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In this paper, we discuss on the phenomenological footprints of gauge invariant theories of gravity where
the gravitational effects are due not only to spacetime curvature, but also to vectorial nonmetricity. We
explore the possibility that vectorial nonmetricity and gauge symmetry may survive after SU(2) x U(1)
(electroweak) symmetry breaking, so that these may have impact on the explanation of certain
cosmological puzzles, such as the nature of the dark matter and of the dark energy. We show that this
is possible only for theories with gradient nonmetricity, i.e., when the vectorial nonmetricity amounts to a
gradient of a scalar. The possibility that vectorial nonmetricity may have played a role in the quantum epoch
is not ruled out. We also present an alternative interpretation of gauge invariance of theories with vectorial
nonmetricity, which we call the “many-worlds” interpretation due to its overall similitude with the known

interpretation of quantum physics.
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I. INTRODUCTION

Weyl geometry [1], the theoretical framework where
gauge symmetry was introduced for the first time, played
an important role in the early search for alternatives on
unification of the fundamental interactions [2—11]. It rep-
resented an interesting generalization of Riemann geometry;
nevertheless, discussions on the occurrence of the second
clock effect (SCE) [12-23] ruled it out as phenomenologi-
cally nonviable. Recently, nonmetricity theories, where the
covariant derivative of the metric does not vanish [24],

vag/w = _Qa,uw (1)

with Q,,,—the nonmetricity tensor, have played an inter-
esting role in the search for alternative explanations to
fundamental questions of current interest. The recent
resurrection of nonmetricity theories is mainly focused in
the so-called teleparallel [25-33] and, specially, the sym-
metric teleparallel theories [34—43] and their cosmological
applications [44—50]. Despite that, Weyl gauge invariance is
an intrinsic symmetry of nonmetricity geometry, in the bulk
of these papers, gauge symmetry is ignored. Only in a few
bibliographic references is nonmetricity investigated from
the point of view of gauge symmetry [21,46,51].

Gauge symmetry is one of the most important properties
of nonmetricity geometry due to covariance of (1) under the
following Weyl gauge transformations [24,46]:

gm/ - ngyw Qa;w - Qa/u/ —20%In Qgﬂl/’ (2)
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where the positive smooth function Q = Q(x), is the
conformal factor. In (2), the conformal transformation of
the metric does not represent a diffeomorphism or, prop-
erly, a conformal isometry; i.e., the spacetime coincidences
or events (as well as the spacetime coordinates that label the
events) are not modified by the conformal transformations.
Here, we shall focus in a class of gauge invariant gravi-
tational theories with vectorial nonmetricity; i.e., when in
Eq. (1), we set Qg = Qq9,,- We shall not consider the
teleparallel condition (vanishing overall Riemannian cur-
vature) so that the teleparallel and the symmetric tele-
parallel theories, as well as their cosmological applications,
fall beyond of the scope of this paper.

In the case of a gauge invariant theory of gravity over
background spacetimes with nonmetricity vector Q,,, gauge
invariance means that the gravitational laws are not affected
by simultaneous conformal transformations of the metric
and gauge transformations of the nonmetricity vector,

G = ngﬂy, Q,— 0,-20,InQ, (3)

together with appropriate transformations of the remaining
fields according to their conformal weight w: ¥, — Q"W¥,,.
In what follows, we shall call the transformations (3)
either as Weyl gauge transformations or, simply, as gauge
transformations.

The standard Weyl gauge invariant picture can be
explained as follows. SU(2) x U(1) symmetry breaking
may be associated with the Higgs Lagrangian,
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where v, is the constant electroweak (EW) mass parameter,
H is the Higgs doublet, and we use the following notation:
|H*=H'H, |D,H* = ¢*(DjH)"(D}H), and

DjH = <a,l + 3 gWiet 43 ¢3ﬂ> H, (5)
with WA—the SU(2) bosons, B,—the U(1) boson,
(9, ¢)—gauge couplings, and o* are the Pauli matrices.
After SU(2) x U(1) symmetry breaking, the standard
model (SM) particles acquire constant masses which break
the gauge symmetry [52]. It seems that there is no room for
gauge symmetry and, correspondingly, for nonmetricity in
the phenomenology of the SM after SU(2) x U(1) sym-
metry breaking. In particular, nonmetricity may not account
neither for the dark matter (DM)—as it has been repeatedly
claimed [8,9,53—-55]—mnor for the dark energy (DE), since
the DM-dominated and the present DE-dominated stages of
the cosmic evolution take place long after matter-radiation
decoupling. Typically, after EW and Weyl gauge symmetry
breaking, Riemann geometry structure of background
space is recovered since the nonmetricity field acquires a
large mass o« M, rendering the nonmetricity effects sup-
pressed by this scale [56] (see also [57-60].) We recover
general relativity (GR) over Riemann space as the theory
describing the gravitational interactions of matter since the
symmetry breaking event and up to the present, so that DM/
DE phenomenology can not be explained.

One of the goals of the present paper is to search for
possible cosmological consequences of a class of gauge
invariant gravitational theories over background space with
nonmetricity vector Q,, which are driven by second-order
equations of motion (EOM) exclusively. This means that
we avoid any Ostrogradsky ghosts, among other instabil-
ities. The theories in this class are given by the following
gravitational action over Weyl geometry space:

,62

2|, ©

,=a [ @x/=g| PR+ 00 -4 -
where the curvature scalar of Weyl space R is given by (17),
w, A, and f are free coupling parameters, 0,¢ =0,p—
Q,#/2, and we have introduced the shorthand notation
0*=0 Q" (the nonmetricity field strength is defined as
O = 20),0,)). In what follows, without loss of generality,
we set a = 1/2.

If this class of theories is supposed to have cosmological
consequences, these should be able to describe the phe-
nomenology after EW symmetry breaking. Hence, the
SU(2) x U(1) symmetry breaking Lagrangian (4) has to
be modified in such a way that Weyl gauge symmetry is

preserved. The required modification amounts to lifting the
mass parameter v, to a point dependent field [61,62]:
vy — v(x), such that under (2), v*> - Q%1% Besides,
the EW gauge covariant derivative in Eq. (5) is to be
replaced as well: Dy — Dy — Q,/2, so that, under the
gauge transformations (2), DyH — Q~'DjH = |D H|* —
Q™*|D,H|*. Lifting the mass parameter to a point depen-
dent field v(x) leads to the masses acquired by the particles
of the SM after EW symmetry breaking, being point
dependent quantities as well': m = m(x). Under (2), the
mass m of given particle transforms like m — Q~'m. This
means that the presence of nonvanishing masses does not
represent a risk for gauge symmetry.

One of the main results of our study is presented in the
form of a lemma stating that (i) only matter fields with
vanishing trace of the stress-energy tensor (SET) couple to
gravity in models with gravitational action (6) and that
(ii) these matter fields follow null geodesics of Riemann
geometry. A corollary of this lemma is that radiation and
massless fields—the only matter fields which interact with
gravity in theories within the class given by (6)—do not
interact with the nonmetricity vector Q,.. Although there are
demonstrations in the bibliography proving that the Weyl
gauge vector O, does not interact with massless fermions
and with other massless gauge fields, but only with
gravitation [8,9], the statement and proof of our lemma
is more general and does not require of specific Lagrangian
for matter fields. Besides former demonstrations seem to
incorrectly suggest that the nonmetricity vector Q,, can take
account of the dark matter component of the cosmic budget.
Such a conclusion is incorrect since Q, (jointly with the
metric field) is a carrier of the gravitational interactions of
matter. Hence, the fact that radiation and massless fields do
not interact with Qﬂ, which represents the non Riemannian
contribution to gravity, means that the nonmetricity vector
may be removed without physical consequences. All of this
is clearly established at once by our more general demon-
stration in this paper. We also demonstrate that the only
gauge invariant gravitational theory with nonvanishing
nonmetricity leading to second-order EOM, which admits
coupling of all of the SM fields, no matter whether massless
or not, is the one with gradient nonmetricity, i.e., when
0, = 9,¢, where @ is a gauge scalar.

