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We provide a uniform treatment of electromagnetic and gravitational memory effects, based on the
gravitoelectromagnetic formulation of general relativity (GR) and a generalization of the geodesic
deviation equation. This allows us to find novel results: in gauge theory, we derive relativistic corrections to
the well-known kick memory observable, and a general expression for the displacement memory
observable, typically overlooked in the literature. In GR, we find relativistic corrections to displacement
and kick memory observables. In both theories, we find novel radial memory effects. Next, we show that
electromagnetic and gravitational memory observables can be formulated in terms of certain holonomies on
a holographic screen in asymptotically flat spacetimes. In gauge theory, the displacement and kick memory
effects form a Hamiltonian vector field, which is canonically generated by a Wilson loop. In the first order
formulation of GR, we show that the holonomy naturally splits into translational and Lorentz parts. While
the former encodes the leading and subleading displacement and kick memory observables, the latter
reproduces the gyroscopic memory effect.

DOI: 10.1103/PhysRevD.107.104034

I. INTRODUCTION AND SUMMARY OF RESULTS

Gravitational memory refers to the plasticity of space-
time subjected to gravitational waves (GWs). This leads to
permanent effects in the configuration of experimental
setups, such as a change in the physical distance between
free test masses, which are initially at rest [1,2], or a net
rotation in the orientation of a gyroscope [3,4]. The former
is the well-known “displacement memory” whose linear
form was discovered in the 1970’s. A more rigorous
analysis of this effect in the 1990’s by Christodoulou [5]
and Blanchet and Damour [6] showed that there is a
nonlinear contribution to the memory, which can be
understood as the linear memory caused by emitted
gravitons [7], i.e., the ability of gravitons to gravitate
[8]. While the linear effect is dominant in the memory
caused by scattering processes, the nonlinear
Christodoulou effect has the major contribution in bound
systems, such as binary coalescence [9]. Thanks to the
BMS flux-balance equations [10], memory effects can be
implemented in numerical waveforms, implying that the
effect can be enhanced in the merger phase [11–13].
However, the low frequency nature of the memory makes

it hard to detect in GWexperiments. Prospects for detection
of GW memory is discussed in [8,14–18].
In recent years, gravitational memory effect has attracted

new interest, due to its fundamental relationship with the
symmetry structure of asymptotically flat spacetimes
[19–23]. The leading displacement memory is proportional
to the permanent change in the shear, i.e., the transverse-
traceless components of the metric, which can be inter-
preted as a “vacuum transition” under the action of Bondi-
Metzner-Sachs (BMS) supertranslations [19,24,25].
Recently, new types of permanent GW effects have been
discovered that are not simply related to the net change in
the shear, but are rather sourced by certain time integrals of
the waveform. This includes the spin and center of mass
memory effects [20,26,27] and the gyroscopic memory
effect [3,4]. Generalized memory effects can be described
uniformly in terms of various integer modes in the Mellin
transform of the Bondi news [28,29] and can be observed
through the “curve deviation,” a generalization of the
geodesic deviation [30]. While all these effects are sub-
dominant with respect to the leading displacement memory
and thereby hard to detect in the near future, they are still
very interesting due to their relation to the complete
symmetry structure of gravity, which includes the loop
algebra of w1þ∞ [21,28,29]. Finally, it should be mentioned
that there are novel memory effects in modified theories of
gravity [31–33] with interesting interpretation in terms of
dual charges and symmetries [34].
Memory effects also show up in gauge theories. It is well

known that the passage of electromagnetic radiation leads
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to a net shift in the transverse components of the gauge
field, which leads to a “kick”(change of velocity) in a
charged particle [35–37]. We revisit this problem and show
that there is also a subleading displacement effect in gauge
theory, which generalizes previous result of [38]. In this
context, similarities and differences between gravity theory
and gauge theory become much more transparent.
Memory is a nonlocal effect both in space and time.

Therefore, one might expect that nonlocal quantities like
holonomies and Wilson loops be good candidates to
quantify memory effects. This is supported by results in
[39–42], where it is shown that final states in a scattering
process are dressed by Wilson lines anchored to the
celestial sphere at infinity. A more concrete result on the
relation between memory and holonomy in GR was
achieved in [43,44] where a “generalized” holonomy
was introduced through a modification of the parallel
transport equation. It was shown that this holonomy
contains displacement and velocity memory effects.

A. Summary of results and outline

In this paper, we provide a uniform treatment of
electromagnetic and gravitational memory effects, using
a generalized Lorentz force equation given in (2.10). From
this, we derive the general result (2.14) for the displacement
and kick memory effects, which applies both to electro-
magnetism (EM) and general relativity (GR). One can
easily specialize this result to EM or GR by identifying the
transverse (gravito)electric field, leading respectively to
(2.17) and (3.9). We will discuss several improvements of
our results with respect to the existing literature.
Next, we show that there is a correspondence between

memory and holonomy.We provide an explicit expression to
extract both leading and subleading displacement and kick
memory effects from the holonomy. This applies both to EM
and GR. In case of EM, we show that the displacement and
kick memory effects form a Hamiltonian vector field in the
phase space of the test particle, which is canonically
generated by the Wilson loop; see Eq. (4.7). Similar result
is obtained inEqs. (4.26) and (4.27) for thegravitational case,
but we have not been able to identify a canonical structure in
this case.
One novelty of our approach with respect to that of

[43,44] is that we study the gravitational holonomy in terms
of tetrad variables. In this setup, the holonomy is an
element of the Poincaré group, which naturally splits into
translation and Lorentz contributions. We develop this in
Sec. IV B, and show that the translational holonomy obeys
the affine transport equation proposed in [43,44]. Then, we
will show in Sec. IV D that the translational holonomy
reveals displacement and kick memories, while the rota-
tional holonomy is shown to reproduce the gyroscopic
memory effect in Sec. IV E. We conclude in Sec. V.
Throughout the paper, we will use geometrized units in
which the speed of light c ¼ 1.

