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In this paper, we discuss on the phenomenological footprints of gauge invariant theories of gravity where
the gravitational effects are due not only to spacetime curvature, but also to vectorial nonmetricity. We
explore the possibility that vectorial nonmetricity and gauge symmetry may survive after SUð2Þ ×Uð1Þ
(electroweak) symmetry breaking, so that these may have impact on the explanation of certain
cosmological puzzles, such as the nature of the dark matter and of the dark energy. We show that this
is possible only for theories with gradient nonmetricity, i.e., when the vectorial nonmetricity amounts to a
gradient of a scalar. The possibility that vectorial nonmetricity may have played a role in the quantum epoch
is not ruled out. We also present an alternative interpretation of gauge invariance of theories with vectorial
nonmetricity, which we call the “many-worlds” interpretation due to its overall similitude with the known
interpretation of quantum physics.
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I. INTRODUCTION

Weyl geometry [1], the theoretical framework where
gauge symmetry was introduced for the first time, played
an important role in the early search for alternatives on
unification of the fundamental interactions [2–11]. It rep-
resented an interesting generalization of Riemann geometry;
nevertheless, discussions on the occurrence of the second
clock effect (SCE) [12–23] ruled it out as phenomenologi-
cally nonviable. Recently, nonmetricity theories, where the
covariant derivative of the metric does not vanish [24],

∇αgμν ¼ −Qαμν; ð1Þ

with Qαμν—the nonmetricity tensor, have played an inter-
esting role in the search for alternative explanations to
fundamental questions of current interest. The recent
resurrection of nonmetricity theories is mainly focused in
the so-called teleparallel [25–33] and, specially, the sym-
metric teleparallel theories [34–43] and their cosmological
applications [44–50]. Despite that, Weyl gauge invariance is
an intrinsic symmetry of nonmetricity geometry, in the bulk
of these papers, gauge symmetry is ignored. Only in a few
bibliographic references is nonmetricity investigated from
the point of view of gauge symmetry [21,46,51].
Gauge symmetry is one of the most important properties

of nonmetricity geometry due to covariance of (1) under the
following Weyl gauge transformations [24,46]:

gμν → Ω2gμν; Qα
μν → Qα

μν − 2∂α lnΩgμν; ð2Þ

where the positive smooth function Ω ¼ ΩðxÞ, is the
conformal factor. In (2), the conformal transformation of
the metric does not represent a diffeomorphism or, prop-
erly, a conformal isometry; i.e., the spacetime coincidences
or events (as well as the spacetime coordinates that label the
events) are not modified by the conformal transformations.
Here, we shall focus in a class of gauge invariant gravi-
tational theories with vectorial nonmetricity; i.e., when in
Eq. (1), we set Qαμν ¼ Qαgμν. We shall not consider the
teleparallel condition (vanishing overall Riemannian cur-
vature) so that the teleparallel and the symmetric tele-
parallel theories, as well as their cosmological applications,
fall beyond of the scope of this paper.
In the case of a gauge invariant theory of gravity over

background spacetimes with nonmetricity vectorQμ, gauge
invariance means that the gravitational laws are not affected
by simultaneous conformal transformations of the metric
and gauge transformations of the nonmetricity vector,

gμν → Ω2gμν; Qμ → Qμ − 2∂μ lnΩ; ð3Þ

together with appropriate transformations of the remaining
fields according to their conformal weight w:Ψa → ΩwΨa.
In what follows, we shall call the transformations (3)
either as Weyl gauge transformations or, simply, as gauge
transformations.
The standard Weyl gauge invariant picture can be

explained as follows. SUð2Þ ×Uð1Þ symmetry breaking
may be associated with the Higgs Lagrangian,
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LH ¼ 1

2
jDgHj2 þ λ0

2
ðjHj2 − v20Þ2; ð4Þ

where v0 is the constant electroweak (EW) mass parameter,
H is the Higgs doublet, and we use the following notation:
jHj2 ≡H†H, jDgHj2 ≡ gμνðDg

μHÞ†ðDg
νHÞ, and

Dg
μH ¼

�
∂μ þ

i
2
gWk

μσ
k þ i

2
g0Bμ

�
H; ð5Þ

with Wk
μ—the SUð2Þ bosons, Bμ—the Uð1Þ boson,

ðg; g0Þ—gauge couplings, and σk are the Pauli matrices.
After SUð2Þ ×Uð1Þ symmetry breaking, the standard
model (SM) particles acquire constant masses which break
the gauge symmetry [52]. It seems that there is no room for
gauge symmetry and, correspondingly, for nonmetricity in
the phenomenology of the SM after SUð2Þ ×Uð1Þ sym-
metry breaking. In particular, nonmetricity may not account
neither for the dark matter (DM)—as it has been repeatedly
claimed [8,9,53–55]—nor for the dark energy (DE), since
the DM-dominated and the present DE-dominated stages of
the cosmic evolution take place long after matter-radiation
decoupling. Typically, after EWand Weyl gauge symmetry
breaking, Riemann geometry structure of background
space is recovered since the nonmetricity field acquires a
large mass ∝ Mpl, rendering the nonmetricity effects sup-
pressed by this scale [56] (see also [57–60].) We recover
general relativity (GR) over Riemann space as the theory
describing the gravitational interactions of matter since the
symmetry breaking event and up to the present, so that DM/
DE phenomenology can not be explained.
One of the goals of the present paper is to search for

possible cosmological consequences of a class of gauge
invariant gravitational theories over background space with
nonmetricity vector Qμ, which are driven by second-order
equations of motion (EOM) exclusively. This means that
we avoid any Ostrogradsky ghosts, among other instabil-
ities. The theories in this class are given by the following
gravitational action over Weyl geometry space:

Sg ¼ α

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕ2Rþ ωð∂�ϕÞ2 − λ

4
ϕ4 −

β2

2
Q2

�
; ð6Þ

where the curvature scalar of Weyl space R is given by (17),
ω, λ, and β2 are free coupling parameters, ∂�μϕ≡ ∂μϕ−
Qμϕ=2, and we have introduced the shorthand notation
Q2 ≡QμνQμν (the nonmetricity field strength is defined as
Qμν ≔ 2∂½μQν�). In what follows, without loss of generality,
we set α ¼ 1=2.
If this class of theories is supposed to have cosmological

consequences, these should be able to describe the phe-
nomenology after EW symmetry breaking. Hence, the
SUð2Þ × Uð1Þ symmetry breaking Lagrangian (4) has to
be modified in such a way that Weyl gauge symmetry is

preserved. The required modification amounts to lifting the
mass parameter v0 to a point dependent field [61,62]:
v0 → vðxÞ, such that under (2), v2 → Ω−2v2. Besides,
the EW gauge covariant derivative in Eq. (5) is to be
replaced as well: Dg

μ → Dg
μ −Qμ=2, so that, under the

gauge transformations (2),Dg
μH → Ω−1Dg

μH ⇒ jDgHj2 →
Ω−4jDgHj2. Lifting the mass parameter to a point depen-
dent field vðxÞ leads to the masses acquired by the particles
of the SM after EW symmetry breaking, being point
dependent quantities as well1: m ¼ mðxÞ. Under (2), the
mass m of given particle transforms like m → Ω−1m. This
means that the presence of nonvanishing masses does not
represent a risk for gauge symmetry.
One of the main results of our study is presented in the

form of a lemma stating that (i) only matter fields with
vanishing trace of the stress-energy tensor (SET) couple to
gravity in models with gravitational action (6) and that
(ii) these matter fields follow null geodesics of Riemann
geometry. A corollary of this lemma is that radiation and
massless fields—the only matter fields which interact with
gravity in theories within the class given by (6)—do not
interact with the nonmetricity vectorQμ. Although there are
demonstrations in the bibliography proving that the Weyl
gauge vector Qμ does not interact with massless fermions
and with other massless gauge fields, but only with
gravitation [8,9], the statement and proof of our lemma
is more general and does not require of specific Lagrangian
for matter fields. Besides former demonstrations seem to
incorrectly suggest that the nonmetricity vector Qμ can take
account of the dark matter component of the cosmic budget.
Such a conclusion is incorrect since Qμ (jointly with the
metric field) is a carrier of the gravitational interactions of
matter. Hence, the fact that radiation and massless fields do
not interact with Qμ, which represents the non Riemannian
contribution to gravity, means that the nonmetricity vector
may be removed without physical consequences. All of this
is clearly established at once by our more general demon-
stration in this paper. We also demonstrate that the only
gauge invariant gravitational theory with nonvanishing
nonmetricity leading to second-order EOM, which admits
coupling of all of the SM fields, no matter whether massless
or not, is the one with gradient nonmetricity, i.e., when
Qμ ¼ ∂μφ, where φ is a gauge scalar.
Another goal of this paper is to discuss, from perhaps a

nonconventional perspective, on a very important conse-
quence of gauge invariance: gauge freedom and gauge
fixing. Within the gravitational context gauge freedom has
a different interpretation than, for instance, electromag-
netic (EM) Uð1Þ gauge freedom. In order to understand
this (apparently trivial) statement let us briefly explain the