Another goal of this paper is to discuss, from perhaps a
nonconventional perspective, on a very important conse-
quence of gauge invariance: gauge freedom and gauge
fixing. Within the gravitational context gauge freedom has
a different interpretation than, for instance, electromag-
netic (EM) U(1) gauge freedom. In order to understand
this (apparently trivial) statement let us briefly explain the

'Point dependent masses which transform under the conformal
transformation of the metric as m — Q~'m, are considered by
Dicke in his paper [63] and in subsequent papers on conformal
transformations in scalar-tensor theories (STT) [64-71].
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implications of the EM U(1) gauge symmetry. From the
operational point of view, EM U(1) gauge fixing entails a
mathematical constraint on (the derivatives of) the EM
potential A, allowing elimination of one redundant degree
of freedom (d.o.f.) and simplification of subsequent
computations. The physical interpretation of gauge sym-
metry when the EM field is coupled to matter (for instance,
to fermions,) is nicely discussed in Sec. 6 of [72]. In this
case, the EM Lagrangian density reads

1

'CEM = lZ/(lD - m)l// + ZFWFW’ (7)
where y is the fermion’s spinor while i := y"y° represents
its Dirac adjoint, y* are the Dirac gamma matrices, m
stands for the mass of the spinor field, ) = y#(9, + ieA,),
and F,, = 9,A, — d,A, are the coordinate components of
the EM field strength. The EM Lagrangian (7), as well as
the derived EOM, are invariant under the U(1) gauge
transformations,
w— e—ie/l(x)l//’ W — ey, A,—A, +0ﬂ/1(x), (8)
where A(x) can be any function. We have an infinite set of
possible descriptions (y,y,A,) due to the freedom in the
choice of the function A. Thanks to the fact that the scalar
density p,, o yy, which carries the relevant information
about the quantum state of the fermion, is not affected by
phase shifts ~A(x), any two states, picked out by two
different choices 4, (x) and 4,(x), are to be identified. This
means that a specific choice of gauge carries no physical
consequences at all.

In the case of Weyl gauge symmetry, fermion’s
spinor, and its Dirac adjoint y transform in the same
way under (3), i.e. both share the same conformal weight:
w(y) = w(y) = —=3/2. This means that, under the con-
formal transformation of the metric in (3), the scalar density
Py &y, transforms like p,, — Q‘3py,. Hence, contrary to
EM U(1) gauge symmetry, the fermion’s scalar density is
transformed by the gauge transformations, so that we can
not identify two different states of the fermion correspond-
ing to two different choices of the conformal factor: Q; (x)
and ©,(x), respectively. Besides, conformal transforma-
tions of the metric in (3) link two different metrics, i.e., two
different ways of measuring distances in spacetime. Each
one of the conformally related metrics leads to different
curvature properties encoded in the curvature tensors:
Riemann-Christoffel curvature tensor and its contractions.
Hence, a gauge invariant theory of gravity is not a single
theory but a conformal equivalence class of them.
Conformal transformations with different Q(x)-s link the
different theories in the equivalence class. In this context,
gauge fixing amounts to choosing a specific theory of the
gravitational interactions of matter in the equivalence class.
Therefore, unlike an EM gauge choice which carries no

physical consequences, the choice of gauge within a gauge
invariant gravitational theory has far reaching physical
consequences.

Here, we develop an alternative understanding of gauge
fixing in gravitational theories which, despite obvious
differences, bears resemblance with the many-worlds inter-
pretation of quantum physics. According to our alternative
interpretation, each gauge choice picks out one possible
theory of gravity in the conformal equivalence class. Not
every gauge choice, although representing a potential
description of our Universe, gives a phenomenologically
viable description. Besides, we can determine the gauge
where we and the rest of the matter fields in the Universe
live in: this is the one which better describes the existing
amount of observational and experimental evidence at once.

This paper has been organized in the following way.
In Sec. II, we expose the notation as well as the basic
mathematical knowledge required to understand the main
text. In Sec. III, we derive the EOM as well as the main
properties of the class of gauge invariant gravitational
theories given by the action (6). One of the main results of
the present paper: (i) that only matter fields with vanishing
SET trace couple to gravity and (ii) that these fields follow
null geodesics of Riemann space, is presented in the form
of Lemma 1—along with its proof—in Sec. IV. In Sec. V,
we discuss on the low-energy spectrum of the gauge
invariant gravitational theory (6). An innovative (and
perhaps controversial) aspect of gauge symmetry proposed
in the present work: the many-worlds approach to gauge
freedom, is discussed in Sec. VI. This approach is illus-
trated in Sec. VII, through a cosmological example. In
Sec. VIII, we demonstrate that gradient nonmetricity is the
only possibility left for gauge invariance to play a role in
phenomenology after EW symmetry breaking. Discussion
of the main results of this research, as well as brief
conclusions, are given in Sec. IX. In this section, we
compare the results of the present investigation with several
formerly published results.

II. BACKGROUND AND CONVENTIONS

Unless otherwise stated, here we use natural units where
h=c=1 and the following signature of the metric is
chosen: (—+ ++). Greek indices run over spacetime
a,f, ..., 1, ...=0,1,2,3, while latin indices i,j, k... =
1,2, 3 run over three-dimensional space.

Weyl geometry space, denoted here by W, is defined as
the class of four-dimensional (torsionless) manifolds M,
that are paracompact, Hausdorff, connected C*, endowed
with a locally Lorentzian metric g that obeys the vectorial
nonmetricity condition,

*When the generalized nonmetricity condition (1) is satisfied,
the resulting space is denoted by W,, and it is called generalized
Weyl space [21]. Standard Riemann space, which is characterized
by vanishing nonmetricity: V,g,, = 0, is denoted by V.
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vag/w = _Qag/un (9)

where Q, is the Weyl gauge vector and the covariant
derivative V,, is defined with respect to the torsion-free
affine connection of the manifold,

(04
F nv = {l/”/} + L L (10)
where
a 1 al
{ﬂy} = Eg (aug”l + aﬂgm - allg/w)’ (11)

is the Levi-Civita (LC) connection, while L¢, :=
(0,6! + 0,6; — 0%g,,)/2, is the disformation tensor.
The Weyl gauge vector Q, measures how much the length
of given timelike vector varies during parallel transport.

In this paper, we call as “generalized curvature tensor” of
VV4 spacetime, the curvature of the connection, whose
coordinate components are

Rao’;w = aﬂrauo‘ - auraﬂa + Faﬂﬂr‘lua - Favﬂl—%ﬂm (12)
or, if take into account the decomposition (10),
Razmu = ieaa/,w =+ ﬁﬂLayo- - ﬁuLalm
=+ La/MLAI/a - Lal//lL/I;wv (13)

where IAQ”(W is the Riemann-Christoffel or LC curvature
tensor,

[ B LA R A LKA Bt
(14)

and @a is the LC covariant derivative. Besides, the LC

Ricci tensor R, = RAMU and LC curvature scalar read

Bo=alnh oo+ (o - ()
R=g¢"R,, 13)

respectively. We call R?,,, as generalized curvature tensor

because it is contributed both by LC curvature IAQ"GW, and
by nonmetricity through disformation L*,,. We have that

R/w = R/w + vlLA/w - vuL/l/lﬂ

+ LA/IKLKW/ - LAI./KLKlﬂ’ (16)

*In this paper, quantities and operators with a hat are defined
with respect to the LC connection (11).

