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We present a simple formula for the effective ringdown frequencies of the gravitational-wave signal of a
precessing black-hole binary in the coprecessing frame. This formula requires only knowledge of the quasi-
normal mode frequencies of the system and the value of the precession angle β during ringdown. Such a
formula will be useful in modeling precessing systems. We also provide a comprehensive description of
the oscillations in the ringdown frequency in an inertial frame where the spin of the final black hole is in the
z-direction. These oscillations arise due to the superposition of the prograde and retrograde frequencies.
Our understanding of these oscillations can be used to extract the ratio of the amplitudes of the prograde
and retrograde frequencies from numerical data. Alternatively, knowledge of this ratio of the amplitudes
can be used to produce a simple model of the time-domain oscillations in the ringdown frequency.
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I. INTRODUCTION

To date the LIGO [1] and Virgo [2] detectors, as part of
the LIGO-Virgo-Kagra Collaboration, have detected 90
gravitational wave signals; 83 of which are confidently
considered to come from binary black hole (BBH) mergers
[3–5]. These have included evidence of stellar mass black-
holes (BHs), intermediate mass BHs and those with masses
in the pair-instability mass gap [6,7]. Binaries with mass
ratios up to ∼10 [8] and those with evidence of spinning
black holes [4,5,9,10] have also been observed. Analysis of
these signals requires accurate models of gravitational wave
signals from compact binary coalensences (CBCs) for use
in accurate parameter estimation with these detections. A
detailed, comprehensive understanding of the nature of the
compact objects comprising binaries emitting gravitational
waves enables us to make confident astrophysical infer-
ences as to the population of such objects in the Universe
[11]. Highly accurate models can also be used in precision
tests of general relativity (GR) [12–15].
A generic quasi-circular BBH is described by eight

intrinsic parameters; the mass ratio q ¼ m1

m2
(where mi are

the masses of the black holes and we choosem1 > m2), the
spins of the individual black holes S1 and S2 and the total
mass of the system M ¼ m1 þm2 which provides the
overall frequency scaling. These are the parameters of the
two initial BHs which coalesce to form a single spinning
BH, which “rings down” emitting gravitational waves at

characteristic frequencies known as quasinormal modes
(QNMs). This final BH can be described by its mass Mf
and spin Sf . This final BH is a perturbed Kerr BH and the
complex frequencies of the emitted QNMs can be found
from perturbation theory, although their relative amplitudes
cannot.
Perturbation theory gives two possible values for the

ringdown frequency of a perturbed BH; a prograde and a
retrograde frequency [16]. For aligned-spin systems, in
cases where the original black holes are nonspinning or
where their total spin S ¼ S1 þ S2 is aligned with the
orbital angular momentum of the binary L prior to merger
then the final perturbation will be in the same direction as
the final BH’s spin. In these cases, the prograde frequency
will therefore always dominate. In cases where the spin S is
antialigned with L then the final spin can be either aligned
or antialigned with the axis of the final perturbation.
Consequently, either the prograde or the retrograde
frequencies can be dominant depending on the direction
of the final spin with respect to the axis of the final
perturbation [16]. In the case of precessing systems,
however, it is not trivial to determine which excitation
will dominate the ringdown signal.
In this paper we will provide an understanding of the

interplay between the prograde and retrograde frequencies
in the ringdown regime of precessing systems. We also
provide a justification for treating a precessing binary as if
it has a single ringdown frequency and present an analytic
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formula to calculate this frequency in a frame which
precesses along with the binary (known as the coprecessing
frame [17–19]).
There are two main issues with applying the results

obtained from perturbation theory directly to gravitational
wave models of precessing systems. Firstly, for a precess-
ing binary we expect that both the prograde and retrograde
QNMs will contribute. However, how they interact and
the region of parameter space in which each dominates is
unknown. We will address these issues in Sec. IVA. A
crucial result of this work is that, although we do see
oscillations in the ringdown frequency due to the super-
position of two QNMs, the ringdown behavior is dominated
by the average value of these oscillations. In the event that
one wishes to approximate the ringdown frequency by a
single value (such as for waveform modeling purposes) we
provide a simple prescription to identify the dominant
frequency. Further, we show that given the relative ampli-
tudes of the prograde and retrograde contributions, we can
make a reasonable approximate model of the oscillatory
behavior of the ringdown frequency. This can be produced
using Eq. (20).
The second issue is that while the results from pertur-

bation theory are derived in a frame in which the total
angular momentum of the system is in the z-direction,
models of gravitational waves from precessing systems
often employ a noninertial coprecessing frame in which the
signal is greatly simplified. It is therefore important to
know how the results derived using perturbation theory,
namely the ringdown frequency of the system, transform
when we go into the coprecessing frame. The main result
presented here is a relationship between the QNM frequen-
cies in these two frames, which we give in Eq. (35). This
formula will be of great assistance in modeling the
gravitational waves from precessing binaries since we
can now calculate the ringdown frequencies in the copre-
cessing frame based on a knowledge of the binary con-
figuration without any additional modeling.
The paper is organized as follows. In Sec. II we discuss

the conventions employed throughout the paper and recap
background material regarding QNMs and the coprecessing
frame. In Sec. III we give an overview of the numerical
waveforms employed in the validation of the results
presented in the rest of the paper. In Sec. IV we discuss
the J-frame behavior of the ringdown frequency and finally
in Sec. V we extend this to a discussion of the behavior in
the coprecessing frame.

II. PRELIMINARIES

In this section we will discuss the various conventions,
tools and techniques required for the analysis presented
in the paper. First, we discuss the different bases in which
one can decompose a gravitational wave signal. We then
summarize the gravitational waves emitted by a perturbed
black hole. Finally we discuss the advantages of treating the

signal emitted by a precessing binary in a coprecessing
frame and define the coprecessing frame we will employ in
the remainder of the paper.
We will work with the Newman-Penrose scalar Ψ4 [20],

which is related to the metric perturbation. This is the
quantity extracted from the numerical simulations used to
demonstrate the validity of the results in this paper, so we
express everything in terms of Ψ4 as a matter of conven-
ience. However, these results are equally applicable to the
gravitational wave strain h, which corresponds to a mea-
sured gravitational wave signal. h can be obtained asymp-
totically from Ψ4 via a double time integral.

A. Decompositions

We can decompose the gravitational wave strain into
multipole moments, using a variety of different bases of
spin −2 weighted functions. The most convenient basis to
use during the inspiral part of a BBH coalescence is the
spherical harmonic basis. During the ringdown part of
the signal, one should instead use the spheroidal har-
monic basis [16]. However, it is common to decompose
the complete inspiral-merger-ringdown (IMR) signal in a
spherical harmonic basis when studying the complete
gravitational wave signal. This leads to a phenomenon
known as mode mixing in the ringdown regime [21–23].
The radiative Weyl scalar Ψ4 can be given as a function

of time t in the spherical harmonic basis by

Ψ4ðt; r; θ;ϕÞ ¼
1

r

X
l;m

ψ4;lmðtÞ−2Ylmðθ;ϕÞ; ð1Þ

and in the spheroidal harmonic basis by

Ψ4ðt; r; θ;ϕÞ ¼
1

r

X
l;m;n

ψS
4;lmnðtÞ−2Slmðθ;ϕ; aω̃lmnÞ; ð2Þ

where −2Ylm and −2Slmn are the spin −2-weighted spheri-
cal and spheroidal harmonics respectively and ðr; θ;ϕÞ are
the usual spherical co-ordinates. aω̃lmn, which appears
in Eq. (2), is the oblateness parameter. The spherical
multipoles ψ4;lmðtÞ can be obtained directly from the
orthogonality of the spherical harmonics. However, at
the present time, the spheroidal multipoles ψS

4;lmnðtÞ cannot
and must instead be estimated from the spherical multipoles
themselves or via other means, such as time-domain
fitting [23–25].
The spheroidal harmonics can be written as a linear

combination of the spherical harmonics as

−2Slmnðθ;ϕÞ ¼
X
l0

αll0m−2Y
�
lmðθ;ϕÞ; ð3Þ

where αll0m are the mixing co-efficients which measure the
overlap between a given set of spherical and spheroidal
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harmonics [21,24]. From this we can get an expression for
the spherical harmonic multipoles in terms of the spheroi-
dal harmonic multipoles and vice versa. We can therefore
study the ringdown signal as a set of spheroidal multipole
moments where we do not need to consider the effect of
mode mixing and use these to construct a consistent IMR
description of the gravitational wave signal in terms of the
spherical harmonic multipoles only.
We will first consider the waveform in terms of the

spheroidal harmonics (in Sec. IVA) where our results
will be cleanest since we are considering a ringdown
effect. We will then consider the effect of mode mixing
when extending to the spherical harmonic basis in Sec. IV B.
The results presented in Sec. Vare applicable in either basis
but the comparison to numerical data is made in terms of the
spherical harmonic basis.