1Point dependent masses which transform under the conformal
transformation of the metric as m → Ω−1m, are considered by
Dicke in his paper [63] and in subsequent papers on conformal
transformations in scalar-tensor theories (STT) [64–71].
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implications of the EM Uð1Þ gauge symmetry. From the
operational point of view, EM Uð1Þ gauge fixing entails a
mathematical constraint on (the derivatives of) the EM
potential Aμ, allowing elimination of one redundant degree
of freedom (d.o.f.) and simplification of subsequent
computations. The physical interpretation of gauge sym-
metry when the EM field is coupled to matter (for instance,
to fermions,) is nicely discussed in Sec. 6 of [72]. In this
case, the EM Lagrangian density reads

LEM ¼ ψ̄ði=D −mÞψ þ 1

4
FμνFμν; ð7Þ

where ψ is the fermion’s spinor while ψ̄ ≔ ψ†γ0 represents
its Dirac adjoint, γμ are the Dirac gamma matrices, m
stands for the mass of the spinor field, =D ≔ γμð∂μ þ ieAμÞ,
and Fμν ≔ ∂μAν − ∂νAμ are the coordinate components of
the EM field strength. The EM Lagrangian (7), as well as
the derived EOM, are invariant under the Uð1Þ gauge
transformations,

ψ → e−ieλðxÞψ ; ψ̄ → eieλðxÞψ̄ ; Aμ → Aμþ ∂μλðxÞ; ð8Þ

where λðxÞ can be any function. We have an infinite set of
possible descriptions ðψ ; ψ̄ ; AμÞ due to the freedom in the
choice of the function λ. Thanks to the fact that the scalar
density ρψ ∝ ψ̄ψ, which carries the relevant information
about the quantum state of the fermion, is not affected by
phase shifts ∼λðxÞ, any two states, picked out by two
different choices λ1ðxÞ and λ2ðxÞ, are to be identified. This
means that a specific choice of gauge carries no physical
consequences at all.
In the case of Weyl gauge symmetry, fermion’s

spinor, and its Dirac adjoint ψ̄ transform in the same
way under (3), i.e. both share the same conformal weight:
wðψÞ ¼ wðψ̄Þ ¼ −3=2. This means that, under the con-
formal transformation of the metric in (3), the scalar density
ρψ ∝ ψ̄ψ , transforms like ρψ → Ω−3ρψ . Hence, contrary to
EM Uð1Þ gauge symmetry, the fermion’s scalar density is
transformed by the gauge transformations, so that we can
not identify two different states of the fermion correspond-
ing to two different choices of the conformal factor: Ω1ðxÞ
and Ω2ðxÞ, respectively. Besides, conformal transforma-
tions of the metric in (3) link two different metrics, i.e., two
different ways of measuring distances in spacetime. Each
one of the conformally related metrics leads to different
curvature properties encoded in the curvature tensors:
Riemann-Christoffel curvature tensor and its contractions.
Hence, a gauge invariant theory of gravity is not a single
theory but a conformal equivalence class of them.
Conformal transformations with different ΩðxÞ-s link the
different theories in the equivalence class. In this context,
gauge fixing amounts to choosing a specific theory of the
gravitational interactions of matter in the equivalence class.
Therefore, unlike an EM gauge choice which carries no

physical consequences, the choice of gauge within a gauge
invariant gravitational theory has far reaching physical
consequences.
Here, we develop an alternative understanding of gauge

fixing in gravitational theories which, despite obvious
differences, bears resemblance with the many-worlds inter-
pretation of quantum physics. According to our alternative
interpretation, each gauge choice picks out one possible
theory of gravity in the conformal equivalence class. Not
every gauge choice, although representing a potential
description of our Universe, gives a phenomenologically
viable description. Besides, we can determine the gauge
where we and the rest of the matter fields in the Universe
live in: this is the one which better describes the existing
amount of observational and experimental evidence at once.
This paper has been organized in the following way.

In Sec. II, we expose the notation as well as the basic
mathematical knowledge required to understand the main
text. In Sec. III, we derive the EOM as well as the main
properties of the class of gauge invariant gravitational
theories given by the action (6). One of the main results of
the present paper: (i) that only matter fields with vanishing
SET trace couple to gravity and (ii) that these fields follow
null geodesics of Riemann space, is presented in the form
of Lemma 1—along with its proof—in Sec. IV. In Sec. V,
we discuss on the low-energy spectrum of the gauge
invariant gravitational theory (6). An innovative (and
perhaps controversial) aspect of gauge symmetry proposed
in the present work: the many-worlds approach to gauge
freedom, is discussed in Sec. VI. This approach is illus-
trated in Sec. VII, through a cosmological example. In
Sec. VIII, we demonstrate that gradient nonmetricity is the
only possibility left for gauge invariance to play a role in
phenomenology after EW symmetry breaking. Discussion
of the main results of this research, as well as brief
conclusions, are given in Sec. IX. In this section, we
compare the results of the present investigation with several
formerly published results.

II. BACKGROUND AND CONVENTIONS

Unless otherwise stated, here we use natural units where
ℏ ¼ c ¼ 1 and the following signature of the metric is
chosen: ð−þþþÞ. Greek indices run over spacetime
α; β;…; μ;… ¼ 0; 1; 2; 3, while latin indices i; j; k… ¼
1; 2; 3 run over three-dimensional space.
Weyl geometry space, denoted here by W̃4, is defined as

the class of four-dimensional (torsionless) manifolds M4

that are paracompact, Hausdorff, connected C∞, endowed
with a locally Lorentzian metric g that obeys the vectorial
nonmetricity condition,2

2When the generalized nonmetricity condition (1) is satisfied,
the resulting space is denoted by W4, and it is called generalized
Weyl space [21]. Standard Riemann space, which is characterized
by vanishing nonmetricity: ∇αgμν ¼ 0, is denoted by V4.
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∇αgμν ¼ −Qαgμν; ð9Þ

where Qα is the Weyl gauge vector and the covariant
derivative ∇μ is defined with respect to the torsion-free
affine connection of the manifold,

Γα
μν ¼ f α

μν
g þ Lα

μν; ð10Þ

where

n α

μν

o
≔

1

2
gαλð∂νgμλ þ ∂μgνλ − ∂λgμνÞ; ð11Þ

is the Levi-Civita (LC) connection, while Lα
μν ≔

ðQμδ
α
ν þQνδ

α
μ −QαgμνÞ=2, is the disformation tensor.

The Weyl gauge vector Qα measures how much the length
of given timelike vector varies during parallel transport.
In this paper, we call as “generalized curvature tensor” of

W̃4 spacetime, the curvature of the connection, whose
coordinate components are

Rα
σμν ≔ ∂μΓα

νσ − ∂νΓα
μσ þ Γα

μλΓλ
νσ − Γα

νλΓλ
μσ; ð12Þ

or, if take into account the decomposition (10),

Rα
σμν ¼ R̂α

σμν þ ∇̂μLα
νσ − ∇̂νLα

μσ

þ Lα
μλLλ

νσ − Lα
νλLλ

μσ; ð13Þ

where R̂α
σμν is the Riemann-Christoffel or LC curvature

tensor,3

R̂α
σμν ≔ ∂μ

n α

νσ

o
− ∂ν

n α

μσ

o
þ
n α

μλ

on λ

νσ

o
−
n α

νλ

on λ

μσ

o
;

ð14Þ

and ∇̂α is the LC covariant derivative. Besides, the LC
Ricci tensor R̂μν ¼ R̂λ

μλν and LC curvature scalar read

R̂μν ¼ ∂λ

n λ

νμ

o
− ∂ν

n λ

λμ

o
þ
n λ

λκ

on κ

νμ

o
−
n λ

νκ

on κ

λμ

o
;

R̂ ¼ gμνR̂μν; ð15Þ

respectively. We call Rα
σμν as generalized curvature tensor

because it is contributed both by LC curvature R̂α
σμν, and

by nonmetricity through disformation Lα
μν. We have that

Rμν ¼ R̂μν þ ∇̂λLλ
μν − ∇̂νLλ

λμ

þ Lλ
λκLκ

μν − Lλ
νκLκ

λμ; ð16Þ

R ¼ R̂ −
3

2
QμQμ − 3∇̂μQμ: ð17Þ

The generalized curvature tensor Rα
σμν has various

contractions. In order to show these contractions let us
write Eq. (13) in the following form:

Rασμν ¼ R̂ασμν þ ∇̂μLανσ − ∇̂νLαμσ

þ LαμλLλ
νσ − LανλLλ

μσ: ð18Þ

The various linearly independent contractions of the
generalized curvature tensor are

Rμν ≔ gλκRλμκν; R̃μν ≔ gλκRμλνκ;