.3 .
R=R-30,0"~3V,0" (17)

The generalized curvature tensor R”;,, has various
contractions. In order to show these contractions let us
write Eq. (13) in the following form:

R{m;w = i?a(my + v/,tLavo' - vuLa;m
+ LaﬂﬂLﬂyn’ - Lm/ﬂLA/m" (18)

The various linearly independent contractions of the
generalized curvature tensor are

R/w = gAKRlﬂKlH R/w = gAKR/MvK’
R = gle/w = ywie;w' (19)

The first two of these amount to

A 1 A 1
R/u/ = R/u/ - 5 (QﬁQl =+ vﬁQl>g/w + E QﬂQl/
~ 1 - ~
_vaﬂ +5(vav _vaﬂ)’ (20)

and to

- A 1 A 1
R/w = R/w - 5 (Q)»Q/I + vﬂQl)gﬂy + E Q},{QU

1 - ~
_E(vﬂQb+vDQﬂ)’ (21)

respectively. We shall call R, as first Ricci tensor while
i?ﬂ,, we shall call as second Ricci tensor. Notice that only
the second Ricci tensor is symmetric in its indices:

R, = I?W. There are two more contractions of the gener-

A
HUA®

one identically vanishes while the former one is a linear
combination of the contractions R, and R,

alized curvature tensor: R* 4w and R, ;. However, the latter

RY,,=2R,—-R,)=2(V,0,-V,0,).

Auv

From Egs. (20) and (21), it follows that

Riw) = Ry, Ry = V.0, -V,0,.

Besides, for the Einstein’s tensor G, := R,,, — g,,R/2, we
obtain that, G(,,) = G, = R,, — g.R/2.

A. Weyl gauge symmetry
Weyl gauge symmetry (WGS) or invariance under local
changes of scale is a manifest symmetry of W, spaces. The

geometric laws that define W,, among which is the non-
metricity condition (9), are invariant under Weyl gauge
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transformations (3), which represent a particular case of (2).
Under (3),

a a " . i
{//ll/} - {ﬂy} + (5ﬂal/ + 51/()/4 - g,wa )hl Q’

L, - L%, — (80, +6;0, — g,,0") InQ,

so that the generalized affine connection (10) is unchanged
by the Weyl rescalings: I'*,, — I'*,,. This means that the
generalized curvature tensor R%;,, in (12) and the gener-
alized Ricci tensor, R, = R’lﬂly, are unchanged as well,
R%;, — R%,5, R, — R, while the generalized curvature
scalar transforms as R — Q72R. It can be straightforwardly
demonstrated, that the Bianchi identities are gauge invari-
ant expressions as well.

Another important quantity is the nonmetricity field
strength. It is a traceless second-rank tensor with coordinate
components,

pov puov»

Qm/ = Zv[yQp] = vau - quﬂ = ayQu - aL/Q/u (22)

which under the gauge transformations (3) it is not trans-
formed. The quantity (22) represents that part of the
curvature which is due to nonmetricity of W, space.

ITII. GAUGE INVARIANT THEORY OF GRAVITY

In this paper, we shall consider the class of gauge
invariant theories of gravity that are given by the gravita-
tional action (6). Let us further modify this action through
substituting the curvature scalar from (17) and by explicitly
writing the gauge derivative,

¢

2
(0°9)* = (04)* = $9,9Q" + -0, 0" (23)

The action (6) then reads

—5 [ v [qszie o2+ 270,00
-6 ,5 2 A
+ 2V, -L e —Z¢4]. (24)

Variation of the above action with respect to the metric
leads to the following EOM:

1 o =

v (vuvu - gﬂD@2)¢2

2 [a 10,0~ 2 5,4(00) ]

6
a) (QﬂQl/_ gﬂDQﬂ.Qﬂ)
W= 6
2¢2

2 A
5)2 <Q/4iQu/1 g/wQ ) = _§¢Zg/4w (25)

where, during the variation procedure we took into account
the following useful expression:

|: ;4¢2Q1/ g;wa/lgbz Q{|

1
)0g" — —g,wQ V69,
(26)

8, (V,0%) = V(,0,,69" + 0,V

where 5, means variation with respect to the metric.
Vanatlon of (24) with respect to O, leads to the following
inhomogeneous Proca EOM™*:

ﬁ”Q/uz = (¢2Q1/ - v¢2) (27)

4ﬂ2

meanwhile, variation with respect to ¢ yields,

. )’  wVie? 6
R+w($) -2 q:f + Q,0"

w—6=~

+—2 VﬂQﬂ—iqu:o. (28)

If take the LC divergence of Eq. (27), recalling that

Ou=-0,= @”@’Qw =0, we get that
6-w 2 72 42
LR@we) -V 0 @)

This equation is obtained as well if compare (28) with the
trace of (25).

“Equation (27) can be rewritten in the following fully equiv-
alent form:

VY0, +mp0, = jilt.

where we 1ntr0duced the point-dependent square mass of the

Proca field mQ and an effective current f’ff.

6—w
4p?

2 — 2 3§ —
mQ=42¢’ Jlel_

0,47,

respectively.
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A. Particular cases found in the bibliography

The class of gauge invariant theories given by the
action (24) includes the Weyl geometric theoretical frame-
works developed in [3] where a formalism based in the
revival of Weyl geometry is proposed in order to explain the
possible variation of the gravitational constant with time, and
in [7], which corresponds to a particular case of (24) when
@ = 1/c. In this approach, a gauge invariant extension of
GR based on Weyl geometry is proposed to look for short-
distance effects of gravity.5 The formalism investigated in
the Ref. [56] (see the related Refs. [55,57-60]) also belongs
in the class of gauge invariant theories (24) if set @ = 0. In
this case, the possible modifications of the SM by replacing
Riemann by Weyl geometry are investigated. The approach
in Ref. [61] (see also Ref. [73]) corresponds to the particular
case of (6) with w = 6. The formalism of Refs. [8,9], is
contained in the above class as well, if in (6), we replace the
scalar field ¢ by the multicomponent (complex) scalar field
@, such that ¢* — |@|*> = @', (0°¢)? — 0" |, etc. In this
approach, a gauge invariant field theory for EW and
gravitational interactions in Weyl background space is
explored.

IV. MATTER COUPLING

Let us consider a matter piece of action,

5, = / 5y =GL, oy, Vo, g), (30)

where y denotes any minimally coupled matter fields.
Variation of the above action with respect to the metric
leads to

1 m
6gSm = _5/ d4x\/ _gégMDT/(w)’ (31)

where T,(,',f) = —(2/y/=9)0(\/=9L,,)/0¢" is the stress-
energy tensor of the matter fields. The equations of motion
which follow by varying the overall action S, = S, + S,

with respect to the fields g,,, O, and ¢, read

1 o A
g;w = Ewa) - §¢2g;4w (32)

where £, is defined in Eq. (25), plus the EOM (27)
and (28) which, thanks to the minimal coupling of the
matter fields, are not modified. Meanwhile, if compare the
trace of (32) with Eq. (28), one gets

’In [7], the quadratic terms R, R* and R? are dropped as they
induce unphysical poles in the graviton propagator, and, besides,
they do not contribute to the low-energy phenomenology.

