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Using numerical methods, we examine the dynamics of nonlinear perturbations in the expanding time
direction, under a Gowdy symmetry assumption, of Friedmann-Lemaître-Robertson-Walker (FLRW) fluid
solutions to the Einstein-Euler equations with a positive cosmological constant Λ > 0 and a linear equation
of state p ¼ Kρ for the parameter values 1=3 < K < 1. This paper builds upon the numerical work in
[arXiv:2209.06982] in which the simpler case of a fluid on a fixed FLRW background spacetime was
studied. The numerical results presented here confirm that the instabilities observed in [arXiv:2209.06982]
are also present when coupling to gravity is included as was previously conjectured in [A. D. Rendall,
Asymptotics of solutions of the Einstein equations with positive cosmological constant, Ann. Henri
Poincaré 5, 1041 (2004); J. Speck, The stabilizing effect of spacetime expansion on relativistic fluids with
sharp results for the radiation equation of state, Arch. Ration. Mech. Anal. 210, 535 (2013)]. In particular,
for the full parameter range 1=3 < K < 1, we find that the fractional density gradient of the nonlinear
perturbations develop steep gradients near a finite number of spatial points and becomes unbounded there
at future timelike infinity.

DOI: 10.1103/PhysRevD.107.104030

I. INTRODUCTION

Beginning with the seminal work of Friedrich [1], the
future (i.e. expanding) stability of cosmological solutions on
exponentially expanding spacetimes has been the source of
much research. Recently, on account of their importance in
modern standard cosmology [2], the future stability of fluid
filled cosmologies with linear equations of state, p ¼ Kρ,
have been intensively studied with the first rigorous results
due to Rodnianski and Speck [3,4] who proved the future
stability of nonlinear perturbations of Friedmann-Lemaître-
Robertson-Walker (FLRW) (i.e. spatially homogeneous and
isotropic) solutions to the Einstein-Euler equations with a
positive cosmological constant for the parameter range
0 < K < 1=3. Stability results for the endpoints K ¼ 1=3
and K ¼ 0 were subsequently established in [5,6], respec-
tively. Related works have also examined different
approaches to establishing stability [7–10], fluids with non-
linear equations of state [11,12], and other expanding space-
times (such as power-law expansion) [13–16].
The question of stability for the parameter range

1=3 < K < 1, until recently, remained an open question.
In fact, it was widely expected that solutions to the Einstein-

Euler equations were unstable when K > 1=3. This was
primarily a result of the influential work of Rendall [17] who
used formal expansions about future timelike infinity to
investigate the asymptotic behavior of relativistic fluids on
exponentially expanding FLRW spacetimes. In particular,
Rendall found that if1=3 < K < 1 and the leadingorder term
in the expansion of the fluid’s spatial velocity about timelike
infinity vanished at any spatial point, then the formal
expansions would become inconsistent. He speculated this
was due to inhomogeneous features, so-called spikes, devel-
oping in the fluid density which would cause the fractional
density gradient to blow-up at future timelike infinity.
Another argument supporting the instability of solutions
for 1=3 < K < 1 was given by Speck [50, §1.2.3] who
identified certain terms in the equations that might dynami-
cally drive the instability. Instability to the future of solutions
to the Einstein-Euler equations for 1=3 < K < 1 has also
been observed in spherical symmetry [18].
More recently, thework of the third author [19] established

the existence of a class of nonisotropic spatially homo-
geneous solutions to the relativistic Euler equations on fixed
exponentially expanding FLRWbackground spacetimes that
are (i) stable to the future under small nonlinear perturbations
for 1=3 < K < 1=2 and for which (ii) the initial data of the
perturbations could be chosen arbitrarily close to the initial
data of a spatially homogeneous and isotropic solution.
While the second point implies that the solutions from [19]
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can beviewed as perturbations of spatially homogeneous and
isotropic solutions with zero spatial velocity, it should be
noted that the spatial velocity of the fluids in [19] must be
nonvanishing everywhere and hence do not constitute a
general class of perturbations of spatially homogeneous and
isotropic solutions.
In the article [20] by the last two authors, the stability result

of [19] was improved to cover the whole parameter range
1=3 < K < 1. Additionally, a numerical investigation of the
stability to the future of the class of spatially homogeneous
and isotropic solutions to the Euler equations on fixed FLRW
vacuum solutions with positive cosmological constant was
carried out. Specifically, numerical solutions of the relativ-
istic Euler equations under a T2-symmetry assumption were
constructed globally to the future for a class of initial data that
included perturbations of spatially homogeneous and iso-
tropic initial data for which the spatial velocity of the fluid
vanished at a finite number of points on the initial hyper-
surface. It is important to emphasize that the vanishing of the
fluid’s spatial velocity means that these solutions do not
satisfy the conditions of the stability theorem from [20].
The main conclusions from the numerical study carried

out in [20] can be summarized as follows:
(1) For each K ∈ ð1=3; 1Þ and each choice of initial data

sufficiently close to spatially homogeneous and iso-
tropic data, the numerical solutions of the relativistic
Euler equations display ODE behavior at late times
and are remarkably well-approximated by an asymp-
totic system that is constructed by discarding all spatial
derivatives from a particular formulation of the rela-
tivistic Euler equations; see [ [20], Sec. 3.2.2] for
details.

(2) For each K ∈ ð1=3; 1Þ and each choice of initial data
that is sufficiently close to spatially homogeneous
initial data and for which the spatial velocity of the
fluid vanishes initially at a finite number of points,
the fractional density gradient of the fluid develops
steep gradients near a finite number of spatial points
where it becomes unbounded at future timelike
infinity; see [ [20], Sec. 3.2.3] for details.

The aim of the current article is to extend the numerical
study of the T 2-symmetric relativistic Euler equations
from [20] to include coupling to Einstein gravity in the
case 1=3 < K < 1 and thereby to verify quantitatively the
conjectures from [15,17] regarding unstable dynamics. In
order to accomplish this, we numerically evolve the
Einstein-Euler equations with spatial T3-topology under
a Gowdy symmetry assumption (see Sec. II A). The Gowdy
spacetimes we consider in this article are especially
well-suited to both analytical and numerical treatments
(e.g. [21–33]) due to the presence of two Killing fields,
which reduces the Einstein-Euler equations to a 1þ 1-
dimensional problem with periodic boundary conditions.
The article is organized as follows: the derivation of a first

order formulation of the Gowdy symmetric Einstein-Euler

equations that is suitable for numerical implementation and
constructing solutions globally to the future is carried out in
Sec. II. In Sec. III,we derive theFLRWbackground solutions
that we perturb. Finally, in Sec. IV, we discuss our numerical
setup and results.

