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We revisit the thermodynamic description of fluid, represented by scalar field in scalar-tensor gravity
theory through a general approach to study the thermodynamics of relativistic fluids. In order to identify
the fluid energy-momentum tensor, contrary to the existing way, we use an equivalent description of
gravitational dynamics both in Jordan and Einstein frames as a thermodynamical identity and fluid
equation on a generic null surface. Such an approach provides the energy-momentum tensors for scalar
fluid as that of an ideal fluid in both the frames. We then mention few issues in the existing way of using
Eckart’s formalism for an ideal fluid. Our investigation suggests that the Eckart’s frame may not be suitable
to consider an ideal fluid. Consequently a possible alternative description, valid in something other than
Eckart’s frame, is being suggested for a general ideal fluid. Based on this we obtain a unified
thermodynamic description in both Jordan and Einstein frames from our identified energy-momentum
tensors. Finally, the relations between thermodynamic entities on different frames are being put forwarded.
Thus, the description in either of the frames is enough to provide the complete picture.
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I. INTRODUCTION AND MOTIVATION

Among the four fundamental forces of nature, gravity
still remains the most difficult one to understand at the very
fundamental level. The present understanding of gravity, as
provided by Einstein’s theory of general relativity (GR) is
based upon the description of spacetime geometry due to
presence of matter. Irrespective of huge success of GR, both
in the theoretical as well as experimental fronts, a quantum
theory of gravity still remains elusive. On another frontier,
it was found that [1–6] the dynamical equations of GR
show similarity to the equations governing thermodynamic
and fluid-dynamic systems. It is widely believed that in the
absence of quantum theory of gravitation, the thermody-
namic and the fluid-dynamic aspects of gravity may
provide us with some alternative approaches/viewpoints
to understand gravity in a more deeper sense.
As already mentioned above, despite huge successes of

Einstein’s GR, theories with modifications of GR appears
to be important to incorporate various situations, like strong
gravitational regime, present observational data, etc.
Among them scalar-tensor (ST) theory of gravity is one
of the popular ones and attracted a huge attention [7–12].
The theory is described by both metric tensor gab and a
scalar field ϕ that is nonminimally coupled with Ricci

scalar R, known as the Jordan frame description. The
gravitational action is given by

SJ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L

¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕR−

ωðϕÞ
ϕ

∇aϕ∇aϕ−VðϕÞ
�
: ð1:1Þ

In the above, ωðϕÞ is the Brans-Dicke parameter and VðϕÞ
is an arbitrary potential. Such an action can be expressed
in minimally coupled structure by using the following
transformations:

gab → g̃ab ¼ Ω2gab; with Ω ¼
ffiffiffiffi
ϕ

p
; ð1:2Þ

and

ϕ → ϕ̃ with dϕ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωðϕÞ þ 3

16π

r
dϕ
ϕ

: ð1:3Þ

This is known as the Einstein frame description, and in this
case the action takes the form

SEF ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p
L̃

¼
Z

d4x
ffiffiffiffiffiffi
−g̃
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R̃
16π

−
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*abhinove523@gmail.com
abhinovens@rnd.iitg.ac.in

†sayan.chakrabarti@iitg.ac.in
‡bibhas.majhi@iitg.ac.in

PHYSICAL REVIEW D 107, 104027 (2023)

2470-0010=2023=107(10)=104027(12) 104027-1 © 2023 American Physical Society

https://orcid.org/0000-0003-2987-5399
https://orcid.org/0000-0003-1332-0006
https://orcid.org/0000-0001-8621-1324
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.104027&domain=pdf&date_stamp=2023-05-11
https://doi.org/10.1103/PhysRevD.107.104027
https://doi.org/10.1103/PhysRevD.107.104027
https://doi.org/10.1103/PhysRevD.107.104027
https://doi.org/10.1103/PhysRevD.107.104027


with the nonzero potential U ¼ VðϕÞ=16πϕ2. The
Lagrangians (densities) in both the frames are related to
each other by a total derivative term:ffiffiffiffiffiffi

−g̃
p

L̃ ¼ ffiffiffiffiffiffi
−g

p
L − ð3=16πÞð ffiffiffiffiffiffi

−g
p

□ϕÞ;

which is unimportant as far as dynamics are concerned.
Consequently, the equations of motion for metric and scalar
field appears to be equivalent in both the frames (a detailed
discussion can be found in [13–17]). Despite this math-
ematical equivalence, it appears that certain physical
properties in different frames disagree with each other,
while others agree (see, e.g., [14,15,17–24]). Therefore it
remains a “dilemma” to give preference to a particular
frame [13,25,26].
Recently, a series of papers [27–29] have appeared in the

literature that treat the ST theory in terms of the thermo-
dynamics of an effective scalar ϕ fluid. The original
discussion [27,28] was done in the Jordan frame where
the energy-momentum (EM) tensor for fluid has been
identified by comparing the equation of motion for metric
tensor with that in nonvacuum GR theory. Such a tensor
depends on the higher derivative of scalar field and so can
be compared with that of a dissipative fluid. The authors
constructed the thermodynamics of this case by using
Eckart’s first order thermodynamic formalism [30] for a
dissipative fluid. The central idea about this investigation is
as follows: it is known that (vacuum) GR corresponds to the
“equilibrium thermodynamic state” as it does not incorpo-
rate any dissipative term when it is viewed as an emergent
theory from a thermodynamic description [5]. While a
modified theory of gravity is usually described through
dissipative phenomenon [e.g., see [6] for fðRÞ gravity]. So
usually the modified gravity theories belongs to the non-
equilibrium thermodynamical state. Hence there must
exists a thermodynamic limit that describes how a modified
theory propagates to GR. In this formalism it is found that
the vanishing temperature of ϕ fluid leads to a GR
equilibrium state [28]. Following this idea the same set
of authors investigated the thermodynamics of scalar fluid
in Einstein’s frame as well [29]. Their approach is inher-
ently under the inequivalent picture, and therefore the EM
tensor in the latter case is different from that in the Jordan
frame. They showed that in the Einstein frame the GR limit
is obtained by imposing vanishing chemical potential.
These investigations naturally deliver a question to ask:
Can such an aspect of ST theory can have a frame-
independent description? If so then a universal limit can
be fixed to approach the GR equilibrium description. In this
paper we aim to investigate this possibility through a
general approach to the thermodynamics of relativistic
fluids. In this regard we mention that an earlier analysis
was done within Eckart’s formalism. Unfortunately this one
suffers from an acausal nature. An important improvement
has been done by Israel and Stewart [31,32] to make the

