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We study the parity-breaking higher-curvature gravity theory of Chern-Simons (CS), using the Palatini
formulation in which the metric and connection are taken to be independent fields. We first show that
Palatini-CS gravity leads to first-order derivative equations of motion and thus avoid the typical instabilities
of CS gravity in the metric formalism. As an initial application, we analyze the cosmological propagation of
gravitational waves (GWs) in Palatini-CS gravity. We show that, due to parity breaking, the polarizations of
GWs suffer two effects during propagation: amplitude birefringence (which changes the polarization
ellipticity) and velocity birefringence (which rotates the polarization plane). While amplitude birefringence
is known to be present in CS gravity in the metric formalism, velocity birefringence is not present in metric
CS gravity for high frequency waves, but now appears in Palatini-CS due to the fact that left-handed and
right-handed GW polarizations have a different dispersion relation. In the approximation of small
deviations from general relativity (GR), we do find however that velocity birefringence appears at least
quadratically in the CS coupling parameter α, while amplitude birefringence appears linearly in α. This
means that amplitude birefringence will be the most relevant effect in Palatini-CS and hence this model will
behave similarly to metric CS. We confirm this by applying current constraints on amplitude and velocity
birefringence to Palatini-CS, and showing that those from amplitude birefringence give the tightest bounds.
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I. INTRODUCTION

The detection of gravitational waves (GWs) from binary
compact objects mergers by the LIGO/Virgo collaboration
[1] has opened the possibility of performing direct tests of
gravity in the weak and strong-field regimes. Deviations
from general relativity (GR) in the generation and propa-
gation of GWs have been analyzed, and used to constrain
various modified gravity models and to probe fundamental
physics [2–6].
One well-studied model is Chern-Simons (CS) gravity

[7–10], which is a metric theory that contains parity-
breaking quadratic curvature terms coupled to a scalar
field. As a consequence, in this metric formulation, the CS
theory contains third-order derivatives of the metric in the
equations of motion, and is likely to be ill posed [11], so it
must be considered as an effective field theory. A pertur-
bative reduction scheme [12] has been developed in order
to recast this theory in terms of first-order derivative
equations and shown to have a well-posed boundary
problem (with a unique stable solution continuous on
the initial data), and hence allow for nonlinear numerical
GW simulations [13,14].

An alternative formulation to Chern-Simons was pro-
posed in [15] in terms of a tetrad and spin connection, with
an internal Minkowski metric. This model only leads to
first-order derivative equations of motion, and hence does
not suffer from the same issues as the original CS metric
formulation. Note that the metric and tetrad CS formula-
tions are generally inequivalent since the tetrad formulation
typically leads to a nonvanishing torsion in the curvature.
To date, most physical predictions have been studied for CS
in the metric formalism, so the viability of the tetradic CS
model still remains to be studied.
In this paper, we present a third alternative formulation

of CS, based on the so-called Palatini formulation [16], in
which the spacetime metric and the connection are assumed
to be independent fields. Palatini formulations have been
identified in the past [17] as a way of avoiding instabilities
induced by high curvature interactions, since they avoid
higher derivative equations of motion. In this paper, we
calculate the full nonlinear equations and show they contain
only first-order derivatives. Thus, Palatini-CS avoids the
typical instabilities present in the metric CS model.
Contrary to the tetradic CS formulation, here we assume
the connection to be always a symmetric tensor, which
means that the curvature will always be torsion free. Note
that an extension to Chern-Simons gravity [18–20] was
recently analyzed using the Palatini formulation as well,
and this model was found to contain metric torsion.
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Beside the instability issues there is a purely theoretical
motivation to study Palatini’s formulation of gravity: from a
differential geometry point of view the connection and
metric are different concepts. The metric is associated to
lengths of curves and norms of vectors, while the con-
nection is associated to parallel transport. It is then
reasonable to treat them as independent entities from a
dynamical point of view. This exercise, when applied to the
Einstein-Hilbert action, gives the usual Levi-Civita symbol,
but this is not the case for other interactions, like Chern-
Simons theory considered in this paper.
In addition, we analyze some of the physical predictions

of Palatini-CS, focusing on the propagation of GWs on an
expanding Universe. In particular, we analyze linear tensor
cosmological perturbations and we first find that the
connection does not carry independent tensor degrees of
freedom, and thus we can obtain a closed system of
equations for the two GW polarizations, just like in the
metric CS model. Nevertheless, the details of these equa-
tions differ from those in the metric CS model, which
means that they predict a different phenomenology.
More concretely, in both Palatini and metric CS the two