9,00 -V = T ()

w —

which replaces (29). In this equation, 7" = g’“’T,(f,,") is the
trace of the matter SET.

The following lemma takes place:

Lemma 1: Let the action of a class of gauge invariant
theories of gravity over background space W, with non-
metricity Q,, be given by the action,

Siot = Sg + S, (34)

where S, is defined by (24) while S, is defined by (30), so
that the derived EOM are (27), (28), and (32). Then, (i) only
matter fields with traceless SET couple to gravity, and
(i1) these follow geodesics of Riemann geometry.

Proof: The proof of this lemma is in two parts. First, we
shall proof that only matter fields with vanishing SET trace
satisfy the EOM (27), (28), and (32). Then, we shall proof
that these matter fields follow null geodesics of Riemann
space V.

Let us demonstrate that only matter fields with traceless
SET: T(") = 0, satisfy the EOM (27), (28), and (32). Given
that Eqgs. (27) and (28) are not modified by the presence
of matter, and that the divergence of the left-hand side of
Eq. (27) identically vanishes since the nonmetricity field
strength Q,,, is antisymmetric, then the divergence of its
right-hand side vanishes as well, as shown in Eq. (29). If
compare Egs. (29) and (33), it follows that 7") = 0. This
means that only matter with traceless SET: radiation and
massless fields, couple to gravity in this class of theory.
Fields with 7" # 0 do not obey the EOM.

Let us now demonstrate that radiation and massless
matter fields follow null geodesics of Riemann geometry.
Here, for sake of simplicity, we use the Brans-Dicke (BD)
notation so that, in Egs. (27), (28), (29), and (32), we make
the following replacements: ¢*> — ¢ and w — 4.
Besides, we decompose the tensor &,, defined in (25) in
the following form:

1 4
gﬁw = ; (gm/ + Q,uu + FIID)’ (35)

where

®In order to get the correct sign of the BD coupling constant,
we have to set ® = —wgp.
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A

gm/ = (pé/u/ - (ﬁuﬁu - g/w@z)go

@ 1
+ g |:a;4(ﬂav§0 - 2guu(a§0)2:| ’

3 1
Q/w = (5) - 5) |:¢ (Q}lQl/ - Eg/leQl>
- ,u(sz/ - auwQu + g/wai(/)Qi] 5
1
f/u/ = _ﬂz <Qﬂ;{Ql/ﬂ - ZgﬂleaQ]La) . (36)

It is not difficult to show that

VG,

I
<
<
<
Sl

|

|

|

|
=

A 3\ | 1 A

where in order to go from first to second lines we used
the EOM (28). Besides, above we took into account the

Bianchi identity in the form, 4 Gﬂb = 0, and the following
useful expression:

(V*V, =V, Vg =R, V'o. (38)

After some algebra, it can be shown that
V& -3 Vool V or 1 u
Q/w:_ w_i VP yQ +§Q;4Q
+I4Q,, + (@*‘J,,)Qy]
A 3\ |- ’ 1 .
:_vv(p w_i v,uQ +§Q;4Q
_ 3 "
—|w— E J QW/’ (39)

where we have introduced the shorthand notation
J, = 0,0 — 9Q,, and in the last step, we took into account

the EOM (27): p*V*Q,, = (@—3/2)J,, so that
@”Jﬂ o @"@”Qw = 0. We have that

ViF, = (w - %) 7Qu = P20"V,V,10;

- 0V,V,0,). (40)

Now, if took into account the following useful expression:

N N

2v[/4vy] Q/I = _Rﬂﬁyu Qa’ (41)

and the definition of the Riemann-Christoffel curvature
tensor of V4 space (14), the following equation takes place:

A 1 N
QMLRG/UH/ = 5 Q!MRUV/M’

so that the expression within square brackets in (40)
vanishes,

204V, V,10, - 0"V,V,0, =0,

which leads to
VF, = (@2 ) 42
u w_i Q/w' ( )

Taking into account Egs. (35), (36), (37), (39), and (42), we
finally obtain

~ A A ~ ~ A
vﬂ ((pg;w) = vﬂgﬂy + vﬂ Q;w + v”f/,w = _Z(pvv(p' (43)

Hence, the following vanishing divergence takes place:
(26, + L gtg0 ) =0 44
¢ nv + §¢ g/w - Y ( )

If we further consider the gravitational EOM (32), the
above equation entails that the standard GR conservation
equation,7

VAT = 0, (45)

is satisfied. Since, as demonstrated in the first part of
the proof, only matter fields with traceless SET obey
the EOM (32), (27), and (28), then Eq. (45) means that
massless matter fields respond only to the curvature of
Riemann space V4, i.e., that these follow null geodesics of
Riemann geometry. Q.E.D.

The following corollary of Lemma 1 takes place,

Corollary 1.1: Massless fields—the only matter fields
which satisfy the EOM of the class of gauge invariant
gravitational theories given by the gravitational action
(24)—do not interact with the nonmetricity vector Q,.

The physical consequences of this corollary discourage
the potential influence of vectorial nonmetricity and of
gauge symmetry on the gravitational phenomena. Actually,
the fact that the only matter fields that can be included in
the class of theories (6): radiation and massless fields, do
not interact with the nonmetricity, means that Q,, has not
effective impact on these fields and may be ignored.

7Equation (45) is consistent with the well-known result that the
Riemannian null geodesic equations are invariant under the Weyl
rescalings (3), as shown in Appendix D of Ref. [74].
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V. LOW-ENERGY PHENOMENOLOGY

Due to fulfillment of Lemma 1 (and of its corollary,) we
must replace the arbitrary matter Lagrangian £,, by the
radiation Lagrangian L4, which leads to the following
traceless SET:

20(\/_—g’crad) 4

1
Tred — = gprad <uﬂul/ + 49/w> ’ (46)

Hv - \/_—g 9g"”

where u# = &, is the fourth-velocity of comoving observ-
ers. The action piece S,,q = f d4x\/—_g£rad contains con-
tributions from all of the SM fields prior to EW symmetry
breaking, i.e., when these are massless fields. Besides, to
the action (34), we need to add the SU(2) x U(1) sym-
metry breaking piece Sy = [d*x,/=gLy, where the fol-
lowing gauge invariant Higgs Lagrangian is assumed:
1 vy

=S IDHP +SIHP = ? 0P, (47)
where v(x) = vop(x) is the point-dependent mass
parameter (4 and v, are dimensionless constants).
In (47), we adopted the following notation: |D;H|* =
¢“(Dy"H)'DJ"H, where Dj =Dj—Q,/2 and Dj is
defined in (5).

In what follows, we shall consider the following gauge
invariant action:

Siot = Sg + Sy + Sraas (48)

where the matter action for radiation S,,4 and the EW
symmetry breaking action Sy have been defined in the text
above Eq. (47), while the gravitational action §, =
J d4x\/:§£g is given by action (24), whose associated
Lagrangian £, can be rewritten as

5 [FRsoer =G0 o @)

where

a¢22
£s ﬂ{Qz T ¢2<Q" ¢2)]’ (50)

stands for the Stueckelberg-type Lagrangian8 of the
Proca field Q,, and we used the notation (a, + b,)* =
(a, +b,)(a" + b*).