B. Formation of the final black hole

The frequencies of the QNMs emitted by a perturbed BH
are generally determined using perturbation theory in the
frame in which the spin of the black hole is taken to be in
the z-direction: Sf k ẑ. For a nonspinning or aligned-spin
binary, this corresponds to an inertial frame in which the
black holes orbit in the x-y plane prior to merger. In the case
of a precessing binary the orbital plane precesses and
relating the final spin direction to the inclination of the
orbital plane just before merger is not trivial.
The QNMs are characterized by l, m and n. In the

spheroidal basis, a given multipole moment ψS
4;lmn can be

written as the sum of all the QNMs with the same values of
l, m and n.1 In this work we will consider only contri-
butions from the fundamental QNMs and neglect contri-
butions from QNMs with n > 0. As discussed in the
previous subsection, a given spherical multipole moment
ψ4;lm contains contributions from all spheroidal multipoles
with the same value of m. Consequently, the following
discussion is only strictly true when considering the signal
decomposed in the spheroidal basis.
There are two QNM frequencies associated with each set

of l, m and n—the prograde QNMs and the retrograde
QNMs. The prograde modes are excited if the perturbation
on the Kerr BH is in the same direction as the spin.
Conversely, the retrograde modes are excited if the per-
turbation is in the opposite direction to the spin. For a
remnant BH formed by a BBH merger, we assume that the
perturbation will be in the direction in which the original
BHs were orbiting.
For aligned-spin systems, one traditionally makes the

approximation that either the prograde or retrograde QNMs
are excited, but not both; see, for example, Ref. [26].

In principle, both could be excited but this depends on
details of the merger that are not fully understood. There is
some recent evidence for both prograde and retrograde
modes being excited, though one dominates strongly
over the other [25,27–30]. As in Ref. [30], we note that
Ref. [29] finds evidence of retrograde modes where we do
not (most notably for equal mass, nonspinning systems).
Nevertheless, in the majority of the aligned-spin parameter
space, we consider it a reasonable approximation that only
one frequency is meaningfully excited and more generally
true that one will clearly dominate over the other.
Which is dominant depends on the direction of the final

spin Sf with respect to the direction in which the BHs were
originally orbiting, as characterized by L. This determines
the direction of the perturbation with respect to the final
spin direction. If the remnant BH is spinning in the same
direction as the perturbation (so the final spin direction is
aligned with the axis of the perturbation) then we say the
BH has “positive” final spin. Similarly, if the final spin is
antialigned with the axis of the perturbation then we say it
has “negative” final spin. For aligned-spin binaries, this is
equivalent to to the final spin being aligned or antialigned
with L. This can be predicted using fits to numerical data;
see, for example Ref. [31] and references therein. The
transition from cases where the dominant ringdown fre-
quency is prograde to retrograde will occur when the final
spin of the BH is zero.
For precessing systems, the picture is somewhat more

complicated; the final spin need not be either aligned nor
antialigned with respect to L nor with respect to the axis of
the perturbation and can instead be arbitrarily oriented.
Consequently, both the prograde and retrograde modes will
be excited to some extent. In some cases, they may be
excited to approximately equal amplitudes. Drawing from
the nonprecessing case, we would expect the prograde
modes to dominate for cases with a “positive” final spin and
for the retrograde modes to dominate for the cases with
“negative” final spin. The interpretation of a “positive” or
“negative” final spin, along with its implication for the
region of parameter space in which we observe either the
prograde or the retrograde modes to dominate is discussed
at length in Sec. IVA. We also study the effect of the
excitation of both prograde and retrograde perturbations on
the ringdown signal and provide a simple model which
captures the most important features of these effects for use
in signal modeling.

C. Coprecessing frame

We now consider the complete IMR gravitational wave
signal from a precessing binary and the advantages of using
the coprecessing frame. Since we are considering the
complete signal, this discussion applies to the spherical
harmonic multipoles.
So far we have considered the system in an inertial frame

in which Sf k ẑ. Taking the direction of the total angular

1In fact, a given multipole moment can be written as the sum
over all QNMs with the same value of m. However, the
contribution from terms with l0 ≠ l and n0 ≠ n are strongly
suppressed [23].
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momentum J of the binary to be fixed throughout the
binary’s evolution, this corresponds to an inertial frame in
which J ¼ Lþ S1 þ S2 (where L is the orbital angular
momentum of the binary) is along ẑ throughout the binary’s
evolution.2 We therefore refer to this frame as the J-frame.
An inertial J-frame is a reasonable frame in which to

model the gravitational wave signal emitted during the
inspiral phase by nonspinning or aligned-spin binaries.
However, for precessing binaries it is not an ideal frame in
which to model the gravitational waves; the signal is very
complicated and shows oscillations in the amplitude and
phase [32,33]. Instead, it is more convenient to model the
signal from precessing binaries in a noninertial coprecess-
ing frame [34–43], which tracks the precession of the
binary and where the waveform resembles that of a non-
precessing system [17]. The waveform is then rotated back
into the J-frame in order to produce the final model.
There are a number of different ways one can choose to

define the coprecessing frame; such as tracking the direc-
tion of the orbital angular momentum (calculated from
Newtonian or post-Newtonian (PN) estimates of varying
order) or tracking the optimal emission direction. While
these directions are very similar, they are not identical [44].
In the rest of the paper we consider only the coprecessing
frame that tracks the optimal emission direction. In the case
where the optimal emission direction is calculated using
only the l ¼ 2 multipoles this frame is also known as the
quadrupole aligned frame.
The spherical harmonic multipoles transform under

rotations by the Euler angles fα; β; γg as [45,46]

ψ 0
4;lm0 ¼

Xl
m¼−l

eimαdlm0mð−βÞeim
0γψ4;lm; ð4Þ

where ψ4;lm are the multipoles in the initial frame and
ψ 0
4;lm are the multipoles in the new frame. dlm0m are the

Wigner d-matrices. If we take the initial frame to be the
frame in which the total angular momentum of the system is
aligned with the z-direction and the new frame to be the
coprecessing frame which tracks the direction of maximum
emission, then fα; β; γg are the set of precession angles
which can be found as described in [17–19]. In summary,

tan α ¼ Vx

Vy
; ð5Þ

cos β ¼ Vz

jVj ; ð6Þ

_γ ¼ − _α cos β; ð7Þ

where V̂ is the optimal emission direction and Eq. (7) is
known as the minimal rotation condition. In Sec. V, where
we have imposed a convention on β, the minimal rotation
condition is more appropriately written with jcos βj.
In this paper we approximate the ringdown behavior of α

and β as a straight line and a constant, respectively. The
value of α can be determined entirely from the QNM
frequencies while β can at present only be found numeri-
cally. The validity of these approximations are examined in
the following paragraphs.
Starting from Eq. (4) and assuming that we have only

the (2, 2) multipole in the coprecessing frame then, for
sufficiently small β, we have the following relation between
the spherical harmonic multipoles in the J-frame and the
coprecessing frame,

ψ J
4;2m ¼ e−iðmαþ2γÞd22mψ

cp
4;22; ð8Þ

from which we can derive approximate expressions
for α and β in terms of the amplitudes Alm and phases
ϕlm of the spherical harmonic multipoles in the J-frame
[38,41,47–49]. These are

α ¼ ϕ22 − ϕ21; ð9Þ

tan
β

2
¼ A21

2A22

: ð10Þ

In the ringdown we can write the n ¼ 0multipoles in the
spheroidal harmonic basis as