theory consistent with causality. The defined parameters in
both the formalisms differ by terms related to the viscous
and heat flux of EM tensor. However for an ideal fluid EM
tensor these two formalisms coincide and hence we do not
need to worry about this issue. Therefore, for our present
case, as the EM tensor will be as that of an ideal fluid, we
can use any formalism without the loss of any physical
restriction.
In order to have an equivalent description, the central aim

will be to identity an effective scalar field fluid EM tensor

that satisfies the usual relation (i.e., T̃ðϕ̃Þ
ab ¼ TðϕÞ

ab =ϕ) under
the transformations (1.2) and (1.4). Naturally, an earlier
way to read off such a quantity cannot fulfil the require-
ment. So we adopt a different way to find the fluid
description. Within various aspects of ST theory, the
thermodynamic description of gravity on a Killing horizon
(e.g., event horizon of a stationary black hole) appears to be
equivalent in Jordan and Einstein frames (see [33] for initial
attempt and [15] for an improved approach). The geomet-
rical definitions of thermodynamic entities (like temper-
ature, energy, entropy, work term) in one frame boils down
to their counterparts in the other frame by the trans-
formations (1.2) and (1.3). Spirited by this fact, a thermo-
dynamic description of field equation for metric tensor on a
generic null surface (generated through normal as well as
tangent vector la) has been investigated within the equiv-
alent picture. A particular projection of this equation
together with a virtual displacement along the auxiliary
null vector captures a thermodynamic identity in both the
frames, which is of the form

Z
St

d2xTδλs ¼ δλEþ δλW; ð1:5Þ

where T, s, E are temperature, entropy density, and
energy, respectively. St denotes the cross section of the
null surface and λ parametrizes the auxiliary null vector ka

(for details, see [24]; for a review on this topic, see [17]).

The last one is the work term and is defined through δλW ¼
−
R
St

ffiffiffĩ
q

p
δλT̃ðϕ̃Þ

ab l̃
ak̃b in the Einstein frame.1 Here T̃ðϕ̃Þ

ab is
given by

T̃ðϕ̃Þ
ab ¼ ∇̃aϕ̃∇̃bϕ̃ −

1

2
g̃ab∇̃iϕ̃∇̃iϕ̃ − g̃abUðϕ̃Þ: ð1:6Þ

In this equivalent description the same work term appears
in a Jordan frame as well, and in this case the energy-
momentum tensor for the scalar field takes the form

1Here we denote the tilde variables as Einstein frame quantities
and without tilde ones as Jordan frame quantities. This notation,
wherever necessary, will be followed.
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TðϕÞ
ab ¼ ϕT̃ðϕ̃Þ

ab

¼ ϕ

��
2ωþ 3

16π

�n
∇aðlnϕÞ∇bðlnϕÞ

−
1

2
gab∇iðlnϕÞ∇iðlnϕÞ

o
− gab

VðϕÞ
16πϕ

�
: ð1:7Þ

It may be noted that up to an overall multiplicative factor ϕ,
(1.6) and (1.7) are same under the transformations (1.2)
and (1.3).
We now note that the work term in the thermodynamic

identity is usually defined through the external pressure

P ¼ −TðmÞ
ab lakb (see discussion in [34,35]), where TðmÞ

ab is
the EM tensor for the external matter field as it contributes
in the work term. Therefore following the above discussion
it is natural to think (1.6) or (1.7) corresponds to the ϕ fluid
in ST theory. Interestingly, such an analogy can be well
supported by following the fluid interpretation of dynami-
cal equation of ST theory. It is well known that in GR a
specific projection of Einstein’s equation of motion on a
generic null surface yields a Naiver-Stokes-like equa-
tion [3,36–39]. The same has been investigated in ST
theory as well [23]. It has been observed that if one
demands an equivalent picture for fluid variables in both
the frames then (1.6) and (1.7) provides the external forcing
terms in Einstein and Jordan frames, respectively
(see [17,23] for details). Looking at these facts we consider
(1.6) or (1.7) as the EM tensor for the ϕ fluid in ST theory.
Moreover, these forms are equivalent and applied in both
the frames. Therefore a thermodynamic description of this
fluid captures the spirit of the equivalent picture.
It is worth to mention that in [24] the authors discussed

the thermodynamic interpretation in Einstein frame in
which their approach identifies the EM tensor as (1.6).
Therefore according to our above discussion such an
analysis can be considered as an equivalent description.
However we have a few observations on the previous
analysis that need to be further investigated. We mention
them in the next discussion. This will formulate the basis
of our present investigation and hopefully will lead to a
fruitful description of thermodynamics of ϕ fluid in a frame
independent setup.
Therefore, in order to set up the plot, in next couple of

sections, we first briefly discuss the thermodynamics of
relativistic fluids and then mention our observations on the
previous works [27–29]. In the third section, we present the
present status of ST theories via fluid thermodynamic
viewpoints. In Sec. IV, in order to further proceed towards
our goal, we motivate the reader towards a new EM tensor.
In the next section, we develop a general formalism to
describe a mapping between a minimally coupled scalar
field and corresponding fluid/thermodynamic quantities.
Using the same mapping, the fluid/thermodynamic quan-
tities for our case (in both frames) are found in this section

as well. Finally, in Sec. VI, we conclude the paper with
some future directions.