GW polarizations propagate differently due to parity
breaking. However, this parity breaking is exhibited only
as an amplitude birefringence effect (which changes the
relative amplitude of the two polarizations) in the metric CS
model [9,21–24]. Instead, in Palatini-CS we find the pres-
ence of velocity birefringence (which changes the relative
phase of the two polarizations due to modified dispersion
relations) in addition to amplitude birefringence—see [25]
for a discussion on velocity and amplitude birefringence of
GWs in different gravity models. Furthermore, we find that
the specificway inwhich amplitude birefringence happens in
the Palatini and metric CS models is different in general.
In this paper we also discuss the prospects for con-

straining Palatini-CS in the context of late-time cosmology.
An initial constraint on amplitude birefringence has been
obtained from the binary black hole mergers detected by
LIGO/Virgo [24], and future binary neutron star mergers
with electromagnetic counterparts could test this effect
even further [22]. We find that when the deviations from
GR are small (i.e. the Chern-Simons interaction is small)
then these constraints apply to both metric and Palatini-CS
since they both make the same prediction on amplitude
birefringence at leading order.
In addition, changes in the phase of GW polarizations

have been previously tested while preserving parity sym-
metry. Constraints on the propagation speed of GWs [26] as
well as on a modified dispersion relation have been
obtained with LIGO/Virgo events [6]. Constraints on a
specific parity-breaking modified dispersion relation have
also been obtained in [27–29]. We find that when the
deviations from GR are small, Palatini-CS predicts a parity-
preserving change in the propagation speed of GWs,
while higher-order terms break parity and modify the

GR dispersion relation. We thus discuss how the previous
results from [26,29] can be applied to Palatini-CS, and
generally lead to weaker bounds compared to those from
amplitude birefringence.
This paper is structured as follows. In Sec. II we review

the Chern-Simons theory, and present the Palatini formal-
ism while comparing to the metric formalism. In Sec. III we
analyze the cosmological predictions of Palatini–Chern-
Simons, focusing on the propagation of GWs over a
homogeneous and isotropic expanding universe. We
present the relevant GW equations of motion and compare
to the metric formalism. Then, in Sec. IV we reduce the
metric and connection equations to a simple set of
equations for the two physical polarizations of GWs, show
that both amplitude and velocity birefringence are present,
and discuss the observational prospects for constraining
Palatini-CS. Finally, in Sec. V we summarize our results
and discuss future implications.
In this paper, we will set the speed of light to unity c ¼ 1

and ℏ ¼ 1. We will also use the ð−;þ;þ;þÞ metric
signature, and denote with parenthesis the symmetrization
of indices as: AðμBνÞ ¼ ðAμBν þ AνBμÞ=2.

II. CHERN SIMONS

General relativity is an effective field theory (EFT) that
breaks down at high energies [30,31], which is reflected in
the fact that it is a nonrenormalizable theory whose high-
energy quantum states cannot be analyzed. However,
classical extensions to GR that include higher-order cur-
vature terms have been proposed as a way to improve the
validity of GR to higher energies, such as the case of Chern-
Simons and fðRÞ theories [32,33]. Such high curvature
terms introduce their own problems since higher derivative
terms lead to the presence of instabilities [34–36].
However, they can also be considered as EFTs such that
all the unstable degrees of freedom are excited at energies
higher than the cutoff energy.
In this section, we start by reviewing the CS theory.

Chern-Simons was first proposed as a modified gravity in
[10] (see also a comprehensive review in [37]). For a
spacetime metric gab and a pseudo scalar field ϑ, the action
is given by

S ¼ κ

Z
d4x

ffiffiffiffiffiffi
−g

p
Rþ α

4

Z
d4xϑð�Rα μν

β Rβ
αμνÞ

−
β

2

Z ffiffiffiffiffiffi
−g

p ½gαβð∇αϑÞð∇βϑÞ þ 2VðϑÞ�d4xþ Smat; ð1Þ

where �Rα μν
β is the dual Riemann tensor defined as:

