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We investigate the general relativistic phase of an electromagnetic wave as it propagates in the
gravitational field of the Earth, which is modeled as an isolated, weakly aspherical gravitating body. We
introduce coordinate systems to describe light propagation in the Earth’s vicinity along with the relevant
coordinate transformations, and discuss the transformations between proper and coordinate times. We
represent the Earth’s gravitational field using Cartesian symmetric trace-free (STF) mass multipole
moments. The light propagation equation is solvable along the trajectory of a light ray to all STF orders l.
Although we focus primarily on the quadrupole (l ¼ 2), octupole (l ¼ 3), and hexadecapole (l ¼ 4)
cases, our approach is valid to all orders. We express the STF moments via spherical harmonic coefficients
of various degree and order, Clk; Slk. The result is the gravitational phase shift expressed in terms of the
spherical harmonics. These results are new. We also consider contributions due to tides and the Earth’s
rotation. We estimate the characteristic magnitudes of each term of the resulting overall gravitational phase
shift. The terms assessed are either large enough to impact current-generation clocks or will become
significant as future-generation clocks offer greater sensitivity. Our formulation is useful for many practical
and scientific applications, including space-based time and frequency transfers, relativistic geodesy and
navigation, as well as quantum communication links and space-based tests of fundamental physics.
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I. INTRODUCTION

The accuracy of time and frequency measurements
improved significantly in the recent past. Presently, atomic
frequency standards play a vital part in a growing number of
technological and scientific endeavors. Atomic clocks based
on microwave transitions currently define the système
internationale (the international system of units, or SI)
second and are used extensively for network synchronization
and satellite-based navigation systems, such as the global
positioning system (GPS). Performance of the onboard
clocks on global navigational satellite system (GNSS)
satellites is improving. The frequency stability of the current
generation of GPS clocks is now better than 10−14 [1,2].
Optical frequency references based on Doppler-free

spectroscopy of molecular iodine are seen as a promising
candidate for a future GNSS optical clock [3]. Compact and
ruggedized setups have been developed, showing fre-
quency instabilities at the 10−15 level for averaging times
between 1 and 104 s. Optical atomic clocks have demon-
strated stability of 4.8 × 10−17=

ffiffiffi
τ

p
, for an averaging time τ

(in seconds). The ability to resolve frequency shifts below
10−18 over such short timescales will affect a wide range of
applications for clocks in quantum sensing and fundamen-
tal physics [4,5]. As a result, future generations of GNSS
will benefit from optical technologies. Especially optical
clocks could provide backup or completely replace the

currently used microwave clocks, potentially improving
GNSS position determination thanks to their greater fre-
quency stability. Furthermore, optical clock technologies,
in combination with optical intersatellite links, enable new
GNSS architectures, e.g., by the synchronization of distant
optical frequency references within the constellation using
time and frequency transfer.
As a result, future time and frequency transfer links

based on the new generations of clocks will require a
general relativistic description of the light propagation in
the gravitational field of the extended Earth. For practical
reasons, the description of the Earth external gravity field is
given in terms of spherical harmonics. Until recently, it was
sufficient to include the contribution of the gravitational
mass monopole represented by the well-known Shapiro
time delay. However, with the increased accuracy of
modern measurements, accounting for the Earth’s quadru-
pole moment, J2, became important [6]. This was accom-
plished by treating the Earth as a rotating axisymmetric
body characterized only by zonal harmonics of even order,
yielding the quadrupole phase shift [7].
If greater accuracy is required, accounting for the

quadrupole contribution is not sufficient [8]. It is necessary
to account for additional spherical harmonics. For some
applications of precision clocks and optical communication
links, in addition to J2, the tesseral harmonics of order
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l ¼ 2 must also be considered, along with additional low-
order zonal harmonics of the Earth’s gravitational field.
Accurate estimates of these quantities are available to high
degree and order in the form of modern models of the
Earth’s gravitational field. For instance, the EGM2008
Earth gravitational model is complete to degree and order
2159 [9]. However, due to technical reasons, a description
of gravitational phase shift in terms of spherical harmonics
is not available. This represents an interesting challenge
that must be addressed.
Motivated by this challenge, in the present paper we

develop a model for proper time to coordinate time trans-
formations and the gravitational phase shift in terms of
spherical harmonics that offer the advanced representation
of the Earth gravitational field. We focus on the formulation
of a relativistic model for the gravitational phase shift,
accurate to δf=f ¼ 1 × 10−16 in frequency stability and
1 × 10−12 s (i.e., 1 ps) in time resolution. We rely on a
previously developed theory of relativistic proper reference
frames for a system of extended gravitating bodies and the
motion of light and test particles in the vicinity of an
extended body [10]. We use methods and tools developed
for the GRAIL, GRACE-FO, and ACES missions [6,8,11]
as well as the techniques that we recently developed for
treating gravitational lensing phenomena by arbitrarily
shaped weakly aspherical gravitating bodes [12,13].
This paper is organized as follows: In Sec. II we

introduce coordinate systems, coordinate transformations
between various coordinates used for GPS and discuss the
transformations between proper time and coordinate time.
In Sec. III we discuss light propagation in the vicinity of the
extended Earth and derive a general relativistic solution for
the phase of an EM wave. For that we represent the Earth’s
external gravitational field using a set of Cartesian sym-
metric trace-free (STF) mass multipole moments T a1…al of
various orders l. In Sec. IV, we study the phase shift
introduced by the lowest-order multipole moments, includ-
ing quadrupole (l ¼ 2), octupole (l ¼ 3), and hexadeca-
pole (l ¼ 4). We express our results in terms of spherical
harmonics of the appropriate degree and order, Clk; Slk.
We also consider contributions due to lunar and solar tides
and that of the Earth’s rotation. Using these new results, we
evaluate the magnitudes of the relevant terms for various
terrestrial GPS applications and consider an update to the
light time equation. We conclude with a set of recom-
mendations and an outlook in Sec. V.
For convenience, we put some additional details in

appendices: In Appendix Awe discuss the correspondence
between the STF mass moments, T habi, and spherical
harmonics, fC2k; S2kg, and present a practical way to
establish the correspondence between them. In
Appendix B, we compute useful relations for deriving
contributions from low STF mass moments, including
quadrupole, octupole, and hexadecapole. In Appendix C,
we derive gravitational phase shift for the same orders, but

in the specific case of an axisymmetric gravitational field.
Finally, in Appendix D, we present analytical estimates for
various terms in the gravitational phase shift relevant for
terrestrial GPS applications.

II. COORDINATE SYSTEMS AND PROPER-TO-
COORDINATE TIME TRANSFORMATIONS

Precision tracking of an Earth orbiting spacecraft relies
on three standard coordinate systems: the geocentric
coordinate reference system (GCRS), which is centered
at the Earth’s center of mass and is used to track orbits in
the vicinity of the Earth; the topocentric coordinate
reference system (TCRS), which is used to provide the
positions of objects on the surface of the Earth, such as
DSN ground stations; and the satellite coordinate reference
system (SCRS), which is needed for proper-to-coordinate
time transformations. Definition and properties of TCRS
together with useful details on relativistic time keeping in
the solar system are given in [14]. The SCRS was discussed
in [14] and in [6] in the context of the GRAIL and GRACE-
Follow-On missions, correspondingly.
Here we investigate a need for an updated formulation for

the standard general relativistic models for spacetime coor-
dinates and spacecraft equations ofmotion [15] in connection
to various terrestrial applications of the GNSS.We begin our
discussion by describing the GCRS, the reference system in
which the gravitational field of the Earth is presented using
measured spherical harmonic coefficients.

A. Geocentric coordinate reference system

In the vicinity of the Earth, we utilize the standard
nonrotating coordinate system known as the geocentric
coordinate reference system. Centered at the Earth’s center
ofmass, theGCRS is used to track orbits in the vicinity of the
Earth [8,10]. It is also called the Earth-centered Earth-fixed
(ECEF) coordinate system [16].Wedenote the coordinates in
this reference frame as fxmE g≡ ðx0 ¼ ct;xÞ and present the
metric tensor gEmn in the following form1:

gE00 ¼ 1 −
2

c2
wE þ

2

c4
w2
E þOðc−6Þ;

gE0α ¼ −γαλ
4

c3
wλ
E þOðc−5Þ;

gEαβ ¼ γαβ þ γαβ
2

c2
wE þOðc−4Þ; ð1Þ

1The notational conventions employed in this paper are those
used in [17]. Letters from the second half of the Latin alphabet,
m; n;… ¼ 0…3 denote spacetime indices. Greek letters
α; β;… ¼ 1…3 denote spatial indices. The metric γmn is that
of Minkowski spacetime with γmn ¼ diagðþ1;−1;−1;−1Þ in the
Cartesian representation. We employ the Einstein summation
convention with indices being lowered or raised using γmn. We
use powers ofG and negative powers of c as bookkeeping devices
for order terms. Other notations are explained as they occur.
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where the scalar gravitational potential wE is formed as a
linear superposition of the gravitational potential UE of the
isolated Earth and the tidal potential utidalE produced by all
the solar systembodies (excluding theEarth itself), evaluated
at the origin of the GCRS:

wEðxÞ ¼ UEðxÞ þ utidalE ðxÞ þOðc−3Þ: ð2Þ

The Earth’s gravitational potential is well known and
determined by the relativistic mass density inside the Earth,
σðt;x0Þ (see discussion in [6]). With G being the universal
gravitational constant this potential has the form

UEðxÞ ¼ G
Z

σðt;x0Þd3x0
jx − x0j þOðc−4Þ: ð3Þ

Outside the Earth (r > R⊕), the planet’s gravitational
potential UE may be expanded in terms of spherical
harmonics. In this case, at a particular location with
spherical coordinates ðr≡ jxj;ψ ; θÞ (where ψ is the lon-
gitude and θ is the colatitude, which is 0 at the pole and π

2
at

the equator) the Earth’s potential UE in (3) is given as

UEðxÞ ¼
GM⊕

r

�
1þ

X∞
l¼2

Xþl

k¼0

�
R⊕

r

�
l
Plkðcos θÞðClk cos kψ þ Slk sin kψÞ

�

¼ GM⊕

r

�
1 −

X∞
l¼2

�
R⊕

r

�
l
JlPl0ðcos θÞ þ

X∞
l¼2

Xþl

k¼1

�
R⊕

r

�
l
Plkðcos θÞðClk cos kψ þ Slk sin kψÞ

�
; ð4Þ

whereM⊕ andR⊕ are theEarth’smass and equatorial radius,
respectively, while Plk are the associated Legendre-poly-
nomials [18]. The values Clk and Slk are the spherical
harmonic coefficients that characterize contributions of the
gravitational field of the Earth beyond the monopole poten-
tial.Of these,Jl ¼ −Cl0 are the zonal harmonic coefficients.
Largest among these is J2 ¼ 1.082635854 × 10−3, with all
other spherical harmonic coefficients at least a factor of∼103
times smaller [19–22] (see Table I for details).
Insofar as the tidal potential utidalE is concerned, for

GPS observables it is sufficient to keep only its Newtonian
contribution (primarily due to the Sun and the moon) which
can be given as usual:

utidalE ðxÞ ¼
X
b≠E

ðUbðrbE þ xÞ −UbðrbEÞ − x · ∇UbðrbEÞÞ

≃
X
b≠E

GMb

2r3bE
ð3ðnbE · xÞ2 − x2Þ þO

�
x3

r4bE
; c−2

�
;

ð5Þ

where Ub is the Newtonian gravitational potential of body
b, rbE is the vector connecting the center of mass of body b
with that of the Earth, and ∇Ub denotes the gradient of the
potential. We present only the largest term in the tidal
potential, which is of Oðr−3bEÞ; however, using the explicit

TABLE I. Some of the Earth’s spherical gravitational coefficients up to degree and order l ¼ 4, with
GM⊕ ¼ 398600.4415 km3 s−2, R⊕ ¼ 6378.13630 km [23,24]. Also, values of some additional lower order zonal
harmonics are given as C50 ¼ 2.28 × 10−7, C60 ¼ −5.39 × 10−7, C70 ¼ 3.51 × 10−7, C80 ¼ 2.03 × 10−7,
C90 ¼ 1.19 × 10−7, C100 ¼ 2.48 × 10−7.

Clk k ¼ 0 1 2 3 4

l ¼ 0 þ1
1 0.00 0.00
2 −1.0826359 × 10−3 0.00 þ1.5745 × 10−6

3 þ2.5324 × 10−6 þ2.1928 × 10−6 þ3.090 × 10−7 þ1.006 × 10−7

4 þ1.6193 × 10−6 −5.087 × 10−7 þ7.84 × 10−8 þ5.92 × 10−8 −3.98 × 10−9

Slk k ¼ 0 1 2 3 4

l ¼ 0 0.00
1 0.00 0.00
2 0.00 þ1.54 × 10−9 −9.039 × 10−7

3 0.00 þ2.680 × 10−7 −2.114 × 10−7 þ1.972 × 10−7

4 0.00 −4.494 × 10−7 þ1.482 × 10−7 þ1.20 × 10−8 þ6.53 × 10−9
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form of this potential on the left side of Eq. (5), one can
easily evaluate this expression to any order needed to solve
a particular problem.
Finally, the contribution of the Earth’s rotation is

captured by the vector harmonic potential, wα
E, defined as

wα
EðxÞ ¼ G

Z
σαðt;x0Þd3x0
jx − x0j þOðc−2Þ

¼ −
GME

2r3
½x × S⊕�α þOðr−3; c−2Þ; ð6Þ

where σαðt;x0Þ is the relativistic current density of the
matter distribution inside the rotating Earth. Also, in (6) we
explicitly account only for the largest rotational moment,
S⊕ ≃ 9.8 × 108 m2=s, which is the Earth’s spin moment
(angular momentum per unit of mass). Contributions of
other vector harmonics due to the rotating Earth are
negligible (however, if needed, they may be easily incor-
porated using the approach developed in this paper).
The metric tensor (1) with the gravitational potentials

(2)–(6) represents spacetime in the GCRS, which we
choose to formulate the relativistic model for timing and
frequency observables. Further technical details on the
formulation of the GCRS are given in [6,8,10,25].
References [10,14], show that the proper time, τ, read by

a clock in harmonic coordinates of the SCRS denoted
here by fymg ¼ fcy0; yg, and coordinates of GCRS
fxmg ¼ fct;xg, to sufficient accuracy, are given by

dτ
dt

¼ 1 − c−2
�
1

2
v2 þUE þ utidalE

�
þOðc−4Þ; ð7Þ

where v is the velocity of the transmitter (or receiver) in
GCRS and UE is the Newtonian gravitational potential of
the Earth (3), evaluated at that location. Contribution of the
tidal potential, utidalE , varies depending on the distance
from the Earth; it reaches the value above ∼1.71 × 10−15

for geostationary orbits. Note that this expression does not
contain the term due to the Earth’s rotation, wα

E, from (6), as
its contribution is much below 1 ps [as estimated by (140)].
The c−4 terms in Eq. (7) are of Oðv4=c4Þ ≃ 10−19 and are
negligible for our purposes. For a complete post-Newtonian
form of these transformations, including c−4 terms, and
their explicit derivation, consult Ref. [10].
The numerical applications made in here concern time

and frequency transfer from between a GPS and LEO
spacecraft orbiting the Earth at the altitudes hGPS ¼ 20,
200 km and hLEO ¼ 200 km to a ground station located at
“C.” As mentioned earlier, we consider experimental
uncertainties 1 × 10−16 for frequency transfer and at the
level of 1 ps for time transfer.

B. Topocentric coordinate reference system: Proper
and coordinate times

First, we consider a ground-based receiver located at
GCRS coordinates fxmCg≡ ðcx0C;xCÞ. The proper time τC,
kept by a clock located at the GCRS coordinate posi-
tion RCðtÞ, and moving with the coordinate velocity
vC ¼ dxC=dt ¼ ½ωE ×RC�, where ωE is the angular rota-
tional velocity of the Earth at C, is determined by

dτC
dt

¼1−
1

c2

�
1

2
v2CþUEðxCÞþ

X
b≠E

GMb

2r3bE
ð3ðnbE ·xCÞ2−x2

CÞ
�

þOðx3C;c−4Þ; ð8Þ

where nbE is a unit spatial vector in the body-Earth
direction, i.e., nbE ¼ rbE=jrbEj, where rbE is the vector
connecting body b with the Earth.
The first two terms in (8) are due to the geocentric

velocity of a ground station and the Newtonian potential at
its location. Assuming a uniform diurnal rotation of the
Earth, so that 1

2
v2C ¼ 1

2
ω2
⊕R

2
CðθÞ sin2 θ, we evaluate the

magnitudes of the largest contributions produced by these
terms, evaluated at the Earth’s equator RCðπ2Þ ¼ R⊕:

c−2
1

2
v2C ¼ 1

2c2
ω2
⊕R

2
⊕ ≲ 1.20 × 10−12;

c−2UE ¼ 1

c2
GM⊕

R⊕
≲ 6.95 × 10−10: ð9Þ

Thus, both of these terms are very large and must be kept in
the model. In addition, as we will see below, one would
have to account for several terms in the spherical harmonics
expansion of the Earth gravity potential.
The last term within the square brackets in Eq. (8) is the

sum of the Newtonian tides due to other bodies (mainly the
Sun and the moon) at the clock location xC. These terms are
small for the ground station, being of order

c−2utidalE⊙ ≃
GM⊙R2

⊕

2AU3c2
ð3ðn⊙E · nCÞ2 − 1Þ

≲ 1.79 × 10−17; ð10Þ

c−2utidalE☾ ≃
Gm☾R2

⊕

2r3☾Ec
2
ð3ðn☾E · nCÞ2 − 1Þ

≲ 4.90 × 10−17; ð11Þ

where for the moon we used its distance from the Earth at
the perigee2 of r☾E ¼ 356,500 km. Thus, both largest tidal
contributions are currently negligible as far as the definition
of the TCRS for GPS is concerned.