ψ4;lm0 ¼ Alm0e−iϕlm0 : ð11Þ
Since in this paper we are considering only the n ¼ 0
multipoles, from here on we will drop the labeling of the
multipoles by n. The multipoles can then be written

ψ4;lm ¼ Alme−iϕlm ¼ Alme
− t
τlme−iωlmt; ð12Þ

where Alm are the time-independent amplitudes of the
QNMs, τlm are the damping times of the QNMs and ωlm
are the QNM frequencies. We do not expect mixing to have
a strong effect for either the ð2; j2jÞ or the ð2; j1jÞ multi-
poles so can assume the spherical harmonic multipoles are
also described by the above expression. We can therefore
see that under the assumption that we have only the ð2; j2jÞ
multipoles in the coprecessing frame, the ringdown pre-
cession angle α is linear with gradient

_α ¼ ω22 − ω21: ð13Þ

We can similarly see that β decays exponentially with a
damping time

τβ ¼
τ22τ21

τ21 − τ22
: ð14Þ

2For most precessing systems, the direction of J will remain
approximately constant throughout the evolution of the binary.
This is known as simple precession [32,33].
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Thus if τ22 ≈ τ21, which is generally the case, then the
value of β will be approximately constant throughout the
ringdown.
It should be noted that in the derivation of the above

expressions [Eqs. (8)–(14)] we have assumed that we have
only the (2, 2) multipole in the coprecessing frame. Due to
the independence of the rotation of multipoles with a given
l, we can equivalently make the assumption that for a given
set of l-multipoles we have only the ðl;lÞmultipole in the
coprecessing frame. We would then find that instead of
Eq. (13), we find

_α ¼ ωll − ωl;l−1: ð15Þ

In what follows, when an approximation for _α is required
we will use Eq. (13) for simplicity.
The validity of these approximations is demonstrated in

Fig. 1, where we have compared our approximations with
the precession angles calculated using the l ¼ 2multipoles
of a numerical relativity (NR) waveform. We can see in the
upper panel that, neglecting the oscillations, the gradient of
α is indeed constant through ringdown and is fairly well
captured by Eq. (13). In the lower panel we can see that
while the exponential decay of β due to the QNM damping
times may capture the trend of the ringdown angle margin-
ally better, it is reasonable to neglect it and treat the
ringdown value of β as a constant to within numerical error.
Figure 2 shows how the rate of decay of β through

ringdown varies with the dimensionless spin of the final
black hole χf . As can be seen from the left-hand panel, the
rate at which β decays is a tiny fraction of the rate at which
the multipoles themselves decay. It is therefore reasonable
to treat the ringdown value of β as constant. From the
right-hand panel we can indeed see that for spins up to
χf ∼ 0.75, β loses less than 10% of its value over 100 M
following merger, further validating this assumption. It
should be noted that for large final spins, β loses an
appreciable fraction of its value over this period (for χf ¼
0.94 β loses around 40% of its value). However, it is very
unusual to have systems with both a large value of β and
such a high final-spin value [50–57]. Furthermore, as can
be seen from the left-hand panel, even for such high spins,
the decay rate of the (2, 2) multipole is still around ten
times faster than that for β so the multipoles will have
decayed to around 0.02% of their original value 100M
after merger. Consequently, the absolute change in mag-
nitude of β for systems with large χf is generally very
small and we can still make the approximation that β is
constant.

FIG. 1. A comparison of the precession angles α and β
calculated from the NR l ¼ 2 multipoles with those given by
the approximations in Eqs. (10) and (13) respectively for the case
CF21-79 ðq; χ; θLSÞ ¼ ð8; 0.8; 120°Þ. The gray vertical line in-
dicates merger, defined as the maximum of the sum of the square
of the amplitude of the l ¼ 2 multipoles. The red dashed lines
give the predicted value of α and β based on Eqs. (13) and (10)
respectively. The blue dotted line gives the mean value of β.

FIG. 2. The left-hand panel shows the ratio of the rate of decay of β to that of the (2, 2) multipole, τβ
τ22
, postmerger as a function of the

spin of the final black hole χf . The right-hand panel gives a sense of the slope of β for a given set of final spins. The form of τβ is given by
Eq. (14). In all cases we assume a “positive” final spin.
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III. NR WAVEFORMS

The numerical waveforms used in the paper were
produced using the BAM code [45]. A subset of these
waveforms are taken from a catalog of 80 precessing BAM
waveforms [50]. This catalog consists of single-spin
systems where the spin is placed on the larger black hole.
It covers the parameter space up to mass ratio q ¼ 8,
dimensionless spin magnitude χ ¼ jS1j=m2

1 ¼ 0.8 and with
five equally spaced values of spin orientation θLS, measured
as the angle between the total spin and the orbital angular
momentum. Further details can be found in Ref. [50].
The region of parameter space covered by this, and

indeed any, NR catalog in which most of the effects
discussed in this paper are sufficiently large to be notice-
able is fairly restricted. We therefore focus on a set of cases
where these effects are most pronounced. This is the region
with higher mass ratio, larger spin magnitude and greater
spin opening angle. To supplement the waveforms taken
from the catalog, we produced four additional waveforms
in the region of parameter space of greatest interest. These
waveforms were produced following the same procedure as
described in Ref. [50]. A summary of the properties of the
cases studied in detail in this paper is given in Table I.
We work with the time-domain Ψ4 data, which is

calculated directly using the NR evolution. This data is
decomposed into spherical multipoles as described by
Eq. (1). We remove both the junk radiation at the start
of the waveform (due to imperfect initial data) and the
postringdown waveform where the exponential decay has
fallen below the noise floor (generally around 100 M after
merger) using a standard Hann window function. The data
are then resampled to have a uniform time step of 0.15 M.
The configurations are each parametrized by the masses

and spins of the initial two black holes in the binary and by
the mass and spin of the final black hole. The properties of
the binary are defined as part of the initial data of the
simulation, while the final mass and spin are taken from
their numerical values at the end of the simulation.
We consider our data in two different frames; the

coprecessing frame, and an approximately inertial frame,
which we refer to as the “J-frame” and define as follows.

The direction of J is approximately constant throughout the
evolution of the binary. We track this direction using the
radiated angular momentum and transform into a frame in
which J is along the z-axis at all times. In this frame
the final spin of the black hole Sf ¼ Jf is aligned with
the z-direction. We calculate the final-J direction to be
Jf ¼ Ji − Jrad, where Ji is the initial value of the total
angular momentum and Jrad is the angular momentum
radiated throughout the evolution of the binary. Further
details on the particular frame choices made in this paper
can be found in Ref. [38].
We define the coprecessing frame to be that which tracks

the optimal emission direction. We calculate the precession
angles fα; β; γg that describe the rotation from the J-frame
to the coprecessing frame using the method presented
in [18]. Unless otherwise stated, we use all the spherical
multipoles up to l ¼ 4 to calculate the optimum emission
direction and thus prescribe the coprecessing frame. This
enables us to examine all multipoles up to l ¼ 4 in the
coprecessing frame. However, when calculating a mean
value of the ringdown β from the NR data, we use only the
l ¼ 2 multipoles to calculate the optimum emission
direction. This is consistent with the approximations made
when finding an expression for β in terms of the multipoles
in Sec. II. In the time domain, the coprecessing frames
defined by using the l ¼ 2 and l ≤ 4 multipoles are very
similar.
We define merger to be the point in the waveform at

which the quantity

Ā ¼
X2
m¼−2

jA2;mðtÞj2 ð16Þ

is maximized, where A2;m are the amplitudes of the l ¼ 2

spherical multipoles. We then set t ¼ 0 at merger.
We calculate the angular frequency of each of the

postmerger spherical multipoles in both the J-frame and
the coprecessing frame. This is given by the time derivative
of the phase of each of the respective multipoles:

ωF
lm ¼ d

dt
ϕF
lm; ð17Þ

where F indicates the frame in which we are considering
the data.
The amplitude of each of the QNMs contained in a given

spherical multipole in the J-frame can be estimated by
fitting a series of damped sinusoids to the postmerger
data over the approximate region from t ¼ 10 M to
t ¼ 100 M. These amplitudes are the product of the
intrinsic amplitude of the QNM and the relevant mixing
coefficient. More details on the method used are given
in [24], where the amplitude of the QNMs are fit while the
QNM frequencies are fixed according to Leaver’s method
as described in [16].