II. EINSTEIN-EULER EQUATIONS

A. Einstein-Euler equations with Gowdy symmetry

The Einstein-Euler equations1 for a perfect fluid with a
positive cosmological constant are given by

Gij þ Λgij ¼ Tij; Λ > 0; ð2:1Þ
∇iTij ¼ 0; ð2:2Þ

where

Tij ¼ ðρþ pÞvivj þ pgij ð2:3Þ
is the stress-energy tensor of a perfect fluid, vi is the fluid
four-velocity normalized by gijvivj ¼ −1, and we assume
that the fluid’s proper energy density, ρ, and pressure, p, are
related via the linear equation of state

p ¼ Kρ:

Here, the constant K is the square of the sound speed and in
order to ensure that the speed of sound is less than or equal to
the speed of light, we will always assume that 0 ≤ K ≤ 1.
As discussed in the Introduction, we restrict our attention

to solutions of the Einstein-Euler equations with a Gowdy
symmetry [28,34].We do this by consideringGowdymetrics
in areal coordinates on R>0 × T3 that are of the form

g ¼ e2η̄−Ūð−ᾱdt ⊗ dtþ dθ ⊗ dθÞ þ e2Ūðdyþ AdzÞ
⊗ ðdyþ AdzÞ þ e−2Ūt2dz ⊗ dz; ð2:4Þ

where the functions η̄, Ū, ᾱ, and A depend only on
ðt; θÞ ∈ R>0 × T . Here, we take θ to be a periodic coordinate
on the 1-torus T obtained by identifying the ends of the
interval ½0; 2π�. In practice, this means that θ is a Cartesian
coordinate on R and that the functions η̄, Ū, ᾱ, and A are all
2π-periodic in θ. Moreover, as we are only interested in
solutions in the expanding direction, i.e. toward the future,
wewill only concernourselveswith time intervals of the form
t ∈ ½t0;∞Þ for some t0 > 0.
In order to facilitate the numerical construction of

solutions near timelike infinity, we first transform the
metric variables via

ᾱ ¼ e2α

4t3
; Ū ¼ U þ 1

2
logðtÞ and η̄ ¼ ηþ logðtÞ;

1Our indexing conventions are as follows: lower case Latin
letters, e.g. i, j, k, will label spacetime coordinate indices that run
from 0 to 3 while upper case Latin letters, e.g. I, J, K, will label
spatial coordinate indices that run from 1 to 3.
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which allows us to express the Gowdy metric (2.4) as

g¼ t

�
e2ðη−UÞ

�
−
e2α

4t3
dt⊗ dtþdθ⊗ dθ

�

þe2UðdyþAdzÞ⊗ ðdyþAdzÞþe−2Udz⊗ dz
�
: ð2:5Þ

To procced, we compactify the time interval from ½1;∞Þ to
(0, 1] using the change of time coordinate

t ¼ 1

τ2
;

which, after substituting into (2.5), yields

g¼ 1

τ2
ðe2ðη−UÞð−e2αdτ⊗ dτþdθ⊗ dθÞ

þ e2UðdyþAdzÞ⊗ ðdyþAdzÞþ e−2Udz⊗ dzÞ ð2:6Þ

where now τ ∈ ð0; 1� and the functions η, U, α, and A
depend on ðτ; θÞ and are 2π-periodic in θ. It should be noted
that, due to our conventions, future timelike infinity is
located at τ ¼ 0 in the direction of decreasing τ. As a result,
we require v0 < 0 to ensure that the four-velocity vμ is
future oriented with respect to the original time orientation.
Next, we turn to expressing the Einstein-Euler system

(2.1)–(2.2) in aGowdy-symmetric form suitable for numerical

implementation. To do so, we express the Einstein equations
as a first order system and choose appropriate variables to
formulate the Euler equations. The details of the derivation are
presented in the following two sections.

B. A first order formulation of the Einstein equations

In Gowdy symmetry, the fluid four-velocity only has
two nonzero components2 and can be expressed as

v ¼ v0dτ þ v1dθ: ð2:7Þ

Using this, we find after a short calculation that the nonzero
components of the stress-energy tensor are given by

T00¼ðKþ1Þρðv0Þ2−
Kρe2η−2Uþ2α

τ2
; T01¼ðKþ1Þρv0v1;

T11¼ðKþ1Þρðv1Þ2þ
Kρe2ðη−UÞ

τ2
; T22¼

Kρe2U

τ2
;

T23¼
KρAe2U

τ2
; T33¼

Kρðe2UA2þe−2UÞ
τ2

: ð2:8Þ

With the help of these expressions and the Gowdy metric
(2.6), a straightforward calculation shows that the Einstein
equations (2.1) in Gowdy symmetry take the form of three
wave equations

∂ττA ¼ 1

τ
e−4Uð−2e2ηþ2αAτT22 þ 2e2ηþ2ατT23 þ 4e4Uþ2ατ∂θA∂θU þ e4Uþ2ατ∂θA∂θαþ e4Uþ2ατ∂θθA

þ 2e4U∂τA − 4e4Uτ∂τA∂τU þ e4Uτ∂τA∂ταÞ; ð2:9Þ

∂ττU ¼ −1
2τ

e−4Uð−e2ηþ2ατT22 þ e4Uþ2ηþ2αA2τT22 − 2e4Uþ2ηþ2αAτT23 þ e4Uþ2ηþ2ατT33 þ e8Uþ2ατð∂θAÞ2

− 2e4Uþ2ατ∂θU∂θα − 2e4Uþ2ατ∂θθU − e8Uτð∂τAÞ2 − 4e4U∂τU − 2e4Uτ∂τU∂ταÞ; ð2:10Þ

∂ττη ¼
e−2U

4τ2
ð−12e2U þ 4e2ηþ2αΛ − 4e2Uþ2ηþ2αA2τ2T22 þ 8e2Uþ2ηþ2αAτ2T23 − 4e2Uþ2ηþ2ατ2T33 − e6Uþ2ατ2ð∂θAÞ2