2https://en.wikipedia.org/wiki/Lunar_distance_(astronomy).
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Therefore, at the accuracy required for GPS, it is sufficient
to keep only the first two terms in Eq. (8) when defining the
relationship between the proper time τC and the coordinate
time TCG ¼ t (temps-coordonnée géocentrique). In other
words, Eq. (8) yields the differential equation that relates the
rate of the proper τC time, as measured by an receiver’s clock
on the surface of the Earth, so that 1

2
v2C ¼ 1

2
ω2
⊕R

2
CðθÞ sin2 θ,

to the time in GCRS, t,

dτC
dt

¼ 1 −
1

c2

�
1

2
v2C þUEðxCÞ

�
þOðc−4Þ: ð12Þ

At the level of accuracy required for GPS, it is important to
account in Eq. (12) for the oblateness (nonsphericity) of the
Earth’s Newtonian potential, which is given in the form of
Eq. (3). In fact, when we model the Earth’s gravity potential,
we need to take into account quadrupole and higher
moments, time-dependent terms due to tides, as well as
the tidal displacement of the ground-based receiver.
Substituting in Eq. (12) potential UE from (4), evaluated
at the Earth’s equator r ¼ RCðπ2Þ ¼ R⊕, we have

dτC
dt

¼ 1−
1

c2

�
1

2
ω2
⊕R

2
⊕þGM⊕

R⊕

�
1−

X∞
l¼2

JlPl0ð0Þ

þ
X∞
l¼2

Xþl

k¼1

Plkð0ÞðClk coskϕþSlk sinkϕÞ
��

: ð13Þ

The largest contribution to dτC=dt, of course, comes
from the velocity and mass monopole terms, which are
estimated to produce an effect of the order of
c−2ð1

2
ω2
⊕R

2
⊕ þGM⊕=R⊕Þ ∼ 6.97 × 10−10. The quadru-

pole term produces a contribution of the order of
c−2GM⊕J2=ð2R⊕Þ ∼ 3.76 × 10−13. Contributions of other
zonal harmonics ranging from −c−23GM⊕J4=ð8R⊕Þ ∼
4.22 × 10−16 (from J4) to c−25GM⊕J6=ð16R⊕Þ ∼ 1.04 ×
10−16 (from J6) and to c−235GM⊕J8=ð128R⊕Þ ∼ 1.01 ×
10−16 (from J8).
We also need to include contributions from the leading

l ¼ 2 coefficients C22 and S22, which are of order
c−2ðGM⊕=R⊕ÞP22ð0ÞC22 cos2ϕ∼3.28×10−15 cos2ϕ and
c−2ðGM⊕=R⊕ÞP22ð0ÞS22sin2ϕ∼1.89×10−15cos2ϕ. Some
of the low-order tesseral harmonics, Clk and Slk, are also
responsible for the terms of the order of ∼10−16, and thus,
they should also be included, up to at least l ¼ 8. Although
individual contributions of these and other terms are quite
small, their cumulative effect may be noticeable even at the
level of up to 1 × 10−15. (This is especially important for
the ACES mission on the ISS, which will operate clocks
accurate to 1 × 10−16 in low Earth’s orbit with altitude of
∼400 km.) However, the constant rate is typically absorbed
for each clock during its synchronization with the network
of clocks, leaving only periodic terms, which are uncertain

at the level of ∼10−17. Therefore, keeping only the leading
terms, Eq. (13) takes the form

dτC
dt

¼ 1 −
1

c2

�
1

2
ω2
⊕R

2
⊕ þ GM⊕

R⊕

�
1þ 1

2
J2 −

3

8
J4 þ

5

16
J6

−
35

128
J8 þ P22ð0ÞðC22 cos 2ϕþ S22 sin 2ϕÞ

þ
X8
l¼3

Xþl

k¼1

Plkð0ÞðClk cos kϕþ Slk sin kϕÞ
��

þOð5.83 × 10−17Þ; ð14Þ

where the error bound is set by the contribution from J10
and some of the low-order tesseral harmonics. Keeping
only the l ¼ 2 terms, this expression can be truncated to

dτC
dt

¼ 1 −
1

c2

�
1

2
ω2
⊕R

2
⊕ þ GM⊕

R⊕

�
1þ 1

2
J2 þ 3ðC22 cos 2ϕ

þ S22 sin 2ϕÞ
��

þOð2.28 × 10−15 cosϕÞ; ð15Þ

where the error bound is set by the contribution from the
C31 coefficient (see Table I).
In the past, clock synchronization relied on a definition

of Earth’s geoid. In this case, for a clock situated on the
surface of the Earth, the relativistic correction term appear-
ing in Eq. (12) is given at the needed precision by

v2C
2
þ UEðxCÞ ¼ W0 −

Z
hC

0

gdh; ð16Þ

where W0 ¼ 6.2636856 × 107 m2=s2 is the Earth’s poten-
tial at the reference geoid while g denotes the Earth’s
acceleration (gravitational plus centrifugal), and where hC
is the clock’s altitude above the reference geoid. However,
as we mention above, this definition of terrestrial time is
problematic when considering accuracies below 10−17

because of the uncertainties in the realization of the geoid
at this level.
In practice, time measurements are based on averages of

clock and frequency measurements on the Earth sur-
face [26]. Therefore it was decided to dissociate the
definition of TT from the geoid while maintaining con-
tinuity with the previous definition. For this purpose, the
time coordinate called terrestrial time (TT) is defined. TT is
related to TCG ¼ t linearly by definition:

dtTT
dt

¼ 1 − LG: ð17Þ

IAU Resolution B1.9 (2000) turned LG into a defining
constant with its value fixed to LG ¼ 6.969290134 × 10−10.
This definition accounts for the secular term due to the

Earth’s potential when converting between TCGand the time
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measured by an idealized clock on the Earth geoid [26–29].
Using Eq. (12), we also have

dτC
dtTT

¼ dτC
dt

dt
dtTT

¼ 1þ LG −
1

c2

�
1

2
v2C þUEðxCÞ

�
þOðc−4Þ: ð18Þ

Clearly, if the target clock synchronization is of the order of
∼10−15, the definition (18) is rather clean with just a few
terms given by (15). This expression quickly becomes rather
messy if a more precise synchronization is desired.

C. Satellite coordinate reference system

We can also determine the differential equation that
relates the rate of the spacecraft proper τA time, as
measured by an on-board clock in Earth orbit with
GCRS coordinates fymAg ¼ fcy0A; yAg, to the time in
GCRS, TCG ¼ t. Substituting in (7) potential UE from
(4) and the largest term for the tidal potential utidalE
from (5), we have

dτA
dt

¼ 1−
1

c2

�
1

2
v2Aþ

GME

rA

�
1−

X∞
l¼2

�
RE

rA

�
l
JlPl0ðcosθÞ

þ
X∞
l¼2

Xþl

k¼1

�
RE

rA

�
l
PlkðcosθÞðClk coskϕþSlk sinkϕÞ

�
þ
X
b≠E

GMb

2r3bE
ð3ðnbE ·yAÞ2−y2AÞ

�
þOðy3A=r4bE;c−4Þ: ð19Þ

Wewill evaluate themagnitude of the terms in this equations
for two different orbits: LEO with altitude 200 km and
GPS with altitude 20,200 km. We will keep in mind the
anticipated frequency stability of Δf=f ¼ 1 × 10−16. We
will use these numbers to evaluate the terms in (19).

1. LEO clock: Proper-to-coordinate
time transformation

In the case of the LEO orbit with altitude of hLEO ¼
200 km, the largest contribution to ðdτA=dtÞLEO, of course,
comes from the velocity and mass monopole terms,
which are estimated to produce an effect of the order of
c−2ð1

2
v2AþGME=ðR⊕þhLEOÞ¼c−23GME=2ðR⊕þhLEOÞ∼

1.01×10−9. Because of the larger contribution, this term is
1.45 times larger than for a receiver on the ground [see
estimate presented above, just after Eq. (13).]
For the chosen LEO orbit, the quadrupole term produces

a contribution of the order of

GM⊕R2
⊕

c2ðR⊕ þ hLEOÞ3
J2P20ðcos θÞ≲ 6.86 × 10−13; ð20Þ

which is large enough to be included in the model.
Contributions of other zonal harmonics are estimated as

GM⊕R3
⊕

c2ðR⊕ þ hLEOÞ4
J3P30ðcos θÞ≲ 1.56 × 10−15;

GM⊕R4
⊕

c2ðR⊕ þ hLEOÞ5
J4P40ðcos θÞ≲ 9.65 × 10−16; ð21Þ

GM⊕R5
⊕

c2ðR⊕ þ hLEOÞ6
J5P50ðcos θÞ≲ 1.21 × 10−16;

GM⊕R6
⊕

c2ðR⊕ þ hLEOÞ7
J6P40ðcos θÞ≲ 3.03 × 10−16; ð22Þ

GM⊕R7
⊕

c2ðR⊕ þ hLEOÞ8
J7P70ðcos θÞ≲ 2.71 × 10−16;

GM⊕R8
⊕

c2ðR⊕ þ hLEOÞ9
J8P80ðcos θÞ≲ 1.51 × 10−16; ð23Þ

GM⊕R9
⊕

c2ðR⊕ þ hLEOÞ10
J9P90ðcos θÞ≲ 8.04 × 10−17;

GM⊕R10
⊕

c2ðR⊕ þ hLEOÞ11
J10P100ðcos θÞ≲ 2.28 × 10−16: ð24Þ

Note that to develop the estimates above we used approxi-
mated Pl0 by their largest value at θ ¼ 0. In reality, these
polynomials rarely take that value and thus Pl0 are much
less than 1. On the other hand, although the contributions
from J7, J8, J9, J10 are all on the order of 1 to 2 parts in
10−16, their cumulative effect may exceed the threshold of
10−16. Nevertheless, we recommend keeping only the
contributions from J2, J3 and J4.
The situation with tesseral harmonics is a bit more

complicated as many of them produce contributions on
the order of a few parts in 10−16. The largest among these
are those due to C22 and S22:

GM⊕R2
⊕

c2ðR⊕ þ hLEOÞ3
P22ðcos θÞfC22 cos 2ϕ; S22 sin 2ϕg

≲ f9.98 × 10−16 cos 2ϕ; 5.73 × 10−16 sin 2ϕg: ð25Þ

The contributions from the terms of l ¼ 3 are

GM⊕R3
⊕

c2ðR⊕ þ hLEOÞ4
P31ðcos θÞfC31 cosϕ; S31 sinϕg

≲ f1.35 × 10−15 cosϕ; 1.65 × 10−16 sinϕg; ð26Þ

GM⊕R3
⊕

c2ðR⊕ þ hLEOÞ4
P32ðcos θÞfC32 cos 2ϕ; S32 sin 2ϕg

≲ f1.90 × 10−16 cos 2ϕ; 1.30 × 10−16 sin 2ϕg; ð27Þ
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GM⊕R3
⊕

c2ðR⊕ þ hLEOÞ4
P33ðcos θÞfC33 cos 3ϕ; S33 sin 3ϕg

≲ f6.10 × 10−17 cos 3ϕ; 1.21 × 10−16 sin 3ϕg: ð28Þ

The contributions from the terms of l ¼ 4 are

GM⊕R4
⊕

c2ðR⊕ þ hLEOÞ5
P41ðcos θÞfC41 cosϕ; S41 sinϕg

≲ f3.03 × 10−16 cosϕ; 2.67 × 10−16 sinϕg; ð29Þ

GM⊕R4
⊕

c2ðR⊕ þ hLEOÞ5
P42ðcos θÞfC42 cos 2ϕ; S42 sin 2ϕg

≲ f4.66 × 10−17 cos 2ϕ; 8.82 × 10−17 sin 2ϕg; ð30Þ

GM⊕R4
⊕

c2ðR⊕ þ hLEOÞ5
P43ðcos θÞfC43 cos 3ϕ; S43 sin 3ϕg

≲ f3.53 × 10−17 cos 3ϕ; 7.16 × 10−18 sin 3ϕg; ð31Þ

GM⊕R4
⊕

c2ðR⊕ þ hLEOÞ5
P44ðcos θÞfC44 cos 4ϕ; S44 sin 4ϕg

≲ f2.37 × 10−18 cos 4ϕ; 3.88 × 10−18 sin 4ϕg: ð32Þ

Although their individual contributions are quite small,
the cumulative effect of these terms may easily reach the
level of ϵLEO0 ≈ 1.33 × 10−15. The constant rate ϵLEO0
would likely be absorbed in other terms during clock
synchronization. What is important is the variability in the
entire error term ϵLEOðtÞ ¼ ϵLEO0 þ δϵLEOðtÞ, where the
amplitude of the variable term δϵLEOðtÞ is due to seasonal
changes in the Earth hydrosphere, crust, etc. and is
expected to be of the order of δϵLEOðtÞ ∼ 3 × 10−17,
resulting in the ultimate uncertainty in dτA=dt at that level.
The last term within the square brackets in Eq. (19) is the

sum of the Newtonian tides due to the Sun and the moon at
the location of a clock in an Earth orbit. For a chosen LEO
orbit, these terms are small:

c−2utidalE⊙ ≃
GM⊙ðR⊕ þ hLEOÞ2

2AU3c2
ð3ðn⊙E · nCÞ2 − 1Þ

≲ 1.91 × 10−17; ð33Þ

c−2utidalE☾ ≃
Gm☾ðR⊕ þ hLEOÞ2

2r3☾Ec
2

ð3ðn☾E · nCÞ2 − 1Þ

≲ 5.21 × 10−17; ð34Þ

and, thus, may be neglected.
Therefore, for LEO in Eq. (19) we must keep the

following terms:

dτA
dt

¼ 1 −
1

c2

�
v2A
2
þ GME

rA

�
1 −

X4
l¼2

�
RE

rA

�
l
JlPl0ðcos θÞ

þ
�
RE

rA

�
2

P22ðcos θÞðC22 cos 2ϕþ S22 sin 2ϕÞ

þ
�
RE

rA

�
3

P31ðcos θÞðC31 cosϕþ S31 sinϕÞ
��

þOð3.03 × 10−16Þ; ð35Þ

where the size of the error term is set by J6 and cumulative
contribution of higher l ≥ 3 gravitational harmonics.
We truncated the error term at that level knowing there
are other significant terms may be present [as evidenced
by (27)–(31)] that may lead to a complicated modeling of
the gravitational background—the challenge that can be
avoided with a higher spacecraft altitude.
Clearly, such a modeling accuracy is at the limit

anticipated for the deep space atomic clocks (DSAC)
with frequency stability at the level of 1 × 10−16 at 1 day
(if DSAC is placed on a LEO). However, it is already
insufficient for ESA’s ACES mission on the International
Space Station and DSAC, where clock accuracy is expected
to be at the level of 1 × 10−16 at 1 day. Furthermore, there
are plans to fly an optical interferometer and highly stable
optical link as a part of the STE-QUEST mission [30]
and also a space optical clock (SOC) mission [31] with
frequency stability below 1 × 10−17, for which a new and
more detailed model may be required.

2. GPS clock: Proper-to-coordinate
time transformation

Now we consider GPS orbits with hGPS ¼ 20,200 km
and estimate the sizes of all the terms entering (19). Clearly,
the largest contribution to ðdτA=dtÞGPS, of course, comes
from the velocity and mass monopole terms, which are
estimated to produce an effect of the order of

1

c2

�
1

2
v2GPS þ

GM⊕

R⊕ þ hGPS

�
¼ 3GM⊕

2c2ðR⊕ þ hGPSÞ
∼ 2.50 × 10−10; ð36Þ

or almost 4 times smaller than for LEO, but still providing a
rather large contribution.
The quadrupole term produces contribution of the

order of

GM⊕R2
⊕

c2ðR⊕ þ hGPSÞ3
J2P20ðcos θÞ ≲ 1.04 × 10−14; ð37Þ

which is significant. Contributions of tesseral harmonics
with l ¼ 2 are estimated as
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GM⊕R2
⊕

c2ðR⊕ þ hGPSÞ3
P22ðcos θÞfC22 cos 2ϕ; S22 sin 2ϕg

≲ f1.51 × 10−17 cos 2ϕ; 8.69 × 10−18 cos 2ϕg; ð38Þ

and are small to provide a measurable contribution.
Contributions of other zonal harmonics ranging from
≲5.85 × 10−18 (from J3), to ≲9.08 × 10−19 (from J4), to
≲2.79 × 10−20 (from J5), to ∼1.72 × 10−20 (from J6),
which are clearly negligible and may be omitted.
Evaluating the contribution due to Newtonian tides in

Eq. (19) for a GPS orbit, we find the following:

c−2utidalE⊙ ≃
GM⊙ðR⊕ þ hGPSÞ2

2 AU3c2
ð3ðn⊙E · nCÞ2 − 1Þ

≲ 3.11 × 10−16; ð39Þ

c−2utidalE☾ ≃
Gm☾ðR⊕ þ hGPSÞ2

2r�3☾Ec
2

ð3ðn☾E · nCÞ2 − 1Þ

≲ 8.50 × 10−16; ð40Þ

where r�☾E is the Earth-moon distance at the shortest perigee
of the lunar orbit. Consequently, both of these terms must
be kept in any model that aims to offer a frequency stability
of Oð10−16Þ.
Therefore, for the case of atomic clocks on GPS space-

craft in the (19) we must keep only the quadrupole term as
well as the two tidal terms:

dτA
dt

¼ 1 −
1

c2

�
v2A
2
þ GM⊕

rA

�
1 − J2

�
RE

rA

�
2

P20ðcos θÞ
�

þ
XS;m
b≠E

GMb

2r3bE
ð3ðnbE · yAÞ2 − y2AÞ

�
þOð6.34 × 10−17Þ; ð41Þ

where the size of the error term is set by the magnitude of
the next term in lunar tide, which is of the order of
rA=r☾E ¼ ðR⊕ þ hGPSÞ=r☾E ∼ 0.075 times smaller com-
pared to the first term of lunar tide [32]. Also, we
used a convenient notation for Legendre polynomial
P20ðcos θÞ ¼ ð3z2A − r2AÞ=2r2A.
As a result, the expression for proper to coordinate time

transformation for LEO (15) and GPS (41) satellites
explicitly includes the effects of the Earth’s oblateness,
J2. The presence of this term in the equations of motion will
lead to a perturbation of a Keplerian orbit. The effect of
the quadrupole is large. Computing the perturbations to
Keplerian orbital elements, we see that for the semimajor
axis, rA ¼ a, if the eccentricity is very small, the dominant
contribution has a period twice the orbital period and
has amplitude 3J2R2

E sin
2 i=ð2aÞ ≃ 1665 m, assuming an

orbital inclination of i ¼ 55°. The effect of J2 is significant

and should be modeled for satellite clocks in low
Earth orbit.