II. SUMMARY OF THE THERMODYNAMICS
OF RELATIVISTIC FLUIDS

Consider a fluid with four-velocity ua satisfying
uaua¼−1 moving on a spacetime manifold ðM; gab;∇Þ.
We choose the fluid velocity along time direction and
foliate the spacetime into (spacelike) hypersurfaces
orthogonal to flow lines. The projector onto these hyper-
surfaces as well as the induced metric is then given by

hab ¼ gab þ uaub: ð2:1Þ

The acceleration _ua ¼ ub∇bua is perpendicular to the
velocity, i.e., _uaua ¼ 0. In general a viscous fluid is
described as the following energy-momentum tensor:

Tab ¼ ρuaub þ pisohab|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
T ideal
ab

þ qaub þ qaub|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Theat
ab

þ pvishab þ πab|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Tvis
ab

; ð2:2Þ

which is covariantly conserved, i.e., ∇aTab ¼ 0. Here
ρ; piso; qa; pvis, and πab are the energy density, isotropic
pressure, heat flux, viscous pressure, and traceless parts of
the viscous stress tensor (i.e., πaa ¼ 0), respectively. qa is
chosen to be a spatial vector, i.e., uaqa ¼ 0, and alsowe have
uaπab ¼ 0. Choosing the viscous stress tensor is linear in the
velocity gradients and proportional to the (scalar) coefficient
of viscosity η; the suggested form for πab is given by

πab ¼ −η
�
haphbqð∇qup þ∇puqÞ − 2

3
hab∇pup

	
¼ −2ησab: ð2:3Þ

In the above σab is known as shear. The “bulk viscosity” ζ is
defined through pvis, which is related to the trace part of the
viscous stress tensor:

pvis ¼ −ζθ; ð2:4Þ

where θ ¼ ∇aua, which is called an expansion. Apart from
the conservation energy-momentum tensor (2.2), the fluid
dynamics is supplemented by the conservation of the mass
current (∇ama ¼ 0) and the conservation of the total number
current (∇aNa ¼ 0), wherema ¼ mua withm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−mamap
is the mass density and

Na ¼ na þ νa: ð2:5Þ

In the above, one hasna ¼ nua andνa is knownas a diffusion
flux. By construction uaνa ¼ 0; i.e., the diffusion flux νa is
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spatial, so the number density can be obtained as
n ¼ −uaNa. The total number current is conserved, i.e.,
∇aNa ¼ 0, so we can define the fluid chemical potential μ.
An approach to understand the (first order) thermody-

namics of an imperfect fluid is usingEckart’s formalism [30].
This formalism provides a relation between the thermody-
namic parameters and the fluid parameters under the input
that the viscous fluid satisfies the usual laws of thermody-
namics. Although originally the formalism was developed
in a flat background we work in some arbitrary curved
spacetime with metric signature ð−þþþÞ. Also we will
include a particle exchange that was missing in the original
analysis. The whole generalization has been done in [40].
Here, we will briefly state the results. The entropy current in
the system can be written as sa ¼ sua þ βqa − λνa, where s
is the entropy density and β, λ are unknown parameters.
These parameters are fixed by imposing the second law
∇asa ≥ 0 along with the use of thermodynamic identity
(written in per unit volume)

∇aρ ¼ T∇asþ μ∇an; ð2:6Þ

and Euler’s relation

ρþ piso ¼ Tsþ μn: ð2:7Þ

Here T is the temperature of the fluid. Such an imposition
fixes those unknown parameters as

β ¼ 1

T
; λ ¼ pþ ρ

nT
−
s
n
¼ μ

T
; ð2:8Þ

along with a particular choices of qa and νa. Thus, the salient
features of extended-Eckart’s formalism are summarized as
follows:

qa ¼ −κhabð∇bT þ _ubTÞ; ð2:9Þ

πab ¼ −2ησab; ð2:10Þ

pvis ¼ −ζθ; ð2:11Þ

νa ¼ −σT2hab∇b

�
μ

T

�
: ð2:12Þ

Here κ is heat conductivity and σ is known as a diffusion
coefficient. Also remember that κ, σ ≥ 0. The above ones
relate the thermodynamic parameters of a viscous fluid with
its fluid parameters (the details are given in [40]). In the
original construction [30], thebulk viscosity ζwas taken tobe
zero and the velocity ua was taken to be the velocity of the
matter, i.e., the fluid. This is a particular choice of a local rest
frame (the Eckart frame), and in this choice νa ¼ 0. If we
choose a particular rest frame, then we may have to impose
conditions on the above quantities that arise from the physical

restrictions of the rest frames. However, as of yet the above
description and (2.9)–(2.12) are much more general.
Although Eckart’s formalism is a fundamental approach

to studying the thermodynamics of relativistic fluids, the
theory has limitations since it does not account for causality
and exhibits instability issues. Extensions of this theory,
such as those by Israel and Stewart [31,32], aim to fix these
issues. The Israel-Stewart formalism is then a stable, causal
model to study relativistic fluids. In this approach, the
fundamental fluid quantities (2.9)–(2.12) are modified to
include second order perturbations. This modification
comes from terms describing dissipation in the fluid itself.
In principle, one must use this more general approach when
studying relativistic fluids. However in the absence of
dissipation, i.e., when studying ideal fluids, Eckart’s
formalism is sufficient as both the formalisms coincide
in this limit. In our analysis we consider an EM tensor that
has ideal fluid structure [see Eqs. (1.6) and (1.7)]. Therefore
although the explicit relationship between temperature and
the dissipative quantities may be modified by using the
Israel-Stewart formalism (see [32]), in our analysis these
modifications will vanish since they will depend on
dissipative quantities that are absent in our problem.
Therefore, the two approaches yield identical results and,
hence, the relations (2.9)–(2.12) can be used in this context.

III. STATUS QUO OF SCALAR-TENSOR GRAVITY
VIA FLUID THERMODYNAMICS

In a series of recent papers by Faraoni et al. [27–29],
scalar-tensor gravity is described through the thermody-
namics of a fluid, employing Eckart’s first order thermo-
dynamics formalism [30]. In these papers, they use Eckart’s
formalism to consider scalar-tensor gravity both in the
Jordan and the Einstein frame and provide one approach to
reconcile the differences between the two frames. However,
this analysis requires a few inputs and logistics that may be
put under a scanner. We elucidate them below.
(1) Fundamental “discrepancy” between the fluid

energy-momentum tensors: Beginning with the ap-
propriate action in either frame, the authors write
down the field equations in such a way so as to treat
any new terms apart from the Einstein tensor in the
field equations to be a part of the fluid energy-
momentum tensor. That is, the field equations are
written asGab ¼ TðϕÞ

ab and G̃ab ¼ T̃ðϕ̃Þ
ab , where we use

tilde variables to indicate the Einstein frame quan-
tities. Here, Gab is the usual Einstein tensor and any
extra terms that appear due to the terms apart from

the Einstein Hilbert action are grouped into TðϕÞ
ab .