þ 4e2Uþ2ατ2ð∂θUÞ2 þ 4e2Uþ2ατ2∂θη∂θαþ 4e2Uþ2ατ2ð∂θαÞ2 þ 4e2Uþ2ατ2∂θθηþ 4e2Uþ2ατ2∂θθαþ e6Uτ2ð∂τAÞ2
þ 8e2Uτ∂τU − 4e2Uτ2ð∂τUÞ2 − 8e2Uτ∂ταþ 4e2Uτ2∂τη∂ταÞ; ð2:11Þ

and three first order equations

∂τα ¼ −1
2τ

e−2Uð6e2U − 2e2ηþ2αΛ − e2Uτ2T00 þ e2Uþ2ατ2T11Þ; ð2:12Þ

∂τη ¼ −e−2U

8τ
ð−12e2U þ 4e2ηþ2αΛþ 4e2Uτ2T00 þ e6Uþ2ατ2ð∂θAÞ2 þ 4e2Uþ2ατ2ð∂θUÞ2

þ e6Uτ2ð∂τAÞ2 − 8e2Uτ∂τU þ 4e2Uτ2ð∂τUÞ2Þ; ð2:13Þ

∂θη ¼
1

4
ð−2τT01 þ 4∂θU − 4∂θα − e4Uτ∂θA∂τA − 4τ∂θU∂τUÞ: ð2:14Þ

2This follows from choosing coordinates where the two Killing vectors are given by ∂y and ∂z, see Ref. [31].
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In particular, (2.13) and (2.14) are the Hamiltonian and
momentum constraints, respectively.
In practice, either (2.11) or (2.13) can be used as an

evolution equations for η, however only one is needed for
our numerical scheme. In this article, we use (2.13). This
has the benefit of enforcing the Hamiltonian constraint at

every time step and it does not require solving a second
order equations for η. Moreover, because we use (2.13) to
evolve η, we can view (2.11) as a constraint equation that
can be used to verify our numerical results.
Next, introducing the first order variables

A0 ¼ ∂τA; A1 ¼ eα∂θA; U0 ¼ ∂τU; U1 ¼ eα∂θU; ð2:15Þ

we can, with the help of (2.8), express the wave equations (2.9)–(2.10) for A and U in first order form as

∂τ

�
A0

A1

�
þ
�

0 −eα

−eα 0

�
∂θ

�
A0

A1

�
− α0

�
A0

A1

�
¼

� 1
τ ð4τA1U1 þ 2A0 − 4τA0U0Þ

0

�
; ð2:16Þ

∂τ

�
U0

U1

�
þ
�

0 −eα

−eα 0

�
∂θ

�
U0

U1

�
− α0

�
U0

U1

�
¼

� −1
2τ ðe4UτA2

1 − e4UτðA0Þ2 − 4U0Þ
0

�
; ð2:17Þ

while the remaining Einstein equations are given by

α0 ≔ ∂τα ¼ −e−2U

2τ
ð6e2U − 2e2ηþ2αΛþ e2Uτ2ðK þ 1Þρðv21e2α − v20Þ þ 2Kρe2ðηþαÞÞ; ð2:18Þ

∂τη ¼
−1
8τ

ð−12þ 4e2ðηþα−UÞðΛ − KρÞ þ τðe4UτðA2
1 þ A2

0Þ − 8U0 þ 4τðð1þ KÞρv20 þ U2
1 þU2

0ÞÞÞ; ð2:19Þ

∂ττη ¼
1

4
e4UðA2

0 − A2
1Þ þ

ðΛ − KρÞe2ðα−UþηÞ þ τU0ð2 − τU0Þ þ τα0ðτ∂τη − 2Þ − 3

τ2

þU2
1 þ e2αð∂θθαþ ∂θαð∂θαþ ∂θηÞ þ ∂θθηÞ; ð2:20Þ

∂τA ¼ A0; ð2:21Þ

∂τU ¼ U0; ð2:22Þ

∂θη ¼
1

4
ð−2ð1þ KÞρv0v1τ − 4∂θα − e4UτA0∂θA

þ ∂θUð4 − 4τU0ÞÞ; ð2:23Þ

where (2.20) and (2.23) are constraint equations.

C. A first order formulation of the Euler equations

Contracting the Euler equations (2.2) with the fluid four-
velocity vj and the projection operator Lj

J ¼ δjJ −
vJ
v0
δj0,

respectively, we find with the help of the normalization
condition vivi ¼ −1 that the Euler equations can be
expressed as3

Ai∇i

�
ρ

vK

�
¼

�
0

0

�
ð2:24Þ

where the coefficient matrix Ai is given by

Ai ¼

0
BBBBBB@

K
ρþpv

i KgKl
�
δil−

vl
v0 g

i0
�

KgJl
�
δil−

vl
v0 g

i0
�

ðρþpÞgJlgKa
�
gal − 2

v0 vðaδ
0
lÞ

þ vlva
ðv0Þ2 g

00
�
vi

1
CCCCCCA

and ∇ivK ¼ ∂ivK − Γj
iKvj.

We now note by (2.7) that in Gowdy symmetry∇ivK can
be expressed as

∇ivK ¼ ∂ivK −
1

2
ðg00ð∂Kgi0 − ∂0giKÞv0

þ g11ð∂igK1 þ ∂Kgi1 − ∂1giKÞv1Þ; ð2:25Þ
3Note this formulation of the Euler equations was first derived

in [35].
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and that the normalization condition vivi ¼ −1 is
given by

g00ðv0Þ2 þ g11ðv1Þ2 ¼ −1;

which can be solved for v0 to obtain

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g00 − g00g11ðv1Þ2

q
: ð2:26Þ

Then, with the help of (2.7), (2.25) and (2.26), we find
following a straightforward calculation that the Euler
equations (2.24) can be written as

B0
∂0V þ B1

∂1V ¼ F; ð2:27Þ

where

V ¼
�

ρ

v1

�
;

B0 ¼
� K

ρþKρ ðg11 þ ðv1Þ2Þ Kv1

Kv1 ρþ Kρ

�
;