3. Accounting for orbital perturbations due to
Earth’s oblateness J2

We may now account for the presence of the J2 term in
(15) and (41). Perturbations of GPS orbits due to the Earth’s
quadrupole mass distribution contribute a significant frac-
tion to the change in semimajor axis associated with the
corresponding orbital change. We need to estimate the
effect of Earth’s quadrupole moment on the orbital ele-
ments of a Keplerian orbit and, as a result, on the changes in
the frequency induced by such an orbital change.
Accounting for the perturbation in Keplerian orbital

elements including the semimajor axis, a, eccentric
anomaly, E ¼ Mþ e sin E (with M being the mean
anomaly), eccentricity, e, orbital radius, r¼að1−ecosEÞ,
we can compute perturbations to each of the terms v2A, in
GME=rA and the quadrupole term in (15) and (41). The
calculations involved are lengthy, but straightforward and
are rather well known [33,34]. Here we present only the
relevant result:

−
v2A
2c2

−
GM⊕

c2rA

�
1− J2

�
R⊕

rA

�
2 3z2A − r2A

2r2A

�
¼ 3GM⊕

2c2a0
−
2GM⊕

c2a0
e0 cosE0 −

7GM⊕R2
⊕J2

2c2a30

�
1−

3

2
sin2i0

�
−
GM⊕R2

⊕J2sin
2i0

c2a30
cos2ðω0 þ uÞ; ð42Þ

where a0 ¼ R⊕ þ hGPS is the semimajor axis, i0 is the
inclination, ω is the altitude of perigee and u is the true
anomaly. The subscript 0 refers to an unperturbed quantity.
The first term, when combined with the reference

potential at Earth’s geoid, gives rise to the “factory
frequency offset” and is estimated to be 3GM⊕=2c2a0 ∼
2.50 × 10−10. The second term gives rise to the eccentricity
effect with the magnitude that was evaluated to provide a
contribution of ð2GM⊕=c2a0Þe0 ∼ 1.67 × 10−12, where
eccentricity was taken to be e0 ¼ 0.005. The third term
is a periodic contribution with estimated amplitude

7GM⊕R2
⊕J2

2c2ðR⊕ þ hGPSÞ3
�
1 −

3

2
sin2 i0

�
∼ 2.37 × 10−16; ð43Þ

which is at the limit of the anticipated accuracy. This is for
the nominal inclination of GPS orbits of i0 ¼ 55° such that
the factor ð1 − 3

2
sin2 i0Þ ¼ −6.52 × 10−3. The near vanish-

ing of this factor is pure coincidence for GPS.
The last term in Eq. (42) has the amplitude

GM⊕R2
⊕J2 sin

2 i0
c2ðR⊕ þ hGPSÞ3

¼ 6.98 × 10−15; ð44Þ
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which is large enough to be considered when calculating
frequency shifts due to orbit changes. The form of this term
is similar to that which gives rise to the eccentricity
correction, which is applied by GPS receivers.
Considering only this periodic term, the additional time
elapsed on the orbiting clock as it moves along its orbital
path is given by

ΔτJ2 ¼ −
Z
path

dt

�
GM⊕R2

⊕J2sin
2i0

c2a30
cos 2ðω0 þ nGPStÞ

�

≃ −

ffiffiffiffiffiffiffiffiffiffiffi
GM⊕

a30

s
R2
⊕J2sin

2i0
c2

cos½2ω0 þ nGPSðtþ t0Þ�

× sin½nGPSðt − t0Þ�; ð45Þ

where, to a sufficient approximation, we have replaced the

quantity u in the integrand by nGPS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM⊕=a30

q
, which is

the approximate mean motion of GPS satellites. This
describes the periodic relativistic effect on the elapsed
time of a clock on a GPS spacecraft due to Earth’s
quadrupole moment.
The correction that should be applied by the receiver is

given by (45) but with the opposite sign. The phase of this
effect is zero when the satellite passes through Earth’s
equatorial plane going northwards. If not accounted for,
this effect on a LEO clock time has the magnitude of
ΔτJ2LEO ¼ 5.79 × 10−10sin2i0 s, giving rise to a peak-to-
peak periodic navigational error in position of approxi-
mately 2c × ΔτJ2LEO ¼ 34.74 sin2 i0 cm. The same effect on
a GPS clock has the magnitude ΔτJ2GPS ¼ 4.78 × 10−11 s

and is responsible for a peak-to-peak periodic navigational
error in position of about 2c × ΔτJ2GPS ¼ 2.87 cm.
Therefore, these effects must be included in the model for
high-accuracy orbit determination, especially for supporting
for DSAC, ACES, STE-QUEST, and SOC missions in the
near future.

4. Accounting for tidal perturbations due to
Sun and the moon

As we saw before, the tidal perturbations of the GPS
orbit give rise of the sizable effects given by (39) and (40).
We observe that ðn⊙E · nCÞ ¼ cosðϕ⊙0 þ ðn⊕ þ nGPSÞtÞ,
where n⊕ and nGPS are the orbital frequency of the
Earth’s sidereal motion and GPS spacecraft in orbit
about Earth, correspondingly. Similarly, ðn☾E · nCÞ ¼
cosðϕ☾0 þ ðn☾ þ nGPSÞtÞ, where n☾ is the orbital frequency
of the moon around the Earth.
With these definitions, we evaluate the contribution from

the solar tide (39) as

c−2utidalE⊙ ≃
GM⊙ðR⊕ þ hGPSÞ2

4c2AU3

× ð3 cos½2ϕ⊙0 þ 2ðn⊕ þ nGPSÞt� þ 1Þ: ð46Þ

Assuming nearly circular orbits for the GPS satellites
(i.e., e ¼ 0.05), we substitute this result into (41) and
evaluate the additional elapsed time measured by the
orbiting clock due to utidalE⊙ as the clock moves along
it’s orbital path:

Δτtidal⊙ ¼ −
Z

t

t0

dtc−2utidalE⊙

≃ −
GM⊙ðR⊕ þ hGPSÞ2

4c2AU3

�
Δtþ 3

nGPS
cos½2ϕ⊙0 þ nGPSðtþ t0Þ� sin½nGPSΔt�

�
; ð47Þ

where Δt ¼ t − t0 and we accounted for the fact that
n⊕ ≪ nGPS. The term with the linear temporal drift here
has the magnitude

GM⊙ðR⊕ þ hGPSÞ2
4c2AU3

Δt ≃ 7.79 × 10−17Δt; ð48Þ

and, if not accounted for, in 6 h (a half of the GPS orbital
period), it could lead to clock desynchronization at the level
of 1.68 × 10−12 s, which is significant for our purposes and
should be included in the model. Next, the periodic term in
the expression (47) would lead to the additional time
elapsed on the orbiting clock that may be given by

Δτtidal⊙ ≃ −
3GM⊙ðR⊕ þ hGPSÞ2

4c2AU3nGPS
× cos½2ϕ⊙0 þ nGPSðtþ t0Þ� sin½nGPSΔt�: ð49Þ

If not accounted for, this effect on a GPS clock time has the
magnitude of Δτtidal⊙ ¼ 1.67 × 10−12 s, giving rise to a
peak-to-peak periodic navigational error in position of
approximately 2c × Δτtidal⊙ ¼ 1.00 mm, which is just above
our threshold and needs to be accounted for. Such a
correction (with an opposite sign) should be applied to
the receiver.
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Similarly, using (40) we evaluate the tidal contribution from the moon:

ΔτtidalE☾ ¼ −
Z

t

t0

dtc−2utidalE☾

≃ −
Gm☾ðR⊕ þ hGPSÞ2

4c2r�3☾E

�
Δtþ 3

nGPS
cos½2ϕ☾0 þ nGPSðtþ t0Þ� sin½nGPSΔt�

�
; ð50Þ

where r�☾E is the Earth-moon distance at the shortest value
of the perigee of the lunar orbit and we again accounted for
the fact that n☾ ≪ nGPS. The term with the linear temporal
drift in this expression has the magnitude

Gm☾ðR⊕ þ hGPSÞ2
4c2r�3☾E

Δt ≃ 2.13 × 10−16Δt; ð51Þ

and is at the anticipated frequency stability limit. Further-
more, if not accounted for, in just 2 h it could lead to clock
desynchriiztion at the level of 1.53 × 10−12 s, which is
important to consider in the clock model.
Considering the periodic term in expression (50), the

additional time elapsed on the orbiting clock is given by

Δτtidal☾ ¼ −
3Gm☾ðR⊕ þ hGPSÞ2

4c2r�3☾EnGPS
cos½2ϕ☾0 þ nGPSðtþ t0Þ�

× sin½nGPSΔt�: ð52Þ

Similarly to (45) and (49), the correction that should be
applied by the receiver is the negative of this expression. If
not accounted for, this effect on a GPS clock time has the
magnitude of Δτtidal☾ ¼ 4.37 × 10−12 s for lunar perigee,
giving rise to a peak-to-peak periodic navigational error in
position of approximately 2c × Δτtidal☾ ¼ 2.62 mm, which
is significant at the anticipated level of accuracy.

5. GPS clock: Proper-to-coordinate time
transformation: Recommended formulation

As a result of the analysis presented above, the recom-
mended expression for the differential equation that relates
the rate of the spacecraft proper τA time, as measured by an
on-board clock on a GPS spacecraft to the time in GCRS,
TCG ¼ t that was derived as (41), should have the quadru-
pole term as well as the lunar and solar tidal terms:

dτA
dt

¼ 1−
1

c2

�
v2A
2
þGM⊕

rA

�
1−J2

�
R⊕

rA

�
2

P20ðcosθÞ
�

þGm☾

r3☾E
r2AP20ðn☾E ·nAÞþ

GM⊙

r3⊙E
r2AP20ðn⊙E ·nAÞ

�
þOð6.34×10−17Þ; ð53Þ

where rA ¼ rAnA; r☾E ¼ r☾En☾E, and r⊙E ¼ r⊙En⊙E are
the geocentric position vectors of a GPS satellite, the moon,

and the Sun, correspondingly; θ is the colatitude as defined
by (4). The size of the error term is set by the magnitude
of the next term [i.e., of the order of Oðx3=r4☾EÞ] in the
lunar tidal contribution as given by (5) and (41). This error
term contributes periodic signal with the magnitude of
4.35 × 10−13 s, which is too small to be part of the model.
Near the surface of the Earth, the expression beyond the

monopole term is dominated by the quadrupole moment
characterized by J2. At higher orbits, however, as the effect
of J2 diminishes, contributions due to lunar and solar tides
become more significant. For spacecraft going beyond
geostationary orbits, e.g., spacecraft in lunar transfer orbits
carrying accurate clocks, eventually it becomes necessary
to switch to a more accurate representation of the lunar and
solar gravitational fields, such as the representation in [8].

III. LIGHT PROPAGATION IN THE VICINITY
OF THE EARTH

Now we need to consider the relativistic corrections to
the light propagation in the presence of the extended Earth.
These effects are important as they contribute sizable time
delays for the signal propagating in the vicinity of a
massive body. Currently, only one of these effects is
present in the relevant models of light propagation:
The Shapiro time delay [29,35] that is due to the gravi-
tational monopole of a massive body. This effect is
important for astronomy and spacecraft navigation in the
solar system [26,36,37].
Our question here is whether or not the next order terms

in the Earth’s gravitational potential [i.e., as given by (4)
and shown in Table I] would play a significant role in
models describing light propagation in the solar system.
Specifically, are the low-order terms l ¼ 2, 3, 4 in (4)
important? Currently available models treat the Earth as an
axisymmetric rotating body [7,38,39] and they take into
account only the Earth’s zonal harmonics given by, e.g. the
oblateness term J2, but not the l ¼ 2 tesseral spherical
harmonics or higher order terms present in (4).
In this section, we assess the contributions of the higher-

order terms in the gravitational potential on the phase of an
EMwave that propagates in the vicinity of an extended body.

A. Gravitational phase shift of an EM wave

The phase of an EM wave is a scalar function that is
invariant under a set of general coordinate transformations.
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In the geometric optics approximation, the phase φ is found
as a solution to the eikonal equation [17,29,40–42],

gmn
∂mφ∂nφ ¼ 0; ð54Þ

which is a direct consequence of Maxwell’s equations. Its
solution describes the wavefront of an EM wave propa-
gating in curved spacetime. The solution’s geometric
properties are defined by the metric tensor gmn, which is
derived from Einstein’s field equations. In the vicinity of
the Earth, this tensor is given by Eqs. (1)–(5).
To solve Eq. (54), we introduce a covector of the electro-

magnetic wavefront in curved spacetime, Km ¼ ∂mφ. We
use λ to denote an affine parameter along the trajectory of a
light ray, which is orthogonal to the wavefront φ. The
vector Km ¼ dxm=dλ ¼ gmn

∂nφ is tangent to the light ray.
Equation (54) states that Km is null: gmnKmKn ¼ 0.
To find a solution of Eq. (54), we expand the eikonal φ

with respect to the gravitational constant G, assuming that
the unperturbed solution is a plane wave. The expansion
may be given as

φðt;xÞ ¼ φ0 þ
Z

kmdxm þ φGðt;xÞ þOðG2Þ; ð55Þ

where φ0 is an integration constant and km ¼ kð1;kÞ is a
constant (with respect to the Minkowski metric) null vector
(i.e., γmnkmkn ¼ 0) along the direction of propagation of
the unperturbed EM plane wave. The wave direction is
given by the vector k≡ kϵ, which is the unit vector along
the ray’s path, jkj ¼ 1. Furthermore, k ¼ ω=c, where ω is
the constant angular frequency of the unperturbed wave,
and φG is the perturbation of the eikonal of first order in G,
which is yet to be determined. Also, as a consequence of
Eq. (55), the wave vector of an electromagnetic wave in
curved spacetime, Kmðt;xÞ, admits a series expansion with
respect to G in the form

Kmðt;xÞ¼ dxm

dλ
¼ gmn

∂nφ¼ kmþkmGðt;xÞþOðG2Þ; ð56Þ

where kmGðt;xÞ ¼ γmn
∂nφGðt;xÞ is the first order perturba-

tion of the wave vector with respect to G.
To solve Eqs. (54) and (55) for φG in the GCRS, we first

substitute (55) into (54). Then, defining hmn ¼ gmn − γmn

and keeping only first order terms in G, we obtain an
ordinary differential equation to determine φG:

dφG

dλ
¼ −

1

2
hmnkmkn þOðG2Þ; ð57Þ

where dφG=dλ ¼ km∂mφG þOðG2Þ. [Note, that Eq. (57)
alternatively can also be obtained by integrating the null
geodesic equation [29]]. With gmn given by (1), the
equation to determine the phase of the EM wave as it
propagates in the vicinity of the Earth takes the following
form:

dφG

dλ
¼−k2

�
2

c2
wEþ

2

c2
wtidal
E þ 4

c3
ðkϵwϵ

EÞþOðG2Þ
�
: ð58Þ

This equation describes the gravitational phase shift intro-
duced by various contributions to the effective gravity field
of the GCRS (1) with the potentials (2)–(6). Below, we will
integrate it along the light ray’s trajectory.

B. Parametrizing the light ray’s trajectory

To solve (58), we need to present the geometry
of the problem and introduce our basic notations.
Following [43,44], we represent the light ray’s trajectory,
correct to the Newtonian order, as

fxmg≡ ðx0 ¼ ct;xðtÞ≡ rðtÞ
¼ r0 þ kcðt − t0ÞÞ þOðGÞ; ð59Þ

where k is a unit vector in the incident direction of the light
ray’s propagation path and r0 represents the point of
emission that may be expressed as k ¼ ðr − r0Þ=jr − r0j.
Next, we define the impact parameter of the unperturbed
trajectory of the light ray parameter b as

b ¼ ½½k × r0� × k�: ð60Þ

Next, we introduce the parameter τ ¼ τðtÞ along the path of
the light ray (see details in Appendix B in [43]):

τ ¼ ðk · rÞ ¼ ðk · r0Þ þ cðt − t0Þ; ð61Þ

which may be positive or negative. The parameter τ allows
us to rewrite (59) as

rðτÞ ¼ bþ kτ þOðGÞ; with

rðτÞ≡ jxðτÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þOðGÞ: ð62Þ

Using the result (62) we determine that the following
relations are valid to OðrgÞ:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
; rþ ðk · rÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τ: ð63Þ

Based on these results, we present a useful relationship:

b2 ¼ ðrþ ðk · rÞÞðr − ðk · rÞÞ þOðGÞ: ð64Þ

This representation allows us to express the Newtonian
part of the wave vector Km presented by Eq. (56) as
follows: km ¼ dxm=dλ ¼ kð1;kÞ þOðGÞ, where the wave
number k is immediately derived as k ¼ dτ=dλþOðGÞ
and jkj ¼ 1. Keeping in mind that km is constant, we
establish an important relationship:

dλ ¼ dτ
k
þOðGÞ; ð65Þ
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which we use to integrate (57). This expression allows
including contributions from all multipoles of the Earth’s
mass distribution, as given in Eq. (3).
With these definitions, we may now present the solution

to (58) (see relevant discussion in [44]). The gravitational
phase shift, φG, that is acquired by the EM wave as it
propagates along its geodesic path from the point of
emission at τ0 to the point of reception at τ on the
background of the gravitational field (1)–(5) has the form

φGðxÞ ¼ −k
Z

τ

τ0

�
2

c2
ðUEðτ0Þ þ utidalE ðτ0ÞÞ

þ 4

c3
ðkϵwϵ

Eðτ0ÞÞ þOðG2Þ
�
dτ0

≡ φE
GðxÞ þ φtidal

G ðxÞ þ φS
GðxÞ þOðG2Þ: ð66Þ

We may now integrate (66) for each of the relativistic
terms with the terms describing contributions from the
Earth’s gravitational potential, tidal gravity (primarily
due to the Sun and the moon), and Earth’s rotation,
correspondingly.

C. The STF representation of the Earth’s
gravitational potential

Although the form of the Earth gravitational potential (4)
is effective for many applications in geodesy, it is not
technically convenient when light propagation in a gravi-
tational field in concerned. No closed form expressions are
known for the integral (66) are known for a potential in the
form (4), expressed in terms of spherical harmonics;
indeed, no useful semi-analytical approximations exist in
the general case either. Thus, alternative representations of
UðxÞ are needed. In [44], we considered the case of
axisymmetric bodies. In [12], we considered a generic
potential, expanding UðxÞ in terms of STF mass-moment
tensors. Below, we discuss the STF mass moment repre-
sentation, which allows us to fully benefit from the
spherical harmonics representation in the most general
case. (In Appendix C, we discuss the less general axisym-
metric case, using it as a limiting case to verify our results.)
Considering a generic case, it was discussed in [35,45–49]

that the scalar gravitational potential (3) may equivalently be
given in terms of Cartesian spatial trace-free (STF) tensor
moments in the following form:

U ¼ GM

�
1

r
þ
X∞
l¼2

ð−1Þl
l!

T ha1…ali ∂
l

∂xha1…∂xali

�
1

r

��
þOðc−4Þ; ð67Þ

where r ¼ jxj,M is the mass and T ha1…ali are the STFmass
multipole moments of the body, defined as

M ¼
Z
V
d3xρðxÞ;

T ha1…ali ¼ 1

M

Z
V
d3xρðxÞxha1…ali; ð68Þ

where xha1…ali ¼ xha1xa2…xali, the angle brackets h…i
denote the STF operator, and V means the total volume of
the isolated gravitating body under consideration. The dipole
moment T a is absent from this expansion (67), by virtue of
the fact that the origin of the coordinates is assumed to
coincide with the body’s barycenter.
Using the identity [49],

∂
l

∂xha1…∂xali

�
1

r

�
¼ ð−1Þlð2l − 1Þ!! n̂ha1…ali

rlþ1
; ð69Þ

the potential (67) may be given in the following form:

UðrÞ ¼ GM
X
l≥0

ð2l − 1Þ!!
l!