However, this naively motivated way of identifying
an EM tensor for the fluid lacks any physically
motivated argument, and moreover the EM tensor in
both the frames appears to be inequivalent; i.e., they
are not related by the transformations (1.2) and (1.3)
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between the Einstein and the Jordan frames. Fur-
thermore, this inequivalence manifests into the
thermodynamic description that follows, as we will
point out in the next discussion.

(2) Absence of a single thermodynamic description
between the frames: In [27,28], the authors discuss
scalar-tensor gravity in the Jordan frame. The
aforesaid way of identification of the EM tensor
for the ϕ fluid incorporates a viscous part. In this
process, they obtain a nonzero heat flux [41,42] from
which they eventually obtain the “temperature of
gravity” using Eckart’s heat flux. However, a crucial
assumption used in this analysis is the vanishing
spatial temperature gradient, i.e., hab∇bT ¼ 0,
which is used to find out the specific conductivity
and the temperature, and ultimately shows that the
GR limit corresponds to a T ¼ 0 state for the fluid.
In this analysis, the number density n, the chemical
potential μ, and the entropy density s are not
discussed and therefore they are not computed.
However, in [29], the authors apply Eckart’s

formalism and use the existing dictionary between
perfect fluids and minimally coupled scalar fields
in [43] to study the Einstein frame description of
scalar-tensor gravity. Here, they demand that the
temperature must vanish identically for Eckart’s
formalism to be consistent with the vanishing heat
flux for the perfect fluid. Now to provide a mecha-
nism in obtaining GR as some stable thermodynamic
limit, they introduce the chemical potential μ, which
leads to a vanishing diffusion flux:

νa ¼ −Dhab½∇bμþ _ubμ� ¼ 0; ð3:1Þ

where D is the diffusion coefficient. Inspired by
Eckart’s heat flux (2.9) and the work in [44], the
authors chose the above form for νa. Note that this
form is different from (2.12) by the last term. The
chemical potential is such that the GR limit corre-
sponds to vanishing chemical potential. Thus, the
GR limit corresponds to T ¼ 0 in the Jordan frame,
while μ ¼ 0 in the Einstein frame.
The above two points, therefore, indicate an

inequivalent description of thermodynamics be-
tween the two frames.

(3) Ambiguity in the choice of νa: Within this inequi-
valent description a comment can be made on the
choice (3.1) for the diffusion flux. This form of the
diffusion flux does not guarantee consistency with
the second law of thermodynamics except the
Eckart’s frame in which νa ¼ 0. In calculating the
divergence of the entropy current ∇asa, the con-
tribution due to the diffusion flux is given by
−νa∇aλ [see Eq. (282) of [40]]. Then for the choice
(3.1) it yields

−νa∇aλ ¼
νaνa
D

þDμνa _ua: ð3:2Þ

While the first term on the right-hand side is always
positive since νa is spacelike, the second term is
ambiguous. Although the two vectors are individu-
ally spacelike, the contraction may not be positive.
While a vanishing νa can be considered (as done in
Eckart’s frame [40]), this also may face an issue as
described below, particularly for a perfect fluid.
Moreover, this choice dose not guarantee the pos-
itivity of ∇asa in other frames.

(4) Eckart frame and a vanishing diffusion current:
Conventionally, choosing the Eckart frame implies
that the velocity is taken to be along the flow of the
fluid particles. Thus, the diffusion current must
vanish, i.e., νa ¼ 0. With the choice of μ in [29]
[i.e., Eq. (3.1)] this is indeed the case. However, the
vanishing of the diffusion flux places restrictions on
the theory under consideration, particularly in Ein-
stein’s frame. In the Einstein frame, if one considers
the number currently defined naively as nua, then it
is no longer covariantly conserved due to the
dynamics of the field ϕ. Consider an action of the
form

S ¼
Z ffiffiffiffiffiffi

−g
p

d4xLðψ ; XÞ; ð3:3Þ

with X ¼ −ð1=2Þ∇iψ∇iψ . The Einstein frame ST
gravity action is an example of this form of action.
For this class of actions, the energy momentum
tensor is given by

Tab ¼ −
2ffiffiffiffiffiffi−gp δS

δgab
¼ LX∇aψ∇bψ þ Lgab ð3:4Þ

and is covariantly conserved, i.e., ∇aTab ¼ 0. Then,
we can write down the Euler Lagrange equation for
the field ψ as

∇aðnuaÞ ¼ −Lϕ; ð3:5Þ

where Lϕ ¼ ∂L=∂ϕ. The chemical potential defined
in this context is ambiguous. This can be remedied
by modifying the number current to include the
diffusion flux [40], such that Na ¼ nua þ νa with
∇aNa ¼ 0. Thus one finds

∇aðnuaÞ ¼ −∇aν
a ¼ −Lϕ; ð3:6Þ

and therefore the imposition of νa ¼ 0 leads to
Lϕ ¼ 0. This suggests that the Lagrangian must
be independent of ϕ. In other words, the conserva-
tion of nua is connected to the fact that the
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Lagrangian must be independent of ϕ. This type of
Lagrangian usually must be independent of the
potential term and then we could have a Lagrangian
that only contains the kinetic terms involving X.
However, ST theory in the Einstein frame in a
general framework is given by the action (1.4). This
gives an energy momentum tensor for ϕ as (1.6).
Note that this one resemblances that of a perfect
fluid. In that case, if Lϕ ¼ 0, then the Lagrangian
being independent of ϕ would imply that the above
potential term in the Lagrangian must not exist. It
would refer to describing a minimally coupled free
scalar field in curved spacetime. Hence, this is
incompatible with considering a general ST theory
in the Einstein frame.
Observe that we obtain this restriction on La-

grangian directly comes from imposition of νa ¼ 0,
which amounts to choosing the Eckart frame. Thus it
seems that, in general to describe minimally coupled
scalar fields whose EM tensor is identical to that of a
perfect fluid, the Eckart frame is not the perfect
choice to describe its thermodynamics.