B1 ¼

0
B@

K
ρþKρ v1 K

K ðρþ KρÞ v1
g11þðv1Þ2

1
CA;

and

F ¼ 1

2
ð−v0Þ

0
B@ Kð2g11∂1g11 − gab∂1gabÞv1

ðρþ KρÞ
�

ðv1Þ2
g11þðv1Þ2 g

11
∂1g11 − g00∂1g00

�
1
CA

þ K
2

� ðv1Þ2g11∂0g11 − ðg11 þ ðv1Þ2ÞgIK∂0gIK
0

�
:

To proceed, we define rescaled Gowdy fluid variables
ðρ̃; ṽ1Þ via

v1 ¼ τ−μ−1ṽ1 ð2:28Þ

ρ ¼ τ3ð1þKÞρ̃; ð2:29Þ

where μ ¼ 3K−1
1−K . The particular powers of τ in the above

definitions are chosen to remove the expected leading order
behavior in τ. Now, in order to express the Euler equa-
tions (2.27) in terms of these new variables, we differentiate
(2.28)–(2.29) to obtain the identities

∂0

�
ρ

v1

�
¼ P∂0

�
ρ̃

ṽ1

�
þ Z;

∂1

�
ρ

v1

�
¼ P∂1

�
ρ̃

ṽ1

�
;

where

P¼
�
τ3ð1þKÞ 0

0 τ−μ−1

�
and Z ¼

�
3ð1þKÞρ̃τ2þ3K

ð−μ− 1Þṽ1τ−μ−2
�
:

Using these identities, it is straightforward to verify that the
Euler equations (2.27) can be expressed as

B̃0
∂0Ṽ þ B̃1

∂1Ṽ ¼ F̃; ð2:30Þ

where the matrices B̃i, Ṽ, and F̃ are defined4 by

B̃0 ¼ PTB0P; B̃1 ¼ PTB1P;

Ṽ ¼
�

ρ̃

ṽ1

�
and F̃ ¼ PTðF − B0ZÞ;

respectively.

D. The complete evolution system

Combining (2.30) with (2.16), (2.17), (2.18), (2.19),
(2.21), and (2.22) yields a closed set of evolution equations
that we will solve numerically. These equations can be
expressed in matrix form as

0
BBB@

I 0 0

0 I 0

0 0 B̃0

1
CCCA∂τ

0
B@

A

U

Ṽ

1
CAþ

0
B@

B̄1 0 0

0 B̄1 0

0 0 B̃1

1
CA∂θ

0
B@

A

U

Ṽ

1
CA

¼

0
B@

α0I 0 0

0 α0I 0

0 0 0

1
CA
0
B@

A

U

Ṽ

1
CAþ

0
B@

FA

FU

FṼ

1
CA; ð2:31Þ

∂τ

0
BBB@

α

η

A

U

1
CCCA ¼

0
BBB@

Fα

Fη

A0

U0

1
CCCA; ð2:32Þ

4Here T denotes the transpose of a matrix.
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where

A¼
�
A0

A1

�
; U¼

�
U0

U1

�
; Ṽ ¼

�
ρ̃

ṽ1

�
; B̄1 ¼

�
0 −eα

−eα 0

�
; B̃0 ¼

0
B@

Kτ3Kþ1ðe2η−2Uþṽ2
1
τ−2μÞ

ðKþ1Þρ̃ Kṽ1τ3K−2μþ1

Kṽ1τ3K−2μþ1 ðKþ 1Þρ̃τ3K−2μþ1

1
CA;

B̃1 ¼

0
B@ −Kṽ1τ3K−μþ1eα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ṽ2
1
τ−2μþe2η−2U

p
ðKþ1Þρ̃ −Kτ3K−μþ1eα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ṽ21τ

−2μþ e2η−2U
p

−Kτ3K−μþ1eα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ṽ21τ

−2μþ e2η−2U
p

− eαð1þKÞρ̃ṽ1τ3K−3μþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2Uþ2ηþṽ2

1
τ−2μ

p

1
CA; FA ¼

� 1
τ ð4τA1U1þ 2A0 − 4τA0U0Þ

0

�
;

FU ¼
�−1

2τ ðe4UτA2
1 − e4UτðA0Þ2− 4U0Þ

0

�
;

FṼ ¼

0
B@

Kτ3Kþ1e2η−2UðU0 − ∂τηÞþKṽ1τ3K−μþ1eα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2η−2U þ ṽ21τ

−2μ
p

∂θαþKμṽ21τ
3K−2μ

ðKþ 1Þρ̃τ3K−2μ
�

τμþ1eα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2η−2Uþṽ2

1
τ−2μ

p
ðτ2μe2ηð∂θα−∂θUþ∂θηÞþṽ2

1
e2U∂θαÞ

ṽ2
1
e2Uþτ2μe2η þ ṽ1ð−3Kþμþ 1Þ

�
1
CA;

Fα ¼
ð2Λ− ðK− 1Þρ̃τ3Kþ3Þe2ðα−UþηÞ− 6

2τ
;

Fη ¼
1

8
e−2Uτ−1−2μð−4e2ðUþαÞð1þKÞρ̃ṽ21τ3þ3K − τ2μð4ð−3e2U þ e2ðηþαÞðΛþ ρ̃τ3þ3KÞÞ

þ e2Uτðe4UτðA2
1þA2

0Þ− 8∂τUþ 4τðU2
1þU2

0ÞÞÞÞ:

Remark 2.1. While the form of the Eqs. (2.31)–(2.32) is
suitable for numerical implementation, it is not immedi-
ately obvious that the system has a well-posed initial value
problem. By rewriting the equations as a symmetric hyper-
bolic system we can ensure this is the case. The Euler
equations prove to be the only impediment to this goal, in
particular the derivatives of metric functions in the source
term FṼ necessitate the use of new variables. By slightly
modifying the process in [36] and introducing the scalar
velocity v ¼ v1

eαv0, a new metric variable ν ¼ ηþ α, and a
modified density variable γ ¼ eν−Uρ, it is possible to write
the Euler equations in the form

C0
∂τ

�
γ

v

�
þ C1

∂θ

�
γ

v

�
¼ G ð2:33Þ

whereG only contains derivatives of U and A which can be
expressed in terms of the first order variables defined earlier
(2.15). Multiplying (2.33) on the left by PðC0Þ−1 for an
appropriate symmetric matrixP, it is then possible to put the
Euler equations in symmetric hyperbolic form. Finally, by
replacing all remaining terms in (2.31)–(2.32) with the new
variables, the Einstein-Euler equations in Gowdy symmetry
can be cast in symmetric hyperbolic form.

