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The well-known shear viscosity to entropy density ratio (η=s) cannot be computed when the black hole
space-time has zero thermodynamic entropy. This is the case, for example, when general relativity in four
dimensions is complemented with critical gravity, or in particular scenarios within the four-dimensional
scalar Gauss-Bonnet theories. Recently, it has been shown that the zero-entropy situation can be overcome
in these examples by introducing suitable matter fields. With this at hand, in this paper we analyze
each case and the impact of these extra sources in the ratio, in terms of their new parameters. We find that
while the η=s ratio remains constant and insensitive in the former, this is not the case for the latter.
To perform the calculations, we construct a Noether charge using a spacelike Killing vector. The accuracy
of the aforementioned findings is supported by the Kubo formalism.
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I. INTRODUCTION

The image of the black holes (BHs) located at the
center of galaxies M87 and the Milky Way, captured by
the Event Horizon Telescope [1–12], represents one of the
most intriguing predictions of general relativity (GR). Their
essential feature is that they can be studied as thermody-
namic systems. In fact, and according to a series of papers
from Bardeen, Bekenstein, Carter, and Hawking (see
Refs. [13–16]), they satisfy the so-called four laws of
black hole thermodynamics, relating physical quantities,
such as the temperature (Hawking temperature) and the
entropy (Bekenstein-Hawking entropy) of the system,
to the surface gravity and the area of its event horizon,
respectively. In particular, Hawking showed using a

semiclassical approach, i.e., when quantum-mechanical
effects near the horizon are taken into account, that a
black hole will emit particles as if were a hot body [13].
The Hawking temperature and the Bekenstein-Hawking
entropy are remarkable results that point towards a link
between gravity and quantum mechanics.
In this context, the AdS=CFT correspondence [17–19],

gauge/gravity duality, or simply holography, has taken
the lead for the last twenty years. It conjectures a relation
between strongly coupled quantum-field theories and
gravity theories in extra dimensions, in such a way that
the physical behavior of a quantum system can be inter-
preted from its gravity dual. Within this framework, the
study of field theories at finite temperatures naturally leads
to the analysis of BHs, because from the gravity side of the
duality they possess a well-defined temperature and enjoy
rich thermodynamic properties.
Concretely, planar base manifolds are excellent candi-

dates for studying quantum theories related to fluids. In
fact, in translation invariance theories, the ideas from the
duality permit us to extend thermodynamics into hydro-
dynamics, allowing the interpretation of transport coeffi-
cients analyzing BH space-times, as was shown in [20],
obtaining one of the most celebrated results of holography:
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the ratio between shear viscosity (η) and density entropy (s)
(denoted by η=s), which has been postulated to satisfy a
universal lower bound known as Kovtun-Son-Starinets
(KSS) bound,

η

s
≥

1

4π
; ð1Þ

relating the event horizon to an ideal fluid [20–23]. This
conjecture has been proved for a large list of gravity theories
and received some experimental support, for example a
superfluid Fermi gas [24] and, in quantum chromodynamics,
the quark-gluon plasma [25,26]. Nevertheless, it is possible
to obtain some concrete examples where its universality has
been a subject of debate (see for example [27–36]). Some of
them are characterized by the presence of higher-order
curvature gravity or the inclusion of suitable matter sources,
as well as some anisotropic theories. Also, the bound (1)
can be violated in massive gravity theories [37]. According
to [38], the KSS bound may be breached in solid materials
with a nonzero elastic modulus that exhibit viscoelastic
mechanical responses.
In this work, we are motivated by concrete examples

beyond GR in which the black hole space-time features a
vanishing thermodynamic entropy, making the ratio η=s
ill-defined. In these examples, the inclusion of extra matter
fields provides a route to circumvent the zero-entropy
scenario in a proper way, making now an interesting
question whether the new parameters of the theory affects
the η=s ratio (1) or not.
First, we will analyze the scenario from Ref. [39]

(hereafter, case A), which includes the Einstein-Hilbert
(EH) Lagrangian together with a cosmological constant:

LEH ¼ 1

2
ðR − 2ΛÞ; ð2Þ

supplemented with the so-called four-dimensional critical
gravity (CG):

LCG ¼ 1

2

�
−
�

1

2Λ

�
R2 þ

�
3

2Λ

�
RμνRμν

�
; ð3Þ

which enjoys to be a ghost-free, renormalizable theory of
gravity with quadratic corrections in the curvature, despite
the fact that the equations of motions are fourth order. In
Ref. [39], a BH solution is obtained with null thermody-
namic quantities. Nevertheless, as was shown in [40], this
situation can be overcome through the introduction of a
suitable matter source using nonlinear electrodynamics
in the Plebánski formalism [41], being the first example
in four-dimensional CG where the BH thermodynamic
parameters do not vanish. In this case, we will show below
that the theory is insensitive to the parameter space, and the
bound (1) is always saturated.

On the other hand (case B), in Ref. [42] the
authors showed that it is possible to obtain exact higher-
dimensional black hole solutions in a model given by
Lanczos-Lovelock gravity theories imposing a unique anti–
de Sitter (AdS) vacuum [43], dressed with a nonminimally
coupled scalar field ψ . In dimensions greater than or equal
to five, the simplest extension of Lanczos-Lovelock gravity
is the Einstein-Gauss-Bonnet (EGB) action coupled to a
cosmological constant,

SEGB ¼ 1

2

Z
dDx

ffiffiffiffiffiffi
−g

p ½R − 2Λþ αLGB�; ð4Þ

where LGB ¼ R2 − 4RμνRμν þ RμνσρRμνσρ is the Gauss-
Bonnet density. As was done in [42], at the moment to
perform the thermodynamic study, the mass as well as the
entropy vanish trivially and we conclude that the integra-
tion constant of the solution can be interpreted as a sort of
hair. The above issue was improved in [44] via the inclusion
of a nonlinear Maxwell source coupled to the scalar field ψ ,
making it possible to obtain a nontrivial thermodynamics
analysis, in particular for the entropy, performing a
natural exploration to obtain the shear viscosity η and
the analysis of (1). Inspired by the approach of previous
work, and aiming to incorporate the Gauss-Bonnet density
as an active contributor in lower dimensions, the setup
of a four-dimensional background for the solution from
Ref. [44] can be done through the recently proposed
four-dimensional scalar Gauss-Bonnet (4DSGB) (see,
e.g., [45–50] and [51] for a review) theory:

L4DSGB ¼ α̃

2
ðϕLGB þ 4Gμν∇μϕ∇νϕ− 4X□ϕþ 2X2Þ: ð5Þ

In the previous equation, Gμν is the Einstein tensor, □ϕ ¼
∇μ∇μϕ, X ¼ ∇σϕ∇σϕ is the kinetic term, and α̃ is a
constant obtained after a rescaling. Supplementing the
Einstein-Hilbert Lagrangian (2) with Eq. (5) introduces
an additional scalar degree of freedom as the price to pay
for reducing the Gauss-Bonnet model to a four-dimensional
background. In contrast to case A, we will demonstrate in
the following lines that some parameters have an influence
on the η=s ratio. Therefore, it is imperative to analyze
the complete parameter space and determine how the η=s
ratio (1) is affected in this scenario.
Traditionally, the shear viscosity η can be calculated

by effective coupling constants of the transverse graviton
on the location of the event horizon via the membrane
paradigm [52] and the Kubo formula [53,54]. Nevertheless,
as we will show below, a recent formalism constructed via
a Noether charge and a suitable election of a spacelike
Killing vector was proposed in [55], greatly simplifying the
computations in comparison with the traditional tech-
niques. This formulation is explained in detail in Sec. II.
With the above information, the rest of the paper goes as
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follows: in Sec. III, we will explore the shear viscosity η
from four-dimensional planar BHs where the gravity
theories are given by the cases A and B. Together with
the above, we will analyze first how the η=s ratio is affected
under these theories beyond GR, and study in which
cases the KSS bound (1) can be satisfied or violated.
Additionally, the Appendix provides an explanation of
how the η=s ratio is rederived from the Kubo formula.
These results further confirm the findings presented in
Sec. III. Finally, Sec. IV is devoted to our conclusions and
discussions.