¥Notice that Ly differs from the standard Stueckelberg La-
grangian in the absence of a gauge fixing term [75-78]. Yet, it is
not a typical Proca Lagrangian thanks to the gradient aﬂ¢2 /d?
within round brackets squared. This leads to the Lagrangian
density /=gLg being gauge invariant in contrast to just Proca
term, which is not gauge invariant.

The independent gravitational EOM that can be derived
from (48) are the Einstein’s EOM,9

1 A
g;w - E T;}Ld - gqﬁzguw (51)

which is obtained by varying the action (48) with respect to
the metric, and the inhomogeneous Proca equation (27)
(see footnote 4), which is obtained by varying with respect
to the nonmetricity vector Q,,.

The scalar field EOM (28), which is obtained by varying
the action (48) with respect to ¢, is not an independent
equation since it can be obtained by substituting the
vanishing LC covariant divergence of (27): @”(@” Q) =
0 = V¥(¢?Q,) — V*¢? = 0, into the trace of Einstein’s
equation (51), recalling that 74 = 0. This means that the
scalar field does not satisfy any specific EOM; i.e., ¢ can be
chosen at will. Hence, ¢ is not a dynamical d.o.f. and the
coupling constant @ does not affect the measured Newton’s
constant. Besides, given that the nonmetricity vector, Qu
does not interact with the matter fields; it does not modify
the measured gravitational constant either. For these rea-
sons, the measured Newton’s constant in the class of
theories (48) corresponds to the tensor gravitational force.
It is given by

L
¢*(x)’

so that it depends on spacetime point like in the BD
theory.10

In order to understand why the nonmetricity vector field
0,, being a (non-Riemannian) part of the gravitational
field, does not interact with radiation: the only matter
degrees of freedom allowed by the theory (49), let us bring
into attention the gravitational spectrum of this gauge
invariant theory. Because the scalar degree of freedom
associated with ¢ is not dynamical, the gravitational
spectrum of (49) consists of 2 degrees of freedom of the
massless graviton plus 3 degrees of freedom of the massive
field Q,, whose effective mass squared is given by (see
footnote 4),

8rGy(x) = (52)

6—w
ﬁZ

6—w
4p°

m(x) = P(x) = My(x).  (53)

°For simplicity, we omit the Higgs field.
"In contrast, in the BD theory, since the scalar field ¢ is a

dynamical (gravitational) degree of freedom, the measured
gravitational constant is indeed modified by ¢ through the BD
coupling constant wgp [63,79,80],

1 4 + ZwBD
872G 2T “®8sD
TON =2 (3 +2wBD)
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In this equation, M, (x) = 1/87G y(x) stands for the point-
dependent effective Planck mass. This quantity sets the
grand unification scale point by point in spacetime. Hence,
unless either @ =6 or > — co, the effective mass
mg(x) ~ My (x), meaning that the nonmetricity field is
decoupled from the low-energy gravitational spectrum. In
this case, thanks to the fact that the Stueckelberg-type
Lagrangian density \/—gLg (50) is gauge invariant itself,
we may dispense with the Lagrangian £ without affecting
the gauge symmetry of the resulting gravitational Lagran-
gian density \/=gL, in (49). In the opposite end stands the
case when w = 6, which corresponds to massless Q. In
this case, the nonmetricity field amounts to an additional
radiation (matter) field propagating in the background
Riemann space V,, so that it may be disregarded as well.
Hence, the low-energy gravitational spectrum of the gauge
invariant theory (49) is the same as in GR: It consists of the
two polarizations of the graviton exclusively.

In this paper, we are interested in the low-energy
phenomenology so that we ignore the Stueckelberg-type
Lagrangian Lg in (50). The resulting gauge invariant
(effective) gravitational Lagrangian reads

e Y s B E?)

It coincides with the particular case when in (24) we set

@ = 6, /7 =0. This is the well-known Lagrangian of a

conformally coupled scalar. If we want to go beyond the

low-energy phenomenology, consideration of higher cur-

vature terms is mandatory. Nevertheless, in such a case

Lemma 1 and its corollary are not satisfied in general.11
From the overall action,

S = / dx/TGLE - S, (55)

with LT given by (54), the following EOM are derived:

N 1 & = A
G/w - E (vﬂvv - g/wvz)¢2
6 1 1 A
#0000 = 30,002 = T = {0
oo (0p)? NP A,
R+6 7 -3 7 —5452—0, (56)

together with the conservation equation \ T{f‘bd = 0. Since
the trace of the radiation SET vanishes (779 = 0), the
second EOM above—which is derived by varying (55)
with respect to ¢)—is not an independent equation since it
coincides with the trace of the Einstein’s equation in (56).

11See, however, the related discussion in Sec. IX.

Hence, the scalar field does not satisfy an indepen-
dent EOM.

In general, ¢ can be set equal to any nonvanishing
(continuous) function ¢ = ¢(z,X) or to any constant ¢ =
¢o without conflict with the EOM (56). This means the ¢ is
a nondynamical field.

VI. GAUGE FREEDOM: THE MANY-WORLDS
INTERPRETATION

We have argued that the usual EM-inspired interpretation
of gauge symmetry according to which a specific gauge
choice carries no physical consequences as the different
gauges describe the same physical state is not appropriate
in the case of gauge invariant theories of gravity. In this
case, the conformal transformations of the metric affect the
measuring scales and, hence, the way we do measurements
of time and length. Besides, these affect the scalar density
of fermions and related quantities as well. We need a
different perspective on gauge invariance and on what
gauge fixing means in this case.

Here we shall develop an alternative understanding of
gauge symmetry and of gauge fixing in gravitational
theories which, despite obvious differences, bears resem-
blance with the many-worlds interpretation of quantum
physics [81-90]. Since the scalar field ¢ can be any smooth
function, choosing a specific gauge, labeled *“j,” means
choosing a specific function ¢; (j € N). Let us represent a

given gauge by
gj: {M4 eV, G- ¢j|8j?C’ }7 (57)

where, due to Lemma 1 and its corollary (see also the above
discussion on the low-energy phenomenology), we have
replaced the starting Weyl geometric spacetime structure by
the effective Riemannian spacetime structure: W, — V.
In (57), §; represents the set of relevant measured point-
dependent “constants” of nature,

S = {Mf)l,j(x)’ ”j(x)’Aj(x)}’
where the effective (point-dependent) Planck mass reads

1

M (x)=——
. () 872Gy (%)

= ¢7(x).
while the point-dependent mass parameter in the gauge

invariant Higgs Lagrangian (47) and the effective cosmo-
logical constant are given by

A
Uj(x) = UO¢j(x)v Aj(x) = §¢,2‘(x)’
respectively. In the above definition of G;, we have included
the set of measured gauge invariant constants of nature:
C={h,c,e,...}, where h is the Plack constant, c is the
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speed of light, e is the EM charge of the electron, and the
ellipsis stand for other physical constants which are not
transformed by the gauge transformations (3). The ellipsis
in (57) represent other possible relevant measured quan-
tities in the theory under consideration.