III. FLRW SOLUTIONS

Before we can choose appropriate initial data for our
numerical scheme, we must first identify the FLRW
solutions (i.e. spatially homogeneous and isotropic) that

we wish to perturb. Recalling the form of the Gowdy metric
(2.6), we observe that a FLRWmetric is obtained by setting
U ¼ A ¼ η ¼ 0 and assuming that the remaining metric
function α only depends on τ. For the Gowdy fluid
variables ρ̃ and ṽ1, spatial homogeneity and isotropy
requires that ṽ1 ¼ 0 and that ρ̃ also only depends on τ.
From these considerations, we conclude via (2.31) and
(2.32) that FLRW solutions of the Einstein-Euler equations
are obtained from solving

∂τρ̃ ¼ 0; ð3:1Þ

∂τα ¼ ð2Λ − ðK − 1Þρ̃τ3Kþ3Þe2α − 6

2τ
; ð3:2Þ

∂τη ¼ 0 ¼ ðΛþ ρ̃τ3Kþ3Þe2α − 3

2τ
: ð3:3Þ

Now, by (3.3), we observe that

α ¼ 1

2
ln

�
3

Λþ ρ̃τ3Kþ3

�
;

which we note automatically satisfies (3.2). Furthermore,
we find from (2.29) and (3.1) that

ρ ¼ ρcτ
3ð1þKÞ;

where ρc ∈ Rþ is a freely specifiable constant. From this,
we deduce that the FLRW solutions of the Einstein-Euler
equations are given by
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g ¼ 1

τ2

�
−

3

Λþ ρcτ
3ð1þKÞ dτ

2 þ dθ2 þ dy2 þ dz2
�
;

ρ ¼ ρcτ
3ð1þKÞ;

v ¼
�

3

Λþ ρcτ
3ð1þKÞ

�1
2

dτ: ð3:4Þ

Remark 3.1. Expressing the momentum constraint equa-
tions (2.14) in terms of ṽ1 and ρ̃, we observe that

∂θη ¼ −
1

2
ð1þ KÞρ̃ṽ1τ2þ3K−μeα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe2η−2U þ ṽ21τ

−2μÞ
q

− ∂θα −
1

4
e4UτA0∂θAþ ∂θUð1 − τU0Þ: ð3:5Þ

Since all spatial derivatives would vanish on a spatially
homogeneous, but not necessarily isotropic, solution, it
follows from the positivity of the density, i.e. ρ̃ > 0
everywhere, that ṽ1 ¼ 0 must be satisfied for all spatially
homogeneous solutions. This, in particular, shows that
self-gravitating versions of the nonisotropic spatially
homogeneous fluid solutions of the type considered
in [20], known as tilted solutions, are incompatible with
Gowdy symmetry. As it turns out, tilted solutions require a
nontrivial spatial topology; see Ref. [37]. We will report
on the nonlinear stability of tilted solutions in a separate
article.

IV. NUMERICAL RESULTS

A. Numerical setup

In the numerical setup that we use to solve (2.31)–(2.32),
the computational spatial domain is ½0; 2π� with periodic
boundary conditions that is discretized using an equidistant
grid with N grid points. Spatial derivatives are discretized
using 2nd order central finite differences and time inte-
gration is performed using a standard 2nd order Runge-
Kutta method (Heun’s method). As a consequence, our
code is second order accurate. We also enforce the CFL
condition to ensure convergence. In this case we have used
the tightened 4=3 CFL condition for Heun’s method which
is discussed in [38].

1. Initial data

The choice of initial data is not completely trivial as we
must satisfy the Hamiltonian (2.19) and momentum (2.23)
constraints initially. The Hamiltonian constraint (2.19) is
enforced at every time-step, as we use it as an evolution
equation for η. Consequently, we only need to ensure our
choice of initial data satisfies the momentum constraint
(2.23). Additionally, we must satisfy the constraints (2.15)
that arise from the definition of the first order variables A1

and U1. Our choice of initial data (4.1) ensures all these
constraints are satisfied initially.
As discussed in the introduction, the main aim of this

article is to determine whether the fractional density
gradient blows up when the fluid is coupled to the
gravitational field in the same way as we observed in
the fixed background spacetime case [20]. Hence, we must
choose initial data so that the fluid’s spatial velocity
vanishes somewhere on the domain initially.
For Gowdy symmetry, this amounts to the initial data for

ṽ1 vanishing somewhere on the initial hypersurface.
Moreover, since ṽ1 ¼ 0 for the FLRW solutions, we must
select initial data so that ṽ1 is everywhere close to zero on
the initial hypersurface in order for it to represent a small
perturbation of FLRW initial data. In our numerical
simulations, we satisfy these constraints on the initial data
for ṽ1 by using sinusoidal functions with a small amplitude
parameter called a below. In particular, our initial data for
ṽ1 crosses zero at least twice on the initial hypersurface,
and we note that this initial data is essentially the same as
was used in [20].
For the remainder of this article, with the exception of

Sec. IVA 3, we employ initial data of the form

ṽ
∘
1 ¼ a sinðθÞ; ρ̃

∘ ¼ 1

1
2
ð1þKÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2α

∘ ðe2η∘−2U
∘
þ ṽ

∘2
1Þ

q ;

α
∘ ¼ acosðθÞþ 1

2
log

�
3

Λþ 2
ð1þKÞ

�
; η

∘ ¼ a sinðθÞ;

U
∘ ¼ a sinðθÞþ c; U

∘
0 ¼ bd; U

∘
1 ¼ eα

∘
∂θU

∘
;

A
∘ ¼ de−4c−4a sinðθÞ þ c; A

∘
0 ¼ b; A

∘
1 ¼ eα

∘
∂θA

∘
; ð4:1Þ

where a, b, c, d are constants to be specified. Initial data
of this form can be considered as a perturbation of FLRW
initial data provided that the constants a, b, c and d are
chosen sufficiently close to zero. This follows from the
fact that setting a ¼ b ¼ c ¼ d ¼ 0 in (4.1) produces
FLRW initial data. If the size of the parameters a, b, c,
d are too large the system is found to become unstable
almost immediately. That is, within a small amount of
timesteps the variables develop steep gradients and pro-
duce numerical errors. Throughout this article we focus
exclusively on initial data with small amplitudes. In
particular, all the plots in this section have been generated
with a ¼ b ¼ c ¼ d ¼ 0.01.