Thus, the description presented so far has a few
limitations and needs to revisited so as to obtain an
equivalent picture from a thermodynamic and gravitational
perspective.

IV. MOTIVATING A NEW EM TENSOR

We want a description of the thermodynamics of ST
gravity that is equivalent between the two frames so as to
provide such an interpretation for the gravity side. To do so,
we first realize that the scalar field in ST theory contributes
to the description of gravity, as well as to describe the ϕ
fluid. We adopt the approach used in [17,24] where we use
the fact that projecting the gravitational field equations onto
a null surface can give us an equation similar in structure to
the first law, from which we identify an EM tensor such that
the individual thermodynamic quantities between the two
frames are in correspondence. Doing so provides us with
the EM tensor (1.7). The details of the derivation of this are
given in [24]. Such an identification, as mentioned in the
introduction, is also bolstered from fluid description of
ST gravitational theory in an equivalent platform [23].
Interestingly, such an EM tensor up to an over all factor
boils down to (1.6) under the transformations (1.2) and
(1.3), and moreover the Einstein frame EM tensor structure
can be derived from the last two terms of (1.4) and hence is

covariantly conserved (∇̃aT̃ðϕ̃Þ
ab ¼ 0). What is important is

that this is the EM tensor that emerges in both frames if we
define it while keeping in mind the thermodynamic
equivalence of the gravitational theory; any analysis per-

formed using this T̃ðϕ̃Þ
ab holds in both frames. Thus, relying

on thermodynamic equivalence naturally leads with a hint
of gravitational equivalence, at least at the level of the EM

tensor. Further, note that the structure of (1.6) is similar to
that of a perfect fluid. Since this way of identified EM
tensor is the same in both frames, it suffices us to perform
all our analysis in the Einstein frame description. Also note
that the action for this EM tensor can be considered as the
last two terms in (1.4), which falls within the general class
of actions considered in [29]. However, performing the
same mapping will still not be useful, even with this

modified TðϕÞ
ab due to a vanishing diffusion flux. As

mentioned earlier, since ∇aν
a ¼ Lϕ, a vanishing νa would

mean that the Lagrangian is independent of ϕ. Thus, the
Eckart frame may not be the ideal choice to describe a
perfect fluid.
In the following section we will develop a general

formalism to describe a mapping between a minimally
coupled scalar field and corresponding fluid/thermodynamic
quantities. This can then be used to study the particular
example of the ϕ fluid in the Einstein frame ST theory. We
will then discuss how we can also obtain the Jordan frame
picture without additional work.

V. A POSSIBLE ALTERNATE WAY OUT

We continue to consider the general class of actions for a
minimally coupled scalar field since it is sufficient to
demonstrate this approach at least in the Einstein frame.
Moreover, our identified tensor (1.6) belongs to this class as
well. We therefore consider a minimally coupled scalar
field ψ with a general Lagrangian density Lwhose action is
(3.3). The energy momentum tensor for this field can be
derived as (3.4) with the notation LX ¼ ∂L=∂X and
Lψ ¼ ∂L=∂ψ . Note that Tab is conserved.
Comparing (3.4) with (2.2), we have the following

preliminary dictionary:

p¼piso¼L; ua¼
∇aψffiffiffiffiffiffi
2X

p ; ρ¼ 2XLX−L: ð5:1Þ

We also see that there is no term corresponding to a heat
flux or viscous stress, i.e., pvis ¼ 0, πab ¼ 0, and qa ¼ 0.
This is reasonable because we do not expect a minimally
coupled scalar field to generate any dissipation. Thus, the
scalar field is mapped to a perfect fluid. Now from
thermodynamics, the enthalpy is defined as h ¼ ρþp

n . We
choose the flow potential normalization through the
enthalpy as done in [43]. That is to say, we choose

hua ¼ ∇aψ : ð5:2Þ

Then (5.1) yields

n ¼
ffiffiffiffiffiffi
2X

p
LX: ð5:3Þ

So far, what we have mentioned about the fluid variables
in terms of field ψ is exactly identical to that in [29]. If we
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now look at the dynamics of ψ we might be able to describe
the dynamics of the fluid through our growing dictionary.
From the dynamical equations of the field, we have
∇aðLX∇aψÞ ¼ ∇aðnuaÞ ¼ −Lψ . Thus, we see that particle
number is not conserved in this fluid. This suggests that
there is some diffusion, and our definition of the chemical
potential for the fluid must be connected to this diffusion.
Such a situation has been taken into account in [40] to
provide a general version of Eckart’s formulation. This we
already mentioned in Sec. II. In this case the number
current is given by (2.5). Then the conservation it yields is

∇aν
a ¼ −∇aðnuaÞ ¼ Lψ : ð5:4Þ

Moreover, we can now follow the dictionary (2.9)–(2.12) to
find the thermodynamic quantities of our scalar fluid. Then
since the heat flux qa vanishes, we have

qa ¼ −κhab½∇bT þ _ubT� ¼ 0: ð5:5Þ

To satisfy the above criteria, in [29] T ¼ 0 has been chosen.
If we choose T ¼ 0, then the present choice of νa [given by
Eq. (2.12)] yields

νa ¼ σμhab∇bT − σThab∇bμ ¼ 0: ð5:6Þ

Remember that even the choice (3.1), adopted in [29], also
implies the vanishing of νa. But as discussed earlier νa ¼ 0
with (5.4) implies that the Lagrangian is independent of ψ ,
which is in contradiction to the present situation as the
Lagrangian explicitly depends on ψ . Moreover in Eckart’s
frame one has νa ¼ 0. Therefore this discussion seems to
indicate that the present system cannot be well described in
this frame and T ¼ 0 may not be a good choice. Hence we
propose an alternative choice for T to satisfy (5.5). In order
to work in the paradigm of equilibrium thermodynamics,
we demand that the temperature be constant and positive
definite. Hence, we take T ¼ T0, a constant, and T0 > 0.
From (5.5), this would mean that

−κ _uaT0 ¼ 0: ð5:7Þ

We choose κ ¼ 0, i.e., vanishing thermal conductivity. This
would mean that we consider a fluid that is at constant
temperature but is a perfect insulator. This can be consid-
ered as a consequence of the fact that we have a perfect
fluid that does not allow a heat flux. However, with a
nonzero temperature, we can proceed to define a non-
vanishing diffusion flux. Since the temperature is a con-
stant, (2.12) implies

νa ¼ −Dhab∇aμ; ð5:8Þ

where D ¼ σT is taken to be the (scaled) diffusion coef-
ficient. Note that this is the first term in the choice (3.1).