Each gauge carries a potential description or representa-
tion of the world. Although the gravitational laws (56) are
gauge invariant, once a gauge is picked out, these laws
lose the manifest gauge symmetry. This means that the
laws look different in different G;-s: Since ¢;(x) is different
in different gauges, the measured Newton’s constant
(inverse of the point-dependent Planck mass squared), the
Higgs mass parameter and the energy density of vacuum
pi(x) = A (x)MﬁL ;(x), among other measured quantities,
are different in the different gauges. Yet a residual gauge
symmetry remains in the following sense: any gauge G; is
related with any other G ; through gauge transformations,

g;w - ngﬂl/’ ¢i - Q_1¢j’ (58)
plus appropriate transformations of the remaining fields.
By means of (58), a given gauge transforms into another
gauge: G; — G;, while G; - G; through the inverse
transformations.

The overall picture consists of a conformal equivalence
class of gauges which is generated by the infinity of
possible choices of the scalar ¢;,

K=1{6.G.....G;.....Gy|j €N}, (59)
where the general element of the class G; is given by (57)
and N — oco. Any two elements of the conformal equiv-
alence class IC (59) are linked by gauge transformations (58).
Imagine a number N — oo of identical copies W; of our
world. Now let us associate with each copy a physical/
geometrical description given by an element of K:
g I w i We end up with N different worlds which have
been subject to different descriptions. Without loss of
generality—putting aside obvious philosophical counter-
arguments—we may establish an equivalence between given
worlds and their physical/geometrical descriptions:
W e g ;- Hence, the conformal equivalence class IC is
equivalent to the class of potential worlds: {W, W, ...,
W,.....Wylj € N}. It is in this sense that we establish a
parallel between our interpretation of gauge fixing and the
many-worlds picture.

This classic gravitational version of the many-worlds
interpretation of quantum physics is interesting because it
provides a different perspective on the relation between
theory and experiment. Usually experiment is useful in
order to corroborate the theoretical predictions made on
the basis of given theoretical framework. According to
the present approach, experiment allows one to deter-
mine which one of the infinitely many gauges is the one
which better describes our Universe, through associating

experimental values to the measured quantities, in particular
to the (point-dependent) constants of nature.

A. General relativity gauge

Among the infinity of possible gauges there is one which
is singular. If in the action (48) make the following choice
of the scalar field: ¢ = My, where M, is the Planck mass,

12 pl»
one obtains

1 N
Stot = 2/ d*x\/=gIMy (R = 2A)] + Spa,  (60)

where the effective cosmological constant A = /IMf,l /8, and

we have taken into account that, for @ # 6 and > ~ 1, the
mass squared of the vector field Q,: sz = (6 —w)
M2 /4p* « M}, so that the nonmetricity field decouples
from the low-energy gravitational spectrum. This means that
the effective geometrical structure of background space is
Riemannian so that, in what follows, we make the replace-
ment: W, — V,.

The action (60) is just the Einstein-Hilbert (EH) action
over Riemann V, space. The obtained representation,

QGRZ {M4 S V4,g/w,¢ = Mp1|SGR’Cv },

where Sggr = {Mﬁl, voMy,
this specific gauge, the manifest gauge symmetry of the
theory (48) is lost.

Although GR itself is clearly not gauge invariant, in the
present framework, it is no more than one of the infinitely
many equivalent gauges in the conformal equivalence
class (59): K={G, =Gcr.G>.-...G;,....Gy|j EN}. Hence,
since gauge invariance is the underlying symmetry behind
the class /C, GR is part of a bigger gauge invariant theory.

A}, is called as GR gauge. In

1. The many GR worlds

Let us discuss how the many-worlds picture arises in the
simplest case: the GR gauge. Since, in order to fix the GR
gauge, the choice of a constant value of the scalar field ¢ is
arbitrary, depending of the chosen constant value of the
scalar field, one has (in principle) an infinite set of GR
copies with different values of the Planck mass, of the
masses of the SM fields and of the cosmological constant,
among others. The GR gauge represents itself a subclass
Kgr within the conformal class K (59), which comprises an
infinite number of GR copies,

— 0 1 2 k
KGR—{gGRngR, GR> "> GR""}’

"The EH action (60) can be obtained from (48) through the
gauge transformations (58): g, — ng,m ¢ — QM. The
inverse transformations map the GR action (60) back into (48).
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where k=0,1,2,3....N (N — o) and the general
element of the GR gauge can be expressed as

g]éR: {M4 € V4v g/u/v ¢0k|SkGRvC7 }a

where the different constants ¢y, € R generate different
sets of physical constants,

SR = {Mlzal.,k = P Vi = Voo Ak = A/ 8}

In this many-worlds approach to GR, the experiment
allows us to determine which one of the infinitely many
GR gauges is the one which better describes our Universe
through associating experimental values to the measured
quantities, in particular to the constants of nature.

VII. THE MANY WORLDS: A COSMOLOGICAL
EXAMPLE

For further illustration of the many-worlds approach to
gauge symmetry, let us consider a cosmological example.
Let us write the independent EOM in Eq. (56)—these will
be the Einstein’s equations—in terms of the Friedmann-
Robertson-Walker (FRW) metric with flat spatial sections
(in what follows, for simplicity, we omit the term o Ag*),

ds* = —di* + a*(1)8;;dx'dx, (61)

where ¢ is the cosmic time and a(¢) is the dimensionless
scale factor. We get that"?
¢\ _ 1
3 <H + b)) = ?prad’ (62)

where the radiation SET (46) has been considered. The
continuity equation v T,rf,,d =0, leads to pq +4Hpq =0,
whose straightforward integration yields: p.q = poa™,
where pg is an integration constant. If introduce the gauge
invariant variable y = a¢ and replace the cosmic time by
the gauge invariant conformal time: dr = a~'dt, Eq. (62)
can be given the form of a very simple gauge invariant
equation,

X' = /po, (63)

where the tilde means derivative with respect to the
conformal time 7. This equation can be integrated in
quadratures to get the following gauge invariant expression:

BThere are not other independent equations. For instance, the
Raychaudhuri equation is obtained by deriving (62) with respect
to the cosmic time and taking into account the continuity
equation. The equation for the scalar field coincides with the
trace of (56), so that it is not an independent equation.

a(z)g(z) = vpo(r — ), (64)

where 7 is an integration constant. Different choices of the
function ¢(z) fix different gauges. For brevity, let us
consider only three representative of them,

(1) The GR gauge where ¢ = ¢y = const."* In this case,
a(r) = ag(t —79), where ay = /po/¢po. In terms
of the cosmic time, we have that a(r) = v/2a,
(t — t5)'/?, where t, is another integration constant.

(i1) de Sitter gauge, where

/

a
H — HO = ) - Ho,
a
or, after integration,
a(r) = Hy'(rg —7)™! = a(r) = ape’,

where ay = exp (—Hyty)/Hy. In this case the
squared gauge scalar evolves as

P* () = Hipo(z —10)* = ¢*(1) = pge*o!,

where ¢ = \/poaj/Ho.

(iii) Third (unphysical) gauge where contraction of the
Universe takes place instead of expansion. We
assume a(f) =", where n is a positive real
number. In terms of the conformal time, this
amounts to: a(z) = ay(r —179) "1, and ¢*(7) =

Pz —10) 7T = ¢2(1) = PR, where ay =

(n+ 1)/ ¢y = \/po/ag and gy = \/po/n+1.

The listed gauges can be expressed in the following general
form"™: G: {M, € V4. a(t), ¢(z)}. More specifically, these

can be expressed as follows:

Gor: {Ma € Vs, a(z) = ay(c = 10). ¢(z) = o},
Gus: (M, € Viva(e) = Hy'(ry =)

¢(r) = \/P_OHO/)O(T - 70)2}7
Ginira: {My € V4, a(t) = ag(r — 79) 7,

2n+1

$(7) = do(r — 7)1 }. (65)

These gauges are linked by gauge transformations (3),

a’(1) > @ (1)a(r).  ¢*(1) > Q72 (1)¢? (7). (66)

“Recall that there are possible infinitely many different
choices of the constant ¢, so that there can be infinitely many
copies of GR in the GR gauge.