II. CALCULATING THE SHEAR VISCOSITY
THROUGH A CONSERVED CHARGE

To be self-contained, in this section we will explain the
construction that allows to obtain the shear viscosity η
following the procedure performed in [55], relating the
Noether charge to a spacelike Killing vector. As a first step,
we vary the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðLg þ LmatterÞ ð6Þ

with respect to all the dynamical fields present in the theory,
where Lg and Lmatter represent the gravity and matter
Lagrangians, respectively, gives

δS¼ δð ffiffiffiffiffiffi
−g

p ðLg þLmatterÞÞ
¼ ffiffiffiffiffiffi

−g
p ½EμνδAμν þBμδBμ þGφδφþ∇μJμðδA;δB;δϕÞ�;

ð7Þ
where Eμν, Bμ, and Gφ denote collectively the equations of
motion with respect to the tensors Aμν (including the metric
gμν), the vectors Bμ, and the scalar fields φ, respectively,
while Jμ represents the surface term. Starting from the
current density Jμ, we define a 1-form Jð1Þ ¼ Jμdxμ and its
Hodge dual Θð3Þ ¼ ð−1Þ � Jð1Þ. Considering the variation
induced by a diffeomorphism generated by a Killing vector
ξμ, which acts on the fields Aμν, Bμ, and φ according to

δξAμν ¼ ξσ∇σAμν þ ð∇μξ
σÞAσν þ ð∇νξ

σÞAσμ;

δξBμ ¼ ξσ∇σBμ þ ð∇μξ
σÞAσ;

δξφ ¼ ξσ∇σφ;

where when Aμν ¼ gμν, we recover δξgμν ¼ 2∇ðμξνÞ, and
together with the equations of motions Eμν ¼ 0, Bμ ¼ 0,
and Gφ ¼ 0, we have that

Jð3Þ ¼ Θð3Þ − iξ � ðLg þ LmatterÞ ¼ dð�Jð2ÞÞ:

Here, iξ represents a contraction of the vector ξμ with the
first index of �ðLg þ LmatterÞ, while in our notations the
subindex “(p)” represents the fact that we are working

with p forms. With all the above, we can define a 2-form
Q2 ¼ �Jð2Þ such that Jð3Þ ¼dQð2Þ, where Qð2Þ ¼Qα1α2 ¼
ϵα1α2μνQ

μν. Here, Qμν is an antisymmetric tensor satisfies

∇νQμν ¼ JμðδξA; δξB; δξϕÞ − ðLg þ LmatterÞξμ: ð8Þ
Now, the next step is to perform a transverse and traceless
perturbation on the four-dimensional line element

ds2 ¼ −hðrÞdt2 þ dr2

fðrÞ þ 2r2Ψðt; rÞdxdyþ r2dx2 þ r2dy2;

ð9Þ

where t ∈ R, r > 0, while we assume 0 ≤ x ≤ σx and
0 ≤ y ≤ σy. According to [55], for a spacelike Killing
vector ∂x ¼ ξμ∂μ and with a linear time-dependent ansatz

Ψðt; rÞ ¼ ςtþ hxyðrÞ; ð10Þ

where ς is a constant identified as the gradient of the
fluid velocity along the x direction, and at the transverse
direction y we can find from Eq. (8)

∇rQry ¼ 0; ð11Þ

and the charge
ffiffiffiffiffiffi−gp

Qry becomes an integration constant of
the ðx; yÞ component of the linearized Einstein equations,
determining the dynamics of the transverse perturbation,
allowing us to compute it from the near-horizon solutions,
and corresponding to the resistance of the shearing flows,
this is,

ffiffiffiffiffiffi
−g

p
Qry ¼ ςη;

where η is the shear viscosity, which can be obtained in the
following way:

η ¼ ∂ð ffiffiffiffiffiffi−gp
QryÞ

∂ς
: ð12Þ

With all these ingredients, we are in a condition to calculate
the shear viscosity η, following this procedure, for two
concrete examples in the following section.