T L
n̂L
rlþ1

: ð70Þ

The first few terms of (70) or, equivalently, (67), are
given as

UðrÞ ¼ GM

�
1

r
þ 3T habi

2r5
xaxb þ 5T habci

2r7
xaxbxc

þ 35T habcdi

8r9
xaxbxcxd þOðr−6Þ

�
: ð71Þ

This Cartesian multipole expansion of the Newtonian
gravitational potential is equivalent to expansion in terms
of spherical harmonics (4) [45–48,50]. In fact, this expres-
sion may be used to establish the correspondence between
T ha1…ali and Clk and Slk from (4) (see Appendix A for
details on how to establish this correspondence).

D. Expressing the gravitational phase shift via STF
mass moments

Using the representations (3), (67), or (C3), it is
convenient to present the UE-dependent term that yields
φE
GðxÞ in the total gravitational phase shift in (66) as

2U
c2

¼ rg

�
1

r
þ
X∞
l¼2

ð−1Þl
l!

T ha1…ali ∂
l

∂xha1…∂xali

�
1

r

��
; ð72Þ

where rg ¼ 2GM=c2 is the Schwarzschild radius of the
body (in our case this is the Earth, but our discussion is
generic.) As such, this form is valid for any deviation from
spherical symmetry in the gravitational field.
We may then generalize expression ∇ ¼ ∇b þ kd=dτ þ

OðrgÞ and write
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∂
l

∂xha1…∂xali
≡ ∇ha1…:∇ali ¼

Xl
p¼0

l!
p!ðl − pÞ! kha1…kap∂apþ1

…∂ali
∂
p

∂τp
þOðrgÞ; ð73Þ

where a new shorthand notation ∂a ≡ ∂=∂ba has been used and τ is defined by (61).
Using this representation (73), we can compute the relevant integral (with r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
and r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ20

p
, as

discussed in Sec. III B):Z
τ

τ0

∂
l

∂xha1…∂xali

�
1

r

�
dτ0 ¼

Xl
p¼0

l!
p!ðl − pÞ! kha1…kap∂apþ1

…∂ali

�
∂
p

∂τp
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τ

b

��				τ
τ0

¼ ∂ha1…∂ali ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ2
p

þ τ0
þ
Xl
p¼1

l!
p!ðl − pÞ! kha1…kap∂apþ1

…∂ali

×

�
∂
p−1

∂τp−1
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ2
p −

∂
p−1

∂τp−10

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ20

p �
: ð74Þ

As a result, the gravitational eikonal phase shift φE
G from (66) takes the form3

φE
GðrÞ ¼ −krg

�
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ20
p

þ τ0
þ
X∞
l¼2

ð−1Þl
l!

T ha1…ali
�
∂ha1…∂ali ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ20
p

þ τ0

þ
Xl
p¼1

l!
p!ðl − pÞ! kha1…kap∂apþ1

…∂ali

�
∂
p−1

∂τp−1
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ2
p −

∂
p−1

∂τp−10

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ20

p ���
; ð75Þ

or, equivalently, using (63) we have

φE
Gðr; r0Þ ¼ −krg

�
ln

�
rþ ðk · rÞ
r0 þ ðk · r0Þ

�
þ
X∞
l¼2

ð−1Þl
l!

T ha1…aliIa1…alðr; r0Þ
�
þOðr2gÞ: ð76Þ

The first term in this expression is the well-known Shapiro phase shift. The next term is the contribution to the
gravitational phase delay from the STF gravitational multipoles to any order l. The quantity Ia1…alðr; r0Þ ¼ Ia1…alðrÞ −
Ia1…alðr0Þ is the projection operator of the lth order along the light ray’s trajectory:

Ia1…alðr; r0Þ ¼
�
∂ha1…∂ali ln kð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τÞ þ

Xl
p¼1

l!
p!ðl − pÞ! kha1…kap∂apþ1

…∂ali
∂
p−1

∂τp−1
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ2
p

�				τ
τ0

: ð77Þ

Expression (78) together with (77) is a key result. It
demonstrates that with the help of the STF tensor formal-
ism, it is possible to evaluate contributions to the gravita-
tional phase shift, to all orders beyond the Shapiro phase
shift, due to the mass multipole moment contributions of
the gravitating body.

E. Rotation to the STF moments to the light ray
coordinate system

The main objective of this manuscript is to develop the
functional form of the gravitational phase shift φE

G in terms
of the spherical harmonics. As (76) suggests, the total
gravitational phase shift induced by all the multipoles
l ≥ 2 is a sum of the individual shifts φl inducted by
multipoles at each particular order l, where φl have the
form

φlðr; r0Þ ¼ −krg
ð−1Þl
l!

T ha1…aliIa1…alðr; r0Þ: ð78Þ

3Result (75) was independently derived in [48] where one can
also find the phase contribution due to vector spherical harmon-
ics. In the Earth’s gravity field such harmonics are small,
providing contributions below the expected level of the meas-
urement accuracy (Sec. I). Thus, beyond the spin term with l ¼ 1
(6), higher order contributions of the vector harmonics were not
considered in this paper.
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In what follows we will demonstrate how to compute
individual terms in this sum.
First, we recognize that the GCRS is defined by the unit

basis vectors ex (the prime meridian) and ez ≡ s (the
Earth’s rotation axis), yielding the following set of base
vectors:

ex; ey ¼ ½ez × ex�; ez ≡ s: ð79Þ

Next, the propagation direction of the EM wave is defined
by k and the relationship between the EMwave’s trajectory
and the Earth is given by the vector impact parameter b
[introduced by (82)]:

k ¼ r − r0
jr − r0j

;

b ¼ ½½k × r0� × k�≡ bm ⇒ m ¼ ½½k × r0� × k�
j½½k × r0� × k�j : ð80Þ

Thus, once the GCRS positions of the emitter, r0, and
receiver, r, are known, everything else is computable.
To simplify the computations, we introduce a coordinate

system associated with the propagating ray of light.
Reading off Fig. 1, with knowledge of k, we obtain the
unit vectors defining a coordinate system associated with
the direction of transmission:

e0x ¼
½ez × e0z�
j½ez × e0z�j

; e0y ¼ ½e0z × e0x�; e0z ≡ k: ð81Þ

Together, the vectors k and b allow us to define a rotated
coordinate system, where the z-axis is aligned with the

direction of propagation of the EM wave given by vector k,
while the xy-plane is perpendicular to it (see Fig. 1). In
this coordinate system, the vectors k0, b0, are given as
below

k0 ¼ ð0; 0; 1Þ; b0 ¼ bðcosϕξ; sinϕξ; 0Þ ¼ bm0; ð82Þ

where b ¼ jbj from (80) and the orientation angle of the
impact parameter, ϕξ, is given by

cosϕξ ¼ ðm · e0xÞ; sinϕξ ¼ ðm · e0yÞ: ð83Þ

The two coordinate systems are related by a rotation
where Rb

a is the rotation matrix, given as

Rðθ;ψÞ ¼ R3ðψÞR1ðθÞ

¼

0B@ cosψ sinψ 0

− sinψ cosψ 0

0 0 1

1CA
0B@ 1 0 0

0 cos θ sin θ

0 − sin θ cos θ

1CA
≡ Rb

a; ð84Þ

where RzðψÞ is a right-handed rotation by ψ around the
z-axis (ez axis), R1ðθÞ is a right-handed rotation by θ about
the x-axis (e0x-axis) of a Cartesian coordinate frame; see
Fig. 1. The angles θ and ψ are determined from the
following equations:

cos θ ¼ ðe0z · ezÞ; sin θ ¼ ðe0y · ezÞ;
cosψ ¼ ðe0x · exÞ; sinψ ¼ ðe0x · eyÞ: ð85Þ

With the introduction of these rotation matrices (84),
the geometry of the problem is fully defined. Technically,
it is easier to compute the components of the projection
operator in (77) in the primed coordinate system that is
aligned with the light ray, yielding I 0

a1…al . Two represen-
tations of this operator, in the GCRS, Ia1…al , and its
counterpart in the light ray coordinates, I 0

a1…al , are related
by a simple rotation with the rotation matrix Rb

a from (84):

I hb1…bli ¼ I 0ha1…aliR
a1
b1
…Ral

bl
; ð86Þ

where Ia1…al is expressed in terms of k and m defined in
GCRS by (80) and I 0

a1…al depends on k
0 andm0 defined in

the light ray coordinate system that was introduced by (82).
Expression (86) allows us to write the term with tensorial

inner product in (78) as

T ha1…aliIa1…al ¼ T ha1…aliRb1
a1…Rbl

alI
0
b1…bl

≡ T 0ha1…aliI 0
a1…al ; ð87Þ

where T 0hal…ali are the components of the STF mass
moment tensor projected on the light ray trajectory

FIG. 1. Multipole moments are usually provided with respect to
a body-centric coordinate reference system, depicted here us-
ing the Cartesian ex, ey, and ez axes. For the Earth, ez ≡ s
corresponds to the direction of the North pole, whereas ex points
in the direction of the prime meridian and ey ¼ ½ez × ex� spans
the equatorial plane with ex. The signal propagates in the
direction of the wave vector k, represented in our Cartesian
reference frame by the e0z ≡ k axis. The e0xe0y-plane contains the
unit impact parameter vector m that is normal to k.
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T 0ha1…ali ¼ T hb1…bliRa1
b1
…Ral

bl
: ð88Þ

Typically, the STF tensor mass moments T ha1…ali are
expressed in terms of the spherical harmonic coefficients
that, in turn, are expressed using the Cartesian ECEF
coordinates of the GCRS. Expression (88) allows us to
compute the components of Ia1…al in the rotated coordinate
system that is aligned with the direction of propagation.
Through this rotation procedure with matrix (84) and

angles (85), we are able to express the STF mass moments
with respect to a cylindrical coordinate system in which the
z-axis coincides with the direction of signal propagation.
Moreover, as a nondegenerate linear relationship exists
between STF tensor components and spherical harmonic
coefficients (see Appendix A for details), this procedure
also allows us to directly compute spherical harmonic
coefficients with respect to this new coordinate system in a
three-step process: (i) convert spherical harmonics to the
STF representation; (ii) rotate the STF tensor using (88);
and (iii) invert the equation relating STF tensor components
and spherical harmonics and solve for the latter.
This procedure is powerful and straightforward, also

computationally inexpensive, allowing us to express the
multipole mass moments of the gravitating body in a
coordinate reference frame of arbitrary orientation, includ-
ing the orientation defined by the direction of signal
transmission.

IV. PHASE SHIFT INTRODUCED BY THE
LOWEST ORDER MULTIPOLE MOMENTS

To demonstrate the practical utility of our results, we now
compute several low-order terms in (77), for l ¼ 2, 3, 4. In
Appendix B, we compute the corresponding derivatives
with respect to the vector impact parameter, which are
present in (77). Below, we present the results for the eikonal
phase shift for the quadrupole (l ¼ 2), octupole (l ¼ 3)
and hexadecapole (l ¼ 4) STF multipole moments.

A. Quadrupole moment

1. The structure of the quadrupole phase shift

In the l ¼ 2 quadrupole case, applying (78) leads to the
following expression for the gravitational eikonal phase
shift φ2ðr; r0Þ induced by the quadrupole STF mass
moment, T habi:

φ2ðr; r0Þ ¼ −
1

2
krgT habiIabðr; r0Þ; ð89Þ

where Iabðr; r0Þ is the l ¼ 2 light ray trajectory projection
operator given by (77), that is,

Iabðr; r0Þ ¼ −
�
ð2mamb þ kakbÞ

1

rðrþ ðk · rÞÞ

þ ðkakb −mambÞ
ðk · rÞ
r3

þ ðkamb þ kbmaÞ
b
r3

�				r
r0

; ð90Þ

where we used the derivatives (B5) and (B8) and k and m
are defined by (80). After some rearrangement, expression
(90) may be presented in the following equivalent form:

Iabðr;r0Þ¼
�
ð2mambþkakbÞ

�
1

rðrþðk · rÞÞ−
ðk · rÞ
2r3

�
þðkambþkbmaÞ

b
r3
þ3

2
kakb

ðk · rÞ
r3

�				r
r0

: ð91Þ

The convenience of the form (91) is due to the fact that in
the light ray’s coordinate system that we use, k is a unit
vector in the e0z-axis direction, whereasm is a unit vector in
the perpendicular e0xe0y-plane. This simplifies various inner
products in (89) which, relying on (87) and (88) with
parameterization (82) take the form

T habið2mamb þ kakbÞ ¼ T 0habið2m0
am0

b þ k0ak0bÞ
¼ ðT 0

11 − T 0
22Þ cos 2ϕξ

þ 2T 0
12 sin 2ϕξ; ð92Þ

where k0 and m0 are from (82) and we specifically empha-
sized the use of (87), a reminder to the reader that this scalar-
valued tensor product is not dependent on the choice of
coordinate system in which it is calculated, allowing us to
express the product in this simple form, using the values of
theSTF tensor and theprojectionoperator in the rotated light-
ray coordinate system. Similarly,

T habiðkamb þ kbmaÞ ¼ 2T 0
13 cosϕξ þ 2T 0

23 sinϕξ; ð93Þ

T habikakb ¼ T 0
33; ð94Þ

wherewe relied on the trace-free nature of T habi, valid in any
representation, hence T 0

11 þ T 0
22 þ T 0

33 ¼ 0.
As a result, using these expressions (92)–(94) and repre-

senting m using from (82), expression (89) takes the form

φ2ðr; r0Þ ¼
1

2
krg

�
fðT 0

11 − T 0
22Þ cos 2ϕξ þ 2T 0

12 sin 2ϕξg

×

�
1

rðrþ ðk · rÞÞ −
ðk · rÞ
2r3

�
þ 2fT 0

13 cosϕξ þ T 0
23 sinϕξg

b
r3

þ 3T 0
33

ðk · rÞ
2r3

�				r
r0

: ð95Þ

SPHERICAL HARMONICS REPRESENTATION OF THE … PHYS. REV. D 107, 104031 (2023)

104031-15



Thus, as the light travels from a transmitter to a receiver, it
samples the gravitational filed along its path. That field is
represented by the STFmass moments T 0habi that are related
to their GCRS values via (88).

2. Rotating the quadrupole mass moment

What is left is to express T 0habi in accordance with (88)
for l ¼ 2 that has the form

T 0habi ¼ T hijiRa
i R

b
j ; ð96Þ

where the relationship between T habi and spherical har-
monic coefficients expressed in the same coordinate refer-
ence frame are given by comparing (67) against (A1). We
work this out explicitly for l ¼ 2 in Appendix A, yielding
the matrix components of T habi in the GCRS reference
frame in the form (A5):

T 11 ¼
�
−
1

3
C20 þ 2C22

�
R2; T 12 ¼ 2S22R2;

T 22 ¼
�
−
1

3
C20 − 2C22

�
R2; T 13 ¼ C21R2;

T 33 ¼
2

3
C20R2; T 23 ¼ S21R2; ð97Þ

or, using the relations between T habi and C2k; S2k from
(97), we may express T 0habi as

R−2T 0
11 ¼−

1

3
C20þ 2ðC22 cos2ψ −S22 sin2ψÞ;

R−2T 0
22 ¼

1

3
ð3sin2θ− 1ÞC20− sin2θðC21 sinψ þS21 cosψÞ

þ 2cos2θðS22 sin2ψ −C22 cos2ψÞ;

R−2T 0
33 ¼

1

3
ð3cos2θ− 1ÞC20þ sin2θðC21 sinψ þS21 cosψÞ

þ 2sin2θðS22 sin2ψ −C22 cos2ψÞ;
R−2T 0

12 ¼− sinθðC21 cosψ −S21 sinψÞ
þ 2cosθðS22 cos2ψ þC22 sin2ψÞ;

R−2T 0
13 ¼ cosθðC21 cosψ −S21 sinψÞ

þ 2sinθðS22 cos2ψ þC22 sin2ψÞ;

R−2T 0
23 ¼−

1

2
sin2θC20þ cos2θðC21 sinψ þS21 cosψÞ

− sin2θðC22 cos2ψ −S22 sin2ψÞ; ð98Þ

where angles θ and ψ are fixed for each transmitter-receiver
configuration and are given by (85).
We define the rotated spherical harmonic coefficients

fC0
2k; S

0
2kg by substituting primed in place of unprimed

terms in (97) and then solving the resulting system of

equations. For l ¼ 2, this results in the following relations
between fC0

2k; S
0
2kg and T 0habi:

C0
20 ¼

3

2
R−2T 0

33; C0
21 ¼ R−2T 0

13;

C0
22 ¼

1

4
R−2ðT 0

11 − T 0
22Þ; S021 ¼ R−2T 0

23;

S022 ¼
1

2
R−2T 0

12: ð99Þ

Due to the tensorial nature of (89), both expressions (95)
and (100) demonstrate the form invariance of the gravita-
tional phase (77) and (78). The structure of the expression
for the gravitational phase is the same in any new rotated
coordinates, thus for any direction of signal propagation.
Furthermore, the relationship between the STF tensor mass
moments and spherical harmonics, T habi ⇔ fC2k; S2kg,
given by (97), is also the same in any new coordinates,
T 0habi ⇔ fC0

2k; S
0
2kg. This form invariance of the phase and

relevant relations between the moments and harmonics exist
at any STF order l. This property may be used to establish
expressions for the spherical harmonicsC0

lk; S
0
lk at anyorder

l and will be demonstrated below for l ¼ 2, 3, 4.

3. Quadrupole phase in terms of spherical harmonics

Results (98) and (99) allow us to express (95) in terms of
the rotated spherical harmonic coefficients C0

2k; S
0
2k. Using

n ¼ r=r, this expression has the form

φ2ðr; r0Þ ¼ krg

�
R⊕

b

�
2
�
2fC0

22 cos 2ϕξ

þ S022 sin 2ϕξg
�
1 − ðk · nÞ

�
1þ 1

2

b2

r2

��
þ fC0

21 cosϕξ þ S021 sinϕξg
b3

r3

þ 1

2
C0
20

b2

r2
ðk · nÞ

�				r
r0

; ð100Þ

where the relationship between the spherical harmonic
coefficients in the GCRS reference frame vs their value at
the OCS which is associated with the light ray, yield the
following form for C0

2k and S02k:

C0
20 ¼

1

4
ð1þ 3 cos2θÞC20 þ

3

2
sin2θðC21 sinψ þ S21 cosψÞ

− 3sin2θðC22 cos2ψ − S22 sin2ψÞ;
C0
21 ¼ cosθðC21 cosψ − S21 sinψÞ

þ 2 sinθðS22 cos2ψ þC22 sin2ψÞ;

C0
22 ¼ −

1

4
sin2θC20 þ

1

4
sin2θðC21 sinψ þ S21 cosψÞ

þ 1

4
ð3þ cos2θÞðC22 cos2ψ − S22 sin2ψÞ;
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S021 ¼ −
1

2
sin 2θC20 þ cos 2θðC21 sinψ þ S21 cosψÞ

− sin 2θðC22 cos 2ψ − S22 sin 2ψÞ;

S022 ¼ −
1

2
sin θðC21 cosψ − S21 sinψÞ

þ cos θðS22 cos 2ψ þ C22 sin 2ψÞ: ð101Þ

Equation (100), together with (101) is the most general
form of eikonal phase shift induced by a mass quadrupole
moment, l ¼ 2. Following the same procedure, we can
obtain similar expressions for higher orders of spherical
harmonics with l ≥ 3. Some of the relevant expressions for
the STF tensors and its relations to harmonic coefficients
Clk; Slk in (3) for orders l ¼ 3, 4 are given in [12]. These
results may be extended to arbitrary orders l.
Expressions (101) relate the values of the spherical

harmonics coefficients that are sampled by the propagating
EM wave, C0

lk; S
0
lk, to those that are typically reported in in

the standard GCRS coordinates, Clk; Slk. For that we
performed the rotation of the standard harmonics onto
the direction of the light propagation given by k.
We note that the change of spherical harmonics under a

linear transformation of coordinates has been studied in the
past, with a rich history (see, e.g., [51]). In our case, the

transformation rules that correspond to rotating the north
pole axis to coincide with k were accomplished with
relative ease as an additional benefit of the use of the
STF tensor formalism, which we invoked primarily in order
to integrate the eikonal equation. The process, as we shall
see below, is easily generalized to higher order harmonics.