R ¼ gμνRμν ¼ gμνR̃μν: ð19Þ

The first two of these amount to

Rμν ¼ R̂μν −
1

2
ðQλQλ þ ∇̂λQλÞgμν þ

1

2
QμQν

− ∇̂νQμ þ
1

2
ð∇̂μQν − ∇̂νQμÞ; ð20Þ

and to

R̃μν ¼ R̂μν −
1

2
ðQλQλ þ ∇̂λQλÞgμν þ

1

2
QμQν

−
1

2
ð∇̂μQν þ ∇̂νQμÞ; ð21Þ

respectively. We shall call Rμν as first Ricci tensor while
R̃μν we shall call as second Ricci tensor. Notice that only
the second Ricci tensor is symmetric in its indices:
R̃μν ¼ R̃νμ. There are two more contractions of the gener-
alized curvature tensor: Rλ

λμν and Rλ
μνλ. However, the latter

one identically vanishes while the former one is a linear
combination of the contractions Rμν and R̃μν,

Rλ
λμν ¼ 2ðRμν − R̃μνÞ ¼ 2ð∇̂μQν − ∇̂νQμÞ:

From Eqs. (20) and (21), it follows that

RðμνÞ ¼ R̃μν; R½μν� ¼ ∇̂μQν − ∇̂νQμ:

Besides, for the Einstein’s tensor Gμν ≔ Rμν − gμνR=2, we
obtain that, GðμνÞ ¼ G̃μν ≡ R̃μν − gμνR=2.

A. Weyl gauge symmetry

Weyl gauge symmetry (WGS) or invariance under local
changes of scale is a manifest symmetry of W̃4 spaces. The
geometric laws that define W̃4, among which is the non-
metricity condition (9), are invariant under Weyl gauge

3In this paper, quantities and operators with a hat are defined
with respect to the LC connection (11).
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transformations (3), which represent a particular case of (2).
Under (3),

n α

μν

o
→

n α

μν

o
þ ðδαμ∂ν þ δαν∂μ − gμν∂αÞ lnΩ;

Lα
μν → Lα

μν − ðδαμ∂ν þ δαν∂μ − gμν∂αÞ lnΩ;

so that the generalized affine connection (10) is unchanged
by the Weyl rescalings: Γα

μν → Γα
μν. This means that the

generalized curvature tensor Rα
σμν in (12) and the gener-

alized Ricci tensor, Rμν ≡ Rλ
μλν, are unchanged as well,

Rα
μσν → Rα

μσν, Rμν → Rμν, while the generalized curvature
scalar transforms as R → Ω−2R. It can be straightforwardly
demonstrated, that the Bianchi identities are gauge invari-
ant expressions as well.
Another important quantity is the nonmetricity field

strength. It is a traceless second-rank tensor with coordinate
components,

Qμν ≔ 2∇½μQν� ¼ ∇μQν −∇νQμ ¼ ∂μQν − ∂νQμ; ð22Þ

which under the gauge transformations (3) it is not trans-
formed. The quantity (22) represents that part of the
curvature which is due to nonmetricity of W̃4 space.

III. GAUGE INVARIANT THEORY OF GRAVITY

In this paper, we shall consider the class of gauge
invariant theories of gravity that are given by the gravita-
tional action (6). Let us further modify this action through
substituting the curvature scalar from (17) and by explicitly
writing the gauge derivative,

ð∂�ϕÞ2 ¼ ð∂ϕÞ2 − ϕ∂μϕQμ þ ϕ2

4
QμQμ: ð23Þ

The action (6) then reads

Sg ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕ2R̂þ ωð∂ϕÞ2 þ ω − 6

4
ϕ2QμQμ

þ ω − 6

2
ϕ2b∇μQμ −

β2

2
Q2 −

λ

4
ϕ4

�
: ð24Þ

Variation of the above action with respect to the metric
leads to the following EOM:

Eμν ≔ Ĝμν −
1

ϕ2
ð∇̂μ∇̂ν − gμν∇̂2Þϕ2

þ ω

ϕ2

�
∂μϕ∂νϕ −

1

2
gμνð∂ϕÞ2

�

þ ω − 6

4

�
QμQν −

1

2
gμνQλQλ

�

−
ω − 6

2ϕ2

�
∂ðμϕ2QνÞ −

1

2
gμν∂λϕ2Qλ

�

−
β2

ϕ2

�
Qμ

λQνλ −
1

4
gμνQ2

�
¼ −

λ

8
ϕ2gμν; ð25Þ

where, during the variation procedure we took into account
the following useful expression:

δgð∇̂λQλÞ ¼ ∇̂ðμQνÞδgμν þQðμ∇̂νÞδgμν −
1

2
gμνQλ∇̂λδgμν;

ð26Þ

where δg means variation with respect to the metric.
Variation of (24) with respect to Qμ leads to the following
inhomogeneous Proca EOM4:

∇̂μQμν ¼
6 − ω

4β2
ðϕ2Qν − ∂νϕ

2Þ; ð27Þ

meanwhile, variation with respect to ϕ yields,

R̂þ ω
ð∂ϕÞ2
ϕ2

−
ω

2

∇̂2ϕ2

ϕ2
þ ω − 6

4
QμQμ

þ ω − 6

2
∇̂μQμ −

λ

2
ϕ2 ¼ 0: ð28Þ

If take the LC divergence of Eq. (27), recalling that
Qμν ¼ −Qνμ ⇒ ∇̂μ∇̂μQμν ¼ 0, we get that

6 − ω

4β2
½∇̂μðϕ2QμÞ − ∇̂2ϕ2� ¼ 0: ð29Þ

This equation is obtained as well if compare (28) with the
trace of (25).

4Equation (27) can be rewritten in the following fully equiv-
alent form:

∇̂νQμν þm2
QQμ ¼ jeffμ :

where we introduced the point-dependent square mass of the
Proca field m2

Q and an effective current jeffμ :

m2
Q ≡ 6 − ω

4β2
ϕ2; jeffμ ≡ 6 − ω

4β2
∂μϕ

2;

respectively.
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A. Particular cases found in the bibliography

The class of gauge invariant theories given by the
action (24) includes the Weyl geometric theoretical frame-
works developed in [3] where a formalism based in the
revival of Weyl geometry is proposed in order to explain the
possible variation of the gravitational constant with time, and
in [7], which corresponds to a particular case of (24) when
ω ¼ 1=c. In this approach, a gauge invariant extension of
GR based on Weyl geometry is proposed to look for short-
distance effects of gravity.5 The formalism investigated in
the Ref. [56] (see the related Refs. [55,57–60]) also belongs
in the class of gauge invariant theories (24) if set ω ¼ 0. In
this case, the possible modifications of the SM by replacing
Riemann by Weyl geometry are investigated. The approach
in Ref. [61] (see also Ref. [73]) corresponds to the particular
case of (6) with ω ¼ 6. The formalism of Refs. [8,9], is
contained in the above class as well, if in (6), we replace the
scalar field ϕ by the multicomponent (complex) scalar field
φ, such that ϕ2 → jφj2 ¼ φ†φ, ð∂�ϕÞ2 → j∂�φj2, etc. In this
approach, a gauge invariant field theory for EW and
gravitational interactions in Weyl background space is
explored.

IV. MATTER COUPLING

Let us consider a matter piece of action,

Sm ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Lmðψ ;∇�ψ ; gÞ; ð30Þ

where ψ denotes any minimally coupled matter fields.
Variation of the above action with respect to the metric
leads to

δgSm ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
δgμνTðmÞ

μν ; ð31Þ

where TðmÞ
μν ≔ −ð2= ffiffiffiffiffiffi−gp Þ∂ð ffiffiffiffiffiffi−gp

LmÞ=∂gμν is the stress-
energy tensor of the matter fields. The equations of motion
which follow by varying the overall action Stot ¼ Sg þ Sm
with respect to the fields gμν, Qμ and ϕ, read

Eμν ¼
1

ϕ2
TðmÞ
μν −

λ

8
ϕ2gμν; ð32Þ

where Eμν is defined in Eq. (25), plus the EOM (27)
and (28) which, thanks to the minimal coupling of the
matter fields, are not modified. Meanwhile, if compare the
trace of (32) with Eq. (28), one gets

∇̂μðϕ2QμÞ − ∇̂2ϕ2 ¼ 2

ω − 6
TðmÞ; ð33Þ

which replaces (29). In this equation, TðmÞ ¼ gμνTðmÞ
μν is the

trace of the matter SET.
The following lemma takes place:
Lemma 1: Let the action of a class of gauge invariant

theories of gravity over background space W̃4 with non-
metricity Qμ, be given by the action,

Stot ¼ Sg þ Sm; ð34Þ

where Sg is defined by (24) while Sm is defined by (30), so
that the derived EOM are (27), (28), and (32). Then, (i) only
matter fields with traceless SET couple to gravity, and
(ii) these follow geodesics of Riemann geometry.
Proof: The proof of this lemma is in two parts. First, we

shall proof that only matter fields with vanishing SET trace
satisfy the EOM (27), (28), and (32). Then, we shall proof
that these matter fields follow null geodesics of Riemann
space V4.
Let us demonstrate that only matter fields with traceless