II. EM MEMORY EFFECTS

A. Asymptotic analysis

Consider a test particle with mass m and charge q, in
Minkowski space, subject to electromagnetic radiation
produced by some source Jμ at a large distance r. We assume
that the source is of compact spatial support, centered around
the origin (r ¼ 0) of the retarded coordinate system ðu; r; θAÞ
in which the Minkowski metric reads

ds2 ¼ −du2 − 2dudrþ r2γABdθAdθB: ð2:1Þ
In these coordinates, Maxwell equations ∂μFμν ¼ Jν imply
that the gauge field behaves at large distance as [45]

A ¼ Āu

r
duþ Ār

r2
drþ ĀAdθA þ subleading: ð2:2Þ

Note that coordinate basis vectors ∂A are not normalized,
since ∂A · ∂B ¼ r2γAB. From the viewpoint of an experi-
menter, it ismore natural to use instead anorthonormal tetrad,
i.e., a set of four basis vectors eμ̂ ¼ eμ̂μ∂μ such that
eμ̂ · eν̂ ¼ ημ̂ ν̂, where ημ̂ ν̂ ¼ diagð−1; 1; 1; 1Þ. The dual basis
one forms are given by eμ̂ ¼ eμ̂μdxμ. In this frame, compo-
nents of any tensor is given by contraction with suitable
number of the tetrad eμ̂μ or its inverse eμ̂μ. For example,
Aμ̂ ¼ Aμeμ̂μ or Fμ̂ ν̂ ¼ eμ̂μeν̂νFμν. A suitable frame in
Minkowski spacetime is

e0̂ ¼ ∂u; er̂ ¼ ∂r − ∂u; eÂ ¼ 1

r
EA
Â
∂A; ð2:3Þ

e0̂ ¼ duþ dr; er̂ ¼ dr; eÂ ¼ rEÂ
AdθA; ð2:4Þ

where e0̂ is adapted to observers at rest, er̂ is along the radial
direction specified by outgoing rays, andEÂ

A form a dyad on
the round sphere γABEÂ

AEB̂
B ¼ δÂ B̂. In this basis, we have

A ¼ 1

r
ðĀ0̂e

0̂ þ Ār̂er̂ þ ĀÂe
ÂÞ þOð1=r2Þ; ð2:5Þ

where the leading components relate to those in the coor-
dinate basis as

Ā0̂ ¼ Āu ¼ −Ār̂; ĀÂ ¼ EÂ
AĀA: ð2:6Þ

The last equation suggests that ĀAðu; xBÞ should be viewed
as a tensor living on the unit sphere, and therefore, it is
contracted with the dyad on the sphere EÂ

A. This will be
frequently used in the paper, following the Bondi framework
in which one performs an asymptotic expansion in 1=r to
reduce dynamical fields to covariant tensors living on the unit
“celestial” sphere. Electric andmagnetic fields are defined in
the local frame as

Eî ¼ F0̂ î; Bî ¼ 1

2
ϵî ĵ k̂Fĵ k̂; ð2:7Þ

where î; ĵ; k̂ are Cartesian spatial indices ðr̂; ÂÞ. Simple
manipulation yields
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EÂ ¼
ĒÂ

r
þOð1=r2Þ; BÂ ¼−ϵÂB̂EB̂þOð1=r2Þ; ð2:8aÞ

Er̂ ¼ Oð1=r2Þ Br̂ ¼ Oð1=r2Þ; ð2:8bÞ
where

ĒÂ ¼ _̄AÂ; in EM: ð2:9Þ
Wewill show in Sec. IVD that Eq. (2.8) also holds in GR for
suitable definitions of gravitoelectric and gravitomagnetic
fields. Therefore, the electric and magnetic fields are asymp-
totically transverse and orthogonal to each other.

B. Generalized Lorentz force law

In this section, we study persistent effects of EM or
gravitational waves on test bodies. In Maxwell theory, the
effect of EM fields on a test charge is given by the Lorentz
force law. In GR, on the other hand, displacement memory
effects are typically studied using the geodesic deviation
equation. In this work, however, we will work with a
generalized force law, which allows treating EM and GR
effects in a unified manner. Moreover, in the gravitational
case, it matches the so-called Bazanski equation, which
contains higher order relativistic corrections to the geodesic
deviation equation.
Consider an inertial observer carrying an orthonormal

tetrad eμ̂, parallel transported along the observer’s world-
line. The tetrad can be used to locally define a Fermi normal
coordinate system ðT; XîÞ such that e0̂ ¼ ∂T; eî ¼ ∂Xî .

1 In
such local coordinate system, the effect of EM (gravita-
tional) field on a test charge (mass) is given by

dVî

dT
¼ βEEî þ βBðV × BÞî þ Fî

ext; ð2:10Þ

whereVî ¼ dXî

dT is thecoordinatevelocity of the test body.This
equation resembles the nonrelativistic form of Lorentz force
equation, except thatwe allow for arbitrary couplingβE,βM to
(gravito) electric and (gravito) magnetic fields, and an “extra”
force (per unit mass) Fî

ext in order to unify the analysis
of EM and GR. The extra force is subleading relativistic
correction to the first two effects, as will be detailed later.
Moreover, its specific form depends on the theory. Fî

ext also
accommodates possible external forces in theproblem,butwe
will not consider this possibility in this work.

1. Setup of the experiment

Consider a test body with initial position and velocity
ðXî

0; V
î
0Þ in the local frame. We take the test body to be far

from the source of radiation, and thus, we ignore Oð1=r2Þ

effects, unless otherwise stated (e.g., in gyroscopic memory
effect). At leading order in 1=r expansion, the observer’s
tetrad can be chosen to coincide with (2.3), and as a result,
T ¼ u up to a shift in the origin of time, which we set to
zero. Using the asymptotic relation (2.8) between electric
and magnetic fields (which holds both in EM and GR) in
(2.10) and keeping only 1=r effects, we find

_Vr̂ ¼ 1

r
ðβBĒÂV

Â þ fr̂Þ;

_VÂ ¼ 1

r
ððβE − Vr̂βBÞĒÂ þ fÂÞ; ð2:11Þ

where Fî
ext ¼ 1

r f
îðu; θAÞ þOð1=r2Þ. We assume that the

radiation is confined in a finite time interval, i.e., ĒÂ ¼
0 ¼ fî outside the (possibly long) time interval ðu0; ufÞ,
which guarantees the convergence of time integrals that
will appear.2 Equation (2.11) implies that Vî ¼
Vî
0 þOð1=rÞ and thus, at leading order in 1=r, we can

replace Vî by Vî
0 on the right-hand side. The position of the

test body is thus given by

XîðuÞ ¼ Xî
0 þ

Z
u

u0

dv
Z

v

u0

dw _VîðwÞ: ð2:12Þ

Since the acceleration _Vî vanishes before the arrival and
after the passage of the burst of radiation, we can write