4. The case of an axisymmetric body

We know that, in the case of an axisymmetric gravitating
body, all of the spherical harmonic coefficients accept for
C20 vanish, namely C21 ¼ C22 ¼ S21 ¼ S22 ¼ 0. In this
case, Eq. (100), with the help of (101), takes the familiar
form

φ2ðr; r0Þ ¼
1

2
krgC20R2

⊕

�
−sin2θ cos 2ϕξ

1

rðrþ ðk · rÞÞ

þ ðcos2θ − sin2θsin2ϕξÞ
ðk · rÞ
r3

− sin 2θ sinϕξ
b
r3

�				r
r0

: ð102Þ

Alternatively, using J2 ¼ −C20 and relying on the defi-
nitions of the unit vectors b, k, andm, we present (102) as

φ2ðr; r0Þ ¼ −
1

2
krgJ2R2

⊕

�
ð2ðs ·mÞ2 þ ðs · kÞ2 − 1Þ 1

rðrþ ðk · rÞÞ þ ððs · kÞ2 − ðs ·mÞ2Þ ðk · rÞ
r3

þ 2ðs ·mÞðs · kÞ b
r3

�				r
r0

;

ð103Þ

which is exactly the J2 part of (C9).

B. Octupole moment

1. The structure of the octupole phase shift

Setting l ¼ 3 in (78) and (77), we use the result for the
two types of derivatives (B6) and (B9). We derive the

eikonal phase shift, φ3ðr; r0Þ, introduced by the octupole
STF mass moment, T habci, which may be given as

φ3ðr; r0Þ ¼
1

6
krgT habciIabcðr; r0Þ; ð104Þ

where Iabcðr; r0Þ is light ray trajectory projection operator
of the order of l ¼ 3 that is given as

Iabcðr; r0Þ ¼
�
ð4mambmc þ 3kakbmcÞ

1

b

�
2

rðrþ ðk · rÞÞ −
ðk · rÞ
r3

�
þ 3ð3kakbmc −mambmcÞb

ðk · rÞ
r5

þ 3ð3kambmc − kakbkcÞ
b2

r5
þ 5kakbkc

r3

�				r
r0

: ð105Þ

Similarly to (91), we rearrange (104) to separate individual projection operators

Iabcðr; r0Þ ¼ 2

�
ð4mambmc þ 3kakbmcÞ

�
1

b

�
1

rðrþ ðk · rÞÞ −
ðk · rÞ
2r3

�
−
3

8
b
ðk · rÞ
r5

�
þ 9

2

�
kambmc þ

1

2
kakbkc

�
b2

r5
þ 45

8
kakbmcb

ðk · rÞ
r5

þ 5

2
kakbkc

1

r3

�
1 −

3

2

b2

r2

��				r
r0

; ð106Þ
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where, again, k, m are given by (82). Note that there is no
need to explicitly STF this quantity as it will be acting on
the STF tensor T habci in (104).
Again, the form (106) is convenient because it simplifies

various inner products in (104) when expressed in the light
ray’s coordinate system:

T habcið4mambmc þ 3kakbmcÞ
¼ ðT 0

111 − 3T 0
122Þ cos 3ϕξ þ ð3T 0

112 − T 0
222Þ sin 3ϕξ;

ð107Þ

T habci
�
kambmc þ

1

2
kakbkc

�
¼ 1

2
ðT 0

113 − T 0
223Þ cos 2ϕξ þ T 0

123 sin 2ϕξ; ð108Þ

T habcikakbmc ¼ T 0
133 cosϕξ þ T 0

233 sinϕξ; ð109Þ

T habcikakbkc ¼ T 0
333: ð110Þ

As a result, the octupole gravitational phase shift corre-
sponding to l ¼ 3 from (104) takes the following form:

φ3ðr; r0Þ ¼
1

3
krg

�
fðT 0

111 − 3T 0
122Þ cos 3ϕξ þ ð3T 0

112 − T 0
222Þ sin 3ϕξg

�
1

b

�
1

rðrþ ðk · rÞÞ −
ðk · rÞ
2r3

�
−
3

8
b
ðk · rÞ
r5

�
þ 9

4
fðT 0

113 − T 0
223Þ cos 2ϕξ þ 2T 0

123 sin 2ϕξg
b2

r5
þ 45

8
fT 0

133 cosϕξ þ T 0
233 sinϕξgb

ðk · rÞ
r5

þ 5

2
T 0

333

1

r3

�
1 −

3

2

b2

r2

��				r
r0

: ð111Þ

2. Rotating the octupole mass moment

The next step is to express T 0habci present in (111)
in terms of the spherical harmonics coefficients. For
that, we implement the rotation of T habci in accordance
with (88):

T 0habci ¼ T hijkiRa
i R

b
jR

c
k; ð112Þ

where T hijki are the components of the Cartesian repre-
sentation of the octupole mass tensor in the GCRS. These
components are known and are related to the spherical
harmonics C3k; S3k. In Appendix A, we established the
relationship between STF moments and spherical harmon-
ics for l ¼ 2. The same approach may be used for l ¼ 3 to
establish the the correspondence between T habci from (70)
and the spherical harmonics from (4) and (71). The result is
given by

T 111 ¼
�
3

5
C31 − 6C33

�
R3; T 112 ¼

�
1

5
S31 − 6S33

�
R3; T 113 ¼

�
−
1

5
C30 þ 2C32

�
R3;

T 122 ¼
�
1

5
C31 þ 6C33

�
R3; T 222 ¼

�
3

5
S31 þ 6S33

�
R3; T 223 ¼

�
−
1

5
C30 − 2C32

�
R3;

T 123 ¼ 2S32R3; T 133 ¼ −
4

5
C31R3; T 233 ¼ −

4

5
S31R3; T 333 ¼

2

5
C30R3: ð113Þ

It is easy to check that the rank-3 STF tensor T habci has seven independent components; the values of the remaining 20
components are determined by its symmetries and vanishing trace. The system of equations (113) is redundant, with only
seven independent equations relating the components of T habci to the seven spherical harmonic coefficients in the case
l ¼ 3.
We can now implement the rotation (112) that in accordance with (88) and obtain the following components of the STF

mass moments T 0habci expressed via spherical harmonics of GCRS system:

R−3T 0
111 ¼

3

5
ðC31 cosψ − S31 sinψÞ þ 6ðS33 sin 3ψ − C33 cos 3ψÞ;

R−3T 0
112 ¼

1

5
sin θC30 þ

1

5
cos θðS31 cosψ þ C31 sinψÞ þ 2 sin θðS32 sin 2ψ − C32 cos 2ψÞ

− 6 cos θðS33 cos 3ψ þ C33 sin 3ψÞ;
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R−3T 0
113 ¼ −

1

5
cos θC30 þ

1

5
sin θðS31 cosψ þ C31 sinψÞ þ 2 cos θðC32 cos 2ψ − S32 sin 2ψÞ

− 6 sin θðS33 cos 3ψ þ C33 sin 3ψÞ;

R−3T 0
122 ¼

4

5
sin2 θðS31 sinψ − C31 cosψÞ − 2 sin 2θðS32 cos 2ψ þ C32 sin 2ψÞ

þ 1

5
cos2 θðC31 cosψ − S31 sinψÞ þ 6 cos2 θðC33 cos 3ψ − S33 sin 3ψÞ;

R−3T 0
222 ¼

1

10
ð1þ 5 cos 2θÞ sin θC30 þ

3

10
ð−3þ 5 cos 2θÞ cos θðS31 cosψ þ C31 sinψÞ

þ 3 cos θ sin 2θðC32 cos 2ψ − S32 sin 2ψÞ þ 6 cos3 θðS33 cos 3ψ þ C33 sin 3ψÞ;

R−3T 0
223 ¼

1

10
C30 cos θð3 − 5 cos 2θÞ þ 1

10
ð7þ 15 cos 2θÞ sin θðS31 cosψ þ C31 sinψÞ

−
1

2
ðcos θ þ 3 cos 3θÞðC32 cos 2ψ − S32 sin 2ψÞ þ 6 cos2 θ sin θðS33 cos 3ψ þ C33 sin 3ψÞ;

R−3T 0
123 ¼ sin θ cos θðC31 cosψ − S31 sinψÞ þ 2 cos 2θðC32 sin 2ψ þ S32 cos 2ψÞ þ 3 sin 2θðC33 cos 3ψ − S33 sin 3ψÞ;

R−3T 0
133 ¼

1

10
ð3þ 5 cos 2θÞðS31 sinψ − C31 cosψÞ þ 2 sin 2θðS32 cos 2ψ þ C32 sin 2ψÞ

þ 6 sin2 θðC33 cos 3ψ − S33 sin 3ψÞ;

R−3T 0
233 ¼ −

1

20
C30ðsin θ þ 5 sin 3θÞ þ 1

10
cos θð7 − 15 cos 2θÞðS31 cosψ þ C31 sinψÞ

− ð1þ 3 cos 2θÞ sin θðC32 cos 2ψ − S32 sin 2ψÞ þ 6 cos θ sin2 θðS33 cos 3ψ þ C33 sin 3ψÞ;

R−3T 0
333 ¼

1

20
C30ð3 cos θ þ 5 cos 3θÞ − 3

10
ð3þ 5 cos 2θÞ sin θðS31 cosψ þ C31 sinψÞ

− 6 cos θ sin2 θðC32 cos 2ψ − S32 sin 2ψÞ þ 6 sin3 θðS33 cos 3ψ þ C33 sin 3ψÞ: ð114Þ

The relations between fC0
3k; S

0
3kg and T 0habci have the same structure as in (113) and thus are given as

C0
30 ¼

5

2
R−3T 0

333; C0
31 ¼ −

5

4
R−3T 0

133; C0
32 ¼

1

4
R−3ðT 0

113 − T 0
223Þ; C0

33 ¼
1

24
R−3ð3T 0

122 − T 0
111Þ;

S031 ¼ −
5

4
R−3T 0

233; S032 ¼
1

2
R−3T 0

123; S033 ¼
1

24
R−3ðT 0

222 − 3T 0
112Þ: ð115Þ

3. Octupole phase in terms of spherical harmonics

The expressions developed in the precessing section allow us to write (111) in terms of the spherical harmonic
coefficients C0

3k; S
0
3k as below:

φ3ðr; r0Þ ¼ −krg
�
R⊕

b

�
3
�
8fC0

33 cos 3ϕξ þ S033 sin 3ϕξg
�
1 − ðk · nÞ

�
1þ 1

2

b2

r2
þ 3

8

b4

r4

��
− 3fC0

32 cos 2ϕξ þ S032 sin 2ϕξg
b5

r5
þ 3

2
fC0

31 cosϕξ þ S031 sinϕξg
b4

r4
ðk · nÞ − 1

3
C0
30

b3

r3

�
1 −

3

2

b2

r2

��				r
r0

; ð116Þ
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where, using (114) and (115), we find that C0
3k and S03k are related to their unrotated GCRS counterparts as

C0
30 ¼

1

8
ð3 cos θ þ 5 cos 3θÞC30 −

3

4
ð3þ 5 cos 2θÞ sin θðS31 cosψ þ C31 sinψÞ

− 15 cos θ sin2 θðC32 cos 2ψ − S32 sin 2ψÞ þ 15 sin3 θðS33 cos 3ψ þ C33 sin 3ψÞ;

C0
31 ¼

1

8
ð3þ 5 cos 2θÞðC31 cosψ − S31 sinψÞ −

5

2
sin 2θðS32 cos 2ψ þ C32 sin 2ψÞ −

15

2
sin2 θðC33 cos 3ψ − S33 sin 3ψÞ;

C0
32 ¼ −

1

4
cos θ sin2 θC30 −

1

8
ð1þ 3 cos 2θÞ sin θðS31 cosψ þ C31 sinψÞ

þ 1

8
ð5 cos θ þ 3 cos 3θÞðC32 cos 2ψ − S32 sin 2ψÞ −

3

8
ð5 sin θ þ sin 3θÞðC33 sin 3ψ þ S33 cos 3ψÞ;

C0
33 ¼ −

1

8
sin2 θðC31 cosψ − S31 sinψÞ −

1

4
sin 2θðC32 sin 2ψ þ S32 cos 2ψÞ

þ 1

8
ð5þ 3 cos 2θÞðC33 cos 3ψ − S33 sin 3ψÞ;

S031 ¼
1

8
sin θð3þ 5 cos 2θÞC30 þ

1

8
cos θð15 cos 2θ − 7ÞðC31 sinψ þ S31 cosψÞ

−
5

8
ðsin θ − 3 sin 3θÞðC32 cos 2ψ − S32 sin 2ψÞ −

15

2
cos θ sin2 θðS33 cos 3ψ þ C33 sin 3ψÞ;

S032 ¼ cos 2θðC32 sin 2ψ þ S32 cos 2ψÞ þ
1

4
sin 2θðC31 cosψ − S31 sinψÞ þ

3

2
sin 2θðC33 cos 3ψ − S33 sin 3ψÞ;

S033 ¼ −
1

24
sin3 θC30 −

1

8
cos θ sin2 θðC31 sinψ þ S31 cosψÞ þ

1

16
ð5 sin θ þ sin 3θÞðC32 cos 2ψ − S32 sin 2ψÞ

þ 1

16
ð15 cos θ þ cos 3θÞðC33 sin 3ψ þ S33 cos 3ψÞ: ð117Þ

4. The case of an axisymmetric body

We know that, in the case of an axisymmetric gravitating body, all the spherical harmonic coefficients except C30 vanish:
C31 ¼ C32 ¼ C33 ¼ S21 ¼ S22 ¼ S33 ¼ 0. In this case, expression (116) with (117) takes the form

φ3ðr; r0Þ ¼
1

3
krgC30R3

⊕

�
− sin θ sinϕξð4sin2θsin2ϕξ − 3sin2θÞ

�
1

b

�
1

rðrþ ðk · rÞÞ −
ðk · rÞ
2r3

��
þ 3

2
sin θ sinϕξðsin2θsin2ϕξ − 3cos2θÞb ðk · rÞ

r5

−
3

2
cos θðcos2θ − 3sin2θsin2ϕξÞ

b2

2r5
−
1

2
cos θð3 − 5cos2θÞ 1

r3

�				r
r0

: ð118Þ

Again, relying on the definitions of the unit vectors m, k, s and using J3 ¼ −C30, we present (102) as

φ3ðr;r0Þ¼−
1

3
krgJ3R3

⊕

�
ðs ·mÞð4ðs ·mÞ2þ3ðs ·kÞ2−3Þ

�
1

b

�
1

rðrþðk ·rÞÞ−
ðk ·rÞ
2r3

�
−
3

2
ðs ·mÞððs ·mÞ2−3ðs ·kÞ2Þbðk ·rÞ

r5
−
3

2
ðs ·kÞððs ·kÞ2−3ðs ·mÞ2Þb

2

r5
−
1

2
ðs ·kÞð3−5ðs ·kÞ2

�
1

r3

�				r
r0

; ð119Þ

which checks out nicely with the relevant J3-part of (C9).

C. Hexadecapole moment

1. The structure of the hexadecapole phase shift

In the case when l ¼ 4, we use the derivatives (B7), (B10) and derive the eikonal phase shift, φ4ðr; r0Þ from (78),
introduced by the hexadecapole STF moment, T habcdi, in the form
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φ4ðr; r0Þ ¼ −
1

24
krgT hijkliIabcdðr; r0Þ; ð120Þ

where Iabcdðr; r0Þ is the l ¼ 4 ligh ray’s trajectory projection operator that is given as

Iabcdðr; r0Þ ¼ −3
�
ð8mambmcmd þ 8kakbmcmd þ kakbkckdÞ

1

b2

�
2

rðrþ ðk · rÞÞ −
ðk · rÞ
r3

�
þ 2ð4kakbkckd − 3kakbmcmd − 3mambmcmdÞ

ðk · rÞ
r5

þ 5ð6kakbmcmd − kakbkckd −mambmcmdÞb2
ðk · rÞ
r7

þ 20ðkambmcmd − kakbkcmdÞ
b3

r7
þ 28kakbkcmd

b
r5

�				r
r0

: ð121Þ

As we did for (91) and (106), we identically rearrange the terms in (121) to make it more convenient for calculations

Iabcdðr; r0Þ ¼ −6
�
ð8mambmcmd þ 8kakbmcmd þ kakbkckdÞ

�
1

b2

�
1

rðrþ ðk · rÞÞ −
ðk · rÞ
2r3

�
−
3

8

ðk · rÞ
r5

−
5

16
b2

ðk · rÞ
r7

�
þ 10

�
kambmcmd þ

3

4
kakbkcmd

�
b3

r7
þ 35

2

�
kakbmcmd þ

1

2
kakbkckd

�
b2

ðk · rÞ
r7

þ 14kakbkcmd
b
r5

�
1 −

5

4

b2

r2

�
þ 35

8
kakbkckd

ðk · rÞ
r5

�
1 −

5

2

b2

r2

��				r
r0

: ð122Þ

Similarly to (106), there is no need to make Iabcdðr; r0Þ to be an STF quantity as it will be acting on the STF tensor T habcdi
in (120), so that the presence of delta Kronecker symbols will not change the overall result.
The form (122) is convenient as it allows to express various inner products in (120) in the light ray’s system of

coordinates and using (88), yielding remarkably structured results:

T habcdið8mambmcmd þ 8kakbmcmd þ kakbkckdÞ ¼ ðT 0
1111 þ T 0

2222 − 6T 0
1122Þ cos4ϕξ þ 4ðT 0

1112 − T 0
1222Þ sin4ϕξ; ð123Þ

T habcdi
�
kambmcmd þ

3

4
kakbkcmd

�
¼ 1

4
ðT 0

1113 − 3T 0
1223Þ cos 3ϕξ þ

1

4
ð3T 0

1123 − T 0
2223Þ sin 3ϕξ; ð124Þ

T habcdi
�
kakbmcmd þ

1

2
kakbkckd

�
¼ 1

2
ðT 0

1133 − T 0
2233Þ cos 2ϕξ þ T 0

1223 sin 2ϕξ; ð125Þ

T habcdikakbkcmd ¼ T 0
1333 cosϕξ þ T 0

2333 sinϕξ; ð126Þ

T habcdikakbkckd ¼ T 0
3333: ð127Þ

Using the expressions (123)–(127), as a result, we obtain the following compact form for the hexadecapole gravitational
phase shift expressed via rotated l ¼ 4 STM mass moments:

φ4ðr; r0Þ ¼
1

4
krg

�
fðT 0

1111 þ T 0
2222 − 6T 0

1122Þ cos 4ϕξ þ 4ðT 0
1112 − T 0

1222Þ sin 4ϕξg

×

�
1

b2

�
1

rðrþ ðk · rÞÞ −
ðk · rÞ
2r3

�
−
3

8

ðk · rÞ
r5

−
5

16
b2

ðk · rÞ
r7

�
þ 5

2
fðT 0

1113 − 3T 0
1223Þ cos 3ϕξ þ ð3T 0

1123 − T 0
2223Þ sin 3ϕξg

b3

r7

−
35

2

�
1

2
ðT 0

1133 − T 0
2233Þ cos 2ϕξ þ T 0

1223 sin 2ϕξ

�
b2

ðk · rÞ
r7

þ 14fT 0
1333 cosϕξ þ T 0

2333 sinϕξg
b
r5

�
1 −

5

4

b2

r2

�
þ 35

8
T 0

3333

ðk · rÞ
r5

�
1 −

5

2

b2

r2

��				r
r0

: ð128Þ
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2. Rotating the hexadecapole mass moment

We now need to establish the relationships between T habcdi and the spherical harmonics,C4k; Sk; k ¼ 0…4, that are given
with respect to the GCRS. For that, as we did for the cases with l ¼ 2, 3, we establish a correspondence between T habcdi
from (70) and the spherical harmonics coefficients for l ¼ 4 that are present in (4) (i.e., using the same procedure
demonstrated in Appendix A):

T 1111 ¼
�
3

35
C40 −

12

7
C42 þ 24C44

�
R4; T 2222 ¼

�
3

35
C40 þ

12

7
C42 þ 24C44

�
R4;

T 1112 ¼
�
−
6

7
S42 þ 24S44

�
R4; T 1113 ¼

�
3

7
C41 −

60

7
C43

�
R4; T 2223 ¼

�
3

7
S41 þ

60

7
S43

�
R4;

T 1122 ¼
�
1

35
C40 − 24C44

�
R4; T 1123 ¼

�
1

7
S41 −

60

7
S43

�
R4; T 1133 ¼

�
−

4

35
C40 þ

12

7
C42

�
R4;

T 2233 ¼
�
−

4

35
C40 −

12

7
C42

�
R4; T 1222 ¼

�
−
6

7
S42 − 24S44

�
R4; T 1223 ¼

�
1

7
C41 þ

60

7
C43

�
R4;

T 3333 ¼
8

35
C40R4; T 1233 ¼

12

7
S42R4; T 1333 ¼ −

4

7
C41R4; T 2333 ¼ −

4

7
S41R4: ð129Þ

As these quantities are the nonvanishing components of the hexadecapole STF mass moment tensor, out of the fifteen terms
T habcdi in (129), only nine are independent.
We can now rotate T habcdi and obtain T 0habcdi in the light ray’s system of coordinates, using in (88),

T 0habcdi ¼ T hijkliRa
i R

b
jR

c
kR

d
l : ð130Þ

This allows us to derive the following components of the STF mass moments in the rotated coordinate system:

R−4T 0
1111 ¼

3

35
C40 þ

12

7
ðS42 sin 2ψ − C42 cos 2ψÞ þ 24ðC44 cos 4ψ − S44 sin 4ψÞ;

R−4T 0
1112 ¼

3

7
sin θðS41 sinψ − C41 cosψÞ þ

60

7
sin θðC43 cos 3ψ − S43 sin 3ψÞ −

6

7
cos θðC42 sin 2ψ þ S42 cos 2ψÞ

þ 24 cos θðS44 cos 4ψ þ C44 sin 4ψÞ;

R−4T 0
1113 ¼

6

7
cos θðC41 cosψ − S41 sinψÞ þ

60

7
cos θðS43 sin 3ψ − C43 cos 3ψÞ −

6

7
sin θðC42 sin 2ψ þ S42 cos 2ψÞ

þ 24 sin θðS44 cos 4ψ þ C44 sin 4ψÞ;

R−4T 0
1122 ¼

1

70
C40ð−3þ 5 cos 2θÞ − 1

7
sin 2θðC41 sinψ þ S41 cosψÞ þ

12

7
sin2θðC42 cos 2ψ − S42 sin 2ψÞ

þ 60

7
sin 2θðC43 sin 3ψ þ S43 cos 3ψÞ − 24cos2θðC44 cos 4ψ − S44 sin 4ψÞ;

R−4T 0
1123 ¼

1

7
C40 cos θ sin θ þ

1

7
cos 2θðS41 cosψ þ C41 sinψÞ −

6

7
sin 2θðC42 cos 2ψ − S42 sin 2ψÞ

−
60

7
cos 2θðS43 cos 3ψ þ C43 sin 3ψÞ þ 12 sin 2θð−C44 cos 4ψ þ S44 sin 4ψÞ;

R−4T 0
1133 ¼ −

1

70
C40ð3þ 5 cos 2θÞ þ 1

7
sin 2θðS41 cosψ þ C41 sinψÞ þ

12

7
cos2θðC42 cos 2ψ − S42 sin 2ψÞ

−
60

7
sin 2θðS43 cos 3ψ þ C43 sin 3ψÞ − 24sin2θðC44 cos 4ψ − S44 sin 4ψÞ;

R−4T 0
2222 ¼

1

280
C40ð9 − 20 cos 2θ þ 35 cos 4θÞ þ 1

14
ð2 sin 2θ − 7 sin 4θÞðS41 cosψ þ C41 sinψÞ

þ 6

7
cos2θð−5þ 7 cos 2θÞðC42 cos 2ψ − S42 sin 2ψÞ −

240

7
cos3θ sin θðS43 cos 3ψ þ C43 sin 3ψÞ

þ 24cos4θðC44 cos 4ψ − S44 sin 4ψÞ;
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R−4T 0
2223 ¼

1

56
C40ð−2 sin 2θ þ 7 sin 4θÞ − 1

14
ðcos 2θ − 7 cos 4θÞðS41 cosψ þ C41 sinψÞ

þ 3

14
ð2 sin 2θ þ 7 sin 4θÞðC42 cos 2ψ − S42 sin 2ψÞ

þ 60

7
cos2θð−1þ 2 cos 2θÞðS43 cos 3ψ þ C43 sin 3ψÞ þ 24 cos θ3 sin θðC44 cos 4ψ − S44 sin 4ψÞ;

R−4T 0
2233 ¼

1

280
C40ð3 − 35 cos 4θÞ þ 1

2
sin 4θðS41 cosψ þ C41 sinψÞ −

3

14
ð1þ 7 cos 4θÞðC42 cos 2ψ − S42 sin 2ψÞ

þ 30

7
sin 4θðS43 cos 3ψ þ C43 sin 3ψÞ þ 6sin22θðC44 cos 4ψ − S44 sin 4ψÞ;

R−4T 0
1222 ¼

1

14
ð1 − 7 cos 2θÞ sin θðC41 cosψ − S41 sinψÞ þ

3

14
ð3 cos θ − 7 cos 3θÞðS42 cos 2ψ þ C42 sin 2ψÞ

−
180

7
cos2θ sin θðC43 cos 3ψ − S43 sin 3ψÞ − 24cos3θðS44 cos 4ψ þ C44 sin 4ψÞ;

R−4T 0
1223 ¼

1

28
ð−3 cos θ þ 7 cos 3θÞðC41 cosψ − S41 sinψÞ þ

3

14
ðsin θ − 7 sin 3θÞðS42 cos 2ψ þ C42 sin 2ψÞ

þ 15

7
ðcos θ þ 3 cos 3θÞðC43 cos 3ψ − S43 sin 3ψÞ − 24cos2θ sin θðS44 cos 4ψ þ C44 sin 4ψÞ;

R−4T 0
1233 ¼

1

28
ð3 sin θ þ 7 sin 3θÞðC41 cosψ − S41 sinψÞ þ

3

14
ðcos θ þ 7 cos 3θÞðS42 cos 2ψ þ C42 sin 2ψÞ

−
15

7
ðsin θ − 3 sin 3θÞðC43 cos 3ψ − S43 sin 3ψÞ − 24 cos θsin2θðS44 cos 4ψ þ C44 sin 4ψÞ;

R−4T 0
2333 ¼ −

1

56
C40ð2 sin 2θ þ 7 sin 4θÞ − 1

14
ðcos 2θ þ 7 cos 4θÞðS41 cosψ þ C41 sinψÞ

þ 3

14
ð2 sin 2θ − 7 sin 4θÞðC42 cos 2ψ − S42 sin 2ψÞ

þ 60

7
ð1þ 2 cos 2θÞsin2θðS43 cos 3ψ þ C43 sin 3ψÞ þ 24 cos θsin3θðC44 cos 4ψ − S44 sin 4ψÞ;

R−4T 0
1333 ¼ −

1

14
cos θð1þ 7 cos 2θÞðC41 cosψ − S41 sinψÞ þ

3

14
ð3 sin θ þ 7 sin 3θÞðS42 cos 2ψ þ C42 sin 2ψÞ

þ 180

7
cos θsin2θðC43 cos 3ψ − S43 sin 3ψÞ − 24sin3θðS44 cos 4ψ þ C44 sin 4ψÞ;

R−4T 0
3333 ¼

1

280
C40ð9þ 20 cos 2θ þ 35 cos 4θÞ − 1

14
ð2 sin 2θ þ 7 sin 4θÞðC41 sinψ þ S41 cosψÞ

þ 6

7
ð5þ 7 cos 2θÞsin2θðS42 sin 2ψ − C42 cos 2ψÞ þ

240

7
cos θsin3θðC43 sin 3ψ þ S43 cos 3ψÞ

þ 24sin4θðC44 cos 4ψ − S44 sin 4ψÞ: ð131Þ

As a result, the relations between fC0
4k; S

0
4kg and T 0habcdi are established to be

C0
40 ¼

35

8
T 0

3333R
−4; C0

41 ¼ −
7

4
T 0

1333R
−4; C0

42 ¼
7

48
ðT 0

1133 − T 0
2233ÞR−4;

C0
43 ¼ −

7

240
ðT 0

1113 − 3T 0
1223ÞR−4; C0

44 ¼
1

96
ðT 0

1111 þ T 0
2222 − 6T 0

1122ÞR−4; S041 ¼ −
7

4
T 0

2333R
−4

S042 ¼
7

12
T 0

1223R
−4; S043 ¼ −

7

240
ð3T 0

1123 − T 0
2223ÞR−4; S044 ¼

1

48
ðT 0

1112 − T 0
1222ÞR−4: ð132Þ
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3. Hexadecapole phase in terms of spherical harmonics

Relationships (131) and (132) allow us to express (128) in terms of the spherical harmonics coefficients C0
4k; S

0
4k as

φ4ðr; r0Þ ¼ krg

�
R⊕

b

�
4
�
48fC0

44 cos 4ϕξ þ S044 sin 4ϕξg
�
1 − ðk · nÞ

�
1þ 1

2

b2

r2
þ 3

8

b4

r4
þ 5

16

b6

r6

��
−
150

7
fC0

43 cos 3ϕξ þ S043 sin 3ϕξg
b7

r7
þ 15

2
fC0

42 cos 2ϕξ þ S042 sin 2ϕξg
b6

r6

− 2fC0
41 cosϕξ þ S041 sinϕξg

b5

r5

�
1 −

5

4

b2

r2

�
þ 1

4
C0
40

b4

r4
ðk · nÞ

�
1 −

5

2

b2

r2

��				r
r0

; ð133Þ

where C0
4k and S04k in the rotated coordinate system using (131) and (132) are given by4

C0
40 ¼

1

64
ð9þ 20 cos 2θ þ 35 cos 4θÞC40 −

5

16
ð2 sin 2θ þ 7 sin 4θÞðC41 sinψ þ S41 cosψÞ

−
15

4
ð5þ 7 cos 2θÞ sin2 θðC42 cos 2ψ − S42 sin 2ψÞ þ 150 cos θ sin3 θðC43 sin 3ψ þ S43 cos 3ψÞ

þ 105 sin4 θðC44 cos 4ψ − S44 sin 4ψÞ;

C0
41 ¼

1

8
cos θð1þ 7 cos 2θÞðC41 cosψ − S41 sinψÞ −

3

8
ð3 sin θ þ 7 sin 3θÞðC42 sin 2ψ þ S42 cos 2ψÞ

− 45 cos θ sin2 θðC43 cos 3ψ − S43 sin 3ψÞ þ 42 sin3 θðC44 sin 4ψ þ S44 cos 4ψÞ;

C0
42 ¼ −

1

48
sin2 θð5þ 7 cos 2θÞC40 þ

1

48
ð2 sin 2θ − 7 sin 4θÞðC41 sinψ þ S41 cosψÞ

þ 1

16
ð5þ 4 cos 2θ þ 7 cos 4θÞðC42 cos 2ψ − S42 sin 2ψÞ − 10 cos3 θ sin θðC43 sin 3ψ þ S43 cos 3ψÞ

−
7

2
ð3þ cos 2θÞ sin2 θðC44 cos 4ψ − S44 sin 4ψÞ;

C0
43 ¼ −

7

80
cos θ sin2 θðC41 cosψ − S41 sinψÞ −

7

80
ð1þ 3 cos 2θÞ sin θðC42 sin 2ψ þ S42 cos 2ψÞ

þ 1

16
ð7 cos θ þ 9 cos 3θÞðC43 cos 3ψ − S43 sin 3ψÞ −

7

40
ð7 sin θ þ 3 sin 3θÞðC44 sin 4ψ þ S44 cos 4ψÞ;

C0
44 ¼

1

192
sin4 θC40 þ

1

48
cos θ sin3 θðC41 sinψ þ S41 cosψÞ −

1

32
ð3þ cos 2θÞ sin2 θðC42 cos 2ψ − S42 sin 2ψÞ

−
5

224
ð14 sin 2θ þ sin 4θÞðC43 sin 3ψ þ S43 cos 3ψÞ þ

1

64
ð35þ 28 cos 2θ þ cos 4θÞðC44 cos 4ψ − S44 sin 4ψÞ;

S041 ¼
1

32
ð2 sin 2θ þ 7 sin 4θÞC40 þ

1

8
ðcos 2θ þ 7 cos 4θÞðC41 sinψ þ S41 cosψÞ

−
3

8
ð2 sin 2θ − 7 sin 4θÞðC42 cos 2ψ − S42 sin 2ψÞ − 15ð1þ 2 cos 2θÞ sin2 θðC43 sin 3ψ þ S43 cos 3ψÞ

− 42 cos θ sin3 θðC44 cos 4ψ − S44 sin 4ψÞ;

S042 ¼
1

48
ð3 sin θ þ 7 sin 3θÞðC41 cosψ − S41 sinψÞ þ

1

8
ðcos θ þ 7 cos 3θÞðC42 sin 2ψ þ S42 cos 2ψÞ

−
5

4
ðsin θ − 3 sin 3θÞðC43 cos 3ψ − S43 sin 3ψÞ − 14 cos θ sin2 θðC44 sin 4ψ þ S44 cos 4ψÞ;

4Note that the form of Eq. (133) may be generalized to any order l. Here we present the result that captures the contribution of the
sectoral spherical harmonics C0

ll; S
0
ll that has the form

φlðr; r0Þ ¼ krg

�
R⊕

b

�
l
�
ð−1Þlð2l − 2Þ!!fC0

ll coslϕξ þ S0ll sinlϕξg
�
1 − ðk · nÞ

Xl−1
k¼0

ð2kÞ!
4kðk!Þ2

�
b
r

�
2k
��				r

r0

;

which extends our results from [12] (that were developed for the case when b ≪ r) on the case with any relations between b and r.
The relevant work is currently underway; results, when available, will be reported.
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S043 ¼ −
7

240
cos θ sin3 θC40 −

7

240
ð1þ 2 cos 2θÞ sin2 θðC41 sinψ þ S41 cosψÞ

þ 7

20
cos3 θ sin θðC42 cos 2ψ − S42 sin 2ψÞ þ

1

8
ð7 cos 2θ þ cos 4θÞðC43 sin 3ψ þ S43 cos 3ψÞ

þ 7

80
ð14 sin 2θ þ sin 4θÞðC44 cos 4ψ − S44 sin 4ψÞ;

S044 ¼ −
1

48
sin3 θðC41 cosψ − S41 sinψÞ −

1

8
cos θ sin2 θðC42 sin 2ψ þ S42 cos 2ψÞ

þ 5

112
ð7 sin θ þ 3 sin 3θÞðC43 cos 3ψ − S43 sin 3ψÞ þ

1

8
ð7 cos θ þ cos 3θÞðC44 sin 4ψ þ S44 cos 4ψÞ: ð134Þ

4. The case of an axisymmetric body

For an axisymmetric body, all the spherical harmonic coefficients except for C40 vanish, namely, C41 ¼ C42 ¼
C43 ¼ C41 ¼ S41 ¼ S42 ¼ S43 ¼ S43 ¼ 0. In this case, expressions (133) and (134) take the form

φ4ðr; r0Þ ¼
1

4
krgC40R4

⊕

�
cos 4ϕξsin4θ

�
1

b2

�
1

rðrþ ðk · rÞÞ −
ðk · rÞ
2r3

�
−
3

8

ðk · rÞ
r5

�
−
5

2
ðsin4θsin4ϕξ − 6sin2θcos2θsin2ϕξ þ cos4θÞb2 ðk · rÞ

r7

þ 10 sin θ cos θ sinϕξðcos2θ − sin2θsin2ϕξÞ
b3

r7
þ 2 sin θ cos θ sinϕξð3 − 7cos2θÞ b

r5

�				r
r0

: ð135Þ

Again, using J4 ¼ −C40 and relying on the definitions of the unit vectors m, k, s, we present (135) as

φ4ðr; r0Þ ¼
1

4
krgJ4R4

⊕

�
ð8ðs ·mÞ2ððs ·mÞ2 þ ðs · kÞ2 − 1Þ þ ððs · kÞ2 − 1Þ2Þ 1

b2

�ðk · rÞ
2r3

−
1

rðrþ ðk · rÞÞ
�

þ ð3ðs ·mÞ2ððs ·mÞ2 þ ðs · kÞ2 − 1Þ þ ðs · kÞ2ð3 − 4ðs · kÞ2ÞÞ ðk · rÞ
r5

þ 5

2
ðððs ·mÞ2 − ðs · kÞ2Þ2 − 4ðs ·mÞ2ðs · kÞ2Þb2 ðk · rÞ

r7

þ 10ðs ·mÞðs · kÞððs · kÞ2 − ðs ·mÞ2Þ b
3

r7
þ 2ðs ·mÞðs · kÞð3 − 7ðs · kÞ2Þ b

r5

�				r
r0

; ð136Þ

which agrees with the relevant J4-part of (C9).