SET: TðmÞ ¼ 0, satisfy the EOM (27), (28), and (32). Given
that Eqs. (27) and (28) are not modified by the presence
of matter, and that the divergence of the left-hand side of
Eq. (27) identically vanishes since the nonmetricity field
strength Qμν is antisymmetric, then the divergence of its
right-hand side vanishes as well, as shown in Eq. (29). If
compare Eqs. (29) and (33), it follows that TðmÞ ¼ 0. This
means that only matter with traceless SET: radiation and
massless fields, couple to gravity in this class of theory.
Fields with TðmÞ ≠ 0 do not obey the EOM.
Let us now demonstrate that radiation and massless

matter fields follow null geodesics of Riemann geometry.
Here, for sake of simplicity, we use the Brans-Dicke (BD)
notation so that, in Eqs. (27), (28), (29), and (32), we make
the following replacements: ϕ2 → φ and ω → 4ω̄.6

Besides, we decompose the tensor Eμν defined in (25) in
the following form:

Eμν ¼
1

φ
ðĜμν þQμν þ F μνÞ; ð35Þ

where
5In [7], the quadratic terms RμνRμν and R2 are dropped as they

induce unphysical poles in the graviton propagator, and, besides,
they do not contribute to the low-energy phenomenology.

6In order to get the correct sign of the BD coupling constant,
we have to set ω̄ ¼ −ωBD.
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Ĝμν ≡ φĜμν − ð∇̂μ∇̂ν − gμν∇̂2Þφ

þ ω̄

φ

�
∂μφ∂νφ −

1

2
gμνð∂φÞ2

�
;

Qμν ≡
�
ω̄ −

3

2

��
φ

�
QμQν −

1

2
gμνQλQλ

�

−∂μφQν − ∂νφQμ þ gμν∂λφQλ

�
;

F μν ≡ −β2
�
Qμ

λQνλ −
1

4
gμνQλσQλσ

�
: ð36Þ

It is not difficult to show that

∇̂μĜμν ¼ ∇̂νφ

�
ω̄
∇̂2φ

φ
−
ω̄

2

ð∂φÞ2
φ2

−
1

2
R̂

�

¼ ∇̂νφ

��
ω̄−

3

2

��
∇̂μQμ þ 1

2
QμQμ

�
−
λ

4
φ

�
; ð37Þ

where in order to go from first to second lines we used
the EOM (28). Besides, above we took into account the
Bianchi identity in the form, ∇̂μĜμν ¼ 0, and the following
useful expression:

ð∇̂2∇̂μ − ∇̂μ∇̂2Þφ ¼ R̂μν∇̂νφ: ð38Þ

After some algebra, it can be shown that

∇̂μQμν ¼ −
�
ω̄ −

3

2

��
∇̂νφ

�
∇̂μQμ þ 1

2
QμQμ

�

þJμQμν þ ð∇̂μJμÞQν

�

¼ −∇̂νφ

�
ω̄ −

3

2

��
∇̂μQμ þ 1

2
QμQμ

�

−
�
ω̄ −

3

2

�
JμQμν; ð39Þ

where we have introduced the shorthand notation
Jμ ≡ ∂μφ − φQμ, and in the last step, we took into account

the EOM (27): β2∇̂μQμν ¼ ðω̄ − 3=2ÞJν, so that

∇̂μJμ ∝ ∇̂μ∇̂νQνμ ¼ 0. We have that

∇̂μF μν ¼
�
ω̄ −

3

2

�
JμQμν − β2½2Qμλ∇̂½μ∇̂ν�Qλ

−Qμλ∇̂½μ∇̂λ�Qν�: ð40Þ

Now, if took into account the following useful expression:

2∇̂½μ∇̂ν�Qλ ¼ −R̂σ
λμνQσ; ð41Þ

and the definition of the Riemann-Christoffel curvature
tensor of V4 space (14), the following equation takes place:

QμλR̂σ
λμν ¼

1

2
QμλR̂σ

νμλ;

so that the expression within square brackets in (40)
vanishes,

2Qμλ∇̂½μ∇̂ν�Qλ −Qμλ∇̂½μ∇̂λ�Qν ¼ 0;

which leads to

∇̂μF μν ¼
�
ω̄ −

3

2

�
JμQμν: ð42Þ

Taking into account Eqs. (35), (36), (37), (39), and (42), we
finally obtain

∇̂μðφEμνÞ ¼ ∇̂μĜμν þ ∇̂μQμν þ ∇̂μF μν ¼ −
λ

4
φ∇̂νφ: ð43Þ

Hence, the following vanishing divergence takes place:

∇̂μ

�
ϕ2Eμν þ

λ

8
ϕ4gμν

�
¼ 0: ð44Þ

If we further consider the gravitational EOM (32), the
above equation entails that the standard GR conservation
equation,7

∇̂μTðmÞ
μν ¼ 0; ð45Þ

is satisfied. Since, as demonstrated in the first part of
the proof, only matter fields with traceless SET obey
the EOM (32), (27), and (28), then Eq. (45) means that
massless matter fields respond only to the curvature of
Riemann space V4, i.e., that these follow null geodesics of
Riemann geometry. Q.E.D.
The following corollary of Lemma 1 takes place,
Corollary 1.1: Massless fields—the only matter fields

which satisfy the EOM of the class of gauge invariant
gravitational theories given by the gravitational action
(24)—do not interact with the nonmetricity vector Qμ.
The physical consequences of this corollary discourage

the potential influence of vectorial nonmetricity and of
gauge symmetry on the gravitational phenomena. Actually,
the fact that the only matter fields that can be included in
the class of theories (6): radiation and massless fields, do
not interact with the nonmetricity, means that Qμ has not
effective impact on these fields and may be ignored.

7Equation (45) is consistent with the well-known result that the
Riemannian null geodesic equations are invariant under the Weyl
rescalings (3), as shown in Appendix D of Ref. [74].
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V. LOW-ENERGY PHENOMENOLOGY

Due to fulfillment of Lemma 1 (and of its corollary,) we
must replace the arbitrary matter Lagrangian Lm by the
radiation Lagrangian Lrad, which leads to the following
traceless SET:

Trad
μν ¼ −

2∂ð ffiffiffiffiffiffi−gp
LradÞffiffiffiffiffiffi−gp

∂gμν
¼ 4

3
ρrad

�
uμuν þ

1

4
gμν

�
; ð46Þ

where uμ ¼ δμ0 is the fourth-velocity of comoving observ-
ers. The action piece Srad ¼

R
d4x

ffiffiffiffiffiffi−gp
Lrad contains con-

tributions from all of the SM fields prior to EW symmetry
breaking, i.e., when these are massless fields. Besides, to
the action (34), we need to add the SUð2Þ × Uð1Þ sym-
metry breaking piece SH ¼ R

d4x
ffiffiffiffiffiffi−gp

LH, where the fol-
lowing gauge invariant Higgs Lagrangian is assumed:

LH ¼ 1

2
jD�

gHj2 þ λ0

2
½jHj2 − v2ðxÞ�2; ð47Þ

where vðxÞ ¼ v0ϕðxÞ is the point-dependent mass
parameter (λ0 and v0 are dimensionless constants).
In (47), we adopted the following notation: jD�

gHj2 ≡
gμνðDg�

μ HÞ†Dg�
ν H, where Dg�

μ ¼ Dg
μ −Qμ=2 and Dg

μ is
defined in (5).
In what follows, we shall consider the following gauge

invariant action:

Stot ¼ Sg þ SH þ Srad; ð48Þ

where the matter action for radiation Srad and the EW
symmetry breaking action SH have been defined in the text
above Eq. (47), while the gravitational action Sg ¼R
d4x

ffiffiffiffiffiffi−gp
Lg is given by action (24), whose associated

Lagrangian Lg can be rewritten as

Lg ¼
1

2

�
ϕ2R̂þ 6ð∂ϕÞ2 − λ

4
ϕ4

�
þ LS; ð49Þ

where

LS ¼
β2

4

�
−Q2 þ ω − 6

2β2
ϕ2

�
Qμ −

∂μϕ
2

ϕ2

�
2
�
; ð50Þ

stands for the Stueckelberg-type Lagrangian8 of the
Proca field Qμ, and we used the notation ðaμ þ bμÞ2 ≡
ðaμ þ bμÞðaμ þ bμÞ.