XîðuÞ ¼ Xî
0 þ V0

îðu − u0Þ; u ≤ u0; ð2:13aÞ

XîðuÞ¼Xî
0þΔXîþðV0

îþΔVîÞðu−u0Þ; u≥uf: ð2:13bÞ

The latter equation encodes the kick ΔVî and displacement
ΔXî memory observables.3 Defining the Mellin transform
of a function fðuÞ as MsðfÞ≡ R∞

u0
duðu − u0Þs−1fðuÞ,

the result can be compactly represented, up to Oðr−2Þ
corrections, as

1Since we are performing an asymptotic analysis, we need
these properties, such as the parallel transport of the tetrad to hold
only at leading order in Oð1=rÞ.

2While this is a reasonable assumption in EM, it is merely an
approximation in GR, due to nonlinear tail effects, leading to a
power-law decay in the radiation. We will not consider this issue
in this paper.

3What we call the displacement memory observableΔXî refers
to radiation effects on a probe system of test particles. In the
literature, sometimes “memory effects” (leading or subleading)
refer to certain contributions in the waveform. We will see
explicitly in (2.17), (3.9) that the displacement memory observ-
able ΔXî provides a pairing between parameters of the probe
system ðX0; V0Þ and memory effects in the waveform, which
provides an explicit relationship between the two notions. A
nongeodesic curve is specified by additional acceleration mo-
ments which pair with more subleading data in the waveform
through the curve deviation observable [30,44].
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ΔVÂ ¼ 1

r
M1ðβĒÂ þ fÂÞ; ΔXÂ ¼ −

1

r
M2ðβĒÂ þ fÂÞ

ð2:14aÞ

ΔVr̂¼
1

r
VÂ
0M1ðβBĒÂþfÂÞ; ΔXr̂¼−

1

r
VÂ
0M2ðβBĒÂþfÂÞ;

ð2:14bÞ
where β≡ βE − βBVr̂

0, and we have used several integra-
tion by parts to bring the result into this form. Therefore, we
observe that the kick and displacement memory effects are
respectively sourced by integer s ¼ 1, 2 modes in the
Mellin transform of radiation fields.

C. EM memory effects

In the case of EM, the Lorentz force equation is given by
duμ
dτ ¼ q

m F
μνuν, where uμ is the four velocity and τ is the

proper time on the particle’s worldline. Expanding this in
terms of the velocity with respect to a coordinate system
ðT; XîÞ, we find

dVî

dT
¼ q

mγ
½F0̂ ĵðδî ĵ − VîVĵÞ þ Fî ĵVĵ�; ð2:15Þ

where γ ¼ ð1 − jVj2Þ−1=2 is the Lorentz factor. Having
(2.7) in mind, we recover (2.10) with

βB ¼ βE ¼ q
mγ

; Fî
ext ¼ −βEVîVĵEĵ: ð2:16Þ

Therefore, (2.14) and the asymptotic form (2.9) imply that
up to Oðr−2Þ corrections,

ΔVÂ ¼ q
mγ0r

ðδÂ B̂ð1 − Vr̂
0Þ − VÂ

0V
B̂
0 ÞΔĀB̂; ð2:17aÞ

ΔXÂ ¼ q
mγ0r

ðδÂ B̂ð1 − Vr̂
0Þ − VÂ

0V
B̂
0 Þ

×
Z

uf

u0

duðĀÂðuÞ − ĀB̂ðufÞÞ; ð2:17bÞ

ΔVr̂ ¼ q
mγ0r

ð1 − Vr̂
0ÞVÂ

0ΔĀÂ; ð2:17cÞ

ΔXr̂ ¼ q
mγ0r

ð1 − Vr̂
0ÞVÂ

0

×
Z

uf

u0

duðĀÂðuÞ − ĀÂðufÞÞ; ð2:17dÞ

where ΔĀÂ≡ limu→∞ĀÂðuÞ− ĀÂð−uÞ¼ ĀÂðufÞ− ĀÂðu0Þ
and γ0 ≡ γðV0Þ. Let us compare this result with the
literature. The transverse component of the kick memory
matches with the result of [46], in the nonrelativistic limit
jV0j → 0. On the other hand, the displacement effect was
found in [38], in the special case, where the gauge field
has odd parity. Radial memory effects and relativistic

corrections to all these quantities are new in our result,
as initial velocity is not considered in the previous literature
on EM memory effects (up to our knowledge). Note that
radial memory effects are suppressed with respect to
transverse effects by a factor jV0j=c.

III. GRAVITATIONAL MEMORY EFFECTS

One can consistently incorporate gravitational effects,
including gravitational radiation, in the Minkowski metric
(2.1). This is conveniently done in Bondi gauge [47,48],

grr ¼ grA ¼ 0; ∂r det ðr−2gABÞ ¼ 0; ð3:1Þ

in which any metric can be written as [49,50]

ds2 ¼ −e2βðFdu2 þ 2du drÞ þ r2hAB

�
dθA −

UA

r2
du

�

×

�
dθB −

UB

r2
du

�
; ð3:2Þ

where F; β; UA; hAB are functions of all coordinates. To
understand the structure of radiative spacetimes, one solves
Einstein equations far from the source, treating 1=r as a small
parameter and imposing as a boundary condition that the
metric tends to theMinkowskimetric in the limit r → ∞, i.e.,
limr→∞ hAB ¼ γAB, where γAB is the roundmetric on the unit
“celestial sphere.” At leading order, one finds

ds2 ¼ −
�
1 −

2m
r

�
du2 − 2du drþ ðr2γAB þ rCABÞdθAdθB

þDBCABdu dθA: ð3:3Þ

The symmetric trace-free tensorCABðu; θAÞ, called theBondi
shear, is the shear of the congruence of outgoingnull rays and
encodes the gravitational waveform received at retarded time
u and angles θA on the celestial sphere. On the other hand,
mðu; θAÞ is the Bondi mass aspect whose flux is fixed by the
radiation _m ¼ 1

4
DADB

_CAB − 1
8
_CAB

_CAB. Note that γAB and
its inverse γAB are used to lower or raise indices of tensors
living on the celestial sphere and DA is the associated
covariant derivative, DCγAB ¼ 0.