D. Tidal and spin contributions to the phase shift

Considering signal propagation in the vicinity of the Earth, we can now integrate the contributions to the total phase shift
from the remaining two terms present in (66), namely the tidal terms and the Earth’s vector potential (6), that are given
by (5) and (6), correspondingly. Integration of these terms along the light path is straightforward, yielding the following
result for the tidal term:

φtidal
G ðxÞ ¼ −k

Z
τ

τ0

2

c2
utidalE ðτ0Þdτ0 ≃ −k

X
b≠E

GMb

c2r3bE

Z
τ

τ0

ð3ðnbE · xÞ2 − x2Þdτ0

≃ k
X
b≠E

GMb

c2r3bE
fð3ðnbE ·mÞ2 − 1Þb2ðk · rÞ þ 3ðnbE ·mÞðnbE · kÞbðk · rÞ2 þ 1

3
ð3ðnbE · kÞ2 − 1Þðk · rÞ3gjrr0

≈ k
X
b≠E

GMb

c2r3bE

1

3
ð3ðnbE · kÞ2 − 1Þððk · rÞ3 − ðk · r0Þ3Þ: ð137Þ

Similarly, we integrate the phase term due to the Earth’s rotation:
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φS
GðxÞ ¼ −k

Z
τ

τ0

4

c3
ðkϵwϵ

Eðτ0ÞÞdτ0 ¼ −k
2GM⊕

c3
ðS⊕ · ½k × b�Þ

Z
τ

τ0

dτ0

r3
¼ −k

2GM⊕

c3
ðS⊕ · ½k ×m�Þ

b
ðk · ðn − n0ÞÞ: ð138Þ

We can now evaluate these terms for a typical GPS orbit with altitude of dGPS ¼ 20, 000 km, so that r0 ¼ R⊕ þ dGPS.
The tidal term from (137) is

φtidal
G ðxÞ ≈ k

X
b≠E

GMb

c2r3bE

1

3
ð3ðnbE · kÞ2 − 1Þððk · rÞ3 − ðk · r0Þ3Þ

¼ k
X
b≠E

GMb

3c2
r30
r3bE

ð3ðnbE · kÞ2 − 1Þ
�
r3

r30
ðk · nÞ3 − ðk · n0Þ3

�
≈ kcð4.07 × 10−17 sþ 1.84 × 10−17 sÞ; ð139Þ

where the two numerical contributions are from the moon and the Sun, respectively. Along similar lines, the phase
contribution from the Earth’s rotation (138) may be at most

φS
GðxÞ ¼ −k

2GM⊕

c3
ðS⊕ · ½k ×m�Þ

b
ðk · ðn − n0ÞÞ ≈ kc

�
R⊕

b

�
ðk · ðn − n0ÞÞð1.52 × 10−17 sÞ; ð140Þ

which may be insignificant in many scenarios, though its magnitude can be non-negligible for vertical transmissions.

E. Evaluating the magnitudes of the various
multipole terms

Although we were able to develop analytical expressions
for the gravitational phase shifts induced by the l ¼ 2, 3, 4
spherical harmonics (100), (116), and (133), correspond-
ingly, we recognize that based on the values of the spherical
harmonic coefficients shown in Table I, their individual
contributions will be very different.
The relative magnitudes of individual terms depend

significantly on the location of the transmitter and receiver
and the direction of transmission. The significance of
these terms and their contributions to the phase shift is
application-dependent. As a general observation, we note
that the contributions of all but the quadrupole zonal
harmonic C20 ¼ −J2 are small, with typical magnitudes
of kcOð10−14sÞ or less. Therefore, for many applications
accounting only for J2 and C22, S22 may be sufficient,
ignoring most of the tesseral, sectoral, and higher-order
terms.
Evaluating the phase delay using a ground-based station

for a variety of scenarios yielded the results shown in Fig. 2.
As expected, the largest contribution is due to the quadru-
pole moment, but it remains small, never exceeding
∼0.01 ps in magnitude. This can also be confirmed ana-
lytically for specific cases, as shown in Appendix D. The
contributions of the octupole and hexadecapolemoments are
much less, measured in hundredths of femtoseconds. For
consistency, the cases depicted in Fig. 2 all involve ground-
based stations. To assess the delay between two distant
stations in space, the phase delays shown in the top row of
images of Fig. 2must bemultiplied by two, to account for the
incoming and outgoing leg of a transmission grazing the
Earth’s surface (similar to the situation discussed in [44]).

For signal paths with a larger impact parameter, the phase
delay decreases, so the curves in the top row of Fig. 2
represent upper limits for such transmissions.
We may wonder why even the quadrupole contribution

remains small, perhaps surprisingly small, in all the cases
considered. When we look at Eqs. (100), (116), and (133),
there are three competing factors at work, which are best
understood if we recall that ultimately, all variable terms in
these expressions, including the impact parameter b defined
in (60), are functions of the vector quantities r0 and r, and
that moreover, these expressions, developed by integrating
the eikonal equation, are themselves differences of values
evaluated at r and r0.
To wit, when b is small, it implies a near vertical

transmission. In these cases, terms with b in the numerator
become insignificant, whereas ðk · nÞ ≃ 1. Looking at, e.g.,
(100), we can see how as a result, all terms vanish, or nearly
vanish from the result. Conversely, a large b implies
transmission in the horizontal direction. Again looking at
(100), this implies that ðk · nÞ ≪ 1. Of the remaining
terms, the coefficient 1 in the first term of (100) does not
depend on r so it is canceled when we compute the
difference between r and r0. What remains, the namely
the C0

21 and S021 terms, are small to begin with as these are
the terms that include no contribution from the largest
spherical harmonic coefficient C20. As a result of this
interplay between the value of b, the value of ðk · nÞ, and
the difference between r and r0, the magnitude of Eq. (100)
remains small. Similar behavior is exhibited by the octu-
pole and hexadecapole expressions (116) and (133).
While these contributions are much too small to affect

time synchronization with present-generation clocks, they
will likely become significant in the near future, as clocks
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of even greater accuracy are deployed. Furthermore, while
these phase shifts are insignificant for time synchroniza-
tion, they represent a substantial contribution for phase-
coherent transmissions and as such, they will have to be
accounted for in any implementations or experiments
that use phase coherent infrared or shorter wavelength
signals. This includes experiments that rely on optical
interferometry with signal paths in the gravitational field of
the Earth.
Although the formalism that we introduced on these

pages is aimed primarily at estimating the gravitational
phase delay in the vicinity of the Earth, the methods are
generic and can be readily applied to other gravitating
bodies. We looked, in particular, at the quadrupole con-
tribution to the Shapiro delay for a signal grazing the Sun.
We found that if such a signal travels in the solar equatorial
plane, the maximum phase delay due to the solar quadru-
pole moment (which is very small, J2 ≃ −2.3 × 10−7 only)
is less than 1.1 ps. The Sun has no measured octupole
moment (it is “north-south symmetric” in addition to
axisymmetry) and its hexadecapole moment contributes
even less, at the sub-femtosecond level.
Finally, we looked at Jupiter, anticipating the possibility

that future orbiters at Jupiter or one of its moons will
utilize precision signals grazing the Jovian surface. Jupiter
is not only massive but has substantial oblateness
(J2 ¼ −1.474 × 10−2) and although it, too, is north-south
symmetric, its hexadecapole moment remains substantial as

well. Indeed, we find that for a transmission grazing
Jupiter’s surface in its equatorial plane, the cumulative
phase delay due to the planet’s quadrupole moment can
reach 70 ps, and even the hexadecapole moment can
contribute more than 2 ps.
Coming back to the Earth, we also assessed the magni-

tudes of contributions due to spin and solar and lunar tides.
For realistic signal paths within the vicinity of the
Earth, these contributions remain very small: tidal contri-
butions are of Oð0.01 psÞ, whereas the spin contribution is
less than 0.1 fs. Comparatively, tidal contributions are
approximately of the same magnitude as the contribution of
the Earth’s quadrupole moment, whereas the spin contri-
bution is on the level of the octupole or hexadecapole
moments.

F. Relativistic gravitational phase shift

Based on the analysis in the earlier sections, we can now
write the post-Minkowskian expresison for the phase of an
EMwave that propagates in the vicinity of the extended and
rotating gravitating body, such as the Earth. In the body’s
proper reference frame (a formulation that accounts for
the presence of the external gravity field produced by the
external bodies of the N-body system [8,10]), collecting all
the appropriate contributions coming from the Earth’s mass
distribution φE

G, Earth’s rotation φS
G, and external gravity

φtidal
G , the total phase Eq. (55) has the form

FIG. 2. The quadrupole [left panel, values in picoseconds, from (100) and (101)] and the octupole/hexadecapole [right panel, values in
femtoseconds, from (116) and (117) and (133), (134)] phase delay for various configurations involving a GPS satellite and a station on
the surface of the Earth. Clockwise from top left: Transmitter on the horizon as seen by a receiving station at the equator at 0° and 45°
longitude (the two quadrupole curves are identical) in various directions from south (−90°) through east (0°) to north (90°); transmitter
on the horizon, receiving station in the equatorial plane at various longitudes (the small modulation of the quadrupole is a numerical
artifact); transmission from various celestial latitudes in the plane of the prime meridian to a receiver at the intersection of the equator
and the prime meridian; and transmission from various celestial longitudes in the equatorial plane to a receiver at the intersection of the
equator and the prime meridian.
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φðt;xÞ ¼ φ0þ
Z

kmdxmþφE
Gðt;xÞþφS

Gðt;xÞþφtidal
G ðt;xÞ

þOðG2Þ: ð141Þ

We now have the ability to evaluate this expression at
previously unavailable levels of accuracy using expressions
for the quadrupole term, φ2, from (100) and (101), for the
octupole term φ3, from (116) and (117), for the hexadeca-
pole term, φ4, from (133) and (134), and expressions (137)

and (138) for the tidal, φtidal
G , and rotational, φS

G, terms,
correspondingly.
The full available level of accuracy with all the terms

shown in (141), however, may be excessive in practical
cases. For instance, taking into account the smallness of the
spherical harmonics coefficients (as seen in Table I), and
assuming a time transfer accuracy of 10−12 s is acceptable,
the result can be given as

φðt;xÞ ¼ φ0 þ k

�
cðt − t0Þ − k · ðr − r0Þ − rg ln

�
rþ ðk · rÞ
r0 þ ðk · r0Þ

�
þ 1

2
rg

�
R⊕

b

�
2

ðcos 2ϕξ½C20sin2θ þ 2ð1þ cos2θÞðS22 sin 2ψ − C22 cos 2ψÞ�

− 4 sin 2ϕξ½cos θðS22 cos 2ψ þ C22 sin 2ψÞ�Þðk · ðn − n0ÞÞ
�
þ kcOð≪ 0.01 psÞ; ð142Þ

where, in accordance with Table I, we retained only the largest spherical harmonics contributing to the quadrupole term φ2.
As discussed in Sec III E, the angles θ, ψ and ϕξ are uniquely defined in terms of the GCRS positions of the transmitter, r0,
and the receiver, r. (See the discussion of the analytical treatment of the relevant terms that is given in Appendix D). The
order terms are due to the omitted quadrupole and higher-order multipole contributions.
From the result (142), the total time of the propagation of an electromagnetic signal from the point ðt0; r0Þ (transmitter) to

the point ðt; rÞ (receiver) with the help of (D2) and (D6) is given by the following expression:

t − t0 ¼
jr − r0j

c
þ 2GM⊕

c3

�
ln
�
rþ r0 þ jr − r0j
rþ r0 − jr − r0j

�
þ
�
cos 2ϕξ

�
ð1þ cos2θÞðC22 cos 2ψ − S22 sin 2ψÞ −

1

2
C20sin2θ

�
þ 2 sin 2ϕξ½cos θðC22 sin 2ψ þ S22 cos 2ψÞ�

�
R2
⊕

rr0

�
1

r
þ 1

r0

� jr − r0j
1þ ðn · n0Þ

�
þOð≪ 0.01 psÞ; ð143Þ

where jr − r0j is the usual Euclidean distance between the
points of emission, r0ðt0Þ, and reception, rðtÞ. The loga-
rithmic term is the well-known Shapiro time delay that may
contribute up to 42.3 ps for terrestrial applications, while the
terms with C20, C22, and S22 spherical harmonics is the
contribution of the Earth’s quadrupole moment to the
relativistic time delay induced by the gravitational field of
the extended Earth contributing periodic terms with magni-
tude of up to 0.01 ps. Due to their smallness, contributions of
other multipole terms in (141) were neglected.
Equation (143) extends the formulation for the general-

relativistic time delay. In addition to the classic Shapiro
gravitational time delay [26] due to a mass monopole
(represented by the logarithmic term), it also includes
contributions due to quadrupole moment of the extended
Earth, C20 ¼ −J2 and C22, S22 spherical harmonics (see
Table I). We exceeded our stated goal of modeling the delay
to picosecond accuracy, as the terms due to the quadrupole
moment contribute at the subpicosecond level, at
Oð0.01 psÞ. Although these terms may not be relevant
to current generation clocks, as more advanced future-
generation clocks become available, these contributions

will also become significant. In that case, additional terms
may be included from the preceding derivation if even a
greater accuracy is required.

V. CONCLUSIONS AND RECOMMENDATIONS

Satellites in low-Earth orbit are affected by a broad
spectrum of perturbations due to the Earth’s gravity field.
The largest of these perturbations are produced by theEarth’s
oblateness, J2. Beyond the oblateness, there exist much
smaller undulations of higher order in the gravity field. These
variations produce lesser, but certainly observable effects
on low-Earth orbiters [24]. The same gravity perturbations
affect clocks and light propagation in the Earth’s vicinity.
However, most of the models capture only relativistic
corrections due to the Earth’s monopole potential, such as
theShapiro phasedelay term—the largest among the relevant
gravitational effects. Beyond that, only the contribution of
the Earth’s oblateness, characterized by J2 ¼ −C20, was
accounted for (e.g. [7,38,39,49]). No models capturing the
contributions of other multipole moments present in the
Earth’s gravity potential were available.
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In this paper, we addressed this challenge with the aim to
obtain results in terms of the spherical harmonics. We
studied the transformation between proper and coordinate
time and the propagation of an EM wave in the vicinity of a
gravitating body with a gravitational potential that deviates
from a perfect monopole, such as the Earth. We found that
at the present level of accuracy, more and more terms from
the Earth’s gravitational potential must be included in the
model formulations. In fact, the lower the orbit of a
satellite, more terms are needed. Also, for high orbits,
tidal gravity from the moon (and soon, that of the Sun)
becomes significant and needs to be accounted for.
To study light propagation in the vicinity of the Earth, we

represented the gravitational potential in terms of sym-
metric trace-free (STF) Cartesian tensor mass multipole
moments. The multipole expansion is one of the most
useful tools of physics, but its use in general relativity is
difficult because of the nonlinearity of the theory and the
tensorial character of the gravitational interaction [48,52].
STF tensors offer a mathematically equivalent representa-
tion of the multipole mass moments of a gravitating body,
but with significant practical advantages over spherical
harmonics. First, the tensorial nature of the STF represen-
tation makes it possible to express relationships in a
coordinate system independent fashion, leading to a
remarkable form invariance that is preserved even in
coordinate representations that are rotated relative to each
other. Second, the relationship between the spherical
harmonic coefficients and the STF tensor components
expressed in a Cartesian coordinate system is linear and
nondegenerate, which means it is always invertible. Finally,
and perhaps most significantly, utilizing the STF tensor
representation of the mass multipole moments allowed us
to integrate the eikonal equation to all STF orders l.
With the solution of the eikonal equation at hand, we

demonstrated a straightforward procedure to obtain the
Cartesian STF components from spherical harmonic coef-
ficients. We explicitly carried out this procedure in the
cases of the quadrupole, octupole, and hexadecapole
(l ¼ 2, 3, 4) cases. In all these cases, the form invariance
of the result made it possible to express the corresponding
phase shift in a remarkably simple, elegant form in terms of
rotated spherical harmonic coefficients. The mechanics of
the rotation, in turn, can be carried out by first obtaining
STF tensor components in the original coordinate system,
performing the rotation next, and finally by solving a linear
system of equations that has the same form in the unrotated
and rotated coordinate frames. Clearly, the same approach
may be used to extend our results to any order l. The
resulting equations are compact even for higher values of l,
and are directly actionable.
Note that in this paper we dealt only with the STF mass

moments that are used to represent the scalar external
gravitational potential (4) and the relevant scalar spherical
harmonics. The same approach may be used to consider the

contributions from the vector potential due to body’s rota-
tion (6), and the relevant STF current moments and vector
spherical harmonics. As our objective was to consider
measurements in the Earth’s vicinity, any contribution from
theEarth’s vector potential is currently negligible, butmay be
addressed with the same tools presented here.
The numerical magnitudes of these corrections are small.