With this choice, we now want to find a closed form
expression for the chemical potential. To do so, we try to set
up a differential equation for the chemical potential through
the Euler relation (2.7). A simple computation yields

hab∇aμ ¼ hab∇að
ffiffiffiffiffiffi
2X

p
Þ: ð5:9Þ

A detailed derivation of the above equation is presented in
the Appendix. A solution for μ can be taken as

μ ¼
ffiffiffiffiffiffi
2X

p
− fðψÞ: ð5:10Þ

for some arbitrary f which is function of ψ only. Using
the facts ∇aψ ∝ ua and habua ¼ 0 one can check that it
satisfies (5.9). For f ¼ 0 this yields μ ¼ ffiffiffiffiffiffi

2X
p

, which was
obtained in [29]. But in the present case we can not choose
f ¼ 0 as this is not consistent with a nonzero temperature
as shown below. When f ¼ 0 then we have μ ¼ ffiffiffiffiffiffi

2X
p

and
then the Euler relation (2.7) along with (5.1) and (5.3)
imply Ts ¼ 0. Therefore, when μ ¼ ffiffiffiffiffiffi

2X
p

and s ≠ 0, we
must have T ¼ 0. Hence, we instead determine the chemi-
cal potential up to the function fðψÞ, given by (5.10). Also
note that the chemical potential, depending on the values offfiffiffiffiffiffi
2X

p
and f, can be positive or negative. Then the Euler

relation (2.7) fixes the entropy density as

s ¼
ffiffiffiffiffiffi
2X

p
LX

T
fðψÞ ¼

ffiffiffiffiffiffi
2X

p
LX

T0

fðψÞ: ð5:11Þ

To ensure that the entropy density is positive, we impose
f > 0.
Finally, from the divergence of the diffusion, one can

find the diffusion constant D ¼ σT0. This is done using
Eq. (5.8). This yields

∇aν
a ¼ −∇aðDhab∇bμÞ
¼ −∇a½Dhab∇að

ffiffiffiffiffiffi
2X

p
Þ� ¼ Lψ ; ð5:12Þ

where the last equation is obtained using (5.4). Then the
diffusion coefficient D is at least formally obtained as
σðψ ; XÞ ¼ Dðψ ; XÞ=T0 by solving the above equation.
These results are summarized in Table I.
This dictionary is a general prescription. To work in the

Einstein frame with the Einstein variables, one would
simply have to let ψ ¼ ϕ̃ and ∇a ¼ ∇̃a. All thermody-
namic quantities are then computed as above with

L̃ ¼ −ð1=2Þ∇̃iϕ̃∇̃iϕ̃ −Uðϕ̃Þ: ð5:13Þ

Using this Lagrangian and Table I, one obtains for the
Einstein frame quantities as shown in Table II.
In this table we have defined XJ ¼ ð−1=2Þ×

∇aðlnϕÞ∇aðlnϕÞ and for the Lagrangian eL one has
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L̃X ¼ 1. The second equality in this table is obtained using
the conformal transformations (1.2) and (1.3).
We can use the dictionary given in Table I to determine

the fluid variables in the Jordan frame as well. To do so,
we first require a Lagrangian for the ϕ fluid in the Jordan
frame. This can be achieved by the requirement that the
corresponding action is same in both the frames, i.e.,Z

d4x
ffiffiffĩ
g

p eL ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
LJ: ð5:14Þ

This yields LJ ¼ ϕ2eL. Hence from (5.13) we have

LJ ¼ −
ϕ

2

�
2ωþ 3

16π

�
∇aðlnϕÞ∇aðlnϕÞ − VðϕÞ

16π
: ð5:15Þ

With this Lagrangian, we can also derive the EM tensor TðϕÞ
ab

in (1.7) by considering variations with respect to gab, the
Jordan framemetric. Therefore,we identify this as theϕ fluid
Lagrangian in the Jordan frame. Using this Lagrangian and
the general dictionary (shown in Table I), we can now
compute the various thermodynamic quantities in the Jordan
frame. This is done in Table III below.
First, in our formulation, we have chosen TJ ¼ T0 ¼ T̃0,

which is a constant. This is because in our formulation we
choose the temperature of scalar fluid as a constant value.
Since T̃0 is the temperature in Einstein frame, the same in
Jordan frame should not be scaled by ϕ; otherwise it would

not be constant in the latter frame. Now, consider the
following quantity:

X̃ ¼ −
1

2
g̃ab∇̃aϕ̃∇̃bϕ̃

¼ −
1

2

�
2ωþ 3

16π

�
gab

ϕ
∇aðlnϕÞ∇bðlnϕÞ

¼
�
2ωþ 3

16πϕ

�
XJ: ð5:16Þ

In a similar way, we can relate the other quantities:

uJa ¼
∇aðlnϕÞffiffiffiffiffiffiffiffi

2XJ
p ¼ ũaffiffiffiffi

ϕ
p ; ð5:17Þ

pJ ¼ LJ ¼ ϕ2eL ¼ ϕ2p̃; ð5:18Þ

ρJ ¼ ϕ

�
2ωþ 3

16π

�
XJ þ

VðϕÞ
16π

¼ ϕ2ρ̃; ð5:19Þ

nJ ¼
ffiffiffiffiffiffiffiffi
2XJ

p
ϕ

�
2ωþ 3

16π

�

¼ ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ

�
2ωþ 3

16π

�s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2ωþ 3

16πϕ

�
2XJ

s

¼ ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ

�
2ωþ 3

16π

�s
ñ: ð5:20Þ

Next in order to the validity of the Euler relations ρ̃þ p̃ ¼
T̃0s̃þ μ̃ ñ and ρJ þ pJ ¼ T0sJ þ μJnJ in the respective
frames one must have sJ ¼ ϕ2s̃ and μJnJ ¼ ϕ2μ̃ ñ. From
Tables II and III and (5.20) we have

μJnJ ¼ f
ffiffiffiffiffiffiffiffi
2XJ

p
− fðϕÞg

�
ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ

�
2ωþ 3

16π

�s
ñ

	

¼ ϕ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2ωþ 3

16πϕ

�
2XJ

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2ωþ 3

16πϕ

�s
fðϕÞ

	
ñ;

¼ ϕ2

� ffiffiffiffiffiffi
2X̃

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2ωþ 3

16πϕ

�s
fðϕÞ

	
ñ: ð5:21Þ

TABLE I. Mapping between fluid and scalar field variables.