TABLE I. Summary of the properties of the key NR cases
focussed on in this paper. For details of other cases see Ref. [50].

Simulation ID q χ θLSð∘Þ Mf χf

� � � 1 0.0 � � � 0.952 0.686
CF21-6 1 0.4 30 0.946 0.740
� � � 8 0.8 110 0.989 0.595
CF21-79 8 0.8 120 0.988 0.548
� � � 8 0.8 130 0.991 0.480
� � � 8 0.8 140 0.991 0.416
CF21-80 8 0.8 150 0.991 0.371
� � � 8 0.8 160 0.992 0.315
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IV. J-FRAME BEHAVIOR

Having established the various frames in which we plan
to consider the ringdown signal, we now examine the
ringdown frequency in each of these frames. We first
consider the signal in the J-frame, since this is the frame
in which the results from perturbation theory are most
applicable. In Sec. V we will then consider the effect of
rotations into the coprecessing frame.
Further, as discussed in Sec. II, the gravitational waves

emitted by a BH which is ringing down can be decomposed
into either a spheroidal or a spherical harmonic basis. The
most natural basis in which to describe the gravitational
waves from a single perturbed BH is the spheroidal
harmonic basis, so we consider this decomposition first.
However, as previously discussed, it is often more con-
venient to consider the spherical harmonic decomposition.
We therefore also discuss the effect of mode mixing due to
this choice of basis on the results presented here.

A. Spheroidal harmonic picture

When decomposing the gravitational waves emitted by a
perturbed Kerr BH in a spheroidal harmonic basis, each of
the ðl; mÞ-multipoles are a superposition of the relevant
QNMs (i.e. those with the same l and jmj values). If we
consider just the dominant QNMs (those with n ¼ 0) then
the ðl; mÞ-multipoles are given by the sum of the prograde
and retrograde QNMs. We therefore have [29,58,59]

ψ4;lm ¼ Almþ e−iϕ
lm
þ þ Alm

− e−iϕ
lm
− ; ð18Þ

where Alm
� and ϕlm

� are the amplitudes and phases of the
prograde and retrograde QNMs, respectively. We have
dropped the subscript n for simplicity. The phases are
given by ϕlm

� ¼ ωlm
� t, where ωlm

� are the QNM angular
frequencies and we are using the convention ωlmþ > 0 and
ωlm
− < 0. The amplitudes Alm

� cannot be found using
perturbation theory, only the QNM frequencies and damp-
ing times, which are absorbed into A�, as in Eq. (12).
This superposition of the prograde and retrograde QNMs

manifests as oscillations in the phase and frequency of each
multipole about a mean value. This is most easily seen in
the expression for the angular frequency of a given multi-
pole. The phase of each multipole ϕlm is given by

tanϕlm ¼ Almþ sinϕlmþ þ Alm
− sinϕlm

−

Almþ cosϕlmþ þ Alm
− cosϕlm

−
: ð19Þ

We assume the damping times of the prograde and
retrograde frequencies are approximately equal and thus
the time dependence of Alm

� can be factored out. For the
parameter space considered in this study, we find that the
greatest dimensionless spin magnitude of the final BH is
χf ¼ 0.86, which corresponds to a maximum 25% differ-
ence between the prograde and retrograde damping times.

For the majority of cases, χf < 0.7, corresponding to a
difference in the damping times of less than 10%. We
therefore consider it to be a reasonable approximation
to factor out the time dependence of the Alm

� . The
validaty of this approximation is demonstrated in Fig. 7.
Differentiating Eq. (19) with respect to time (and dropping
the lm superscript for simplicity) we find

_ϕ ¼ A2þωþ þ A2
−ω− þ AþA−ðωþ þ ω−Þ cos ½ðωþ − ω−Þt�

A2þ þ A2
− þ 2AþA− cos ½ðωþ − ω−Þt�

:

ð20Þ

In the rest of the paper we will focus on the angular
frequency of each multipole moment as method of inves-
tigating the QNM content, rather than the more traditional
approach of identifying the QNM content in the multipole
as represented in Eq. (18).
The mean value of the angular frequency is then

h _ϕi ¼
8<
:

ωþ Aþ > A−

ω− Aþ < A−
1
2
ðωþ þ ω−Þ Aþ ¼ A−

: ð21Þ

The extrema of the oscillations are given by

_ϕext ¼
Aþωþ � A−ω−

Aþ � A−
: ð22Þ

It is worth noting that the average value of the angular
frequency is either exactly the prograde or the retrograde
frequency, except in the special case that the two contri-
butions are equal. This is why, if we just look at the mean
ringdown frequency (which is common in NR analyses,
where it can be unclear whether any oscillations present in
the data are physical effects or are instead due to numerical
noise) we will see only a single frequency. Similarly,
when Fourier transforming the postmerger waveform to
obtain the frequency-domain ringdown signal we see a
single peak corresponding to the mean ringdown fre-
quency. The oscillatory behavior seen in the time-domain
waveform frequency is distributed across a range of
frequencies and consequently is not clearly apparent in
the frequency domain waveform. When modeling fea-
tures of frequency-domain waveforms that correspond to
the ringdown frequency (e.g. the location of the dip in the
phase derivative) we therefore need only consider the
behavior of this mean value.
To gain a clear understanding of the behavior of this

mean frequency we need to know where in parameter space
the transition from prograde to retrograde values happens.
This transition occurs when the amplitude of the prograde
and retrograde frequencies are equal (i.e. Aþ ¼ A−).
However, this information cannot be obtained analytically
and the part of the parameter space in which Aþ and A− are
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of comparable magnitude is particularly sparsely sampled
by NR waveforms. We therefore do not have sufficient
numerical data to accurately determine the transition point
in this fashion and must instead rely on an approximation.
In the nonprecessing case, the transition from prograde to
retrograde is expected to occur when the final spin goes
from “positive” to “negative” with respect to the orbital
plane of the binary. It is therefore reasonable to assume that
a similar condition will determine the transition point for
precessing systems.
There is a dearth of information in the literature

describing the magnitude and direction of the final spin
for precessing binaries with mass ratios above q ¼ 4
(precisely the region we are concerned with). Final spin
fits for precessing binaries do exist but they have little or
no tuning to numerical simulations as far as mass ratio
q ¼ 8 [31,60,61]. Fits for aligned spin binaries have
however been tuned to NR as far as q ¼ 18 [26,62].
One reasonable approximation to obtain the magnitude
and direction of the final spin for a precessing binary is then

Sf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS k

f Þ2 þ ðS⊥f Þ2
q

; ð23Þ

cos θf ¼ cos ðL̂ · SfÞ ¼
S k
f

Sf
; ð24Þ

where S k
f is given by an aligned-spin final spin fit and S⊥f is

the component of the spin in the orbital plane during
inspiral, which is assumed not to change throughout the
evolution of the binary. This, or a similar,3 assumption has
been previously implemented in a number of precessing
models, such as Refs. [34–38], and has been found to be
very accurate; the value predicted by Eq. (23) agrees with
the NR final spin estimate to within 1.5% for all 80 cases
presented in Ref. [50].
If we extend the aligned-spin condition for the transition

point to precessing systems, then we might expect that the

transition occurs at S k
f ¼ 0. This assumption has been

previously employed in models of precessing systems, for
example, Ref. [38]. However, for a precessing system the
orbital plane changes direction quite rapidly close to
merger meaning it is ambiguous as to whether the sign

of S k
f truly indicates whether the final spin lies in the

upper or lower hemisphere with respect to the orbital plane.
If we instead consider the orientation of the final spin
relative to the optimal emission direction postmerger, rather
than relative to the orbital plane prior to merger, then
the orientation is described by the precession angle β. In
this case, the final spin passes from the upper to lower

hemisphere when β ¼ π=2. A second possible condition for
the transition from prograde to retrograde frequencies
occurs is therefore when cos β ¼ 0.
Which of these approximations is most appropriate

depends on the orientation of the perturbation of the final
BH. This perturbation is generated by the orbiting BHs but
its direction is described postmerger by the optimal
emission direction. In order to determine which of these
approximations most accurately describes where the tran-
sition between prograde and retrograde frequencies occurs
we studied six NR simulations in a region of parameter
space where both the prograde and retrograde frequencies
are similarly excited. These simulations are indicated in