A. Displacement and kick memory

The geodesic deviation equation, typically used to study
displacement memory effect [5], describes the relative
separation of a nearby freely falling test mass with respect
to a reference freely falling observer. In a Fermi normal
coordinate system adapted to the observer described in the
previous section, the geodesic deviation equation reads

d2Xî

dT2
þ Rî

0̂ ĵ 0̂X
ĵ ¼ OðX; _XÞ2; ð3:4Þ
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where OðX; _XÞn refers to corrections containing at least n

factors of Xî and/or _Xî. However, a more careful treatment
reveals the Bazanski equation [see (A.12) of [51] and (4.5)
of [44] for a modern derivation and references therein for
original works],

d2Xî

dT2
þRî

0̂ ĵ 0̂X
ĵþ2Rî

k̂ĵ 0̂X
ĵ _Xk̂þ∇ð0̂Rk̂Þî 0̂ ĵX

ĵXk̂¼OðX; _XÞ3:
ð3:5Þ

We assume in this section that Xî is small with respect to
other length scales in the problem, including the wave-
length of the radiation and the distance to the source, and
that the velocity Vî is small with respect to that of light, so
that we ignore subleading OðX; _XÞ3 corrections. The
Bazanski equation thus coincides with the generalized
Lorentz force law (2.10), with

Eî ¼ −R0̂ î 0̂ ĵX
ĵ;

Bî ¼
1

2
ϵî ĵ k̂R

ĵ k̂
0̂ l̂X

l̂;

Fî
ext ¼ −∇ð0̂Rk̂Þî 0̂ ĵX

ĵXk̂; ð3:6aÞ

βE ¼ qE
m

¼ 1; βB ¼ qB
m

¼ 2: ð3:6bÞ

Here, Eî; Bî are the gravitoelectric and gravitomagnetic
fields. We observe the important difference between EM
and GR: while βB=βE ¼ 1 in EM, βB=βE ¼ 2 in GR [52].
In an asymptotically flat spacetime, Eq. (2.3) still defines

an asymptotically orthonormal basis, based on which one
can construct a local coordinate system ðT; XîÞ as in the
previous section. It turns out that the most dominant
component of the Riemann tensor for the metric (3.3) is
RuÂuB̂ ¼ − 1

2r C̈Â B̂ þOð1=r2Þ, where CÂ B̂ ≡ EÂ
AEB̂

BCAB.

Also, Xĵ¼Xĵ
0þVĵ

0ðu−u0ÞþOð1=rÞ, and therefore, lead-
ing gravitoelectromagnetic fields given in (3.6a) obey (2.8),
with

ĒÂ ¼ 1

2
C̈Â B̂ðXB̂

0 þ VB̂
0 ðu − u0ÞÞ: ð3:7Þ

Using this result in Eq. (2.14), we can derive the gravita-
tional displacement and kick memory effects. The result is
given, up to OððX0; V0Þ3; r−2Þ corrections, as4

ΔVÂ ¼ −
1

2r
VB̂
0 ð1 − Vr̂

0ÞΔCÂ B̂; ð3:9aÞ

ΔXÂ¼ 1

2r

�
ðð1−3Vr̂

0ÞXB̂
0 −Xr̂

0V
B̂
0 ÞΔCÂB̂−2VB̂

0

�
1−

3

2
Vr̂
0

�

×
Z

uf

u0

duðCÂB̂ðuÞ−CÂB̂ðufÞÞ
�
; ð3:9bÞ

ΔVr̂ ¼ 1

2r
VÂ
0V

B̂
0ΔCÂ B̂; ð3:9cÞ

ΔXr̂ ¼ 3

2r
VÂ
0V

B̂
0

Z
uf

u0

duðCÂ B̂ðuÞ − CÂ B̂ðufÞÞ: ð3:9dÞ

One can sort this result in a relativistic expansion in powers of
the initial velocity Vî

0. At leading order, i.e., in the limit
jV0j → 0, the only effect is the well-known leading dis-
placement effect [5]. At subleading order (linear inVî

0), there
is a “subleading” correction to the displacement memory
observable, as well as a kick memory in the transverse plane
[26,27,31,32,34,44]. The terminology comes from the obser-
vation that first and second terms in the displacement
memory coincide with leading and subleading soft graviton
currents [53] but is also consistent with the result that the
subleading term appears at higher order in a post-Newtonian
expansion of the source [26,27]. Finally, at quadratic order in
Vî
0, radial displacement and kick memory effects show up,

which explains why it has not been noted previously in the
literature. Note the appearance of OðX0V0Þ corrections in
the first term of (3.9b) and the absence of corrections of the
form OðX2

0Þ.
Let us compare memory effects in EM and GR, which

have several similarities and differences. EM and gravita-
tional fields both satisfy similar asymptotic behavior repre-
sented by Eq. (2.8), and test bodies in both theories obey
similar evolution equation given by (2.10). At the same time,
EMandGRaredifferent in thedetailed formof the transverse
electric field, given by (2.9) and (3.7), respectively.
Moreover, the charge to mass ratios βE, βB and the sublead-
ing extra force Fî

ext are different in these theories. As a result
of similarities, there is a displacement and a kick effect at
leadingorder in the 1=r expansion in both theories.However,
as a result of differences, with respect to an expansion in the

Mellin transform of the radiative field ( _̄AÂ in EM and the
news tensor _CÂ B̂ inGR), the displacement effect is leading in
GR,while it is subleading inEM.Thekickmemory is leading
in both cases; however, it appears in GR only if there is a
nonzero initial velocity, while in EM, it is nonzero even in the
absence of initial velocity.