BFor compactness, here we omit explicit writing of the
sets of constants of nature S(z) = {Mp(z), v(z), A(z)}, and
C=A{n,c,e,...}.
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For instance, the first two gauges are linked by these

transformations with conformal factor Q% = a3 H3(t—1,)*,
2(2n+1)

while for the first and third gauges, Q% = (7 — 7)) =1 . All
three gauges are associated with radiation domination since
only radiation can be considered in (56).

While the GR gauge describes a stage with decelerated
expansion, the de Sitter gauge describes an inflationary
period of the cosmic expansion, and the third gauge
represents a contracting universe. These different cosmo-
logical behaviors may be observationally differentiated. In
particular, the gravitational constant measured in Cavendish-
type experiments Gy, shows a different dynamical behavior
in each gauge,

8GR = ¢2, 8aGY = ¢yl

8rGlird — ‘}52 22nt1)

correspondingly. Therefore, assuming that one of these
behaviors may correctly explain the radiation dominated
cosmic dynamics, observations are able to select the
corresponding gauge.16

VIII. GRADIENT NONMETRICITY

In former sections, it has been shown that gauge
symmetry must be broken down before, or at least
simultaneously, with SU(2) x U(1) symmetry. That is,
Weyl gauge symmetry does not survives after EW sym-
metry breaking. This is due to the fact that only massless
fields couple to gravity in gauge invariant theories of
gravity of class (54). However, in Weyl integrable geometry
(WIG) space, which we denote here as Wi{“, since the
nonmetricity vector amounts to a gradient of a scalar field,
we have an opportunity to improve the above issue.

This can be done by lifting the gauge scalar field ¢ to the
category of a geometric field. In other words, we assume
that the nonmetricity of WIG space is given by

duth

vag;w =-2 ¢ s

(67)

i.e. that the nonmetricity vector Q,, = 2d,¢/¢. Under this
assumption, we have that ¢>R = ¢$*R — 64V>¢ or, equiv-
alently: >R = $*R + 6(d¢)? — 6@"(450”47), where the last
term amounts to a boundary term that can be omitted. The
action of gauge invariant gravity in Wi space reads

"®From the start, there is a gauge which we know does not
meet the observational data: the one which describes cosmic
contraction.

. 1
S;Vlg zz/d“x —g¢2R

_ % / dx =gl R + 60007, (68)

The most interesting property of the above action is that
matter fields, whether massless or with the mass, couple to
gravity without breaking the gauge symmetry. Consider the

gauge invariant action over Wy,

1

st =5 [ dxymg R+ 6002 + 28,0, (69

where L, is the Lagrangian of the matter fields. Consistent
coupling of arbitrary matter fields is possible thanks to the
property that in WIG space variation of the metric is not
independent of variation of the geometric scalar field ¢,
since due to gradient nonmetricity law (67) one has that
[see, for instance, Eq. (3) of Ref. [91]],

) 1)
220, =22 g (q0)

O =2 4

This means, for instance, that variation of the overall
Lagrangian in (69),

L= PR+ 60D 422, ()
a(y/— ‘Ctot
oy at) = L e
o a(\/__gﬁtot) v 6¢

Hence, since

ov=9Lw) _ V=9

_ _qlm
ag/‘” - 2 [¢2G/w Hy ]
= 1
= Tg {¢2G,w +6 [aﬂgba,,qb - Eg,w(adﬂz]

- (U9, - 9,90 -1},

variation of the action (69) with respect to the metric yields
the Einstein’s EOM,
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1 m
G”D — ETEW)
~ 1 ~ =~ ~
< G/w - E (vﬂvv - gﬂl/v2>¢2
1
¢ 0,000 ~ 5 0,0 (002 | = FT )

where we have taken into account that the Einstein’s tensor
of W} space can be written in terms of LC (Riemannian)
quantities according to

. 1 o

G G ( vu - gﬂuﬁ2)¢2

0,40, — gﬂp(afﬁ)

r/)

Meanwhile, according to (72),

o( V=9 Liot) 0
o 4 ¢
54

= -Vl R+ T

(\/_‘Clot) =2——"

Hence, variation of (69) with respect to ¢ leads to

~-R=-R-6 00)°

V2p?
3 =__T(m, 74
R 74)

which coincides with the trace of the Einstein’s EOM (73)
without requiring vanishing SET trace. In consequence, the
geometric gauge scalar ¢ is not a dynamical field: it can be
chosen at will. Different choices lead to different gauges.

A. Continuity equation

In Sec. IV, we have demonstrated that the standard
continuity equation (45) in background Riemann space V:
4 Ti,',fl> =0, takes place in the class of gauge invariant
theories (49) over Weyl space W,. This means that
radiation and massless SM fields: the only matter fields
which couple to gravity in this framework, follow null
geodesics of Reimann space. In consequence, we may drop
out the nonmetricity vector; i.e., we may replace W, — V.

In the present case where a gauge invariant theory over
WIG space—distinguished by gradient nonmetricity (67)—
is considered, the continuity equation can be derived in the
following way. Let us take the LC covariant divergence of
the quantity d)zGW According to the EOM (73), we get that

VH(#*G,) = V*¢?*G,, — (V°V, =V, V) p?
V2 [, V22 o (08
R {3 7 ]

or, if consider the Eq. (38) with the replacement ¢ — ¢, we
obtain that

v &2
v 0N ¢2]'

VH(#*G,,) = {—R -6 pe 7

Hence, if in this equation substitute (74) and take into
account the EOM (73): ¢°G

w = Tf,';,”, we finally obtain the
following continuity equation [compare with Eq. (45)]:

- Y
A 2;2’; = ;4’ Tm), (75)
This equation means that matter fields with traceless SET:
T =0, follow null geodesics of Riemann space Vi
meanwhile, SM matter fields with nonvanishing 7(") # 0,
follow timelike geodesics of WIG space WiN instead.
Given that in the theory (69) all of SM flelds couple to
gravity, no matter whether massless or with the mass, gauge
symmetry in this theoretical framework may have impact
in the phenomenology after EW symmetry breaking.
Investigation of this impact is the subject of [92].

IX. DISCUSSION AND CONCLUSION

In this paper, we have investigated gauge invariant
gravitational Lagrangians of the general form (49). This
Lagrangian leads to the independent second-order EOM (51)
and (27), despite that it contains a quadratic curvature term
of the peculiar form: 0 = R4, R = R},;R".. One
of the main results of this paper is comprised in Lemma 1:
“In gauge invariant gravitational theories of class (49) (i) only
matter fields with traceless SET couple to gravity, and
(i1) these follow geodesics of Riemann geometry,” and in its
Corollary 1.1: “Massless fields—the only matter fields
which satisfy the EOM of theories of class (49)—do not
interact with the nonmetricity vector Q,.” The Lemma
(together with its proof and the resulting corollary) general-
izes previous works where it is shown that the nonmetricity
vector does not interact with massless fermions [8,9].