Fig. 3, which shows the magnitude of S k
f , calculated using

the fit presented in Ref. [62], as a function of the mass ratio
and aligned-spin component of the initial binary. For

configurations that lie on the white line S k
f ¼ 0 and thus

we might expect that, if the assumption that the orientation
of the perturbation is consistent with that of the orbital
plane just prior to merger, then the prograde and retrograde
QNMs are equally excited in these cases. From this
approximation we would expect the transition to occur
for a value of θLS between 120° and 130° for binaries with
q ¼ 8 and χ ¼ 0.8. However, we can clearly see from
Fig. 4 that this is not the case and the sharp transition from
prograde to retrograde frequencies does not occur when

S k
f ¼ 0. The green dot-dashed line in this figure shows the

FIG. 3. The magnitude of S k
f as a function of the mass ratio and

aligned-spin component of the initial binary. The white line

indicates the line along which S k
f ¼ 0. The white þ and ×

indicate the position in parameter space of the CF21-79 and
CF21-80 cases shown in Fig. 7 respectively. The white dots
show the position of cases with ðq; χÞ ¼ ð8; 0.8Þ and θLS ∈
f110°; 130°; 140°; 160°g.

3In Ref. [37] a PN estimate for the magnitude of the orbital
angular momentum is included in the expression for the final spin
magnitude [see Eq. (4.17)]. This does not significantly alter the
statements made in this section.
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predicted value of the mean ringdown frequency for
binaries with ðq; χÞ ¼ ð8; 0.8Þ and a range of spin incli-
nation angles, assuming the final masses and spins as
calculated using the fits in Ref. [62]. It jumps sharply from
the prograde to the retrograde branch at the point where

S k
f ¼ 0. We can see from our NR data (black dots) that

the transition between the prograde and retrograde frequen-
cies actually occurs for configurations much closer to the
antialigned spin limit.
This is consistent with what we see from looking at the

amplitudes of the QNMs themselves. Predicting the exact
point at which Aþ ¼ A− is challenging since the number of
NR simulations available in this region of the parameter
space is limited and the ratio of the prograde and retrograde
amplitudes is not monotonic, as demonstrated in Fig. 5.
Despite this, it is clear from Fig. 5 that, as seen in Fig. 4,
this point occurs somewhere between θLS ¼ 140° and 150°
for binaries with q ¼ 8, χ ¼ 8.
If we now consider the orientation of the final spin with

respect to the direction of the perturbation through ring-
down (the optimal emission direction) then we find it is
much more consistent with our NR data. Figure 6 shows the
evolution of the ringdown value of β across the parameter
space, and we can see that although it is not clear exactly
where cos β passes through zero it certainly does not
happen around 120° and occurs closer to 150°, which is
more consistent with what we see in Figs. 4 and 5. This
approximation is therefore much more accurate in deter-
mining the point at which the transition from prograde to
retrograde frequencies occurs.

Having understood the behavior of the mean value
of the ringdown frequency, we can also examine the
validity of our prediction of the oscillations present in
the angular frequency, as described by Eq. (20). In order for
the oscillations in the angular frequency to be visible in our
NR data both the prograde and retrograde QNMs must
be reasonably excited (so the amplitude of the oscillations
are visible above the level of numerical noise in the data).
This limits us to a very small region in the currently
explored precessing-binary parameter space where this

FIG. 4. Evolution of the mean ringdown frequency of the (2, 2)
multipole for binaries with q ¼ 8 and χ ¼ 0.8 as the angle
between the spin and orbital angular momenta varies. The black
dots are the average ringdown frequency as calculated from
numerical simulations. The error bars are obtained by varying the
region over which the average is taken. The blue lines show the
prograde (dashed) and retrograde (dotted) lines. The green dot-
dashed line (ω1) shows how the mean ringdown frequency
evolves across the parameter space as determined by the sign

of χ k
f , as assumed in e.g. Refs. [35,63]. The red solid line (ω2)

shows the evolution of the mean ringdown frequency based on
our assertion here that it is determined by the sign of cos β. We
can see that in the J-frame there is a sharp transition between the
prograde and retrograde modes.

FIG. 5. Evolution of the ratio of the amplitudes and the
prograde and retrograde (2, 2) QNMs for binaries with q ¼ 8
and χ ¼ 0.8 as the angle between the spin and orbital angular
momenta varies. The open circles are the ratio as calculated from
time-domain fits to numerical simulations [24]. The time-domain
fitting was performed over three 30 M-long segments of data in
the region from 30 M to 80 M after merger. We plot the average
value from these fits. The error bars are given by the maximum
difference between the value over any given fitting region and the
average value. The blue line gives a fit through this data,
predicting that Aþ ¼ A− when θLS ¼ 138°. For comparison,
we show where the transition point from prograde to retro-

grade-dominated behavior is predicted by the evolution of S k
f

(green dot-dashed) and of β (red dashed line).

FIG. 6. Evolution of the ringdown value of β. The blue dots
indicate the mean value of β over 90 M postmerger with an error
bar indicating the amplitude of the oscillations in β. The blue line
gives the value of a fit for the frequency-domain ringdown value
of β which will be presented in an upcoming work. From the
time-domain values, it is difficult to estimate the exact point at
which the cos β ¼ 0, however it is clear that it occurs in the region
around 150°–160°. The frequency domain fit predicts that this
will occur when θLS ¼ 150°.
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phenomenon can be studied. It is configurations in this
region of parameter space for which we most clearly see
the oscillations in the angular frequency of the individual
multipoles.
In Fig. 7 we compare the angular frequency of the (2, 2)

multipole in the J-frame as calculated from the NR data
with the prediction from Eq. (20). We consider two cases;
in the top panel we consider the case where the prograde
frequency dominates while in the second panel we consider
the case where the retrograde frequency dominates. The
good agreement between the numerical data and our
prediction strongly suggests that it is the superposition
of these two QNMs that accounts for these oscillations in
the numerical data rather than numerical noise. We can see
that the mean value is determined by the dominant multi-
pole as predicted by Eq. (21), the frequency of the
oscillations is determined by the difference between the
two QNM frequencies and the amplitude of the oscillations
is determined by the ratio of the amplitudes of the prograde
and retrograde modes.
In this figure, we consider the angular frequency as

predicted by Eq. (20) using values for the QNM amplitudes

obtained from fitting a series of damped sinusoids to the
individual spherical multipoles, as described in Sec. III.
There is some degree of uncertainty in this procedure. We
can alternatively find values for the ratio of the amplitudes
by fitting Eq. (20) to the numerical data. This gives results
very close to those obtained by the independent amplitude
fitting. This fit is much simpler than the damped sinusoid fit
as it has fewer free parameters. However, it does not
provide us with the absolute values of the amplitudes.
In Fig. 8 we show the angular frequency of the (2, 2)

multipole for an equal mass nonspinning binary. As we
expect, in this case only the prograde frequencies are
excited and so we see no oscillations due to the super-
position of the prograde and retrograde QNMs. We do see
weak low-frequency oscillations due to mixing of the (2, 2)
and (3, 2) QNMs (see discussion in the following section)
as well as higher-frequency oscillations due to noise
artifacts and gauge effects. These higher frequency oscil-
lations are inconsistent with a superposition of QNMs and
so cannot be accounted for in this fashion. The oscillations
visible in this case areOð102Þ times weaker than those seen
due to the superposition of the prograde and retrograde
frequencies in Fig. 7, showing that neither the contribution
of the (3, 2) QNM nor the gauge effects have a strong effect
on the signal.
In what follows we will consider the multipoles in the

inertial J-frame to have a single frequency only, given by
the mean value, and neglect the effect of the oscillations.

