2 > 0, the extremum
corresponds to the local maximum. Consequentially, the shape of potential becomes similar to that of the inverse harmonic
oscillator describing a chaotic system. Here we assumed the perturbed system to be a Hamiltonian one.

We now examine specific cases with different values of
parameters.

A. The extremal case

For the extremal case, there exist two horizons coalesce,
and hence κ ¼ 0. The chaos bound (20) becomes

κ2 − λ2 ¼ −λ2 ≥ 0: ð28Þ

If there exists a local maximum in the effective potential,
λ2 > 0, then the bound is violated.
We examine the bound on the Lyapunov exponent in

the near-horizon region [37,48,52]. We introduce the small
parameter ϵ as ro ¼ rþ þ ϵ for the study of the extremal
black hole. We take the local maximum of the effective
potential in the vicinity of the horizon since the Lyapunov
exponent is zero if the local maximum is at the horizon.
Then, the metric function becomes fðrÞ ¼ 0þ f0ðrþÞϵþ
1
2
f00ðrþÞϵ2 þ � � �. This gives

λ2 ¼ f0ðrþÞ2
m2

þOðϵÞ ¼ 4ðMr −Q2 þ wKr2−2wÞ
m2r6þ

þOðϵÞ:

ð29Þ

B. The nonextremal case

The square of the bound is given by

λ2 ≤ κ2 ¼ 1

4
f02ðrÞjr¼rþ ¼

�
w
rþ

þMð1− 2wÞ
r2þ

−
Q2ð1−wÞ

r3þ

�
2

:

ð30Þ
We consider the case in which the local maximum is in the
vicinity of the horizon. The chaos bound becomes

κ2 − λ2 ¼ 1

4
f02ðrÞjr¼rþ þ V 00

effcðrÞjr¼ro

m
: ð31Þ

We perform the numerical calculations for λ2 and
κ2 − λ2, separately. First, we analyze λ2 in terms of angular

FIG. 2. Lyapunov exponent in terms of Lz with different w.
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momentum and K at a given energy value. Figure 2 shows
Lyapunov exponents λ2 in terms of Lz. We take M ¼ 1,
Q ¼ 0.5, m ¼ 1, e ¼ 0.1, and E ¼ 10. The red line
indicates the case of RN (K ¼ 0), the orange line indicates
the case with K ¼ −0.1, the green line the case with
K ¼ −0.2, and the blue line indicates the case with
K ¼ −0.3. Their behaviors show that the value of λ2

increases when L or jKj increases. That is to say, the
additional anisotropic matter field enhances the Lyapunov
exponent for w ¼ 2=3 and 3=2. For the case with w ¼ 2,
the behavior is different from those with w ¼ 2=3 and 3=2.
Where the angular momentum is large, the effect of K
seems to appear to be the opposite. This figure shows that
below a specific angular momentum at a given energy, the
square of the Lyapunov exponent does not have a positive
value, and at values greater than that value, when the
angular momentum increases, the Lyapunov exponent
increases. The left region below the specific angular
momentum corresponds to the region that does not satisfy
V 0
effc ¼ 0 or V 00

effc < 0.
In the below, we will show λ2 eventually exceeds the κ2

and the violation of the bound, κ2 − λ2 < 0, occurs.

Figure 3 represents the Lyapunov exponent, Eq. (21).
Each row corresponds to ω ¼ 2=3, ω ¼ 3=2, and ω ¼ 2,
respectively. The right side of the color bar shows the value
of κ2 − λ2. The empty space in the upper left part of each
figure corresponds to the region that does not satisfy
V 0
effc ¼ 0 or V 00

effc < 0. There are two types of points.
The gray points mean the positive value and the colored
points show the negative value. The colored points point
out the Lyapunov bound is violated, and the redder colored
point violates much bigger than the blue-colored point.
From the left side to the right side, the K becomes larger
and reaches to KMax, which is consistent with the extremal
black hole, and gray region vanishes, then κ2 − λ2 is
automatically negative. As we expected, when K grows
to maximum KMax, the gray color turns into purple
color. We take KMax1 ¼ −0.8375, KMax2 ¼ −0.8599, and
KMax3 ¼ −1.1569. The absolute value of κ2 − λ2 is bigger
with small energy and large angular momentum, which is
located at the bottom right as a red point. We note that κ2

is irrelevant to E, but λ2 decreases when E increases.
Therefore, we can estimate that the large E will make it
hard to violate the Lyapunov bound.