Fluid and thermodynamic
variable Field theory variable

X ð−1=2Þ∇aψ∇aψ
p L
ua ∇aψ=

ffiffiffiffiffiffi
2X

p
ρ 2XLX − L
n

ffiffiffiffiffiffi
2X

p
LX

h
ffiffiffiffiffiffi
2X

p
μ

ffiffiffiffiffiffi
2X

p
− fðψÞ

s
ffiffiffiffiffiffi
2X

p
LXfðψÞ=T

T T0 (a constant)

TABLE II. Fluid quantities in the Einstein frame.

ũa ¼ ∇̃aϕ̃=
ffiffiffiffiffiffi
2X̃

p
¼ ffiffiffi

ϕ
p ∇aðlnϕÞ=

ffiffiffiffiffiffiffiffi
2XJ

p
p̃ ¼ eL ¼ ð2ωþ 3Þ=ð16πϕÞXJ − VðϕÞ=16πϕ2

ρ̃ ¼ 2X̃eLX̃ − eL ¼ ð2ωþ 3Þ=ð16πϕÞXJ þ VðϕÞ=16πϕ2

ñ ¼
ffiffiffiffiffiffi
2X̃

p eLX̃ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2ωþ 3Þ=ð16πϕÞ2XJ

p
h̃ ¼

ffiffiffiffiffiffi
2X̃

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2ωþ 3Þ=ð16πϕÞ2XJ

p
μ̃ ¼

ffiffiffiffiffiffi
2X̃

p
− f̃ðϕ̃Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2ωþ 3Þ=ð16πϕÞ2XJ

p
− f̃ðϕÞ

s̃ ¼
ffiffiffiffiffiffi
2X̃

p eLX̃ f̃ðϕ̃Þ=T̃ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2ωþ 3Þ=ð16πϕÞ2XJ

p
f̃ðϕÞ=T0

T̃ ¼ T̃0 (constant)

TABLE III. Fluid quantities in the Jordan frame.

uJa ¼ ∇aðlnϕÞ=
ffiffiffiffiffiffiffiffi
2XJ

p
pJ ¼ LJ
ρJ ¼ ϕð2ωþ 3Þ=ð16πÞXJ þ VðϕÞ=16π
nJ ¼

ffiffiffiffiffiffiffiffi
2XJ

p
ϕð2ωþ 3Þ=ð16πÞ

μJ ¼
ffiffiffiffiffiffiffiffi
2XJ

p
− fðϕÞ

hJ ¼
ffiffiffiffiffiffiffiffi
2XJ

p
sJ ¼

ffiffiffiffiffiffiffiffi
2XJ

p
ϕð2ωþ 3Þ=ð16πÞfðϕÞ=T0

TJ ¼ T0 ¼ T̃0
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Now the above will satisfy μJnJ ¼ ϕ2μ̃ ñ if the functions
f̃ðϕÞ and fðϕÞ are related as

f̃ðϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ωþ 3Þ
ð16πϕÞ

s
fðϕÞ: ð5:22Þ

Thus, this fixes the relationship between the functions f̃ðϕÞ
and fðϕÞ. Then the chemical potentials are related as

μJ ¼
ffiffiffiffiffiffiffiffi
2XJ

p
− fðϕÞ

¼
�
2ωþ 3

16πϕ

�
−1=2n ffiffiffiffiffiffi

2X̃
p

− f̃ðϕÞ
o

¼
�
2ωþ 3

16πϕ

�
−1=2

μ̃; ð5:23Þ

where we have used (5.16), (5.22), and Table II. Finally one
can check, with the above identification for fðϕÞ that the
entropy density satisfies the predicted relation sJ ¼ ϕ2s̃.
We summarize these results in Table IV.
Having determined all the thermodynamic variables,

we can consider the GR limit of the action. This would
correspond to a constant field ψ ¼ ψ0. This we will discuss
in the general frame work, i.e., with respect to the ψ field.
Einstein or Jordan frame quantities can be obtained by
using the above relations. In this case, we would have

p ¼ L ¼ L0; ρ ¼ −p ¼ −L0; s ¼ 0;

T ¼ constant by construction; μ ¼ −fðψ0Þ ¼ −f0 < 0;

ð5:24Þ

where L0 is the value of Lagrangian density corresponding
to action (3.3) at ψ ¼ ψ0. A couple of comments are in
order. The chemical potential appears negative, which
needs to be explained. As mentioned earlier, we must
ensure that the function fðψÞ is positive so that the entropy
density obtained is also positive (since T > 0 by con-
struction). Thus, this means that the GR chemical potential
is a constant but a negative constant. Physically, the
chemical potential is the energy cost of adding another
particle to the system at constant entropy and volume. For a
thermodynamic system, given the total energy and the total
number of particles, there is a definite number of possible

arrangements of the particles that fixes the entropy through
Boltzmann’s definition. If we are to add a particle to this
system that results in an increase of the total energy, then
the number of arrangements must necessarily increase,
which is to say that the entropy must increase. If we want to
add a particle to the system such that the number of
arrangements (and hence the entropy) is held constant, then
the net energy of the system must decrease. Since the
change in energy only comes from the energy of the particle
added, then this must mean that the energy of the particle
added at constant entropy must be negative. But this is
precisely how the chemical potential is defined. In this
regard, recall that the chemical potential for an ideal gas in
classical thermodynamics is also negative for this rea-
son [45,46]. The chemical potential for the ideal gas is
given by [Eq. (2.14) of [45] or Eq. (45.5) of [46]]