B. Spherical harmonic picture

When considering the gravitational waves from a per-
turbed Kerr BH in a spherical harmonic basis rather than
the spheroidal basis we get mixing in some of the
subdominant multipoles. This mixing occurs between
spheroidal multipoles with the same m value but different

FIG. 7. A comparison of the time-domain angular frequency of
the (2, 2) multipole in the J-frame with that predicted by Eq. (20).
The top panel shows the case CF21-79, the bottom panel shows
CF21-80. The prediction shown in the dot-dashed purple lines
uses the relative contribution from the prograde and retrograde
frequencies found by fitting a series of damped sinusoids to the
individual spherical multipoles. This gives a ratio of Aþ∶A− of
4.49∶1 and 0.185∶1 respectively for the two cases respectively.
The dashed blue line shows the result of fitting Eq. (20) to the
data. In this case we find values of Aþ∶A− of 5.78∶1 and 0.222∶1.
The red line gives the frequency of the dominant QNM. In all
cases, the QNM frequencies are calculated using perturbation
theory.

FIG. 8. The time-domain angular frequency of the (2, 2)
multipole in the J-frame for a nonspinning equal mass binary
(black). The oscillations present in the angular frequency of this
nonspinning case are two orders of magnitude smaller in
amplitude than in the precessing cases shown in Fig. 7. The
lower-frequency oscillations are consistent with mode mixing
with the (3, 2) multipole with a ratio A22∶A32 of 169∶1 (blue
dashed line). The higher-frequency oscillations are artifacts
introduced by noise or gauge artifacts.
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l values. Of the five most important multipoles; the (2, 2),
(2, 1), (3, 3), (3, 2), and (4, 4) multipoles, mixing is
apparent in only the (3, 2) multipole. While in theory this
multipole couples to all other m ¼ 2 multipoles, we need
only consider the contribution from the (2, 2) multipole.
The multipoles in the two bases are then related via the
linear transformation [21,64]

�
ψ4;22

ψ4;32

�
¼

�
α222 α232

α322 α332

��
ψS
4;22

ψS
4;32

�
; ð25Þ

where S indicates the multipoles in the spheroidal harmonic
basis and αll0m are the mixing coefficients. This gives an
expression for the spherical harmonic multipoles in the
same form as Eq. (18). Following the same calculation as
described above, we expect the mean angular frequency of
the (3, 2) multipole in the spherical harmonic basis to be
given by

h _ϕ32i ¼

8>><
>>:

ω22; α322AS
22 > α332AS

32

ω32; α322AS
22 < α332AS

32

1
2
ðω22 þ ω32Þ; α322AS

22 ¼ α332AS
32

; ð26Þ

where AS
l0m are the amplitudes of the multipoles in the

spheroidal harmonic basis.
As with the superposition of the prograde and retrograde

frequencies, the superposition of the different spheroidal
harmonic multipoles causes oscillations in the spherical
harmonic multipole. The oscillations induced by this
mixing can be seen in Fig. 9. In the top panel we see a
case where the amplitude of any prograde modes greatly
exceeds that of any retrograde modes, so any oscillations
that might be due to their superposition are not apparent.
Consequently, the oscillations due to the superposition of
the (2, 2) and (3, 2) QNMs are clearly visible. In the lower
panel, we consider a case where the amplitudes of the
prograde and retrograde modes are comparable and we do
indeed see oscillations due to superposition of these modes.
Here, the oscillations due to the superposition of the (2, 2)
and (3, 2) QNMs can be seen in the envelope around the
oscillations. Similar to when looking at the superposition of
the prograde and retrograde modes in the (2, 2) multipole,
we can get the QNM amplitudes by either fitting a series of
damped sinusoids to the waveform or by fitting the angular-
frequency data itself. As can be seen, the two methods give
good agreement in the relative amplitudes but the small
differences have a clear effect on the magnitude of the
oscillations in the angular frequency. In both cases shown
in Fig. 9, we can clearly see that the mean behavior is given
by the frequency of the dominant QNM, even in the case
where we have a superposition of not only the (3, 2) and
(2, 2) multipoles but also of the prograde and retrograde
modes. As discussed in the previous section, it is this mean
value which is of greatest interest. In the rest of the paper
we will therefore ignore the effect of the oscillations and

instead consider the multipole to have a single frequency,
given by the mean value.
For the results presented in the following sections, we

will consider the spherical harmonic decomposition. For all
multipoles considered in this paper besides the (3, 2)
multipole, the mean value of the ringdown frequency is
unaffected by the mode mixing. For the (3, 2) multipole,
mode mixing means that at times the (3, 2) QNM dominates
and at others the (2, 2) QNM dominates. This determines
whether the mean frequency is equal to the (2, 2) or the
(3, 2) QNM frequency.

V. COPRECESSING FRAME BEHAVIOR

We now consider the ringdown signal in the coprecess-
ing frame, which has been used in the construction of
many precessing-binary signal models [34–37,39–43,65].

FIG. 9. Effect of mixing on the J-frame angular frequency of
the (3, 2) multipole. The top panel shows the case CF21-6, while
the bottom panel shows CF-79. In the top panel we see
oscillations due to the superposition of the (3, 2) and (2, 2)
QNMs only. From fitting damped sinusoids to the spherical
multipoles (purple dot-dashed line) we find the ratio
Aþ
22∶A

þ
32 ¼ 1∶0.636. From fitting the angular frequency (blue

dashed line) directly we find Aþ
22∶A

þ
32 ¼ 1∶0.506. In the lower

panel we see the oscillations provided by the superposition of the
three dominant QNMs: the envelope comes from the mixing
between the (3, 2) and the (2, 2) multipoles while the faster
oscillations come from the superposition of the prograde and
retrograde modes. Fitting the multipoles themselves gives the
relative amplitude of the QNMs as Aþ

22∶A−
22∶A

þ
32∶A−

32 ¼
1∶0.440∶23.7∶7.30 while fitting the angular frequency gives
1∶0.401∶18.3∶4.44. In both cases it is clear that the mean
frequency is given by the dominant QNM frequency, indicated
by the red-dotted line.
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The results observed in this section have already been
employed in the model presented in Ref. [38]. We work in
the spherical harmonic basis. The multipoles in this frame
are a superposition of all the multipoles in the J-frame with
the same l value. If the J-frame multipoles with the same l
are of comparable magnitude then we will see noticeable
oscillations in the coprecessing frame multipoles.
Otherwise, we just see the mean behavior.

A. Mean behavior

The coprecessing multipoles are given in terms of the J-
frame multipoles by Eq. (4). Writing ψ4;lm ¼ Alme−iϕlm ¼
Almðcosϕlm − i sinϕlmÞ we get the following expression
for the ðl; m0Þ multipole in the coprecessing frame:

ψ 0
4;lm0 ¼ e−im

0γ
Xl
m¼−l

Almdlm0mð−βÞ

× ½cos ðϕlm −mαÞ − i sin ðϕlm −mαÞ�: ð27Þ

From this we can see that the phase of the ðl; m0Þmultipole
in the coprecessing frame is given by

tan ðϕ0
lm0 þm0γÞ ¼

Pl
m¼−l Almdlm0m sin ðϕlm −mαÞP
l
m¼l Almdlm0m cos ðϕlm −mαÞ :

ð28Þ

The effect of the rotation by α is to ensure that the
magnitude of the phase of each of these terms is the same
(i.e. ϕlm −mα ¼ ϕlm0 −m0α). We note that the sign of
the phase of the negativemmultipoles is opposite to that of
the positive m multipoles. Eq. (28) then becomes

tan ðϕ0
lm0 þm0γÞ

¼
P

l
m¼0 Almdlm0m −

P−1
m¼−l Almdlm0mP

l
m¼−l Almdlm0m

tan ðϕlm0 −m0αÞ:

ð29Þ

Making use of the assumptions that (i) the value of β
through ringdown is constant and (ii) α and γ are linear
through ringdown, we can rewrite Eq. (29) as

tan ðϕ0
lm0 þm0γÞ ¼ b tan ðatÞ; ð30Þ

where

a ¼ _ϕlm0 −m0 _α ¼ ωlm0 −m0 _α; ð31Þ

b ¼
P

l
m¼0 Almdlm0m −

P−1
m¼−l Almdlm0mP

l
m¼−l Almdlm0m

; ð32Þ

are constants. Differentiating with respect to time we find

_ϕ0
lm0 þm0 _γ ¼ abð1þ tan2 ðatÞÞ

1þ b2 tan2 ðatÞ : ð33Þ

The average value of the frequency of the ðl; m0Þ multi-
pole in the coprecessing frame ω0

lm0 ¼ h _ϕ0
lm0 i is therefore

given by

ω0
lm0 ¼ ωlm0 −m0ð _αþ _γÞ

¼ ωlm0 −m0ð1 − jcos βjÞ _α; ð34Þ

where in the second line we have used the minimal rotation
condition given by Eq. (7). We take the absolute value of
cos β since we define β to be the angle between the total
angular momentum and the optimal emission direction,
which has no preferred direction. We therefore require the
minimal rotation condition to be symmetric about β ¼ π=2.
Employing Eq. (13) we get the following final expres-

sion for the effective ringdown frequency of the ðl; mÞ-
multipole,

ω0
lm0 ¼ ωlm0 −m0ð1 − jcos βjÞðω22 − ω21Þ: ð35Þ

This depends only on the QNM frequencies and the
ringdown value of β.
This expression gives us a simple way to obtain the

correct ringdown frequency in the coprecessing frame
from the results from perturbation theory. This is useful
for modeling precessing systems since we can obtain
the ringdown frequencies for each of the multipoles in
the coprecessing frame based purely on knowledge of the
initial binary and the remnant black hole, without addi-
tional modeling. Indeed, this expression has already been
employed for the l ≠ m multipoles in the higher mode
extension to Ref. [38], which will be presented in an
upcoming work.
Since this derivation has been performed entirely in the

context of a spherical harmonic decomposition, it should be
noted that ωlm0 must be the correct ringdown frequency of
the spherical harmonic multipole in the J-frame. That is,
not only must it be the correct choice of the prograde or
retrograde frequency as determined by Eq. (21), in the case
of mixing it must also be the correct QNM frequency as
determined by Eq. (26).
One great advantage of this formula is that, given a

model for β, one can predict the effective ringdown
frequency of each of the higher order multipoles in the
coprecessing frame. This means one needs only to produce
a model for β rather than for each individual multipole of
interest.
The validity of the expression for the effective ringdown

frequency given in Eq. (35) is demonstrated in Figs. 10
and 11. The mean value of the angular frequency in the
coprecessing frame (averaged over the range 40–90M after
merger) is represented by the black crosses. For comparison,
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the result of Eq. (35) for each of our NR cases is represented
by the purple diamonds. We calculated the QNM frequency
for use in Eq. (35) using Leaver’s method for the final mass
and spin of the black hole given in the NRmetadata.We used
the mean value of ringdown β taken from the numerical data

between 40 and 90M after merger. We can see that the result
of Eq. (35) agrees very well with the value of the angular
frequency from the NR data, thus demonstrating that this is a
good approximation of the effective ringdown frequency. For
further comparison, we show the result of Eq. (35) across the

FIG. 10. A comparison of the prediction of the effective ringdown frequency given by Eq. (35) (purple diamonds) with the mean value
of the frequency of the multipole in the coprecessing frame as calculated from the NR data (black crosses). The blue dashed and dotted
lines show the absolute value of the prograde and retrograde frequencies for the relevant multipole. The purple dot-dashed line shows the
prediction of the effective ringdown frequency using a value for β which will be presented in an upcoming work. The panels are arranged
in the order (2, 2), (2, 1), (3, 3) and (4, 4). All systems considered here are q ¼ 8. The left-hand column shows χ ¼ 0.6 while the right-
hand column shows χ ¼ 0.8.
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parameter space in the purple dot-dashed line. To obtain this
prediction, we used the final mass and spin calculated using
the fits for aligned binaries in Ref. [62] as well as Eq. (23) to
account for the precessing spin and the final value of β taken
from frequency domain fits which will be presented in an
upcoming work.
Crucially, in Fig. 10we can see that the discontinuity in the

ringdown frequency as we travel across the parameter space
has disappeared in the coprecessing frame. The effect of
transforming into the coprecessing frame is clearest for cases
with large mass ratio, spin magnitude and spin inclination
angle, so once again we are focussed in this corner of the
parameter space. We examine how the effective ringdown
frequency changes as we travel from aligned to antialigned-
spin systems. As mentioned previously, for aligned-spin
systems the final spin is always positive (i.e. aligned with the
axis of the perturbation). For antialigned systems, the final
spin can be either positive or negative depending on the
configuration of the initial binary.
For antialigned cases where the final spin is positive, we

will simply have the prograde ringdown frequency. Here
there is a smooth deviation from and return to the prograde
value when traveling across the parameter space, as seen for
the q ¼ 8, χ ¼ 0.6 systems shown in the left-hand column
of Fig. 10. For antialigned cases where the final spin is
negative, the effective ringdown frequency transitions
smoothly between the prograde frequency for aligned-spin
systems and the retrograde frequency for antialigned
systems. This is the case for the q ¼ 8, χ ¼ 0.8 systems
shown in the right-hand column of the figure.

This smooth transition occurs provided we have cor-
rectly understood when the transition between prograde
and retrograde frequencies occurs in the J-frame. At this
point the shifted value of the prograde and retrograde
frequencies in the coprecessing frame are equal, i.e.

ω0þ
lm ¼ −ω0−

lm; ð36Þ

where ω0�
lm are each given by Eq. (35). We see from Fig. 10

that, for the l ¼ 2 multipoles, this occurs when cos β ¼ 0.
This agrees with the conclusion drawn in Sec. IVA that
cos β is a good indicator of the dominant QNM frequency.
For the higher order multipoles the transition is not quite so
smooth. This may be due, at least in part, to the approxi-
mation for _α made in Eq. (9) breaking down with the
inclusion of higher order multipoles.
In the case of the (3, 2) spherical multipole shown in

Fig. 11, we can see that the mean frequency is given by that
of either the (3, 2) QNM frequency or the (2, 2) QNM
frequency depending on which one dominates in the
coprecessing frame, as discussed in Sec. IV B. The tran-
sition between these two frequencies is discontinuous at the
point where the amplitude of the contributions from the two
QNMs to the spherical multipole are equal. If one were to
consider the multipoles decomposed in the spheroidal
harmonic basis, as is optimum when considering the
(3, 2) multipole (see. e.g. Ref. [64]), then the discontinuity
would disappear and we would see the same trend as for the
other multipoles shown in Fig. 10.

FIG. 11. A comparison of the prediction of the effective ringdown frequency given by Eq. (35) for the (3, 2) multipole (purple
diamonds) with the mean value of the frequency in the coprecessing frame as calculated from the NR data (black crosses). The dashed
lines show the prograde and retrograde frequencies for the (2, 2) multipole (magenta) and the (3, 2) multipole (blue). The top row shows
systems with χ ¼ 0.2 while in the bottom row we consider systems with χ ¼ 0.8. The left-hand column shows q ¼ 2 configurations and
the right-hand column shows q ¼ 8.
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We can see that for systems with low-mass ratio (left-
hand column) the (2, 2) QNM tends to dominate while for
systems with higher-mass ratio the (3, 2) QNM dominates.
This is as expected since for higher-mass ratio systems, the
higher order multipoles are excited more strongly. As the
angle between the orbital and spin angular momenta of
the binary increases, the (3, 2) QNM also starts to dominate
(and vice versa). This is because more antialigned systems
will result in a lower final-spin magnitude and thus a higher
contribution from the (3, 2) QNM relative to the contri-
bution of the (2, 2) since α332 increases relative to α322. This
trend is most marked for systems where the inspiraling
binary has a higher spin magnitude (the bottom row).
The dominant multipole used to calculate the effective

ringdown frequency using Eq. (35) (purple diamonds in
Fig. 11) was determined using time-domain fitting of the
ringdown (3, 2) spherical multipole in the coprecessing
frame. This is compared with the mean value of the angular
frequency of the (3, 2) multipole in the coprecessing frame
(black crosses). As can be seen from Fig. 11, the prediction
agrees well with the data for all cases except that with q ¼ 8,
χ ¼ 0.8 and θLS ¼ 60°. In this case, the time-domain fitting
shows that the contribution of the (2, 2) and (3, 2) QNMs to
the (3, 2) multipole are nearly equal. The time-domain fitting
favors the (3, 2) dominating but the angular frequency
implies the (2, 2) may dominate. However, the angular-
frequency data itself is fairly noisy. It is therefore ambiguous
as to which of these results is correct.