2. Code tests

We have verified the second order accuracy of our code
with convergence tests involving perturbations of FLRW
solutions using resolutions of N ¼ 200, 400, 800, 1600,
3200, and 6400 grid points. To estimate the numerical
discretization error Δ for any of our unknowns, we took the
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log2 of the absolute value of the difference between each simulation and the highest resolution run. The results for ṽ1 and ρ̃
are shown5 in Figs. 1(a) and 1(b) from which the second order convergence is clear.
As a further check on the accuracy of the code, we can measure how much the constraints are violated during the

evolution of the system. Beginning with the momentum constraint (3.5), we define the quantity

C1 ¼ −∂θη −
1

2
ð1þ KÞρ̃ṽ1τ2þ3K−μeα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe2η−2U þ ṽ21τ

−2μÞ
q

− ∂θα −
1

4
e4UτA0∂θAþ ∂θUð1 − τU0Þ: ð4:2Þ

Clearly, C1 ¼ 0 means that the momentum constraint is identically satisfied. The quantity log2kC1k2 can therefore be
understood as the violation error of the momentum constraint as a function of time. In a similar manner, we can also define
constraint violation quantities from the definitions of our first order variables A1 and U1, and from the wave equation for η,
(2.20), as follows

C2 ¼ A1 − eα∂θA; C3 ¼ U1 − eα∂θU;

C4 ¼ ∂ττη −
�
1

4
e4UðA2

0 − A2
1Þ þ

ðΛ − Kρ̃τ3þ3KÞe2ðα−UþηÞ þ τU0ð2 − τU0Þ þ τα0ðτ∂τη − 2Þ − 3

τ2

þU2
1 þ e2αð∂θθαþ ∂θαð∂θαþ ∂θηÞ þ ∂θθηÞ

�
:

The time derivatives for C4 are calculated numerically
using a fourth order finite difference stencil for the second
derivative

ð∂ττηÞi;j ¼
−ηi−2;j þ 16ηi−1;j − 30ηi;j þ 16ηiþ1;j − ηiþ2;j

12ðΔτÞ2 ;

ð4:3Þ

where ηi;j denotes the value of η at the ith timestep and jth
spatial grid point and Δτ is the timestep size. We observe
the expected second order convergence for the quantities
log2ðkC1k2 þ kC2k2 þ kC3k2Þ and log2ðkC4k2Þ shown in
Figs. 2(a) and 2(b), respectively. Even though the con-
straints are identically satisfied at the initial time by virtue
of our choice of initial data (4.1), we note the numerical

value is not exactly zero, even at the initial time τ ¼ 1, as
the derivatives in C1 (4.2), C2, C3, and C4 are approxi-
mated by finite differences. It should also be noted that,
due to our use of the stencil (4.3), the first and last two
timesteps have been removed from Fig. 2(b).
Another measure of how well the constraints are satisfied

numerically is to compare the size of each individual term in a
constraint with the total constraint violation. From this we
can conclude that the actual constraint violation is small (as
opposed to each individual term being small). To this end we
consider first C1 and separate it into five terms as follows:

T1 ¼ −
1

2
ð1þ KÞρ̃ṽ1τ2þ3Kμeα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe2η−2U þ ṽ21τ

−2μÞ
q

; ð4:4Þ

T2 ¼ −∂θα; ð4:5Þ

T3 ¼
−e4UτA0∂θA

4
; ð4:6Þ

FIG. 1. Convergence plots of ṽ1 and ρ̃ at τ ¼ 0.599, K ¼ 0.5, Λ ¼ 1.

5It should be noted that we have also performed convergence
tests for all other variables and confirmed second order con-
vergence. These plots are omitted here for brevity.
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T4 ¼ ∂θUð1 − τU0Þ; ð4:7Þ

T5 ¼ −∂θη: ð4:8Þ

For the constraint violations C1 to be actually small, we
expect that the norm of each individual term (4.4)–(4.8)
shouldbe larger than the normof the total constraint violation
C1 since this indicates that a cancellation among the terms in
the sum is occurring. Figure 3 demonstrates that this
cancellation is happening for C1. We observe similar
behavior for the other constraints, C2, C3, and C4. From
these observations,we conclude that the constraints are being
preserved by our numerical scheme.

3. Code validation

A simple way to test the validity of our code is to
compare our numerical solution with the FLRW solution
(3.4). For this convergence test, we employ the following
initial data

ρ̃ ¼ 1; α ¼ 1

2
log

�
3

Λþ 1

�
;

A ¼ A1 ¼ A0 ¼ U ¼ U1 ¼ U0 ¼ η ¼ ṽ1 ¼ 0:

Once again, we observe the expected second order con-
vergence, shown for α and ρ̃ in Figs. 4(a) and 4(b),
respectively.

B. Numerical behavior

We now examine the behavior of numerical solutions of
(2.31)–(2.32) with initial data of the form (4.1). From our
numerical simulations, we observe that the asymptotic
behavior of the fluid variables and the fractional density
gradient are broadly consistent with what was observed
in [ [20], Sec. 3.2] in the fixed background spacetime case.
More specifically, for the full parameter range 1=3<K<1
and all choices of the initial data with a, b, c, and d
sufficiently small, we observe that all the gravitational and
fluid variables, with the exception of ρ̃, remain bounded. It
is unclear from our numerical solutions whether ρ̃ remains
bounded at timelike infinity. On the other hand, the spatial
derivative of the density, ∂θρ̃, always develops steep
gradients at finitely many points and becomes unbounded
as τ↘0 for all K ∈ ð1=3; 1Þ, shown in Fig. 5, indicating
that the system is unstable.
In turn, this means the fractional density gradient, which is

a measure of deviation from spatial homogeneity, also forms
steep gradients and becomes unbounded as τ↘0, where we
note τ ¼ 0 corresponds to future timelike infinity.Wepresent
plots of the fractional density gradient in Sec. IV B 2.