μ ¼ T log

�
N
V

�
2πℏ2

mT

�3
2

�
¼ T log

�
λ3

V=N

�
; ð5:25Þ

where

λ ¼
ffiffiffiffiffiffiffiffiffiffi
2πℏ2

mT

r
ð5:26Þ

is the thermal de-Broglie wavelength. However, the
classical ideal gas law holds as long as the thermal de-
Broglie wavelength λ is much smaller than the volume per
unit particle, so we can ignore corrections from quantum
mechanics, i.e.,

λ3 ≪
V
N

⇒ μ < 0: ð5:27Þ

Similarly, for a (noninteracting) Bose gas the chemical
potential turns out to be negative [see Eq. (54) of [46]].
Thus, the negative chemical potential in the GR limit of the
theory is not unusual, especially when we take into account
the fact that we are mapping the theory to a classical perfect
fluid in thermal equilibrium at constant temperature and
pressure.
Finally, we close this section with the following com-

ments. Note that the dictionary presented in Table I is valid
only for perfect fluid case. The perfect fluid structure is
usually guaranteed for a gravity-matter theory in which the
matter is minimally coupled to gravity. Therefore this
dictionary is useful to such a theory of gravity. However
the applicability of Table I, in principle, can be generalized
to any theory that provides an ideal fluid EM tensor.
Therefore in summary such a dictionary is viable to any
perfect fluid. In the present discussion we have used this to
a general scalar-tensor theory with a nonminimally coupled
scalar field, which is described in the Jordan frame. The
results are summarized in Tables II–IV. Here we have been
able to use Table I for such a theory because our identified

TABLE IV. Relationship between Jordan and Einstein frame
thermodynamic variables.

pJ ¼ ϕ2p̃
ρJ ¼ ϕ2ρ̃

nJ ¼ ϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2ωþ 3Þϕ=ð16πÞp

ñ
μJ ¼ fð2ωþ 3Þ=ð16πϕÞg−1=2μ̃
hJ ¼ fð2ωþ 3Þ=ð16πϕÞg−1=2h̃
sJ ¼ ϕ2s̃
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EM tensors, both in Jordan and Einstein frames, are similar
in structure to that of an ideal fluid. In that sense the
outcomes, presented in Tables II–IV, as far as our way of
identifying the EM tensor for scalar fluid is concerned, are
valid for any general scalar-tensor theory in which the
scalar field is nonminimally coupled to gravity in
Jordan frame, and hence they are not restricted to Brans-
Dicke type.

VI. CONCLUSION

We revisited the thermodynamic description of scalar
fluid in ST theory of gravity using a general approach to the
thermodynamics of relativistic fluids, identifying different
thermodynamic and fluid parameters. Contrary to the
existing works [27–29], the fluid EM tensor has been
identified through the description of equation of motion for
metrics in ST theory as thermodynamic identity as well as
fluid equation. To find such EM the main emphasis has
been given on the equivalent analysis of thermodynamics
and fluid descriptions of gravitational dynamics on a
generic null surface both in Jordan and Einstein frames
(see, e.g., [17,23,24]). It appeared that the EM tensors
in both the frames are connected by a conformal factor
[see Eq. (1.7)] and both take ideal fluid structure. Before
identifying the fluid parameters and thermodynamic quan-
tities of these fluids, we reinvestigated the existing formu-
lation of the same for ideal fluid. It appeared that certain
alternatives can be put forward so that few existing short-
comings can be improved. Importantly we found that
Eckart’s frame may not be the best one to analyze perfect
fluid.
In this paper, we have provided a possible alternate

approach to the thermodynamic description of ideal scalar
fluid that is valid in something other than Eckart’s frame.
Using this the fluid and thermodynamic parameters were
obtained in both the frames. Moreover, the relations among
the quantities on different frames were given. This gives
us an equivalent picture with a unique relation between
thermodynamic quantities in both frames. Thus the analysis
in either of the frames is sufficient to get a complete
description. Importantly, we can identify a unique GR limit
as the zero entropy state for the fluid; i.e., the fluid entropy
density vanishes in the limit of Einstein gravity. This holds
in both the frames. Interestingly, in this limit the chemical
potential reduces to a constant negative value, much like
the chemical potential for an ideal gas in classical
thermodynamics.
Finally, we mention that one should treat our inves-

tigation as one of the possibilities as far as the ideal fluid is
concerned. Therefore one needs to further study to find a
concrete analogy between the thermodynamic and fluid

description within the perfect fluid level as well as the
scalar fluid in ST theory. Hence we hope the present study
is one step forward towards this and may help in future for
further progress.

ACKNOWLEDGMENTS

The research of all the authors is supported by Science
and Engineering Research Board (SERB), Department of
Science & Technology (DST), Government of India, under
the scheme Core Research Grant (Grant No. CRG/2020/
000616). The authors also thank Valerio Faraoni for giving
valuable and insightful comments on our first draft.

APPENDIX: DERIVATION OF EQ. (5.9)

Euler relation (2.7). This yields

∇aμ ¼ ∇a

�
ρþ p
n

�
− T0∇a

�
s
n

�
¼ ∇a

�
ρþ p
n

�
− T0

�∇aρ

nT0

−
pþ ρ

n2T0

∇an

�
¼ ∇ap

n
; ðA1Þ

where in the second equality we have used the following
identity:

n∇a

�
s
n

�
¼ ∇aρ

T0

−
pþ ρ

nT0

∇an; ðA2Þ

which is derived as follows. From the first law of
thermodynamics (per unit volume) one finds

∇aρ ¼ T0∇asþ μ∇an ¼ T0∇a

�
n
s
n

�
þ μ∇an;

¼ nT∇a

�
s
n

�
þ
�
μþ T

s
n

�
∇an: ðA3Þ

Next we use Euler’s relation (2.7), which yields (A2).
Now using (5.1) and (5.3) we find ∇ap ¼ ∇aL ¼
Lψ∇aψ þ LX∇aX and so one has

∇ap
n

¼ 1

n
ð

ffiffiffiffiffiffi
2X

p
LXua þ LX∇aXÞ;

¼
�
Lψ

LX

�
ua þ∇að

ffiffiffiffiffiffi
2X

p
Þ: ðA4Þ

Then combining (A1) and (A4) we can take the spatial
projection to obtain (5.9).
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