B. Gyroscopic memory

The effect of gravitational field on gyroscopes, i.e.,
objects carrying spin, has been of interest for the whole
history of general relativity. The famous Lens-Thirring

4In deriving these results, the following identities turn out to be
useful:

M1ðĒÂÞ ¼
1

2
VB̂
0M2ðC̈Â B̂Þ;

M2ðĒÂÞ ¼
1

2
ðXB̂

0M2ðC̈Â B̂Þ þ VB̂
0M3ðC̈Â B̂ÞÞ; ð3:8Þ

and MnðC̈Â B̂Þ ¼ −ðn − 1ÞMn−1ð _CÂ B̂Þ for n ≥ 2, assuming that
the news vanishes when u ≥ uf.
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effect explains how a rotating star/black hole affects the
spin of the gyroscope, and this has been tested by the
Gravity Probe B experiment [54]. The effect of gravita-
tional waves on gyroscopes has been discussed in [55–58],
and more thoroughly recently in [3,4] for freely falling
gyroscopes.
The evolution of a freely falling small gyroscope with

velocity Vμ and spin Sμ is given by the parallel transport
equation Vα∇αSμ ¼ 0. With respect to a local frame which
is comoving with the gyroscope, i.e., when e0̂

μ ¼ Vμ, the

gyroscope’s spin is purely spatial given by Sî ¼ Sμeîμ,

while S0̂ ¼ −Sμuμ ¼ 0. The parallel transport equation
then reads

dSî

dτ
¼ Ωî

ĵ
Sĵ; Ωî ĵ ≡ −Vαωî ĵ

α; ð3:10Þ

where ωμ̂ ν̂
α ¼ eμ̂β∇αeν̂β is the spin connection of the local

frame with respect to which the orientation of the spin is
computed. Note that a free gyroscope shows no precession
in a parallel transported frame. To measure a nontrivial
observable effect, an optical frame adapted to light rays
arriving from distant stars was introduced in [3,4], which
reduces to (2.3) in the asymptotic limit. It was shown that
the effect of GWs on a gyroscope with initial spin SÂðu0Þ is
a net change of orientation, given by a rotation ΔΦ in the
transverse plane orthogonal to the direction of propagation
of GWs,5

ΔSÂ ¼ ϵÂ B̂SB̂ðu0ÞΔΦ;

ΔΦ ¼ −
1

r2

Z
du

�
1

4
DADBC̃

AB −
1

8
NABC̃

AB

�
: ð3:11Þ

The first term of the integral coincides with the spin
memory effect [20], which is explicit in the formulation
of spin memory in [26]. This shows the close connection
between the two effects. However, there is an additional
nonlinear contribution to the gyroscopic memory, related to
the charge of gravitational electric-magnetic duality, dis-
cussed in [3,4].

IV. MEMORY FROM HOLONOMY

In this section, we will show that various memory effects
can be derived from another nonlocal quantity, namely
holonomy; see, e.g., [61] for a nice exposition.
In the context of gauge theory, consider the parallel

transport equation over a path Γ parametrized by
τ ∈ ½τ0; τf�,

D
Dτ

W ≡ dxμ

dτ
DμW ¼ 0; Dμ ¼ ∂μ þ Aμ; ð4:1Þ

where the connection Aμ ¼ Aa
μTa gauges the Lie algebra

represented by generators Ta, and q is the charge of the test
particle coupled to the gauge field. For a given path Γ (not
necessarily closed), the holonomyWðΓÞ, as an element of the
gauge group, is the solution to (4.1) with initial condition
W½xðτ0Þ� ¼ I. It is given by the path ordered exponential of
the connection,

W½Γ� ¼ P exp

�
−
Z
Γ
dxμAμ

�
; ð4:2Þ

where P is the path ordering operator. Note that we use
natural units where ℏ ¼ c ¼ G ¼ 1. The trace of this
operator is called a Wilson line, or a Wilson loop if the path
is closed. InAbelian gauge theories likeMaxwell, the trace is
trivial, and thus, the two notions coincide.

A. EM memory from holonomy

Let us compute the path ordered exponential (4.2)
along the trapezoidal spacetime loop shown in Fig. 1.
The loop is specified by the initial data of the test particle:
the initial position and velocity ðXÂ

0 ; V
Â
0 Þ in the transverse

plane orthogonal to the propagation direction. The vertical
axis represents the time interval of the experiment ðu0; ufÞ.
We compute (4.2) in the local orthonormal frame con-
structed in Sec. II, and we note that T ¼ uþOð1=r2Þ,
so that

FIG. 1. A closed path in the transverse plane, used to compute
the EM and gravitational holonomies. The path is specified by the
initial data, i.e., the initial relative position and velocity ðXÂ

0 ; V
Â
0 Þ

and the vertical length is given by the experiment time interval
ðu0; ufÞ. Note that this figure is suppressing one direction in the

transverse plane: in general, XÂ
0 ; V

Â
0 are independent vectors.

Note, however, that we assume Xr̂
0 ¼ 0 ¼ Vr̂

0.

5Our convention in defining the dual shear is opposite of that
of [3,4] and matches with [59,60], which causes a relative minus
sign in the angle ΔΦ.
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W ¼ 1

r

�Z
X0

0

dXÂĀÂðu0Þ −
Z

XðufÞ

0

dXÂĀÂðufÞ

−
Z

uf

u0

du ĀuðuÞ þ
Z

uf

u0

duðĀuðuÞ þ VÂ
0 ĀÂðuÞÞ

�

þOð1=r2Þ: ð4:3Þ

The first (second) line contains the contributions of the
spatial (timelike) segments. Note that by assumption, the
length scale of the experiment is much less than r, and thus,
in the above expression, the gauge field is essentially
evaluated at a single point on the celestial sphere, while
time dependence is general. As a result, the integrals over
Āu cancel out, and we are left at leading order with

W ¼ 1

r

�
−XÂ

0ΔĀÂ þ VÂ
0

Z
uf

u0

duðĀÂðuÞ − ĀÂðufÞÞ
�

ð4:4Þ

¼ −
1

r
½XÂ

0M1ð _̄AÂÞ þ VÂ
0M2ð _̄AÂÞ�: ð4:5Þ

Comparing this result with (2.17), we observe that EM
memory effects up toOðjV0jÞ can be nicely written in terms
of the Wilson loop as

ΔXÂ ¼ β
∂

∂VÂ
0

W; ΔVÂ ¼ −β
∂

∂XÂ
0

W; ð4:6Þ

where β ¼ 1–2Vr̂
0. The dynamics of the test particle is

described by the phase space described by the pair ZI ≡
ðXÂ; VÂÞ of position and velocity. Memory effects define a
tangent vector ΔZI ≡ ðΔXÂ;ΔVÂÞ, which according to
(4.6) can be written as a Hamiltonian vector field,

ΔZI ¼ ΩIJ ∂

∂ZJ
0

Hmem;

ΩIJ ¼
�

0 I

−I 0

�
;

Hmem ¼ βW; ð4:7Þ

where ΩIJ is the inverse symplectic form and Hmem is the
corresponding Hamiltonian.