Considering present-generation clocks, only the quadru-
pole term offers a significant contribution and only insofar
as proper time to coordinate time conversions are con-
cerned. However, the gravitational phase delay due to the
quadrupole and higher order terms may become relevant
with next generation clocks. These terms can also be very
significant for phase coherent signaling at infrared or
shorter wavelengths. We also applied our formalism for
signals traversing in the vicinity of the Sun and, especially,
Jupiter, and found more significant contributions, which
may in the foreseeable future become relevant for deep
space precision navigation and observations in the solar
system.
The results presented here are new. They offer a

comprehensive model for the gravitational phase shift of
a EM wave as it propagates in the gravitational field of the
extended Earth. As the performance of new generation of
precision clocks increases, such results may have a wide
range of practical applications, including clock synchro-
nization, frequency transfer and interferometry. They may
also lead to new uses including relativistic geodesy [53],
quantum communication links [54,55], and various tests of
fundamental physics [56]. These and other possibilities are
currently being investigated. Results, when available, will
be reported elsewhere.
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APPENDIX A: CORRESPONDENCE
BETWEEN THE STF MASS MOMENTS

AND SPHERICAL HARMONICS

For practical applications, the potential UðrÞ is typically
expanded in terms of spherical harmonics:

UðrÞ ¼ GM
r

�
1þ

X∞
l¼2

Xþl

k¼0

�
R
r

�
l
Plkðcos θÞ

× ðClk cos kψ þ Slk sin kψÞ
�
þOðc−4Þ; ðA1Þ
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where Plk are the associated Legendre polynomials [18],
while Clk and Slk are the normalized spherical harmonic
coefficients that characterize nonspherical contributions to
the gravitational field.
To derive the relations between the Cartesian and

spherical quadrupole (l ¼ 2) moments explicitly, we can
express the spherical harmonics in terms of Cartesian
coordinates. For that we use (4) and write

U½2�ðrÞ ¼ G
r3

ðP20C20 þ P21ðC21 cosψ þ S21 sinψÞ
þ P22ðC22 cos 2ψ þ S22 sin 2ψÞÞ: ðA2Þ

Using a spherical coordinate system ðx ¼ r sin θ cosψ ;
y ¼ r sin θ sinψ ; z ¼ r cos θÞ, we have r2P20 ¼ ð2z2 −
x2 − y2Þ=2, r2P21 cosψ ¼ 3xz, r2P21 sinψ ¼ 3yz,
r2P22 cos2ψ ¼3ðx2−y2Þ, r2P22 sin2ψ ¼6xy. Substituting
these expressions in (A2), we get

U½2�ðrÞ ¼ GM
r5

�
C20

1

2
ð2z2 − x2 − y2Þ þ 3C21xzþ 3S21yz

þ 3C22ðx2 − y2Þ þ 6S22xy

�
: ðA3Þ

From (71), we have the same quantity expressed via the
components of the STF quadrupole moment T habi:

U½2�ðrÞ ¼ GM
3T habi

2r5
xaxb

¼ GM
3

2r5
ðT 11x2 þ 2T 12xyþ 2T 13xz

þ 2T 23yzþ T 22y2 þ T 33z2Þ: ðA4Þ

Equating the terms with the same powers of x, y, z
between the from of the potential in terms of spherical
harmonics present in (A3) and that expressed via the STF
mass quadrupole in (A4) yields the following relations:

T 11 ¼
�
−
1

3
C20 þ 2C22

�
R2; T 12 ¼ 2S22R2;

T 22 ¼
�
−
1

3
C20 − 2C22

�
R2; T 13 ¼ C21R2;

T 33 ¼
2

3
C20R2; T 23 ¼ S21R2: ðA5Þ

Following the same approach, we can establish the
corresponding relationships between STF multipole
moments at any order l and the appropriate spherical
harmonics coefficients, see (113) and (129), and the relevant
discussion in [12].

APPENDIX B: USEFUL RELATIONS
FOR SOME STF ORDERS

We derive several low order terms in (77). First, we
recognize that with k being constant, the two-dimensional
vector b and the one-dimensional quantity τ, from (61) to
(62), may be treated as two independent variables, yielding
dxa ¼ dba þ kadτ and also ∂=∂xa ¼ ∂=∂ba þ ka∂=∂τ,
where differentiation with respect to b is carried out in
two dimensions only, which is indicated by the hatted
notation. Then, to compute the needed partial derivatives in
(77), with respect to the vector of the impact parameter,b∂a ≡ ∂=∂ba ≡ ð∂=∂bx; ∂=∂by; 0Þ in our chosen Cartesian
coordinate system, we may formally write

∂xa

∂xb
¼ δab ¼

�b∂b þ kb
∂

∂τ

�
fba þ kaτ þOðrgÞg

¼ b∂bba þ kakb þOðrgÞ: ðB1Þ
By rearranging the terms in this identity, we obtain the
following useful expression (see also [48,49]):

b∂bba ¼ δab − kakb: ðB2Þ
This result essentially is the projection operator onto the
plane perpendicular to k, namely Pab ¼ δab − kakb; this
plane, given either GCRS (80) or light ray (82) parametriza-
tions, is the plane of the impact parameter b and where ba is
the a-th component of the vector impact parameter.
To evaluate (77), we need to compute the following sets

of derivatives:

∂ha1…∂ali ln k

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ2
p

þ τ
�

and

Xl
p¼1

l!
p!ðl − pÞ! kha1…kap∂apþ1

…∂ali

�
∂
p−1

∂τp−1
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ2
p

�
:

ðB3Þ
The first type of the derivatives needed to compute the

terms with l ¼ 1, 2, 3, 4 are

b∂a ln kð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ2
p

þ τ

baffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p ; ðB4Þ

b∂2ab ln kð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ2
p

þ τ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
�
Pab −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τ

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
�
babb

�
; ðB5Þ
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b∂3abc lnkð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τÞ ¼ −

Pabbc þPacbb þPbcba
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τÞðb2 þ τ2Þ

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ2
p

þ τ
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ2
p

�
þ babbbc
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τÞðb2 þ τ2Þ32

�
2

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τÞ2 þ

3

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p þ 3

b2 þ τ2

�
; ðB6Þ

b∂4abcd ln kð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τÞ ¼ −

ðPabPcd þ PacPbd þ PadPbcÞ
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τÞðb2 þ τ2Þ

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ2
p

þ τ
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ2
p

�
þ ðPabbcbd þ Pacbbbd þ Pbcbabd þ Padbbbc þ Pbdbabc þ PcdbabbÞ

×
1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τÞðb2 þ τ2Þ32

�
2

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τÞ2 þ

3

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p þ 3

b2 þ τ2

�
−

babbbcbd
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τÞðb2 þ τ2Þ2

�
6

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τÞ3 þ

12

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p

þ 15

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τÞðb2 þ τ2Þ þ

15

ðb2 þ τ2Þ32
�
: ðB7Þ

We also need the following derivatives for l ¼ 2, 3, 4:

X2
p¼1

2!

p!ð2 − pÞ! kha1…kap
b∂apþ1

…b∂a2i ∂p−1
∂τp−1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p ¼ −
2kabb þ τkakb
ðb2 þ τ2Þ32 ; ðB8Þ

X3
p¼1

3!

p!ð3 − pÞ! kha1…kap
b∂apþ1

…b∂a3i ∂p−1
∂τp−1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p

¼ 3ka

�
3bbbc

ðb2 þ τ2Þ52 −
Pbc

ðb2 þ τ2Þ32
�
þ 9kakbbcτ

ðb2 þ τ2Þ52 þ kakbkc

�
3τ2

ðb2 þ τ2Þ52 −
1

ðb2 þ τ2Þ32
�
; ðB9Þ

X4
p¼1

4!

p!ð4 − pÞ! kha1…kap
b∂apþ1

…b∂a4i ∂p−1
∂τp−1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p

¼ 4ka

�
3

ðb2 þ τ2Þ52 ðPdcbb þ Pbdbc þ PbcbdÞ −
15bbbcbd
ðb2 þ τ2Þ72

�
þ 18kakbτ

�
Pcd

ðb2 þ τ2Þ52 −
5bcbd

ðb2 þ τ2Þ72
�

þ 4kakbkc

�
3bd

ðb2 þ τ2Þ52 −
15τ2bd

ðb2 þ τ2Þ72
�
þ kakbkckd

�
9τ

ðb2 þ τ2Þ52 −
15τ3

ðb2 þ τ2Þ72
�
: ðB10Þ

Clearly, the same expressions may be used to describe the
terms that depend on τ0.

APPENDIX C: GRAVITATIONAL PHASE DELAY
FOR AN AXISYMMETRIC BODY

In the case of an axisymmetric body (i.e., the Sun), its
external gravitational potential is reduced to the k ¼ 0
zonal harmonics, where we keep on the terms of Jl ¼
−Cl0 with all other terms in the expression for the potential
(4) vanish, i.e., Clk ¼ Slk ¼ 0. As a result, the gravita-
tional potential of an axisymmetric body may be expressed

in terms of the usual dimensionless multipole moments Jl
(see discussion in [57,58]):

UðxÞ ¼ GM
r

�
1 −

X∞
l¼2

Jl

�
R
r

�
l
Pl

�
k3 · x
r

��
þOðc−4Þ; ðC1Þ

where k3 denotes the unit vector along the x3-axis, Pl are
the Legendre polynomials. Furthermore, in the case of
an axisymmetric and rotating body with “north-south

SPHERICAL HARMONICS REPRESENTATION OF THE … PHYS. REV. D 107, 104031 (2023)

104031-31



symmetry,” the expression (C1) contains only the even
moments or l ¼ 2; 4; 6; 8… [57]. Below, we will not
impose the north-south symmetry restriction and will keep
the terms of all the orders l.
Following [59], we take into account the identity

∂
l

∂zl

�
1

r

�
¼ ð−1Þll!

r1þl Pl

�
k3 · x
r

�
; z ¼ x3; ðC2Þ

and present U as the following expansion in a series of
derivatives of 1=r:

UðxÞ ¼ GM

�
1

r
−
X∞
l¼2

ð−1Þl
l!

JlRl ∂
l

∂zl

�
1

r

��
þOðc−4Þ: ðC3Þ

As we shall see below, this form is much more convenient
for the computation of integrals involving U.
Here we develop an expression for the eikonal phase in

the case of an axisymmetric body, with its potential given
by (C3). In this case, the decomposition of the post-
Newtonian potential takes the from

2U
c2

¼ rg

�
1

r
−
X∞
l¼2

ð−1Þl
l!

JlRl ∂
l

∂sl

�
1

r

��
þOðr2gÞ: ðC4Þ

Following the approach demonstrated in [44] (see the
Appendix therein), we compute the leading term of this
expansion. For that, we define the vector s to be a unit
vector in the direction of the axis of rotation. Remembering
that r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þOðrgÞ from (62), we evaluate direc-

tional derivatives ∂=∂s along s ¼ k3, which have the form

∂

∂s
¼ ðs · ∇Þ ¼

�
s ·

∂

∂r

�
: ðC5Þ

This relation allows us to compute the relevant partial
derivatives for the leading terms in (C3):

∂

∂s
1

r
¼ −

ðs · rÞ
r3

;
∂
2

∂s2
1

r
¼ 3ðs · rÞ2

r5
−

1

r3
;

∂
3

∂s3
1

r
¼ −3

�
5ðs · rÞ3

r7
−
3ðs · rÞ
r5

�
; ðC6Þ

∂
4

∂s4
1

r
¼ 3

�
35ðs · rÞ4

r9
−
30ðs · rÞ2

r7
þ 3

r5

�
: ðC7Þ

Using these expressions in (C4) and defining rg ¼
2GM⊕=c2, we have

2UEðb; τÞ
c2

¼ rg

�
1

r
−
�
J2R2

⊕
1

2

�
3ðs · rÞ2

r5
−

1

r3

�
þ J3R3

⊕
1

2

�
5ðs · rÞ3

r7
−
3ðs · rÞ
r5

�
þ J4R4

⊕
1

8

�
35ðs · rÞ4

r9
−
30ðs · rÞ2

r7
þ 3

r5

�
þ
X∞
l¼5

ð−1Þl
l!

JlRl
⊕

∂
l

∂sl

�
1

r

���
: ðC8Þ

This expression represents the gravitational potential in terms of the zonal harmonics projected on the trajectory of the
photon propagation. We substitute (C8) into expression (66) and integrate it. As a result, we have the following expression
for the gravitational phase shift induced by the lowest order gravitational multipoles, i.e., l ¼ 0, 2, 3, 4:

φE
Gðr; r0Þ ¼ −k

Z
τ

τ0

2

c2
UEðτ0Þdτ0 ¼ −krg

�
ln

�
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�
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1
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1

2b
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þ 3

2
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2
ðs ·kÞððs ·kÞ2 − 3ðs ·mÞ2Þb

2
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2
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Note that a similar result for the quadrupole J2 term was
obtained in [7,38,39,49]. Expression (C9) extends all the
previous computations to the higher order terms including
J3 and J4. In fact, this result is new. It generalizes a similar
result obtained in [44] (see the Appendix therein) that was
derived for all orders of the zonal harmonics, l, in the case
when the transmitter and receiver are at a very large
distance from the gravitating body, b ≪ r.

APPENDIX D: ANALYTICAL ESTIMATES OF
GRAVITATIONAL PHASE SHIFT TERMS

Contributions from the Earth’s monopole (i.e., the
Shapiro term) and quadrupole moments to the overall
gravitational phase shift, as given by (141), can also be
estimated analytically in specific cases.

1. The monopole contribution to the
gravitational phase shift

Considering the Shapiro term in the gravitational phase
shift, we rely on the following exact relationships:

rþ ðk · rÞ ¼ ðjr − r0j þ rÞ2 − r20
2jr − r0j

;

r0 þ ðk · r0Þ ¼
r2 − ðjr − r0j − r0Þ2

2jr − r0j
; ðD1Þ

which yield the following form for the Shapiro phase shift
in (142):

φ0ðr; r0Þ ¼ krg ln

�
rþ ðk · rÞ
r0 þ ðk · r0Þ

�
¼ k

2GM
c2

ln

�
rþ r0 þ jr − r0j
rþ r0 − jr − r0j

�
: ðD2Þ

Expression (D2) can be used to conveniently evaluate
two transmission scenarios. In the case of a horizontal
transmission, when r ≃ r0 and ðn · n0Þ ¼ cos 2α, thus,
jr − r0j ≃ 2r0 sin α, the following approximation for the
associated gravitational time delay (derived as usual
Δt ¼ φ0ðr; r0Þ=kc) in the case of small α is valid:

2GM⊕

c3
ln

�
rþ r0 þ jr − r0j
rþ r0 − jr − r0j

�
≃
4GM⊕

c3
α ≃ α5.92 × 10−11 s: ðD3Þ

Similarly, in the case of a vertical transmission from a GPS
spacecraft at the zenith to a ground-based receiver, when
r ¼ r0 − h with h ≫ R⊕, and ðn · n0Þ ≃ 1, and, thus,
jr − r0j ≃ h, from (D2) we have

2GM⊕

c3
ln

�
rþ r0 þ jr − r0j
rþ r0 − jr − r0j

�
≃
2GM⊕

c3
ln
�
1þ h

R⊕

�
≃ 4.23 × 10−11 s: ðD4Þ

The estimates (D3) and (D4) demonstrate the significance
of the Shapiro term when picosecond accuracy is desired.

2. The quadrupole term in the
gravitational phase shift

We consider the l ¼ 2 contribution to the relativistic
phase given by (100) and, by explicitly expanding each of
the terms, we present it in the following equivalent form:

φ2ðr; r0Þ ¼ −krg
�
2fC0

22 cos 2ϕξ þ S022 sin 2ϕξg
�
R⊕

b

�
2

ðk · ðn − n0ÞÞ

þ
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22 cos 2ϕξ þ S022 sin 2ϕξ −

1

2
C0
20

�
R2
⊕

�
k ·

�
n
r2

−
n0

r20

��
− fC0

21 cosϕξ þ S021 sinϕξgR2
⊕b

�
1

r3
−

1

r30

��
: ðD5Þ

We begin by evaluating the first term in this expression. For that, using the definitions for the vectors k and b from (80),
we obtain the following expression for the multiplier of the first term in (D5) that is explicitly expressed as a function of the
transmitter and receiver position vectors:

�
R⊕

b

�
2

ðk · ðn − n0ÞÞ ¼
R2
⊕

rr0

�
1

r
þ 1

r0

� jr − r0j
1þ ðn · n0Þ

≡ R2
⊕

rr0

�
1

r
þ 1

r0

� ðrþ r0Þ
1þ ðn · n0Þ

�
1 −

2rr0
ðrþ r0Þ2

ð1þ ðn · n0ÞÞ
�1

2

; ðD6Þ

where for GPS transmissions in the Earth’s vicinity expression ðn · n0Þ is never vanishes, i.e., ðn · n0Þ ≠ 0.
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We can now evaluate expression (D6) for two specific
transmission scenarios. In the case of a horizontal trans-
mission, the following approximation for small α is valid:�
R⊕

b

�
2

ðk · ðn − n0ÞÞ ≃
R2
⊕

r20

4 sin α
1þ cos 2α

≃
R2
⊕

r20
2α: ðD7Þ

This expression may be used to estimate the magnitude of
the relevant contribution to (D5):

2krgfC0
22 cos2ϕξþS022 sin2ϕξg

�
R⊕

b

�
2

ðk · ðn−n0ÞÞ

¼ 4krgfC0
22 cos2ϕξþS022 sin2ϕξg

αR2
⊕

ðR⊕þhÞ2
≲kcðαfC0

22 cos2ϕξþS022 sin2ϕξg6.80×10−12 sÞ: ðD8Þ

Given the fact that the terms C0
22 and S022 are at least

∼1.08 × 10−3, this results suggest that the relevant con-
tribution of the term (D8) is much less than
α7.67 × 10−15 s, which is too small to consider.
Similarly, in the case of a vertical transmission, we have�
R⊕

b

�
2

ðk ·ðn−n0ÞÞ≃
1

2

�
1þ R⊕

R⊕þh

�
h

R⊕þh
≃
1

2
; ðD9Þ

which yields

2krgfC0
22 cos2ϕξþS022 sin2ϕξg

�
R⊕

b

�
2

ðk · ðn−n0ÞÞ

≃krgfC0
22 cos2ϕξþS022 sin2ϕξg

≲kcðfC0
22 cos2ϕξþS022 sin2ϕξg2.96×10−11 sÞ: ðD10Þ

Similarly to (D8), taking into account the magnitudes of the
terms C0

22 and S022 from (101), this term is evaluated would
contribute to the time delay the term on the order of
∼8.00 × 10−15 s, which is also too small to consider. In
fact, considering various transmission architectures and the
angles θ and ψ involved in the definitions of C0

22 and S022,

from (101), we estimate that both of these transmission
regimes result in small corrections on the order of ∼0.01 ps.
Now we will evaluate the second term in (D5). Again

using the expression for k from (80) and expressing
jr − r0j, we have the following expression for the multiplier
of the second term in (D5):

R2
⊕

�
k ·

�
n
r2

−
n0

r20

��
¼ R2

⊕

rr0

1þ


1 − r2þr2

0

rr0

�
ðn · n0Þ


1 − 2rr0
ðrþr0Þ2 ð1þ ðn · n0ÞÞ

�1
2

:

ðD11Þ

Evaluating this result for the case of horizontal trans-
mission, we see that (D11) yields the approximate expres-
sion that is identical to (D7). In the case of vertical
transmission, the magnitude of the result is twice that of
(D11). Thus, we can see that the contribution in (D5) from
both transmission cases would be below 10−15 s, which is
negligible.
Finally, relying on the same approach as above by using

expressions for the vectors k and b from (80), we see
that b ¼ j½r × r0�j=jr − r0j, that allows us to develop
the following expression for the multiplier of the third
term in (D5):

R2
⊕b

�
1

r3
−

1

r30

�
¼ R2

⊕
rr0

rþ r0

j½n × n0�j

1 − 2rr0

ðrþr0Þ2 ð1þ ðn · n0ÞÞ
�1

2

×

�
1

r3
−

1

r30

�
: ðD12Þ

We can see that this expression provides a negligible
contribution for both transmission cases either horizontal
or vertical. For the horizontal transition, this is due to the
fact that for r ≃ r0, we have r−3 − r−30 ≃ 0. In the case of the
vertical transmission, ðn · n0Þ ≃ 1 and thus ½n × n0� ≃ 0. In
all the intermediate cases, the contribution of this term to
(D5) is well below 10−15 s and, thus, this term may be
neglected for present day terrestrial GPS applications.
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