B. Oscillatory behavior

As well as considering the mean behavior of the
spherical harmonic multipoles in the coprecessing frame
we can also study the oscillations in the frequency, as
described by Eq. (33).
To get a sense of exactly how these oscillations arise as a

consequence of the rotations between frames, we consider
only the l ¼ 2 multipoles, in the coprecessing frame
defined considering the l ¼ 2 multipoles only.
For this example we assume that the (2, 2) multipole is

sufficiently dominant in the coprecessing frame that we can
treat the other multipoles as negligible. This assumption is
obviously very approximate for higher-mass ratio systems.
The ratio of the amplitudes of the multipoles in the J-frame
can therefore be found from Eq. (8). We therefore rewrite
Eq. (32) as

b ¼ 2 cos β þ 4 tan β
2
sin β þ 3

2
tan2 β

2
sin2 β

1þ cos2 β þ 4 tan β
2
sin β cos β þ 3

2
tan2 β

2
sin2 β

: ð37Þ

We can rewrite Eq. (35) to find the expression for the mean
frequency of the coprecessing (2, 2) multipoles is given by

ω0 ¼ ðð2κ − 1Þ þ 2ð1 − κÞ cos βÞω22; ð38Þ

where κ ¼ ω21

ω22
.

The validity of these approximations in demonstrated in
Fig 12. The top panel shows a case where the prograde
frequency dominates while the bottom panel shows a
case where the retrograde frequency dominates. We can
see that the phasing of the oscillations is consistent with
ð2κ − 1Þω22 in both cases. The amplitude of the oscillations
is capturedwell for the case displayed in the top panel but not
in the case in the bottom panel, implying that in this case
contributions from higher order multipoles in the coprecess-
ing frame are important.Regardless ofwhether the amplitude
of the oscillations is well-captured, we can see that the
expression for the mean frequency Eq. (38) accurately
captures the mean behavior showing that other than deter-
miningwhichQNMwewish to select, the effective ringdown
frequency is independent of the multipole amplitudes.

VI. CONCLUSIONS

We have presented a simple analytic formula for calculat-
ing the effective ringdown frequency of a precessing binary
in the coprecessing frame. Such a formula is useful in
accurately modelling the ringdown of precessing systems,
and will be used in the higher mode extension to Ref. [38],
which will be presented in an upcoming work. It was also
recently incorporated into the higher mode precessing black-
hole binary model described inRef. [66]. It relies only on the

FIG. 12. A comparison of the time-domain angular frequency
of the (2, 2) multipole in the coprecessing frame with that
predicted by Eq. (33) from the QNM picture. The horizontal line
gives the prediction of the effective ringdown frequency as given
by Eq. (38). The top panel shows the case ðq; χ; θLSÞ ¼
ð8; 0.8; 120°Þ while the bottom panel shows the case
ðq; χ; θLSÞ ¼ ð8; 0.8; 150°Þ. In the bottom case we have masked
away a discontinuity in the NR data for ease of presentation.
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QNM frequencies (known from perturbation theory) and the
value of the precession angle β in the ringdown.
We have also gained an increased understanding of the

ringdown signal from precessing binaries. We have seen that
both the prograde and retrograde frequencies can be excited
to an approximately equal degree in these systems, resulting
in oscillations in the angular frequency of the individual
multipoles. These oscillations are present in our numerical
data at exactly the frequency predicted from perturbation
theory, giving support to the fact that they arise from the
excitation of both the prograde and retrograde frequencies.
We can obtain an independent estimate of the ratio of the
amplitudes of these two different contributions from fits to
the angular frequency. Conversely, given the value of the
ratio of the amplitudes of these two contributions we can
provide a simple model of the oscillations in the frequency.
Such a simple means of modeling the oscillations may be
useful in time-domain modeling of the ringdown.
Additionally, we have seen that the dominant ringdown

behavior is described by a single frequency, given by the
average of the oscillations. This mean value is equal to
either the prograde or the retrograde frequency, depending
on which dominates. There is therefore a discontinuous
transition from the prograde to the retrograde value at the
point where the contributions from the two components are
equal. We find that this transition point is most consistent
with where the angle between the optimal emission
direction and the final spin (given by β) is equal to π

2
.

By contrast, in the coprecessing frame we no longer have
a sharp transition between the prograde and retrograde
frequencies. The smooth behavior of the mean frequency is
well captured by the analytic formula we present for the
effective ringdown frequency in Eq. (35). The effectiveness
of this formula in predicting the effective ringdown
frequency in the coprecessing frame for a range of multi-
poles is shown in Figs. 10 and 11. This smooth behavior of
the analytic formula also supports our conclusion that the
transition from the signal being prograde-dominated to
retrograde-dominated occurs at β ¼ π

2
.

In this paper, we have therefore provided a comprehen-
sive description of the behavior of the ringdown frequency
of precessing systems in both the inertial J-frame and the

coprecessing frame. This description will be applicable to
future efforts in both time- and frequency-domain modeling
of precessing binaries. Accurately capturing this ringdown
behavior will also have important implications for param-
eter estimation of detected signals and tests of general
relativity using gravitational waves.
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Mroué, H. P. Pfeiffer, M. A. Scheel, and B. Szilágyi, Phys.
Rev. D 89, 084006 (2014).

[40] A. Taracchini et al., Phys. Rev. D 89, 061502 (2014).
[41] S. Ossokine et al., Phys. Rev. D 102, 044055 (2020).
[42] H. Estellés, M. Colleoni, C. García-Quirós, S. Husa, D.

Keitel, M. Mateu-Lucena, M. d. L. Planas, and A. Ramos-
Buades, Phys. Rev. D 105, 084040 (2022).

[43] J. Blackman, S. E. Field, M. A. Scheel, C. R. Galley, C. D.
Ott, M. Boyle, L. E. Kidder, H. P. Pfeiffer, and B. Szilágyi,
Phys. Rev. D 96, 024058 (2017).

[44] E. Hamilton and M. Hannam, Phys. Rev. D 98, 084018
(2018).

[45] B. Bruegmann, J. A. Gonzalez, M. Hannam, S. Husa, U.
Sperhake, and W. Tichy, Phys. Rev. D 77, 024027 (2008).

[46] E. P. Wigner, Group Theory and Its Application to the
Quantum Mechanics of Atomic Spectra (Academic Press,
New York, 1959).

[47] R. O’Shaughnessy, L. London, J. Healy, and D. Shoemaker,
Phys. Rev. D 87, 044038 (2013).

[48] S. Marsat and J. G. Baker, arXiv:1806.10734.
[49] H. Estellés, A. Ramos-Buades, S. Husa, C. García-Quirós,

M. Colleoni, L. Haegel, and R. Jaume, Phys. Rev. D 103,
124060 (2021).

[50] E. Hamilton, E. Fauchon-Jones, M. Hannam, C. Hoy, C.
Kalaghatgi, L. London, J. E. Thompson, D. Yeeles, S.
Ghosh, S. Khan, and P. Kolitsidou, arXiv:2303.05419.

[51] A. H. Mroue et al., Phys. Rev. Lett. 111, 241104 (2013).
[52] M. Boyle et al., Classical Quantum Gravity 36, 195006

(2019).
[53] J. Healy, C. O. Lousto, Y. Zlochower, and M. Campanelli,

Classical Quantum Gravity 34, 224001 (2017).
[54] J. Healy, C. O. Lousto, J. Lange, R. O’Shaughnessy, Y.

Zlochower, and M. Campanelli, Phys. Rev. D 100, 024021
(2019).

[55] J. Healy and C. O. Lousto, Phys. Rev. D 102, 104018 (2020).
[56] J. Healy and C. O. Lousto, Phys. Rev. D 105, 124010 (2022).
[57] K. Jani, J. Healy, J. A. Clark, L. London, P. Laguna, and D.

Shoemaker, Classical Quantum Gravity 33, 204001 (2016).
[58] E. Berti, V. Cardoso, and C. M. Will, Phys. Rev. D 73,

064030 (2006).
[59] H. Lim, S. A. Hughes, and G. Khanna, Phys. Rev. D 105,

124030 (2022).
[60] F. Hofmann, E. Barausse, and L. Rezzolla, Astrophys. J.

Lett. 825, L19 (2016).
[61] L. Haegel and S. Husa, Classical Quantum Gravity 37,

135005 (2020).
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