B. Gravitational holonomy: Formal development

In this section, we derive the above gravitational memory
effects from certain gravitational holonomies. To this end, it
is convenient to think of general relativity as a gauge theory
of the Poincaré group (see Ref. [62] and references therein).
Let us define the ‘Poincaré gauge field’ as

Aμ ¼ eμ̂μPμ̂ þ
1

2
ωμ̂ ν̂

μMμ̂ ν̂; ð4:8Þ

where Pμ̂;Mμ̂ ν̂ respectively denote the generators of
Poincaré translations and Lorentz transformations, respec-
tively gauged by the vielbein eμ̂μ and the spin connection
ωμ̂ ν̂

μ. The explicit form of Pμ̂;Mμ̂ ν̂ depends on the
representation. From (4.8), we define the “Poincaré
holonomy” as

W½Γ� ¼ P exp

�
−
Z
Γ
dxμAμ

�

¼ P exp

�
Wμ̂Pμ̂ þ

1

2
Wμ̂ ν̂Mμ̂ ν̂

�
; ð4:9Þ

where

Wμ̂ ¼−
Z
Γ
dxμ eμ̂μ ¼

1

r
W̄μ̂þ 1

r2
Wμ̂

ð2Þ þOð1=r3Þ; ð4:10aÞ

Wμ̂ ν̂ ¼ −
Z
Γ
dxμ ωμ̂ ν̂

μ ¼
1

r2
W̄μ̂ ν̂ þOð1=r3Þ: ð4:10bÞ

The last equations in each line above come from an
asymptotic expansion of fields, as we will see explicitly
in Sec. IV C. Equation (4.9) can be simplified using the
Zassenhaus formula, stating that for two operators X, Y,

eXþY ¼ eXeYe−
1
2
½X;Y�e

1
6
ð2½Y;½X;Y��þ½X;½X;Y��Þ � � � ð4:11Þ

where � � � refer to exponentials involving more commuta-
tors. Taking X ¼ Wμ̂Pμ̂; Y ¼ 1

2
Wμ̂ ν̂Mμ̂ ν̂, and given the

asymptotic form of Wμ̂;Wμ̂ ν̂, we find that

W¼P
�
expðWμ̂Pμ̂Þexp

�
1

2
Wμ̂ν̂Mμ̂ν̂

��
þOð1=r3Þ ð4:12Þ

¼ 1þWμ̂Pμ̂ þ
1

2
Wμ̂ ν̂Mμ̂ ν̂ þ

1

2
PðWμ̂W ν̂ÞPμ̂Pν̂

þOð1=r3Þ: ð4:13Þ

1. Finite dimensional representation

We can explicitly compute the holonomy once we have a
specific representation of the Poincaré algebra. In a d-
dimensional spacetime, a finite representation is given by a
dþ 1-dimensional vector Ψa, which transforms under the
Poincaré group as

Ψa ≡
�
ψμ̂

c

�
↦

�
Λμ̂

ν̂ T μ̂

0 1

��
ψμ̂

c

�
; ð4:14Þ

where c ∈ R is an arbitrary real number. Note that c is
invariant under the symmetry transformation, and there-
fore, the representation is decomposed into various orbits
labeled by c, while ψμ̂ represents the physical state of the
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system. Depending on the value of c, ψμ̂ represent different
physical systems. In particular, on the orbits c ¼ 1, c ¼ 0,
the state transforms as

Xμ̂ ≡ ψμ̂½c ¼ 1�; Xμ̂ ↦ Λμ̂
ν̂Xν̂ þ T μ̂; ð4:15Þ

Sμ̂ ≡ ψμ̂½c ¼ 0�; Sμ̂ ↦ Λμ̂
ν̂ψ

ν̂: ð4:16Þ
Xμ̂ can represent the position of a particle in the local frame,
while Sμ̂ can represent the spin of a gyroscope. By
linearizing (4.14) around the identity, we can find the
matrix representation of the Poincaré algebra,

ðMμ̂ ν̂Þab¼ δμ̂
aην̂b−δν̂

aημ̂b ðPμ̂Þab¼δμ̂
aδb

dþ1: ð4:17Þ
In particular, translation Pμ̂ is nilpotent, i.e., Pn ¼ 0 for
n ≥ 2, and therefore, the holonomy (4.13) reduces to

W¼ 1þ1

r
W̄μ̂Pμ̂þ

1

r2

�
1

2
W̄μ̂ ν̂Mμ̂ ν̂þWμ̂

ð2ÞPμ̂

�
þOð1=r3Þ:

ð4:18Þ

Therefore, at leadingorder in1=r expansion, the holonomy is
purely translational given by W̄μ̂, while it consists of a
rotational (Lorentz) part W̄μ̂ ν̂ as well as a subleading trans-
lational partWμ̂

ð2Þ atOð1=r2Þ. In fact, it turns out that the only
nontrivial components at leading order are W̄Â; W̄Â B̂, i.e.,
when they involve transverse directions. We show that W̄Â

encodes the (leading and subleading) displacement memory,
while the rotational holonomy W̄Â B̂ reproduces the gyro-
scopic memory once integrated along appropriate paths.