The independent gravitational EOM that can be derived
from (48) are the Einstein’s EOM,9

Eμν ¼
1

ϕ2
Trad
μν −

λ

8
ϕ2gμν; ð51Þ

which is obtained by varying the action (48) with respect to
the metric, and the inhomogeneous Proca equation (27)
(see footnote 4), which is obtained by varying with respect
to the nonmetricity vector Qμ.
The scalar field EOM (28), which is obtained by varying

the action (48) with respect to ϕ, is not an independent
equation since it can be obtained by substituting the
vanishing LC covariant divergence of (27): ∇̂νð∇̂μQμνÞ ¼
0 ⇒ ∇̂μðϕ2QμÞ − ∇̂2ϕ2 ¼ 0, into the trace of Einstein’s
equation (51), recalling that Trad ¼ 0. This means that the
scalar field does not satisfy any specific EOM; i.e., ϕ can be
chosen at will. Hence, ϕ is not a dynamical d.o.f. and the
coupling constant ω does not affect the measured Newton’s
constant. Besides, given that the nonmetricity vector, Qμ

does not interact with the matter fields; it does not modify
the measured gravitational constant either. For these rea-
sons, the measured Newton’s constant in the class of
theories (48) corresponds to the tensor gravitational force.
It is given by

8πGNðxÞ ¼
1

ϕ2ðxÞ ; ð52Þ

so that it depends on spacetime point like in the BD
theory.10

In order to understand why the nonmetricity vector field
Qμ, being a (non-Riemannian) part of the gravitational
field, does not interact with radiation: the only matter
degrees of freedom allowed by the theory (49), let us bring
into attention the gravitational spectrum of this gauge
invariant theory. Because the scalar degree of freedom
associated with ϕ is not dynamical, the gravitational
spectrum of (49) consists of 2 degrees of freedom of the
massless graviton plus 3 degrees of freedom of the massive
field Qμ, whose effective mass squared is given by (see
footnote 4),

m2
QðxÞ ¼

6 − ω

4β2
ϕ2ðxÞ ¼ 6 − ω

4β2
M2

plðxÞ: ð53Þ

8Notice that LS differs from the standard Stueckelberg La-
grangian in the absence of a gauge fixing term [75–78]. Yet, it is
not a typical Proca Lagrangian thanks to the gradient ∂μϕ2=ϕ2

within round brackets squared. This leads to the Lagrangian
density

ffiffiffiffiffiffi−gp
LS being gauge invariant in contrast to just Proca

term, which is not gauge invariant.

9For simplicity, we omit the Higgs field.
10In contrast, in the BD theory, since the scalar field ϕ is a

dynamical (gravitational) degree of freedom, the measured
gravitational constant is indeed modified by ϕ through the BD
coupling constant ωBD [63,79,80],

8πGN ¼ 1

ϕ2

�
4þ 2ωBD

3þ 2ωBD

�
:
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In this equation,MplðxÞ ¼ 1=8πGNðxÞ stands for the point-
dependent effective Planck mass. This quantity sets the
grand unification scale point by point in spacetime. Hence,
unless either ω ¼ 6 or β2 → ∞, the effective mass
mQðxÞ ∼MplðxÞ, meaning that the nonmetricity field is
decoupled from the low-energy gravitational spectrum. In
this case, thanks to the fact that the Stueckelberg-type
Lagrangian density

ffiffiffiffiffiffi−gp
LS (50) is gauge invariant itself,

we may dispense with the Lagrangian LS without affecting
the gauge symmetry of the resulting gravitational Lagran-
gian density

ffiffiffiffiffiffi−gp
Lg in (49). In the opposite end stands the

case when ω ¼ 6, which corresponds to massless Qμ. In
this case, the nonmetricity field amounts to an additional
radiation (matter) field propagating in the background
Riemann space V4, so that it may be disregarded as well.
Hence, the low-energy gravitational spectrum of the gauge
invariant theory (49) is the same as in GR: It consists of the
two polarizations of the graviton exclusively.
In this paper, we are interested in the low-energy

phenomenology so that we ignore the Stueckelberg-type
Lagrangian LS in (50). The resulting gauge invariant
(effective) gravitational Lagrangian reads

Leff
g ¼ 1

2

�
ϕ2R̂þ 6ð∂ϕÞ2 − λ

4
ϕ4

�
: ð54Þ

It coincides with the particular case when in (24) we set
ω ¼ 6, β2 ¼ 0. This is the well-known Lagrangian of a
conformally coupled scalar. If we want to go beyond the
low-energy phenomenology, consideration of higher cur-
vature terms is mandatory. Nevertheless, in such a case
Lemma 1 and its corollary are not satisfied in general.11

From the overall action,

Stot ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Leff
g þ Srad; ð55Þ

with Leff
g given by (54), the following EOM are derived:

Ĝμν −
1

ϕ2
ð∇̂μ∇̂ν − gμν∇̂2Þϕ2

þ 6

ϕ2

�
∂μϕ∂νϕ −

1

2
gμνð∂ϕÞ2

�
¼ 1

ϕ2
Trad
μν −

λ

8
ϕ2gμν;

R̂þ 6
ð∂ϕÞ2
ϕ2

− 3
∇̂2ϕ2

ϕ2
−
λ

2
ϕ2 ¼ 0; ð56Þ

together with the conservation equation ∇̂μTrad
μν ¼ 0. Since

the trace of the radiation SET vanishes (Trad ¼ 0), the
second EOM above—which is derived by varying (55)
with respect to ϕ—is not an independent equation since it
coincides with the trace of the Einstein’s equation in (56).

Hence, the scalar field does not satisfy an indepen-
dent EOM.
In general, ϕ can be set equal to any nonvanishing

(continuous) function ϕ ¼ ϕðt; x⃗Þ or to any constant ϕ ¼
ϕ0 without conflict with the EOM (56). This means the ϕ is
a nondynamical field.

VI. GAUGE FREEDOM: THE MANY-WORLDS
INTERPRETATION

We have argued that the usual EM-inspired interpretation
of gauge symmetry according to which a specific gauge
choice carries no physical consequences as the different
gauges describe the same physical state is not appropriate
in the case of gauge invariant theories of gravity. In this
case, the conformal transformations of the metric affect the
measuring scales and, hence, the way we do measurements
of time and length. Besides, these affect the scalar density
of fermions and related quantities as well. We need a
different perspective on gauge invariance and on what
gauge fixing means in this case.
Here we shall develop an alternative understanding of

gauge symmetry and of gauge fixing in gravitational
theories which, despite obvious differences, bears resem-
blance with the many-worlds interpretation of quantum
physics [81–90]. Since the scalar field ϕ can be any smooth
function, choosing a specific gauge, labeled “j,” means
choosing a specific function ϕj (j ∈ N). Let us represent a
given gauge by

Gj∶ fM4 ∈ V4; gμν;ϕjjSj; C;…g; ð57Þ

where, due to Lemma 1 and its corollary (see also the above
discussion on the low-energy phenomenology), we have
replaced the starting Weyl geometric spacetime structure by
the effective Riemannian spacetime structure: W̃4 → V4.
In (57), Sj represents the set of relevant measured point-
dependent “constants” of nature,

Sj ¼ fM2
pl;jðxÞ; vjðxÞ;ΛjðxÞg;

where the effective (point-dependent) Planck mass reads

M2
pl;jðxÞ ¼

1

8πGN;jðxÞ
¼ ϕ2

jðxÞ;

while the point-dependent mass parameter in the gauge
invariant Higgs Lagrangian (47) and the effective cosmo-
logical constant are given by

vjðxÞ ¼ v0ϕjðxÞ; ΛjðxÞ ¼
λ

8
ϕ2
jðxÞ;

respectively. In the above definition of Gj, we have included
the set of measured gauge invariant constants of nature:
C ¼ fℏ; c; e;…g, where ℏ is the Plack constant, c is the11See, however, the related discussion in Sec. IX.
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speed of light, e is the EM charge of the electron, and the
ellipsis stand for other physical constants which are not
transformed by the gauge transformations (3). The ellipsis
in (57) represent other possible relevant measured quan-
tities in the theory under consideration.
Each gauge carries a potential description or representa-

tion of the world. Although the gravitational laws (56) are
gauge invariant, once a gauge is picked out, these laws
lose the manifest gauge symmetry. This means that the
laws look different in different Gj-s: Since ϕjðxÞ is different
in different gauges, the measured Newton’s constant
(inverse of the point-dependent Planck mass squared), the
Higgs mass parameter and the energy density of vacuum
ρvacj ðxÞ ¼ ΛjðxÞM2

pl;jðxÞ, among other measured quantities,
are different in the different gauges. Yet a residual gauge
symmetry remains in the following sense: any gauge Gi is
related with any other Gj through gauge transformations,

gμν → Ω2gμν; ϕi → Ω−1ϕj; ð58Þ

plus appropriate transformations of the remaining fields.
By means of (58), a given gauge transforms into another
gauge: Gi → Gj, while Gj → Gi through the inverse
transformations.
The overall picture consists of a conformal equivalence

class of gauges which is generated by the infinity of
possible choices of the scalar ϕj,

K ¼ fG1;G2;…;Gj;…;GN jj ∈ Ng; ð59Þ

where the general element of the class Gj is given by (57)
and N → ∞. Any two elements of the conformal equiv-
alence classK (59) are linked by gauge transformations (58).
Imagine a number N → ∞ of identical copies Wj of our
world. Now let us associate with each copy a physical/
geometrical description given by an element of K:
Gj ↔ Wj. We end up with N different worlds which have
been subject to different descriptions. Without loss of
generality—putting aside obvious philosophical counter-
arguments—wemay establish an equivalence between given
worlds and their physical/geometrical descriptions:
Wj ⇔ Gj. Hence, the conformal equivalence class K is
equivalent to the class of potential worlds: fW1;W2;…;
Wj;…;WN jj ∈ Ng. It is in this sense that we establish a
parallel between our interpretation of gauge fixing and the
many-worlds picture.
This classic gravitational version of the many-worlds

interpretation of quantum physics is interesting because it
provides a different perspective on the relation between
theory and experiment. Usually experiment is useful in
order to corroborate the theoretical predictions made on
the basis of given theoretical framework. According to
the present approach, experiment allows one to deter-
mine which one of the infinitely many gauges is the one
which better describes our Universe, through associating

experimental values to the measured quantities, in particular
to the (point-dependent) constants of nature.