Consideration of other quadratic terms, like R?, leads to
the particular form of Lagrangian (49), where @ = 0 (no
kinetic term for the scalar field), as it is shown in [56]. In
this bibliographic reference, a well-known method [93,94]:
to replace the quadratic term by a linear term multiplied by
a non dynamical scalar R?> — —2¢’R — ¢*, is used to
“linearize” the gravitational Lagrangian.
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Addition of a quadratic term of the form,'’

= a/d“x\/—gé’z, (76)
where a is a dimensionless constant, C> = Cﬂ e C7 and
C

Lo 18 the Weyl tensor of Riemann space, does not modify

the results of Lemma 1 and of its corollary either. Actually,
in this case the derived EOM reads [53]

Wi —% Vi) = 41 Tt (77)
where
WY =20, V2R 29, V,R — 2RR,, + % k.
W) = 20, PR+ VR, 29,9 ,R,
SRR+ g R
The trace of Eq. (77) yields
L _ 25— 2VVR,, = —2V'VG,

4a

which exactly vanishes thanks to the Bianchy identity
V4 G,w = 0. Hence, only radiation couples to gravity in this
theory. Despite that (76) has been proposed as a possible
explanation to the dark matter issue, quite the contrary
effect is obtained since the DM does not interact with
radiation. In a cosmological context, this theory could
describe the radiation dominated epoch of the cosmic
evolution exclusively. But the matter dominated stage,
where the formation of cosmic structure happens and
where the dark matter plays the most important part,
requires of a different theory that should replace (76).
Hence, dark matter can not be explained in the present
setup as incorrectly claimed in [53,54].

"This theory, which has been developed in [53,54], has severe
problems. According to [95] (see also [96]), to lowest order,
fluctuations of the metric around flat space in a theory with
quadratic action of the form,

4 2 2
/ d*x\/—g { + 0R 2m2C
lead to a perturbations spectrum which, in addition to the
graviton, contains a scalar field with mass m, and a spin-two
field with mass m,. This quadratic theory is renormalizable but
nonunitary. The theory (76), in contrast, contains only the
ghostlike spin-two field and has no graviton in its spectrum.
This rules out this theory as a phenomenologically viable
description of low curvature gravitational phenomena.

In a similar fashion, the theory developed in [56-60],
which corresponds to the particular case when in (49) the
coupling vanishes: @ = 0, has been “seemingly” estab-
lished in [55] as a basis for an alternative explanation of the
DM. We underline the word “seemingly” because explain-
ing the DM in the class of theories (49) is forbidden by
Lemma 1 and its corollary. In the mentioned reference, the
authors look for static, spherically symmetric, vacuum
solutions to the Einstein’s EOM (25) with @ = 0 (also
with 1 = 0). Then they investigate the physical properties
of the stable circular timelike geodesic orbits of massive
test particles in static, spherically symmetric, vacuum space
W,4. This is misleading since only massless fields can
couple to gravity in this gauge invariant theory, as stated in
Lemma 1. A feasible physical explanation of Lemma 1 in
this case can be based on the Proca equation (27) with
o = 0 [see also the Stuckelberg-type Lagrangian Lg (50)].
The Weyl vector field Q, has an effective mass squared
my(x) = 3M7(x)/2f* = 3¢*(x)/2/3*, where the effective
Planck mass M 1(x) sets the grand unification scale point
by point in space. Hence, the nonmetricity vector is a short
range field with range ~Ml;11. This means it is strongly
screened so that it does not modify the motion of test fields
in any appreciable way. As a matter of fact, the Q,-s
decouple from the low-energy spectrum in general.

Hence, what have the authors of [55] really done? In
order to find exact solutions, they assumed that the non-
metricity vector has only a nonvanishing radial component
0, = (0,w,,0,0). This implies that Q,, =0 = Q> =0.
If we set Q,, =0 in (27), it follows that Q, = d,¢*/¢*;
i.e., the geometric structure of background space is Weyl
integrable geometry with the nonmetricity law (67), instead
of just Weyl geometry. Hence, in the setup investigated in
[55], one has to make the replacement Wi“‘ — W,. Besides,
since 0? =0 and Q, = 9,¢*/¢*, then the Stuckelberg-
type Lagrangian (50) vamshes as well. We are led with the
effective gravitational Lagrangian (54),

R R A
L;‘fzz $*R+6(09)* =74

which up to the irrelevant term o ¢* coincides with the
gravitational Lagrangian in (68). Hence, the model which is
investigated in [55] as the basis for the explanation of the
DM is not the model assumed by the authors, but the one
studied in Sec. VIII, which is based in background space
with gradient nonmetricity (67), so that it evades the
Lemma 1 and its corollary.

Perhaps the main lesson to be learn from the present
investigation is that the class of gauge invariant theories
given by the Lagrangian (49) can have an impact only in
the dynamics during the radiation epoch, before SU(2) x
U(1) symmetry breaking takes place. Hence, neither the
dark matter nor the dark energy can be linked with the
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nonmetricity vector (Weyl gauge vector). This result can
be easily extended to the case when in (49), we replace the
scalar field ¢ by a multicomponent (complex) scalar ¢,
such that, ¢* — |¢|*> = 9", (0°9)* — [0¢|%,

1 1
0°9|* = |0 —Qﬁﬂl(ﬂle” +7 lp[>0,0".

A consequence of this result is that, for instance, the
theoretical framework proposed in [8] can not explain
the DM as incorrectly suggested in that paper (see also the
subsequent [9]).

A controversial aspect of the present study can be related
with our approach to gauge symmetry. We have approached
the physical and geometrical interpretation of gauge invari-
ance from a different perspective, where a gauge choice has
physical consequences, so that it is subject to experimental
check. According to our approach, gauge freedom can be
associated with a physical picture resembling the many-
worlds interpretation of quantum physics. The gauge scalar
¢ does not obey any specific EOM so that it may be fixed at
will. This means that in Eqgs. (28), (27), and (32), we may
choose any function ¢(x) we want. The result will be a
specific theory associated with this choice of a gauge.
Hence, each gauge represents a whole theory of gravity,
which is characterized by a specific behavior in spacetime
of several fundamental “constants,” the mass of the SM
particles, etc. An outstanding gauge in this theoretical
framework is the so-called GR gauge, which is a (in
principle infinite) set of copies of GR theory, specified by
the choice ¢p = ¢, (k=1,2,...,N), where the ¢, are
different constants. In this gauge, the gravitational laws
look exactly the same, so that each member in the GR

gauge differs from any other in the values of the measured
Newton’s constant 87Gy ; = M;fk and of the EW mass

parameter v%k, among others. In our framework, general
relativity is just a subclass of a bigger theory. Manifest
gauge symmetry is lost once a specific gauge has been
chosen. This is why GR seems to evade this symmetry.
Yet, it is a residual symmetry since any specific gauge is
related with any other gauge through the gauge trans-
formations (3).

The present classic gravitational version of the many-
worlds interpretation of quantum physics is interesting
because it provides a different perspective on the relation
between theory and experiment: the experiment allows us
to determine which one of the infinitely many gauges is the
one which better describes our Universe through associat-
ing experimental values to the constants of nature.

We conclude that, despite being decoupled from the low-
energy gravitational spectrum, vectorial nonmetricity and
gauge symmetry may have led their footprints in the
quantum era. When, in the above theory, we replace vector
by gradient nonmetricity, the resulting gauge invariant
theoretical framework, which is given by Lagrangian
(71) and the derived EOM (73), is the only possibility left
to us by nature to search for the classical phenomenological
and observational consequences of gauge symmetry. This
theory is investigated in a separate publication [92].
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