1. Asymptotic behavior and approximations

In [ [20], Sec. 3.2], it was observed that the fluid
variables displayed ODE-like behavior at late times. This
can also be seen for the metric and fluid variables in our
simulations. In particular, we observe that, near τ ¼ 0,
solutions to the Gowdy-Euler equations are remarkably
well approximated by solutions to the asymptotic system

FIG. 2. Convergence plots of the constraint quantities, K ¼ 0.5, Λ ¼ 1. The system was evolved until τ ¼ 0.002.

FIG. 3. Comparison of the L2 norm of the individual terms in
momentum constraint and the combined constraint quantity C1.
N ¼ 6400, K ¼ 0.5, Λ ¼ 1.
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∂τA0 ¼ α0A0 þ
1

τ
ð4τA1U1 þ 2A0 − 4τA0U0Þ; ð4:9Þ

∂τA1 ¼ α0A1; ð4:10Þ

∂τU0 ¼ α0U0 −
1

2τ
ðe4UτA2

1 − e4UτA2
0 − 4U0Þ; ð4:11Þ

∂τU1 ¼ α0U1; ð4:12Þ

∂τρ̃ ¼ 1

−e2Uð−1þ KÞṽ21 þ e2ητ2μ

×

�
τ−1ð1þ KÞρ̃

�
e2Uð−1þ 3KÞṽ21

þ e2ητ1þ2μðU0 − ∂τηÞ þ
e2ηṽ1τμþ1U1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ðη−UÞ þ ṽ21τ

−2μ
q

��
;

ð4:13Þ

∂τṽ1 ¼
1

τðτ2μe2η − ðK − 1Þṽ21e2UÞ
×
�
e−αðṽ1τ2μeαþ2ηðKτð∂τη −U0Þ − 3K þ μþ 1Þ

− ṽ31ðKðμþ 3Þ − μ − 1Þeαþ2U

−U1τ
3μþ1e2ηþα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe2η−2U þ ṽ21τ

−2μÞ
q

Þ
�
; ð4:14Þ

∂τα ¼ ð2Λ − ðK − 1Þρ̃τ3Kþ3Þe2ðα−UþηÞ − 6

2τ
; ð4:15Þ

∂τη ¼
1

8
e−2Uτ−1−2μ

�
−4e2ðUþαÞð1þ KÞρ̃ṽ21τ3þ3K

− τ2μð4ð−3e2U þ e2ðηþαÞðΛþ ρ̃τ3þ3KÞÞ
þ e2Uτðe4UτðA2

1 þ A2
0Þ − 8∂τU

þ 4τðU2
1 þU2

0ÞÞÞ
�
; ð4:16Þ

∂τA ¼ A0; ð4:17Þ

∂τU ¼ U0: ð4:18Þ

This system is obtained by setting the spatial derivative
terms in (2.31)–(2.32) to zero. We have tested the agree-
ment between solutions of the full Einstein-Euler equa-
tions (2.31)–(2.32) and the asymptotic system (4.9)–(4.18)
using the following procedure, which is similar to the one
employed in [ [20], Sec. 3.2.2]:

(i) Generate a numerical solution ðA; A1; A0; U;U1; U0;
α; η; ρ̃; ṽ1Þ of the Einstein-Euler equations (2.31)–
(2.32) from initial data specified at τ0 > 0.

FIG. 4. Convergence plots of the L2 norm of α − αexact and ρ̃ − ρ̃exact, K ¼ 0.4, Λ ¼ 1. The system was evolved until τ ¼ 0.002.

FIG. 5. Plots of the derivative of the re-scaled density, ∂θρ̃, at various times. N ¼ 1000, K ¼ 0.5, Λ ¼ 1.
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(ii) Fix a time6 τ̃0 when the solution from step (i) appears
to be first dominated by ODE behavior.

(iii) Fix initial data for the asymptotic system (4.9)–(4.18)
at τ ¼ τ̃0 by setting

ðĀI; Ā1;I ; Ā0;I ; ŪI; Ū1;I; Ū0;I ; ᾱI; η̄I; ρ̄I; v̄1;IÞ
¼ ðA; A1; A0; U;U1; U0;α; η; ρ̃; ṽ1Þjτ̃0 :

(iv) Numerically solve the asymptotic system (4.9)–(4.18)
using the initial data from (iii) to obtain a solu-
tion ðĀ; Ā1; Ā0; Ū; Ū1; Ū0; ᾱ; η̄; ρ̄; v̄1Þ.

(v) Compare the solutions ðĀ; Ā1; Ā0; Ū; Ū1; Ū0; ᾱ;
η̄; ρ̄; v̄1Þ and ðA; A1; A0; U;U1; U0;α; η; ρ̃; ṽ1Þ on
the region ð0; τ̃0Þ.

Following this process, we observe that the metric variables
A, U, A1, U1, α, and η become effectively constant for
τ ∈ ð0; τ̃0Þ and are indistinguishable from the correspond-
ing asymptotic solution Ā, Ū, Ā1, Ū1, ᾱ, and η̄, while the
variables A0, U0, Ā0, and Ū0 all rapidly decay to zero. On
the other hand, the fluid variables, ṽ1 and ρ̃, display
significantly more dynamic, but still ODE-dominated,
behavior before converging to fixed functions for
τ ∈ ð0; τ̃0Þ. In particular, the fluid variables closely match

their asymptotic counterparts, shown for ṽ1 in Fig. 6.
Furthermore, we note that ṽ1 and v̄1 show strong agreement
even at the locations where spike points form in the
fractional density gradient, cf. Fig. 7.

2. Behavior of the fractional density gradient

The fractional density gradient is, by definition, ∂θρ
ρ .

In terms of the rescaled density (2.29), it is given by

∂θρ

ρ
¼ ∂θρ̃

ρ̃
:

Using this relation, we observe from the numerical sim-
ulations that the fractional density gradient develops steep
gradients and blows-up at τ ¼ 0 at isolated spatial points,
shown in Fig. 7. As discussed in the Introduction, this
singular behavior was anticipated by Rendall in [17]. The
fractional density gradient blow-up at timelike infinity also
indicates an instability in the sense that the fractional
density gradient of the perturbed solutions does not remain
uniformly bounded no matter how close the initial data is
chosen to FLRW initial data. It should be noted, however,
that the blow-up of the fractional density gradient is more
apparent as the size of K increases. In particular, for values
of K close to 1=3 one needs to choose initial data with

FIG. 6. Comparison of full Einstein-Euler solution ṽ1 (in blue) and asymptotic solution v̄1 (in orange) at various times. τ̃0 ¼ 0.001,
N ¼ 1000, K ¼ 0.5, Λ ¼ 1.