III. EXPLORING THE FOUR-DIMENSIONAL
VISCOSITY/ENTROPY DENSITY RATIO AND
ANALYZING THE KOVTUN-SON-STARINETS

BOUND

A. Case A

In this section, we will consider an electrically charged
Anti–de Sitter black hole configuration, with the Lagrangian
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Lg from (6) given by (2)and (3), and a matter source given
by nonlinear electrodynamics in the Plebánski formalism,
represented through

Lmatter ¼ −
1

2
FμνPμν þHðPÞ: ð13Þ

Here, Pμν is an antisymmetric tensor conjugate to the field-
strength tensor Fμν,

Fμν ≔ 2∂½μAν�; ð14Þ

while that P ¼ 1
4
PμνPμν is a scalar, andHðPÞ is a structural

function depending on P.
As it was shown in [40], in the line element (9) with

Ψðt; rÞ ¼ 0 an electrically charged BH solution can be
found, with

hðrÞ ¼ fðrÞ ¼ r2
�
1 −

α1
ffiffiffiffiffi
M

p

r
þ α2M

r2
−
α3M3=2

r3

�
; ð15Þ

where M is an integration constant, the αi’s correspond to
structural coupling constants, while the structural function
HðPÞ, the electromagnetic field strength, as well as the
cosmological constant Λ take the form

HðPÞ ¼ 1

3
ðα22 − 3α1α3ÞP − 2α1ð−2PÞ1=4 þ α2

ffiffiffiffiffiffiffiffiffi
−2P

p
;

Fμν ¼ 2δt½μδ
r
ν�

�
rα1ffiffiffiffiffi
M

p − α2 −
Mð3α1α3 − α22Þ

3r2

�
;

Λ ¼ −3: ð16Þ

Concerning their thermodynamic quantities, the electric
charge and electric potential are given by

Qe ¼
Ω2r2h
ζ2

; ð17Þ

Φe ¼ rh

�
α2 þ α21 −

3

2
α1ζ −

α1α2
ζ

þ 1

3

α22
ζ2

�
; ð18Þ

while the mass, temperature, and entropy read

M ¼ α1α2r3hΩ2

9ζ3
; ð19Þ

T ¼ rh
4π

�
3 −

2α1
ζ

þ α2
ζ2

�
; ð20Þ

S ¼ 2πΩ2r2h

�
α1
ζ
−
2α2
3ζ2

�
: ð21Þ

Here, rh represents the location of the event (or outer)
horizon, which can be cast as rh ¼ ζ

ffiffiffiffiffi
M

p
, where ζ is a root

of the cubic polynomial

ζ3 − α1ζ
2 þ α2ζ − α3 ¼ 0:

In the course of this work,Ω2 ¼
R
dxdy ¼ σxσy is the finite

volume of the planar base manifold. Following the steps
from [55], the entropy density s reads

s ¼ S
Ω2

¼ 2πr2h

�
3ζα1 − 2α2

3ζ2

�
; ð22Þ

and with the transverse and traceless perturbation (9), as
well as (10) with a spacelike Killing vector ∂x ¼ ξμ∂μ, the
ðx; yÞ component of the linear Einstein equations yields

�
−
1

4
f

�
fr2ðhxyÞ000 þ 2rðf þ rf0ÞðhxyÞ00

þ 2

3
ðhxyÞ0ð−f þ 4rf0 þ r2f000 − 3r2Þ

��0
¼ 0; ð23Þ

where ð 0Þ denotes the derivative with respect to the radial
coordinate r, implying that the charge

ffiffiffiffiffiffi−gp
Qry becomes an

integration constant, where

ffiffiffiffiffiffi
−g

p
Qry ¼ −

1

4
f

�
fr2ðhxyÞ000 þ 2rðf þ rf0ÞðhxyÞ00

þ 2

3
ðhxyÞ0ð−f þ 4rf0 þ r2f000 − 3r2Þ

�
: ð24Þ

Imposing the ingoing horizon boundary condition for hxy
and a Taylor expansion for h ¼ f around the location of the
event horizon rh:

hxy ¼ ς
logðr − rhÞ

4πT
þ � � � ; h ¼ f ¼ 4πTðr − rhÞ þ � � � ;

where T is the Hawking temperature (20), the charge (24)
reads

ffiffiffiffiffiffi
−g

p
Qry ¼ ςs

4π
; ð25Þ

allowing us to obtain the shear viscosity η in the following
way:

η ¼ s
4π

⇒
η

s
¼ 1

4π
: ð26Þ

In this situation, it is worth noting that the η=s ratio
remains constant, given by the saturated situation from (1),
and does not depend on any of the additional parameters of
the theory, namely, the coupling constants from CG and the
inclusion of nonlinear electrodynamics. This behavior is
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analogous to the observed characteristics in GR and
other situations as shown in [20–26]. However, the KSS
bound (1) can be affected by the parameters of the theory
(see Refs. [27–36]). Indeed, this is what will occur in the
following case.

B. Case B

As was presented in the Introduction, the five-
dimensional action that was studied in Ref. [44] is

S½gμν;ψ ; Aμ� ¼ SEGB þ Sψ þ SM; ð27Þ

with SEGB given by (4), and the matter sources are a
nonminimally coupled scalar field ψ ,

Sψ ¼
Z

d5x
ffiffiffiffiffiffi
−g

p
Lψ

¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
−
1

2
∇μψ∇μψ −

ξ

2
Rψ2 − UðψÞ

�
; ð28Þ

and a power-Maxwell term coupled to the scalar through
the function ϵðψÞ:

SM ¼
Z

d5x
ffiffiffiffiffiffi
−g

p
LM;

¼ −
1

4

Z
d5x

ffiffiffiffiffiffi
−g

p
ϵðψÞðFμνFμνÞq; ð29Þ

where Fμν is the field-strength tensor, and q is a nonzero
rational number with an odd denominator. As was explained
in the Introduction, following the ideas from the 4DSGB
theories, in the four-dimensional background, the Einstein-
Hilbert Gauss-Bonnet density (4) is supplemented with (2)
together with L4DSGB from (5), where now Sψ, SM are
written for a four-dimensional space-time. In this scenario,
Eq. (6) takes the form Lg ¼ LEH and Lmatter ¼ L4DSGB þ
Lψ þ LM, resulting in the following solution:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdx2 þ dy2Þ; ð30Þ

fðrÞ ¼ r2ð1 − ζψðrÞ2Þ;

Λ ¼ −
3

2
; α̃ ¼ 1

2
: ð31Þ

The scalar fields, ψðrÞ and ϕðrÞ, and the Maxwell strength
Fμν are given by

ψðrÞ ¼ ðar − bÞ 2ξ
4ξ−1; ϕðrÞ ¼ lnðrÞ; ð32Þ

Frt ¼ðAtÞ0 ¼

�
4ðζ−ξÞξζ

ð1−4ξÞ2qa
4q

2q−1ð−2Þq

� 1
2q

ðr2ϵðψÞÞ 1
2q−1

; ð33Þ

where in order to have an AdS asymptotically configuration,
we need to consider

0 < ξ <
1

4
: ð34Þ

Here, a is a positive integration constant and b is a positive
parameter in the coupling function ϵðψÞ as well as in the
potential UðψÞ, which reads

ϵðψÞ 1
2q−1 ¼

ψ−1
ξ

	
ψ

4ξ−1
2ξ þ b


1−6q
2q−1

ð20ξ − 3Þψ 4ξ−1
2ξ þ bð4ξþ 1Þ

; ð35Þ

UðψÞ ¼ 1

ð1 − 4ξÞ2
	
β1ψ

2 þ β2ψ
1
2ξ þ β3ψ

1−2ξ
ξ

þ β4ψ
4 þ β5ψ

4ξþ1
2ξ þ β6ψ

1
ξ



: ð36Þ

In order to be as clear as possible, the βi’s from (36) are
reported in Appendix A.
To compute the η=s ratio, the entropy S of this black hole

is required, which can be obtained following the Euclidean
approach [56,57]. In this case, we have