2. Poincaré holonomy and affine transport equation

A natural question is: which transport equation does the
Poincaré holonomy solve? To answer this question, we
consider again the finite dimensional representation dis-
cussed above. Assume that the initial state of the probe
system is given byΨa

0. Now the evolution of the initial state
by the holonomy (4.9) is given by ΨaðτÞ ¼ ðWτÞabΨb

0,
where Wτ is the holonomy along an open path with end
point xμðτÞ and with tangent vector kμ ¼ dxμ=dτ. It
satisfies the differential equation,

d
dτ

Ψa ¼ −kμðAμÞabΨb: ð4:19Þ

Using the decomposition Ψa ¼ ðψμ̂; cÞ, and Eqs. (4.8),
(4.17), we find that the evolution equation, depending on
the value of c, is given by

d
dτ

ψμ̂ ¼ −ckμ̂ − kμωμ
μ̂
ν̂ψ

ν̂: ð4:20Þ

Taking the last term to the left-hand side, and multiplying
the equation with inverse tetrad to go back to the coordinate
basis reveals

kμ∇μψ
ν ¼ −ckν ψμ ≡ eμ̂μψ μ̂: ð4:21Þ

Therefore, on the orbit c ¼ 0, the evolution reduces to the
parallel transport equation, while for c ¼ 1, we recover the
“affine” transport equation of Refs. [43,44]. The latter case
(c ¼ 1) corresponds to the evolution of the position of a test
mass in the local frame, or equivalently, the physical
distance between two nearby test masses, while the former
case (c ¼ 0) describes the evolution of the spin of a
gyroscope.

C. Asymptotic frame

To compute the holonomy (4.18), we need to pick a
particular frame. In this paper, we use the “source oriented
frame” constructed in [3,4,25], which is orthonormal
everywhere in spacetime and therefore, provides an exten-
sion of the asymptotic frame (2.3) inside the bulk. It is
constructed such that the timelike basis vector e0̂ coincides
with a geodesic congruence that is at rest at some initial
time u0. Moreover, the radial basis vector er̂ is tangent to
the spatial path followed by rays arriving from the source.
However, as we will discuss later, the essence of our result,
namely the fact that holonomies encode memory effects is
independent of the choice of frame. To support this, we
study the gauge transformation properties of the transla-
tional holonomy W̄Â.
At large distance, the dual basis one-forms of the source

oriented frame were derived in [3,4], which in the large
distance limit take the form,

e0̂ ¼ duþ dr; er̂ ¼ dr;

eÂ ¼ EÂ
B

�
1

r
DCCBCduþ

�
rδBA þ 1

2
CB

A

�
dθA

�
; ð4:22Þ

where EÂ
AðθAÞ is a time-independent dyad on the sphere as

in Sec. II. The associated spin connection is given by
ω̃ ¼ ω̄þ ω, where

ω̄r̂ Â ¼ −EÂAdθ
A; ω̄Â B̂ ¼ EÂ

BDBEB̂Cdθ
C; ð4:23Þ

and up to irrelevant subleading corrections,

ωr̂ Â ¼ EA
Â

�
1

4r2
NABDCCBCduþ 1

2r2
DBCABdr

þ 1

2
NABdθB

�
; ð4:24Þ

ωÂ B̂ ¼ ϵÂ B̂

�
−

1

4r2

�
DADBC̃

AB −
1

2
NABC̃

AB

�
du

þ 1

2r
DAC̃ABdθB

�
: ð4:25Þ

In the above result, the ω̄ part of the spin connection is
nonzero even in Minkowski background, while the genuine
radiation effects are encoded in ω. Since the spin
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connection does not transform covariantly, it is possible to
find a rotated frame in which the connection is solely given
by ω. It was shown in [3,4] that the latter corresponds to a
frame whose spatial axes are tied to distant stars rather than
being source oriented.
In the following subsections, we first compute the

translational holonomy over the path depicted in Fig. 1
and show that it reveals the displacement and kick memory
effects. Then, we compute the rotational holonomy over the
paths depicted in Fig. 2 and show that they reproduce the
gyroscopic and spin memory effects discussed in Sec. III.

D. Translational holonomy

Consider two test masses with initial relative physical
distance and velocity XÂ

0 ≡ XÂðu0Þ and VÂ
0 ≡ VÂðu0Þ in

the transverse plane. We can think of this as the position
and velocity of the second test mass in the local inertial
frame (4.22) in which the first mass defines the origin.
Also, assume that the GW is being emitted during the time
interval ðu0; ufÞ. From this data, we construct a trapezoid
depicted in Fig. 1 and compute the translational holonomy
(4.10a). The computation is the same as in (4.3), except that
we replace Aμ by eÂμ, given by (4.22). The result at leading
order is

WÂ ¼ −
1

2r

�
XB̂
0ΔCÂ B̂ − VB̂

0

Z
uf

u0

duðCÂ B̂ðuÞ − CÂ B̂ðufÞÞ
�

þOð1=r2Þ: ð4:26Þ

Restricting attention to memory effects at most linear
in Vî

0 in (3.9), we can represent nontrivial displacement
and kick memory observables in terms of the translational
holonomy as

ΔXÂ ¼ −
�
βXB̂

0

∂

∂XB̂
0

þ βBVB̂
0

∂

∂VB̂
0

�
WÂ;

ΔVÂ ¼ βEVB̂
0

∂

∂XB̂
0

WÂ; ð4:27Þ

where β ¼ 1–3Vr̂
0. This provides an explicit relationship

between the leading part of the translational holonomy and
gravitational displacement and kick memory observables.
We have not been able to identify a canonical structure in
the above result, similar to Eq. (4.7) for EM. We leave a
detailed analysis of this issue to a future work.
Remarks.—Composition of holonomies. For two paths

Γ1, Γ2, the composition Γ1∘Γ2 is another loop in which
overlapping segments with reverse arrows cancel out. The
composition rule states that

WΓ1∘Γ2
ðAÞ ¼ WΓ2

ðAÞ ·WΓ1
ðAÞ; ∀A; ð4:28Þ

The trapezoid in Fig. 1 can be decomposed into a
rectangular loop and a triangular loop. The former encodes
the first term in (4.26), i.e., the leading displacement
memory, while the triangular loop encodes the subleading
displacement memory.
Gauge transformation of the holonomy.We computed the

holonomy above in a specific frame given by (4.22).
However, the choice of frame is arbitrary and parametrized
by internal Lorentz symmetries. In contrast to the Wilson
loop, holonomy is not gauge invariant, but transformsunder a
gauge transformation A → g · A ¼ g−1Agþ g−1dg as