A. General relativity gauge

Among the infinity of possible gauges there is one which
is singular. If in the action (48) make the following choice
of the scalar field: ϕ ¼ Mpl, where Mpl is the Planck mass,
one obtains12

Stot ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½M2
plðR̂ − 2ΛÞ� þ Srad; ð60Þ

where the effective cosmological constant Λ ¼ λM2
pl=8, and

we have taken into account that, for ω ≠ 6 and β2 ∼ 1, the
mass squared of the vector field Qμ: m2

Q ¼ ð6 − ωÞ
M2

pl=4β
2 ∝ M2

pl, so that the nonmetricity field decouples
from the low-energy gravitational spectrum. This means that
the effective geometrical structure of background space is
Riemannian so that, in what follows, we make the replace-
ment: W̃4 → V4.
The action (60) is just the Einstein-Hilbert (EH) action

over Riemann V4 space. The obtained representation,

GGR∶ fM4 ∈ V4; gμν;ϕ ¼ MpljSGR; C;…g;

where SGR ¼ fM2
pl; v0Mpl;Λg, is called as GR gauge. In

this specific gauge, the manifest gauge symmetry of the
theory (48) is lost.
Although GR itself is clearly not gauge invariant, in the

present framework, it is no more than one of the infinitely
many equivalent gauges in the conformal equivalence
class (59): K¼fG1¼GGR;G2;…;Gj;…;GN jj∈Ng. Hence,
since gauge invariance is the underlying symmetry behind
the class K, GR is part of a bigger gauge invariant theory.

1. The many GR worlds

Let us discuss how the many-worlds picture arises in the
simplest case: the GR gauge. Since, in order to fix the GR
gauge, the choice of a constant value of the scalar field ϕ is
arbitrary, depending of the chosen constant value of the
scalar field, one has (in principle) an infinite set of GR
copies with different values of the Planck mass, of the
masses of the SM fields and of the cosmological constant,
among others. The GR gauge represents itself a subclass
KGR within the conformal classK (59), which comprises an
infinite number of GR copies,

KGR ¼ fG0
GR;G

1
GR;G

2
GR;…;Gk

GR;…g;

12The EH action (60) can be obtained from (48) through the
gauge transformations (58): gμν → Ω2gμν, ϕ → Ω−1Mpl. The
inverse transformations map the GR action (60) back into (48).
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where k ¼ 0; 1; 2; 3…; N (N → ∞) and the general
element of the GR gauge can be expressed as

Gk
GR∶ fM4 ∈ V4; gμν;ϕ0kjSGR

k ; C;…g;

where the different constants ϕ0k ∈ R generate different
sets of physical constants,

SGR
k ¼ fM2

pl;k ¼ ϕ2
0k; vk ¼ v0ϕ0k;Λk ¼ λϕ2

0k=8g:

In this many-worlds approach to GR, the experiment
allows us to determine which one of the infinitely many
GR gauges is the one which better describes our Universe
through associating experimental values to the measured
quantities, in particular to the constants of nature.

VII. THE MANY WORLDS: A COSMOLOGICAL
EXAMPLE

For further illustration of the many-worlds approach to
gauge symmetry, let us consider a cosmological example.
Let us write the independent EOM in Eq. (56)—these will
be the Einstein’s equations—in terms of the Friedmann-
Robertson-Walker (FRW) metric with flat spatial sections
(in what follows, for simplicity, we omit the term ∝ λϕ4),

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ð61Þ

where t is the cosmic time and aðtÞ is the dimensionless
scale factor. We get that13

3

�
H þ

_ϕ

ϕ

�2

¼ 1

ϕ2
ρrad; ð62Þ

where the radiation SET (46) has been considered. The
continuity equation ∇̂μTrad

μν ¼ 0, leads to _ρrad þ 4Hρrad ¼ 0,
whose straightforward integration yields: ρrad ¼ ρ0a−4,
where ρ0 is an integration constant. If introduce the gauge
invariant variable χ ≡ aϕ and replace the cosmic time by
the gauge invariant conformal time: dτ ¼ a−1dt, Eq. (62)
can be given the form of a very simple gauge invariant
equation,

χ0 ¼ ffiffiffiffiffi
ρ0

p
; ð63Þ

where the tilde means derivative with respect to the
conformal time τ. This equation can be integrated in
quadratures to get the following gauge invariant expression:

aðτÞϕðτÞ ¼ ffiffiffiffiffi
ρ0

p ðτ − τ0Þ; ð64Þ

where τ0 is an integration constant. Different choices of the
function ϕðτÞ fix different gauges. For brevity, let us
consider only three representative of them,

(i) The GR gauge where ϕ ¼ ϕ0 ¼ const.14 In this case,
aðτÞ ¼ a0ðτ − τ0Þ, where a0 ¼ ffiffiffiffiffi

ρ0
p

=ϕ0. In terms
of the cosmic time, we have that aðtÞ ¼ ffiffiffiffiffiffiffi

2a0
p

ðt − t0Þ1=2, where t0 is another integration constant.
(ii) de Sitter gauge, where

H ¼ H0 ⇒
a0

a2
¼ H0;

or, after integration,

aðτÞ ¼ H−1
0 ðτ0 − τÞ−1 ⇒ aðtÞ ¼ a0eH0t;

where a0 ¼ exp ð−H0t0Þ=H0. In this case the
squared gauge scalar evolves as

ϕ2ðτÞ ¼ H2
0ρ0ðτ − τ0Þ4 ⇒ ϕ2ðtÞ ¼ ϕ2

0e
−4H0t;

where ϕ0 ¼ ffiffiffiffiffi
ρ0

p
a20=H0.

(iii) Third (unphysical) gauge where contraction of the
Universe takes place instead of expansion. We
assume aðtÞ ¼ t−n, where n is a positive real
number. In terms of the conformal time, this
amounts to: aðτÞ ¼ a0ðτ − τ0Þ− n

nþ1, and ϕ2ðτÞ ¼
ϕ2
0ðτ − τ0Þ

2ð2nþ1Þ
nþ1 ⇒ ϕ2ðtÞ ¼ ϕ̄2

0t
2ð2nþ1Þ, where a0 ¼

ðnþ 1Þ−n=ðnþ1Þ, ϕ0 ¼ ffiffiffiffiffi
ρ0

p
=a0 and ϕ̄0¼ ffiffiffiffiffi

ρ0
p

=nþ1.
The listedgauges canbe expressed in the followinggeneral

form15: G∶ fM4 ∈ V4; aðτÞ;φðτÞg. More specifically, these
can be expressed as follows:

GGR∶ fM4 ∈ V4; aðτÞ ¼ a0ðτ − τ0Þ;ϕðτÞ ¼ ϕ0g;
GdS∶ fM4 ∈ V4; aðτÞ ¼ H−1

0 ðτ0 − τÞ−1;
ϕðτÞ ¼ ffiffiffiffiffi

ρ0
p

H0ρ0ðτ − τ0Þ2g;
Gthird∶ fM4 ∈ V4; aðτÞ ¼ a0ðτ − τ0Þ− n

nþ1;

ϕðτÞ ¼ ϕ0ðτ − τ0Þ2nþ1
nþ1 g: ð65Þ

These gauges are linked by gauge transformations (3),

a2ðτÞ → Ω2ðτÞa2ðτÞ; ϕ2ðτÞ → Ω−2ðτÞϕ2ðτÞ: ð66Þ

13There are not other independent equations. For instance, the
Raychaudhuri equation is obtained by deriving (62) with respect
to the cosmic time and taking into account the continuity
equation. The equation for the scalar field coincides with the
trace of (56), so that it is not an independent equation.

14Recall that there are possible infinitely many different
choices of the constant ϕ0, so that there can be infinitely many
copies of GR in the GR gauge.