S ¼ 2πr2hðζ − ξÞΩ2

ζ
; ð37Þ

where, as before, rh is the location of the event horizon,
and the density entropy takes the form s ¼ S=Ω2, with
ζ > ξ > 0. In order to achieve an AdS asymptotic con-
figuration and a positive density entropy s, it is necessary to
restrict the values of the nonminimal coupling parameter ξ
and the constant ζ to certain ranges, as illustrated in Fig. 1,
to ensure completeness.
Using the prescription from Sec. II, we obtain

ffiffiffiffiffiffi
−g

p
Qrx ¼ 1

2
r2fðrÞðhxyÞ0ðð1 − ξψðrÞ2Þ

þ 2α̃ðfϕðrÞ02 − ϕ0ðrÞf0ðrÞÞÞ;

where the ðx; yÞ component of the linear Einstein equations
is given by ð ffiffiffiffiffiffi−gp

QrxÞ0 ¼ 0. At the location of the event
horizon, we note that

ψ2ðrÞr¼rh ¼
1

ζ
; ϕ0ðrÞjr¼rh ¼

1

rh
; f0ðrÞjr¼rh ¼ 4πT;

and T is the Hawking temperature for this configuration,
which reads

T ¼
	
1þ bζ

4ξ−1
4ξ



rhξ

ð1 − 4ξÞπ : ð38Þ
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Thus, the viscosity/density entropy ratio takes the form

η

s
¼ 1

4π

�
1 −

4ξζð1þ bζ
4ξ−1
4ξ Þ

ðζ − ξÞð1 − 4ξÞ
�
: ð39Þ

Here, Eq. (39) allows for some remarks to be made. First of
all, as the previous cases, the η=s ratio is independent of the
event horizon rh, just like the examples in the introduction

(see Refs. [20–36]). Along with the aforementioned,
from (39) a contribution dependent on the constants ζ,
ξ, and b also emerges, in addition to the factor 1=ð4πÞ.
In fact, considering (34) and ζ > ξ, represented in Fig. 1,
together with b > 0, we have

4ξζð1þ bζ
4ξ−1
4ξ Þ

ðζ − ξÞð1 − 4ξÞ > 0;

implying that ηs <
1
4π, and in order to obtain a non-negative

ratio, we need

G ¼ 1 −
4ξζð1þ bζ

4ξ−1
4ξ Þ

ðζ − ξÞð1 − 4ξÞ ≥ 0; ð40Þ

represented via Fig. 2.

IV. CONCLUSIONS AND DISCUSSIONS

In this work, we have explored the well-known ratio
between the shear viscosity and the entropy density,
motivated by some black hole solutions with vanishing
entropy. In both cases, a well-suited matter source permits
to circumvent the null-entropy situation, allowing in both
cases the discussion of η, and its implications on the
KSS bound (1).
Regarding the black hole solutions, our first case of

study (case A) corresponds to the one proposed in [44],
which is characterized by nonlinear electrodynamics in the
ðH; PÞ formalism. This approach results in charged con-
figurations of four-dimensional AdS black holes with a
planar base manifold in the framework of CG with non-null
thermodynamic quantities, in particular the entropy.
Together with the above, under this scenario, it is important
to note that the η=s ratio remains constant, and is inde-
pendent of any additional parameters introduced in the
theory, obtaining the saturated situation from (1).
With this result at hand, one might be interested in

working with CG in particular extensions of the duality,
e.g., nonrelativistic physics and condensed-matter systems.
In those with anisotropic scaling symmetries, also known as
the Lifshitz symmetry [58]

t → λ̃zt; r →
r

λ̃
; x → λ̃x; y → λ̃y; ð41Þ

it is possible to find in the literature black hole configu-
rations, dubbed Lifshitz black holes. Here, t, r,x, and y are
the time, radial, and spatial coordinates, respectively, z is
known as the dynamical exponent, responsible for the
anisotropic scaling between t, x, and y, while λ̃ is a non-null
constant. As was mentioned earlier, although the equations
of motion are of the fourth order, CG is renormalizable and

FIG. 2. Graphic representation of G as a function of the
constants ξ and ζ. Here, the black (gold) surface corresponds
to Eq. (40) with b ¼ 0.1 (b ¼ 0.5) and ðξ; ζÞ ∈ ½0; 0.09�×
½1; 1.1� ⊂ R, where the regionR was shown previously in Fig. 1.