�Rα μν
β ¼ 1

2
εμνρσRα

βρσ; ð2Þ

with εμνρσ the fully antisymmetric Levi-Civita symbol. In
Eq. (1), the first term corresponds to the Einstein-Hilbert
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action of GR. The second term contains the Chern-Simons
interaction—also known as the Pontryagin density—and
depends on the Levi-Civita symbol εμνρσ which will
induce parity breaking in the solutions. Note that this
CS term contains higher-curvature interactions but it can
affect the behavior of gravity in the weak-field regime of
cosmology as well, depending on the scales involved in
the problem. Note also that, in Palatini form, this term is
independent from the metric tensor, yet is has the right
transformation properties thanks to the Levi-Civita den-
sity. The third term in Eq. (1) is the kinetic action for the
scalar field ϑ that includes an arbitrary potential term V,
and lastly Smat includes additional general matter compo-
nents, assumed to be minimally coupled to the metric, as
in GR. The parameters α and β are arbitrary real dimen-
sional coupling constants characterizing the scalar field,
and κ ¼ 1=ð16πGÞ.

A. CS: Metric formulation

In the initial work [10], CS was studied in the metric
formalism, where there are two independent fields: the
metric gμν and the scalar field ϑ. In this case, the metric
equations of motion from Eq. (1) are

κGμν ¼ −αCμν þ
1

2
Tμν; ð3Þ

where Gμν ¼ Rμν − gμνR=2 is the Einstein tensor which,
in this formalism, is a function of the metric only. The
C-tensor in the right-hand side (rhs) of Eq. (3) is given by:

Cμν ¼ ð∇ρϑÞερσλðμ∇λR
νÞ
σ þ ð∇ρ∇σϑÞ�RσðμνÞρ: ð4Þ

Also, Tμν is the total stress-energy tensor, including ϑ and
matter, defined as

Tμν ¼ Tϑ
μν þ Tmat

μν ; Tmat
μν ≡ −

2ffiffiffiffiffiffi−gp δLmat

δgμν
;

Tϑ
μν ≡ −

2ffiffiffiffiffiffi−gp δLϑ

δgμν
; ð5Þ

with

Tϑ
μν ¼ β

�
∇μϑ∇νϑ −

1

2
∇λϑ∇λϑgμν − VðϑÞgμν

�
; ð6Þ

while Tmat
μν will depend on the specific physical scenario of

interest. We will assume that additional matter components
do not interact with the scalar field ϑ and conserve
independently:

∇μTmat
μν ¼ 0: ð7Þ

We also obtain the following scalar field equation of
motion:

β□ϑ − β
dVðϑÞ
dϑ

¼ −
α

4
�RR: ð8Þ

As we can see from the C-tensor in Eq. (4), the metric
equation contains first-order derivatives of the Riemann
tensor, and hence third-order derivatives of the metric. This
means that Ostrogradski’s ghost instabilities [38,39] may
generically appear. The instability can be avoided only if
one considers CS to be an EFT, such that the ghost only
becomes relevant for energies higher than the cutoff scale
of the EFT. If we restrict ourselves to physics below this
cutoff, then the CS terms will always describe small
deviations from GR. For this reason, similarly to previous
works, in this paper we will make the small coupling α
approximation when analyzing GWs in Sec. IV.
Furthermore, this same problem limits the numerical

analysis of the full nonlinear equations in the metric CS
model, and only a perturbative formulation has been
proposed as a way of avoiding the instabilities [12,13].

B. CS: Palatini formulation

In a Palatini formulation, the relationship between the
metric and the connection is determined dynamically by the
equations of motion. In general relativity (only an Einstein-
Hilbert interaction) the Palatini and metric formulations
give rise to the same metric-connection relation, namely,
the Levi-Civita connection. When other interactions are
added, for example, the Chern-Simons term, both varia-
tions lead to different results and different physics. In this
section, we calculate the equations of motion of Chern-
Simons gravity in the Palatini formulation, and show they
are distinct from the metric CS model. Most importantly, in
the Palatini variation no higher derivatives show up.
Wewill start by assuming the connection Γα

μν ¼ Γα
νμ to be

symmetric (i.e. there is no curvature torsion), but this
assumption could be relaxed in the future. In this theory, in
Eq. (1) the Riemann tensor must be expressed directly as a
function of the connection:

Rα
βμν ¼ ∂μΓα

νβ − ∂νΓα
μβ þ Γα

μλΓλ
νβ − Γα

νλΓλ
μβ; ð9Þ

and similarly for the covariant derivatives. The metric only
enters in Eq. (1) by raising and lowering indices as well as
through the determinant g.
In this formalism, there are three independent fields: the

metric gμν, the connection Γα
μν, and the scalar ϑ. For the

metric tensor, we obtain

Gμν ¼
1

2κ
Tμν; ð10Þ

where now Gμν is a function of the metric and the
connection, while Tμν is the same as (5). We can see that
in this formalism the C-tensor does not appear in the
equation for the metric because the Chern-Simons term
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does not longer depend on the metric tensor. Indeed,
Eq. (10) has the same form as the equation for general
relativity.
Then, we obtain the equation for the scalar field