15For compactness, here we omit explicit writing of the
sets of constants of nature SðτÞ ¼ fM2

plðτÞ; vðτÞ;ΛðτÞg, and
C ¼ fℏ; c; e;…g.
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For instance, the first two gauges are linked by these
transformations with conformal factor Ω2¼a20H

2
0ðτ−τ0Þ4,

while for the first and third gauges, Ω2 ¼ ðτ − τ0Þ
2ð2nþ1Þ
nþ1 . All

three gauges are associated with radiation domination since
only radiation can be considered in (56).
While the GR gauge describes a stage with decelerated

expansion, the de Sitter gauge describes an inflationary
period of the cosmic expansion, and the third gauge
represents a contracting universe. These different cosmo-
logical behaviors may be observationally differentiated. In
particular, the gravitational constant measured in Cavendish-
type experiments GN , shows a different dynamical behavior
in each gauge,

8πGGR
N ¼ ϕ−2

0 ; 8πGdS
N ¼ ϕ−2

0 e4H0t;

8πGthird
N ¼ ϕ̄−2

0 t−2ð2nþ1Þ;

correspondingly. Therefore, assuming that one of these
behaviors may correctly explain the radiation dominated
cosmic dynamics, observations are able to select the
corresponding gauge.16

VIII. GRADIENT NONMETRICITY

In former sections, it has been shown that gauge
symmetry must be broken down before, or at least
simultaneously, with SUð2Þ ×Uð1Þ symmetry. That is,
Weyl gauge symmetry does not survives after EW sym-
metry breaking. This is due to the fact that only massless
fields couple to gravity in gauge invariant theories of
gravity of class (54). However, in Weyl integrable geometry
(WIG) space, which we denote here as W̃int

4 , since the
nonmetricity vector amounts to a gradient of a scalar field,
we have an opportunity to improve the above issue.
This can be done by lifting the gauge scalar field ϕ to the

category of a geometric field. In other words, we assume
that the nonmetricity of WIG space is given by

∇αgμν ¼ −2
∂αϕ

ϕ
gμν; ð67Þ

i.e. that the nonmetricity vector Qμ ¼ 2∂μϕ=ϕ. Under this

assumption, we have that ϕ2R ¼ ϕ2R̂ − 6ϕ∇̂2ϕ or, equiv-
alently: ϕ2R ¼ ϕ2R̂þ 6ð∂ϕÞ2 − 6∇̂μðϕ∂μϕÞ, where the last
term amounts to a boundary term that can be omitted. The
action of gauge invariant gravity in W̃int

4 space reads

Swigg ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
ϕ2R

¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½ϕ2R̂þ 6ð∂ϕÞ2�: ð68Þ

The most interesting property of the above action is that
matter fields, whether massless or with the mass, couple to
gravity without breaking the gauge symmetry. Consider the
gauge invariant action over W̃int

4 ,

Swigtot ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½ϕ2R̂þ 6ð∂ϕÞ2 þ 2Lm�; ð69Þ

where Lm is the Lagrangian of the matter fields. Consistent
coupling of arbitrary matter fields is possible thanks to the
property that in WIG space variation of the metric is not
independent of variation of the geometric scalar field ϕ,
since due to gradient nonmetricity law (67) one has that
[see, for instance, Eq. (3) of Ref. [91] ],

δgμν ¼ −2
δϕ

ϕ
gμν; δgμν ¼ 2

δϕ

ϕ
gμν: ð70Þ

This means, for instance, that variation of the overall
Lagrangian in (69),

Ltot ¼
1

2
½ϕ2R̂þ 6ð∂ϕÞ2 þ 2Lm�; ð71Þ

δð ffiffiffiffiffiffi
−g

p
LtotÞ ¼

∂ð ffiffiffiffiffiffi−gp
LtotÞ

∂gμν
δgμν

¼ 2
∂ð ffiffiffiffiffiffi−gp

LtotÞ
∂gμν

gμν
δϕ

ϕ
: ð72Þ

Hence, since

∂ð ffiffiffiffiffiffi−gp
LtotÞ

∂gμν
¼

ffiffiffiffiffiffi−gp
2

½ϕ2Gμν − TðmÞ
μν �

¼
ffiffiffiffiffiffi−gp
2

n
ϕ2Ĝμν þ 6

h
∂μϕ∂νϕ −

1

2
gμνð∂ϕÞ2

i
− ð∇̂μ∇̂ν − gμν∇̂2Þϕ2 − TðmÞ

μν

o
;

variation of the action (69) with respect to the metric yields
the Einstein’s EOM,

16From the start, there is a gauge which we know does not
meet the observational data: the one which describes cosmic
contraction.
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Gμν ¼
1

ϕ2
TðmÞ
μν

⇔ Ĝμν −
1

ϕ2
ð∇̂μ∇̂ν − gμν∇̂2Þϕ2

þ 6

ϕ2

�
∂μϕ∂νϕ −

1

2
gμνð∂ϕÞ2

�
¼ 1

ϕ2
TðmÞ
μν ; ð73Þ

where we have taken into account that the Einstein’s tensor
of W̃int

4 space can be written in terms of LC (Riemannian)
quantities according to

Gμν ¼ Ĝμν −
1

ϕ2
ð∇̂μ∇̂ν − gμν∇̂2Þϕ2

þ 6

ϕ2

�
∂μϕ∂νϕ −

1

2
gμνð∂ϕÞ2

�
:

Meanwhile, according to (72),

δϕð
ffiffiffiffiffiffi
−g

p
LtotÞ ¼ 2

∂ð ffiffiffiffiffiffi−gp
LtotÞ

∂gμν
gμν

δϕ

ϕ

¼ −
ffiffiffiffiffiffi
−g

p ½ϕ2Rþ TðmÞ� δϕ
ϕ

:

Hence, variation of (69) with respect to ϕ leads to

−R ¼ −R̂ − 6
ð∂ϕÞ2
ϕ2

þ 3
∇̂2ϕ2

ϕ2
¼ 1

ϕ2
TðmÞ; ð74Þ

which coincides with the trace of the Einstein’s EOM (73)
without requiring vanishing SET trace. In consequence, the
geometric gauge scalar ϕ is not a dynamical field: it can be
chosen at will. Different choices lead to different gauges.

A. Continuity equation

In Sec. IV, we have demonstrated that the standard
continuity equation (45) in background Riemann space V4:

∇̂μTðmÞ
μν ¼ 0, takes place in the class of gauge invariant

theories (49) over Weyl space W̃4. This means that
radiation and massless SM fields: the only matter fields
which couple to gravity in this framework, follow null
geodesics of Reimann space. In consequence, we may drop
out the nonmetricity vector; i.e., we may replace W̃4 → V4.
In the present case where a gauge invariant theory over

WIG space—distinguished by gradient nonmetricity (67)—
is considered, the continuity equation can be derived in the
following way. Let us take the LC covariant divergence of
the quantity ϕ2Gμν. According to the EOM (73), we get that

∇̂μðϕ2GμνÞ ¼ ∇̂μϕ2Ĝμν − ð∇̂2∇̂μ − ∇̂μ∇̂2Þϕ2

þ ∇̂νϕ
2

2

�
3
∇̂2ϕ2

ϕ2
− 6

ð∂ϕÞ2
ϕ2

�
;

or, if consider the Eq. (38) with the replacement φ → ϕ2, we
obtain that

∇̂μðϕ2GμνÞ ¼
∇̂νϕ

2

2

�
−R̂ − 6

ð∂ϕÞ2
ϕ2

þ 3
∇̂2ϕ2

ϕ2

�
:

Hence, if in this equation substitute (74) and take into

account the EOM (73): ϕ2Gμν ¼ TðmÞ
μν , we finally obtain the

following continuity equation [compare with Eq. (45)]:

∇̂μTðmÞ
μν ¼ ∇̂νϕ

2

2ϕ2
TðmÞ ¼ ∇̂νϕ

ϕ
TðmÞ: ð75Þ

This equation means that matter fields with traceless SET:
TðmÞ ¼ 0, follow null geodesics of Riemann space V4;
meanwhile, SM matter fields with nonvanishing TðmÞ ≠ 0,
follow timelike geodesics of WIG space W̃int

4 instead.
Given that in the theory (69) all of SM fields couple to

gravity, no matter whether massless or with the mass, gauge
symmetry in this theoretical framework may have impact
in the phenomenology after EW symmetry breaking.
Investigation of this impact is the subject of [92].