E E E

E E E

E E E

60

60

60 60 60

60 60 60

60 60

60

60

FIG. 3. Violation of the Lyapunov bound with various ws.
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IV. SUMMARY AND DISCUSSIONS

We studied the homoclinic orbit of a particle in a black
hole geometry coexisting with anisotropic matters and
whether its trajectory around the black hole could violate
the well-known chaos bound.
It is known that the homoclinic orbit of particle motion

corresponds to the boundary between chaotic motion and
nonchaotic motion. We perturbed the particle with various
values of energy and angular momentum at a position near
this homoclinic orbit and analyzed the Lyapunov exponent.
In Fig. 1, we showed the effective potential and homo-

clinic orbit for a test particle in the black hole geometry.
The existence of a local maximum in the effective potential
is an important indicator showing the existence of the
homoclinic orbit. The orbit does not appear in Newtonian
mechanics. And also, it does not appear in the black hole
geometry with naked singularity for type-(ii). It only
appears in black holes that have the event horizon and
with naked singularity for type-(i). The existence of a local
maximum at the effective potential suggests that the
Lyapunov exponent could be positive. The black hole with
naked singularity should be analyzed separately [12,14],
which will provide a testbed for the cosmic censorship
hypothesis [74] to be proved by future detectors.
In Fig. 2, we analyzed λ2 in terms of Lz and jKj at a given

energy value. Their behaviors show that the value of λ2

increases when Lz or jKj increases. In particular, the addi-
tional anisotropic matter field enhances the Lyapunov
exponent.
In Fig. 3, we showed how the chaos bound κ2 − λ2 varies

in terms of E and Lz with increasing jKj. It can be seen that
anisotropic matter could affect violate chaos bounds more.
We note that κ2 is irrelevant to E, but λ2 decreases when E
increases. Therefore, we can estimate that the large E will
make it hard to violate the Lyapunov bound.
The trajectory of a particle around a black hole corre-

sponds to classical motion. On the other hand, the temper-
ature of the black hole coming from the quantum effect in
the given geometry makes it a thermodynamic system. How
can classical motion and thermal effect (by the quantum
effect) in the given geometry be related? A relationship was
conjectured in Ref. [39]. It is an inequality equation in
which the physical quantity by the classical motion of
particles in the spacetime geometry should be bounded by
the physical one due to the thermal effect. It is known that
one could define the black hole temperature by the surface
gravity. At the black hole event horizon, the surface gravity
corresponds to the acceleration as exerted at infinity
necessary to keep the object at that horizon. That accel-
eration decreases as a black hole approach the extremal
one. That is, in a thermodynamic system, the universal
bound given to the Lyapunov exponent by the motion of a
classical particle will decrease and vanish. In the black hole
system, the analysis of the two physical quantities is no
longer related and has been separated. Thus it seems that

one of two physical quantities could vanish independently
without relating to each other. As a result, the inequality
bound can be violated.
In this paper, instead of Lagrangian formalism, we

employed Hamilton-Jacobi formalism [72]. This one is
indeed a powerful method to find general solutions to
equations of motion. Furthermore, it is possible to separate
variables even if the number of cyclic variables is insuffi-
cient. On top of that, the presence of more constants of
motion emerges naturally. In the Hamilton-Jacobi equation,
we could carry out a separation of variables, including four
constants of motion, and as a result, the four equations of
motion turned into first-order differential equations, result-
ing in a completely integrable system.
We used the coordinate time t instead of the proper time

τ when calculating the Lyapunov exponent [73]. This was
to see the increase in the distance with time between the
particle of one homoclinic orbit and another particle with
different initial conditions. Using time t, the effective
potential in the radial direction becomes a slightly more
complex function of r. However, both the use of time t and
τ do not change the properties of the integrability.
One can explore two kinds of characteristics showing

chaos phenomena. One corresponds to the Lyapunov
exponent, while the other to the Poincare section in the
phase space. We focused on examining the Lyapunov
exponent in this paper.
In our case, we thought that the Poincare section might

not show a chaotic behavior of the system. Because the
dynamical system we are dealing with is integrable [70],
i.e. it corresponds to a geodesic motion. Compared with
other papers that showed chaotic behavior through the
Poincare section, in our case, there exist enough constants
of motion with that in the angle direction, and those papers
do not have the constant of motion in the angle direction. In
particular, the momentum does not commute with the
Hamiltonian; i.e. the system has a nontrivial effective
potential with varying momentum in the angle direction.
Cases showing chaotic behavior in the Poincare section are
shown in the papers [30–32,37].
If we consider the black hole at the center of a galaxy and

the actual particles moving around it, the motion of
particles occurring together with various physical phenom-
ena near the black hole does not correspond to the probe
limit such as geodesic motion. As a result, the particle
motion should be different from the geodesic one, and the
surrounding matter should interact directly with the par-
ticle. If we add those effects one by one, we will end up
describing the motion of a particle moving in nature, and
that motion will not be integrable. From the viewpoint of
analysis, the number of constants of motion should be
reduced by one at least. Then in the Poincare section, they
will have nontrivial lines that show chaotic behavior
[75–77]. The recent investigations of a black hole shadow
involved analyzing the null geodesics [78–87]. It would
be interesting to see an analysis that includes chaotic
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phenomena. We leave the study of particle motion with
additional effects as future work.
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