FIG. 7. Fractional density gradient ∂θρ
ρ at various times. N ¼ 1000, K ¼ 0.5, Λ ¼ 1.

6It is worth noting that the value of τ̃0 increases as K↗1.
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larger values of a, b, c, and d to observe the blow-up within
the timespan of our numerical evolutions.
Finally, as in Sec. IV B 1, we can compare the fractional

density gradient computed from solutions of the full
Einstein-Euler equations (2.31)–(2.32) with the fractional
density gradient generated from the asymptotic system.
Once again the full Einstein-Euler and asymptotic plots are
almost indistinguishable, shown in Fig. 8.

V. DISCUSSION

The aim of this work was to numerically study nonlinear
perturbations of FLRW solutions to the Einstein-Euler
equations under a Gowdy symmetry assumption and linear
equation of state p ¼ Kρ for K ∈ ð1=3; 1Þ. In particular,
our objective was to determine whether the blow-up of the
fractional density gradient ∂θρ

ρ at isolated spatial points at
timelike infinity, anticipated by Rendall [17] and sub-
sequently numerically observed for the relativistic Euler
equations on an exponentially expanding FLRW spacetime
in [20], also occurs when coupling to Einstein gravity is
included. We have numerically solved the Einstein-Euler
equations using a standard second-order Runge-Kutta
method in time and second-order central finite differences
to discretize spatial derivatives. The expected second order
accuracy of this implementation was confirmed by our
convergence tests. Using this numerical scheme, we found
that the fractional density gradient blows up at finitely
many spatial points as τ↘0 for all K ∈ ð1=3; 1Þ and all
choices of initial data that are sufficiently close to FLRW
initial data and for which ṽ1 crosses zero somewhere on
the initial hypersurface. These results are consistent with
the fractional density gradient blow-up scenario put forth
by Rendall.
In the influential article [39], asymptotic expansions near

future timelike infinity for vacuum and perfect fluid
cosmologies with a positive cosmological model were
derived; see also [17,40] for later work. These expansions
indicate that one should expect that solutions to cosmo-
logical models with a positive cosmological constant will

asymptotically isotropize and approach de Sitter spacetime
in a suitable sense, which is consistent with the cosmic
no-hair conjecture [41]. This expectation was later strength-
ened by the proof of asymptotic isotropization and con-
vergence to de Sitter spacetime for spatially homogeneous
cosmological models by Wald [42] and the generalization
of this result to inhomogeneous cosmological models under
a negative spatial scalar curvature assumption [43].
Furthermore, the rigorous stability results established in
the articles [1,3–7,10,44–47] provide further compelling
support for this viewpoint. Together, all of these results
have led to an expected late time behavior for cosmologies
with a positive cosmological constant that involves asymp-
totic isotropization and convergence to de Sitter spacetime.
For an extended discussion on the status of the asymptotic
isotropization of cosmologies, see the article [40].
Now, as first observed by Rendall [17], the vanishing of

the (rescaled) spatial fluid velocity at any point at timelike
infinity is an obstruction to existence of asymptotic
expansions of the type derived in [39]. Moreover, he
conjectured that the vanishing of the (rescaled) spatial
fluid velocity at some point at timelike infinity would lead
to blow-up of the fractional density gradient at timelike
infinity for 1=3 < K < 1. This is exactly what we observe
in our numerical simulations, namely, that the rescaled
spatial fluid velocity, which is ṽ1 in our notation, vanishes
at τ ¼ 0 at a finite set of spatial points and that the
fractional density gradient ∂θρ

ρ develops steep gradients
near those same spatial points and becomes unbounded
there as τ↘0. Thus, it is in this sense that the cosmological
solutions studied in this article do not display the expected
behavior and are of possible physical interest.
We have also observed that, for initial data suitably close

to spatially homogeneous initial data, solutions display
ODE-like behavior at late times analogous to the behavior
found in [20]. For cosmological solutions that admit
asymptotic expansions of the type considered in [39], it
is not difficult to verify that they are dominated by ODE
behavior near future timelike infinity. We also note ODE
dominated behavior near timelike infinity for nonlinear

FIG. 8. Comparison between the full Einstein-Euler (in blue) and asymptotic fractional density gradient (in orange) at various times.
τ̃0 ¼ 0.001, N ¼ 1000, K ¼ 0.5, Λ ¼ 1.
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perturbation of FLRW solutions to the Einstein-Euler
equations with a positive cosmological constant can be
rigorously established using the stability results from the
articles [3–7,10]. The ODE dominance for these types of
solutions is a consequence of the asymptotic isotropization
of the solutions, which means that the spatial derivative
terms in the evolution equations make a negligible con-
tribution to solutions near timelike infinity. Thus an
approximation, which gets better the closer to future
timelike infinity where the initial data is prescribed, can
be generated by solving the system of ODEs obtained by
omitting the spatial derivative terms from the evolution
equations.
What is surprising is that the ODE dominance continues

to be true for the solutions considered in this article. The
reason that this is surprising is that the solutions are highly
nonhomogeneous near spatial infinity and so one would

expect that the derivative terms in the evolution equations
should introduce non-negligible effects. While this
is the case near a finite number of points, it is remarkable
that the ODE approximation remains valid everywhere else,
in particular, even in regions very close to these exceptional
points. It is conceivable that the dynamics near those
exceptional points resembles that of spikes that have
been identified as a common feature near big bang
singularities [23,48–53]. We plan on investigating this
possible connection in future work.
There are several directions for future research to take.

An obvious next step would be to remove the Gowdy
symmetry assumption and study the full 3þ 1 system.
Additionally, while we believe the initial data we have
studied is reasonably ‘generic’, it would be interesting to
test a wider variety of initial conditions to see what, if any,
impact this has on the behavior of solutions.
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