IX. DISCUSSION AND CONCLUSION

In this paper, we have investigated gauge invariant
gravitational Lagrangians of the general form (49). This
Lagrangian leads to the independent second-order EOM (51)
and (27), despite that it contains a quadratic curvature term
of the peculiar form: Q2 ¼ RðαβÞμνRðαβÞμν ¼ R½μν�R½μν�. One
of the main results of this paper is comprised in Lemma 1:
“In gauge invariant gravitational theories of class (49) (i) only
matter fields with traceless SET couple to gravity, and
(ii) these follow geodesics of Riemann geometry,” and in its
Corollary 1.1: “Massless fields—the only matter fields
which satisfy the EOM of theories of class (49)—do not
interact with the nonmetricity vector Qμ.” The Lemma
(together with its proof and the resulting corollary) general-
izes previous works where it is shown that the nonmetricity
vector does not interact with massless fermions [8,9].
Consideration of other quadratic terms, like R2, leads to

the particular form of Lagrangian (49), where ω ¼ 0 (no
kinetic term for the scalar field), as it is shown in [56]. In
this bibliographic reference, a well-known method [93,94]:
to replace the quadratic term by a linear term multiplied by
a non dynamical scalar R2 → −2ϕ2R − ϕ4, is used to
“linearize” the gravitational Lagrangian.
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Addition of a quadratic term of the form,17

SW ¼ α

Z
d4x

ffiffiffiffiffiffi
−g

p
Ĉ2; ð76Þ

where α is a dimensionless constant, Ĉ2 ≡ ĈμλνσĈ
μλνσ , and

Ĉμλνσ is the Weyl tensor of Riemann space, does not modify
the results of Lemma 1 and of its corollary either. Actually,
in this case the derived EOM reads [53]

Ŵð2Þ
μν −

1

3
Ŵð1Þ

μν ¼ 1

4α
Tmat
μν ; ð77Þ

where

Ŵð1Þ
μν ¼ 2gμν∇̂2R̂ − 2∇̂μ∇̂νR̂ − 2R̂R̂μν þ

1

2
gμνR̂

2;

Ŵð2Þ
μν ¼ 1

2
gμν∇̂2R̂þ ∇̂2R̂μν − 2∇̂ðμ∇̂λR̂νÞλ

− 2R̂μλR̂ν
λ þ 1

2
gμνR̂λσR̂

λσ:

The trace of Eq. (77) yields

1

4α
Tmat ¼ ∇̂2R̂ − 2∇̂μ∇̂νR̂μν ¼ −2∇̂μ∇̂νĜμν;

which exactly vanishes thanks to the Bianchy identity
∇̂μĜμν ¼ 0. Hence, only radiation couples to gravity in this
theory. Despite that (76) has been proposed as a possible
explanation to the dark matter issue, quite the contrary
effect is obtained since the DM does not interact with
radiation. In a cosmological context, this theory could
describe the radiation dominated epoch of the cosmic
evolution exclusively. But the matter dominated stage,
where the formation of cosmic structure happens and
where the dark matter plays the most important part,
requires of a different theory that should replace (76).
Hence, dark matter can not be explained in the present
setup as incorrectly claimed in [53,54].

In a similar fashion, the theory developed in [56–60],
which corresponds to the particular case when in (49) the
coupling vanishes: ω ¼ 0, has been “seemingly” estab-
lished in [55] as a basis for an alternative explanation of the
DM. We underline the word “seemingly” because explain-
ing the DM in the class of theories (49) is forbidden by
Lemma 1 and its corollary. In the mentioned reference, the
authors look for static, spherically symmetric, vacuum
solutions to the Einstein’s EOM (25) with ω ¼ 0 (also
with λ ¼ 0). Then they investigate the physical properties
of the stable circular timelike geodesic orbits of massive
test particles in static, spherically symmetric, vacuum space
W̃4. This is misleading since only massless fields can
couple to gravity in this gauge invariant theory, as stated in
Lemma 1. A feasible physical explanation of Lemma 1 in
this case can be based on the Proca equation (27) with
ω ¼ 0 [see also the Stuckelberg-type Lagrangian LS (50)].
The Weyl vector field Qμ has an effective mass squared
m2

QðxÞ ¼ 3M2
plðxÞ=2β2 ¼ 3ϕ2ðxÞ=2β2, where the effective

Planck mass MplðxÞ sets the grand unification scale point
by point in space. Hence, the nonmetricity vector is a short
range field with range ∼M−1

pl . This means it is strongly
screened so that it does not modify the motion of test fields
in any appreciable way. As a matter of fact, the Qμ-s
decouple from the low-energy spectrum in general.
Hence, what have the authors of [55] really done? In

order to find exact solutions, they assumed that the non-
metricity vector has only a nonvanishing radial component
Qμ ¼ ð0; wr; 0; 0Þ. This implies that Qμν ¼ 0 ⇒ Q2 ¼ 0.
If we set Qμν ¼ 0 in (27), it follows that Qμ ¼ ∂μϕ

2=ϕ2;
i.e., the geometric structure of background space is Weyl
integrable geometry with the nonmetricity law (67), instead
of just Weyl geometry. Hence, in the setup investigated in
[55], one has to make the replacement W̃int

4 → W̃4. Besides,
since Q2 ¼ 0 and Qμ ¼ ∂μϕ

2=ϕ2, then the Stuckelberg-
type Lagrangian (50) vanishes as well. We are led with the
effective gravitational Lagrangian (54),

Leff
g ¼ 1

2

�
ϕ2R̂þ 6ð∂ϕÞ2 − λ

4
ϕ4

�
;

which up to the irrelevant term ∝ ϕ4 coincides with the
gravitational Lagrangian in (68). Hence, the model which is
investigated in [55] as the basis for the explanation of the
DM is not the model assumed by the authors, but the one
studied in Sec. VIII, which is based in background space
with gradient nonmetricity (67), so that it evades the
Lemma 1 and its corollary.
Perhaps the main lesson to be learn from the present

investigation is that the class of gauge invariant theories
given by the Lagrangian (49) can have an impact only in
the dynamics during the radiation epoch, before SUð2Þ ×
Uð1Þ symmetry breaking takes place. Hence, neither the
dark matter nor the dark energy can be linked with the

17This theory, which has been developed in [53,54], has severe
problems. According to [95] (see also [96]), to lowest order,
fluctuations of the metric around flat space in a theory with
quadratic action of the form,

Sst ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R̂þ 1

6m2
0

R̂2 −
1

2m2
2

Ĉ2

�
;

lead to a perturbations spectrum which, in addition to the
graviton, contains a scalar field with mass m0 and a spin-two
field with mass m2. This quadratic theory is renormalizable but
nonunitary. The theory (76), in contrast, contains only the
ghostlike spin-two field and has no graviton in its spectrum.
This rules out this theory as a phenomenologically viable
description of low curvature gravitational phenomena.
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nonmetricity vector (Weyl gauge vector). This result can
be easily extended to the case when in (49), we replace the
scalar field ϕ by a multicomponent (complex) scalar φ,
such that, ϕ2 → jφj2 ¼ φ†φ, ð∂�ϕÞ2 → j∂�φj2,

j∂�φj2 ¼ j∂φj2 − 1

2
∂μjφj2Qμ þ 1

4
jφj2QμQμ:

A consequence of this result is that, for instance, the
theoretical framework proposed in [8] can not explain
the DM as incorrectly suggested in that paper (see also the
subsequent [9]).
A controversial aspect of the present study can be related

with our approach to gauge symmetry. We have approached
the physical and geometrical interpretation of gauge invari-
ance from a different perspective, where a gauge choice has
physical consequences, so that it is subject to experimental
check. According to our approach, gauge freedom can be
associated with a physical picture resembling the many-
worlds interpretation of quantum physics. The gauge scalar
ϕ does not obey any specific EOM so that it may be fixed at
will. This means that in Eqs. (28), (27), and (32), we may
choose any function φðxÞ we want. The result will be a
specific theory associated with this choice of a gauge.
Hence, each gauge represents a whole theory of gravity,
which is characterized by a specific behavior in spacetime
of several fundamental “constants,” the mass of the SM
particles, etc. An outstanding gauge in this theoretical
framework is the so-called GR gauge, which is a (in
principle infinite) set of copies of GR theory, specified by
the choice ϕ ¼ ϕ0k (k ¼ 1; 2;…; N), where the ϕ0k are
different constants. In this gauge, the gravitational laws
look exactly the same, so that each member in the GR

gauge differs from any other in the values of the measured
Newton’s constant 8πGN;k ¼ M−2

pl;k and of the EW mass
parameter v20k, among others. In our framework, general
relativity is just a subclass of a bigger theory. Manifest
gauge symmetry is lost once a specific gauge has been
chosen. This is why GR seems to evade this symmetry.
Yet, it is a residual symmetry since any specific gauge is
related with any other gauge through the gauge trans-
formations (3).
The present classic gravitational version of the many-

worlds interpretation of quantum physics is interesting
because it provides a different perspective on the relation
between theory and experiment: the experiment allows us
to determine which one of the infinitely many gauges is the
one which better describes our Universe through associat-
ing experimental values to the constants of nature.
We conclude that, despite being decoupled from the low-

energy gravitational spectrum, vectorial nonmetricity and
gauge symmetry may have led their footprints in the
quantum era. When, in the above theory, we replace vector
by gradient nonmetricity, the resulting gauge invariant
theoretical framework, which is given by Lagrangian
(71) and the derived EOM (73), is the only possibility left
to us by nature to search for the classical phenomenological
and observational consequences of gauge symmetry. This
theory is investigated in a separate publication [92].
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