FIG. 1. Graphic representation of the ranges of values for the
nonminimal coupling parameter ξ and the constant ζ, in order to
have an asymptotically AdS configuration as well as a positive
entropy S, represented in the region R.
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ghost-free. In Ref. [59] it was shown that dilatonic fields,
this is

Lmatter ¼ −
1

2
∇μϕ∇μϕ −

1

4
eλϕFμνFμν;

with Fμν defined previously in (14), can support Lifshitz
black holes in four-dimensional CG, with or without a
nonminimal scalar field ψ [Eq. (28)]. In both examples, it
is straightforward to check that the bound (1) remains
saturated despite the introductions of the dynamical
exponent z and the nonminimal parameter ξ. This estab-
lishes a remarkable difference from other models with
quadratic contributions (see for example [27]). The
reasons behind this behavior are not clear, and it would
be interesting to analyze the shear viscosity in other
models containing CG to provide a physical meaning of
the saturation.
In contrast to case A, our second case of study (case B)

involves a four-dimensional reduction of the Einstein-
Gauss-Bonnet action coupled with a cosmological
constant (4). The matter source is characterized by a
nonminimally coupled scalar field ψ (28) and a power-
Maxwell term coupled to the scalar through the function
ϵðψÞ (29). We show that the nonminimal coupling
parameter ξ, as well as the constants ζ and b, have an
impact on the viscosity η. As a result, the η=s ratio (1) is
also affected. The dependence of the ratio in terms of
the nonminimal parameter continues to exist when the
vacuum solution is supplemented with a nonlinear source
in the Plebánki formalism [49]. This opens up new
avenues for future research, such as a more in-depth
analysis of the dimensional extension of these cases or the
exploration of other models beyond GR.
It is important to note that the focus of the work is not

on whether the KSS bound (1) is violated or fulfilled.
As we mentioned in the Introduction, there are various
examples, including our study, that demonstrate that the
inequality (1) is not always valid. Instead, our aim is to
study the impact of the different parameters from
the gravity theories, given by the cases A and B, on
the viscosity η and the η=s ratio (1) in two different black
hole solutions, enriching the ranges of possibilities.
On the other hand, and for the sake of completeness,
the second approach to calculate η involves the Kubo
formula [20–23], and details are presented in
Appendix B. As expected, both methods yield identical
expressions for the η=s ratio.
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APPENDIX A: COEFFICIENTS βi’s PRESENT IN
THE POTENTIAL UðψÞ FROM Eq. (36)

In this subsection, we present the coupling constants βi’s
from the potential UðψÞ present in Eq. (36), which are
given by

β1 ¼
ð12ξ − 2Þð16ξ − 3Þξ

2
; β2 ¼ 4ð12ξ − 2Þbξ2;

β3 ¼ 2ξ2b2;

β4 ¼
ζ

4q
ð20ξ − 3Þ½ðζ − 2ξÞð16ξ − 2Þq − 4ξðζ − ξÞ�;

β5 ¼
ξbζ
q

fð24 − 128qÞξ2 þ ½ð16þ 64ζÞq

− 24ζ − 2�ξ − 2ζð4q − 1Þg;

β6 ¼
ð4ξþ 1Þξb2½ζð2q − 1Þ − ξð4q − 1Þ�ζ

q
:

APPENDIX B: SHEAR VISCOSITY VIA THE
KUBO FORMULA

To provide a comprehensive analysis, it is worth noting
that the shear viscosity for these cases can be obtained by
using the related Kubo formula [20–23]. To carry out this
procedure, we will activate appropriate metric perturbations
in the bulk and thus obtain the response function. For this,
we start with the perturbations δð1Þgμν ¼ −hμν, δð2Þgμν ¼
hμαhνα, δð1Þ

ffiffiffiffiffiffi−gp ¼ 0, δð2Þ
ffiffiffiffiffiffi−gp ¼ − ffiffiffiffiffiffi−gp

hμνhμν=4, δð1ÞRμν,
δð2ÞRμν, via the general action (6). Here, δð1ÞRμν and δð2ÞRμν

are given by

δð1ÞRij ¼ ∂μðδð1ÞΓμ
ijÞ − ∂iðδð1ÞΓμ

jμÞ þ ðδð1ÞΓμ
μρÞΓρ

ij

þ Γμ
μρðδð1ÞΓρ

ijÞ − ðδð1ÞΓμ
iρÞΓρ

μj − Γμ
iρðδð1ÞΓρ

μjÞ;

δð1ÞΓk
ij ¼

1

2
ð∂ihkj þ ∂jhki − ∂

khijÞ;
δð2ÞRνα ¼ ∂μðδð2ÞΓμ

ναÞ − ∂νðδð2ÞΓμ
μαÞ þ ðδð1ÞΓμ

μρÞδð1ÞΓρ
να

− δð1ÞΓμ
νρδð1ÞΓρ

μα þ δð2ÞΓμ
μρΓρ

να þ Γμ
μρδð2ÞΓρ

να

− δð2ÞΓμ
νρΓρ

μα − Γμ
νρδð2ÞΓρ

μα;

δð2ÞΓk
ij ¼ −

hkl

2
ð∂ihjl þ ∂jhil − ∂lhijÞ:

Considering the first-order perturbations δð1Þgμν ¼ hμν, we
can write the transverse and traceless (TT) tensor pertur-
bation in a general way to the shear viscosity, where
∂αhμν ¼ 0 and h≡ ημνhμν ¼ 0, and considering the metric
perturbation (9) with hðrÞ ¼ fðrÞ, we have

δð1ÞRxy ¼ −
1

2
r2□Ψ − ð2f þ rf0ÞΨ;

¼ −
1

2
r2□Ψþ Rð0Þ

xx Ψ; ðB1Þ
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where Rð0Þ
xx denotes any of the (diagonal) components of

the zeroth-order Ricci tensor of the background metric.
Now, the first-order perturbation of the Einstein tensor
takes the form

δð1ÞGxy ¼ −
1

2
r2□Ψ − Rð0Þ

xx Ψ −
1

2
Rð0Þhxy;

¼ −
1

2
r2□Ψþ Gð0Þ

xx Ψ;

¼ −
1

2
r2□Ψþ 1

2
Tð0Þ
xx Ψ; ðB2Þ

where the second order for δð2ÞGxy is given by

δð2ÞGxy ¼
1

4
δð1ÞGxy þ

1

8
Ψ½ð2f þ rf0ÞΨ0 þ rfΨ00�;

¼ 1

4
δð1ÞGxy þ

1

8
ΨðRð0Þ

xx Ψ0 þ rfΨ00Þ: ðB3Þ

Combining all elements with Kubo’s formula relates the
components of the viscosity to the two-point function
of corresponding components of the stress-tensor Txy,
given by

η ¼ ℑðhTxyðk⃗1;ωÞTxyðk⃗2;ωÞi0Þjk⃗1;k⃗1→0;ω→0
: ðB4Þ

Here, k⃗ is the spatial momentum, ω is the frequency,
and the prime subscript means that the overall energy-
momentum conserving delta function has been removed.
From the AdS=CFT correspondence, we have that

hTxyðk⃗1;ωÞTxyðk⃗2;ωÞi ¼
δð2ÞS

δhxyðk⃗1Þδhxyðk⃗2Þ
; ðB5Þ

where S represents the general action (6). Finally, we have
that the shear viscosity takes the form for

Case A∶ η ¼ 1

4π
2πr2h

�
3ζα1 − 2α2

3ζ2

�
¼ 1

4π
s;

Case B∶ η ¼ 1

4π
s

�
1 −

4ξζð1þ bζ
4ξ−1
4ξ Þ

ðζ − ξÞð1 − 4ξÞ
�
; ðB6Þ

where for our computations, through the two techniques the
results converge.
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