W½Γ; g · A� ¼ g−1½τf�W½Γ; A�g½τ0�; ð4:29Þ

where τ0; τf refer to the starting and end points of the path Γ.
Now let us see how our result above transforms at leading
order in 1=r under an infinitesimal local Lorentz trans-
formation g ¼ I þ TÂPÂ þ λÂ B̂MÂ B̂. At leading order,

W½Γ; A� ¼ 1þ 1
r W̄

ÂPÂ þOð1=r2Þ, and therefore, thegauge
transformation induces

W̄ÂPÂ → W̄ÂððδÂB̂ þ λÂ
B̂ÞPB̂ þ λ0̂ÂP0̂Þ; ð4:30Þ

implying that the translational holonomy WÂ
ð1Þ is a Lorentz

vector, rotated by λÂ B̂ and boosted by λ0̂ Â. This is expected
since “displacement” memory also transforms as a vector.
Time translation. Intuitively, we may expect that W 0̂,

i.e., the time-translational holonomy gives the so-called
“relative proper time memory” [19,44]. However, comput-
ing this quantity, we find that

W 0̂ ¼ Oð1=r3Þ: ð4:31Þ

This result matches that of Strominger and Zhiboedov [19]
for freely falling observers. Computing the first nontrivial

FIG. 2. Paths implemented to compute rotational holonomies.
The paths are nondynamical and specified by the initial data,
while the dynamics is encoded in the holonomy. Figure 2(a) is a
timelike worldline, which appears as a straight line in the
comoving frame (4.22). Figure 2(b) is a helical path whose
projection on transverse directions forms a loop. Both paths
reproduce the gyroscopic memory.
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term in the expansion of W0̂, requires a more accurate
expansion of the frame (4.22), which goes beyond the
scope of this paper. However, it would be nice to compute
this and compare it with Eq. (2.6) of [44].

E. Rotational holonomy

In this section, we study the rotational holonomy (4.10b)
and show that for suitable choice of the path, it reproduces the
gyroscopic memory effect. Consider a generic path at large
distance in the transverse plane.Using (4.24),we find that the
effect of radiation on the rotational holonomy is given by

WÂ B̂ ¼ −
1

2r2
ϵÂ B̂

�Z
du

�
DADBC̃

AB −
1

2
NABC̃

AB

�

− 2

Z
rdθADBC̃AB

�
þOð1=r3Þ: ð4:32Þ

If the path is a timelike geodesic, as in Fig. 2(a), which has
zero velocity at some initial time, the angular velocity
remains at Oð1=r2Þ at later times [3,4]. Therefore, the last
term in brackets in (4.32) is subleading, and we find at
leading order,

W̄Â B̂ ¼ −
1

2r2
ϵÂ B̂

�Z
du

�
DADBC̃

AB −
1

2
NABC̃

AB

��
;

ð4:33Þ

which coincides with the gyroscopic memory effect (3.11).
This result is expected, because the evolution of a freely
falling gyroscope is given by the parallel transport equa-
tion (3.10), which is actually solved by the holonomy,

Sî ¼ P exp

�
−
Z
Γ
dxμωμ

î
ĵ

�
Sĵ0; ð4:34Þ

over a geodesicΓ followed by the gyroscope. The net change

in the spin is given by SĵðufÞ − Sĵ0, which is at leading order

given by minus the rotational holonomy Wî ĵ defined in
(4.10b). In particular, at Oð1=r2Þ, the only effect appears in
î ĵ ¼ Â B̂ components, which gives the gyroscopic memory,
i.e., a rotation in the transverse plane, given by (3.11).
Another interesting situation is when the path is not a

geodesic, but instead its spatial projection forms a loop in
the transverse plane, as depicted in Fig. 2(b). In this case,
the angular integral in (4.32) can also be written as a surface
integral,

W̄Â B̂ ¼ −
1

2r2
ϵÂ B̂

�Z
du

�
DADBC̃

AB −
1

2
NABC̃

AB

�

− r
Z
DðΓÞ

d2θ
ffiffiffi
q

p
DADBCAB

�
: ð4:35Þ

Since the size of the path, denoted by L, is by assumption
much smaller than the distance r to the source, the angular
integral is subleading by a factor L=r with respect to the
first integral (since dθ ∼ L=r), and we again reproduce the
gyroscopic memory (4.33).

V. DISCUSSION AND OUTLOOK

In this paper, we showed that known memory effects can
be derived from certain Wilson loops/ holonomies on a
holographic screen, i.e., a hypersurface of constant radius at
large distance in asymptotically flat spacetimes. There are
various ways to extend this result.

(i) One may extend this construction to asymptoti-
cally anti–de Sitter (AdS) spacetimes, where
holonomies play a prominent role in AdS=CFT.
In this setup, Wilson loops in the field theory side
correspond to the area of certain minimal surfaces
in the bulk, and a phase transition occurs when the
minimal surface starts to meet the black hole
horizon [63].

(ii) Using the Nonabelian Stokes theorem [64], which
generalizes the usual Stokes theorem to Lie algebra
valued differential one-forms, one may be able to
write equivalent expressions for the holonomies that
we derived as dual surface integrals. This will be
analogous to what happens in AdS=CFT.

(iii) From the boundary point of view, it is believed
that gravity in asymptotically flat spacetimes is
holographically described by a Carrollian field
theory [65–71]. If such a correspondence exists,
holonomies discussed here may be related to “out
of time ordered correlators” (OTOC) on the
boundary. Such observables have already received
much attention in the context of AdS=CFT [72].
Further investigations along these lines will be of
great interest.

(iv) The gyroscopic memory discussed here, based on
[3,4], is the net rotation, caused by GWs, of a
gyroscopewith respect to anoptical frameconstructed
using light rays from distant stars. However, the fact
that it can be represented as a holonomy, which is
closely related to the homogeneous part of the
holonomy discussed in [43,44], suggests that the
gyroscopic memory might be closely related to the
rotation memory introduced in those references as
the net change in the orientation of two nearby
gyroscopes.

(v) Finally, it would be interesting to study more
subleading memory effects and their relationship
to holonomies, in particular, the relative proper time
memory mentioned around Eq. (4.31).
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