β□gϑ − β
dVðϑÞ
dϑ

¼ −
α

4
R�R; ð11Þ

where □g denotes the metric-compatible D’Alambertian
operator

□g ≡ 1ffiffiffiffiffiffi−gp ∂αð
ffiffiffiffiffiffi
−g

p
gαβ∂βÞ: ð12Þ

Note that Eq. (11) is the same equation as in the metric CS
formalism [cf. Eq. (8)].
Finally, the equation for the connection is

∇αð
ffiffiffiffiffi
jgj

p
gβσÞ − 1

2
∇μð

ffiffiffiffiffi
jgj

p
gβμÞδσα −

1

2
∇μð

ffiffiffiffiffi
jgj

p
gσμÞδβα

−
1

2
αεμνρσRβ

αμν∇ρϑ −
1

2
αεμνρβRσ

αμν∇ρϑ ¼ 0; ð13Þ

where we have assumed, as usual for bosonic matter, that
the additional matter components that may be present in the
theory do not depend on the connection. We see that the
Chern-Simons interaction now affects the connection
equation (13). In particular, we find that Eq. (13) depends
on the scalar field θ whenever α ≠ 0. As a consequence, the
relationship between the metric and connection is expected
to depend on θ, contrary to the metric CS formulation with
the Levi-Civita connection. However, if the scalar field
vanished, θ ¼ 0, then Eq. (13) would not depend on the CS
interaction term, and would lead to:

∇μð
ffiffiffiffiffi
jgj

p
gμσÞ ¼ 0; ð14Þ

which gives the Levi-Civita connection.
In addition, we find that now for the metric and the

connection, all the equations of motion contain only first-
order derivatives, and hence this formulation has the
minimal required properties to ensure stability of the
solutions. Whether this theory is free of other kind of
instabilities and behaves generally well must be analyzed in
detail in the future. For now, we focus on one concrete
physical setup that is discussed in the next section.

III. COSMOLOGY

In this section we analyze the cosmological predictions
of Palatini–Chern-Simons. We will also review results on
the metric CS model to compare and highlight their
similarities and differences.
We first discuss the evolution of the cosmological

background, and then move onto the behavior of linear
cosmological perturbations. For simplicity, we analyze

tensor perturbations only, and leave the analysis of scalar
and vector perturbations for future work.

A. Background

Motivated by current cosmological observations, let us
assume an isotropic and homogeneous spatially-flat
expanding Universe that describes the average behavior
on large scales. The spacetime element is then described by
the Friedmann-Robertson-Walker (FRW) metric as:

ds2 ¼ aðηÞ2½−dη2 þ δijdxidxj�; ð15Þ

where η is the conformal time, xi are the 3 dimensional
spatial Cartesian coordinates ðx; y; zÞ, and aðηÞ is the scale
factor.
In order to preserve the FRW symmetries, the back-

ground scalar field is assumed to depend only on the
conformal time:

ϑ ¼ θðηÞ: ð16Þ

In the Palatini-CS model, we also must assume an ansatz
for the connection because it is an independent field. We
follow the methodology presented in [40], in which a
covariant approach to cosmology was proposed, based
solely on the symmetries of the FRW background.
According to this approach, we propose the following
ansatz for the connection:

Γ0
00 ¼ f1ðηÞ;
Γ0
ij ¼ f2ðηÞδij;

Γi
0j ¼ Γi

j0 ¼ f3ðηÞδij; ð17Þ

and any other component vanishing. Here, f1;2;3 are
arbitrary functions of η to be determined later by the
equations of motion.
Since for cosmology it is relevant to include the effect

from additional matter components such as radiation or
baryonic matter, we will also assume that there is an
additional perfect fluid with the following stress-energy
tensor:

Tmat
μν ¼ ðρðηÞ þ pðηÞÞuμuν þ pðηÞgμν; ð18Þ

where ρðηÞ is the energy density, pðηÞ the pressure, and
uμ ¼ ða; 0; 0; 0Þ the 4-velocity of the fluid assumed to be at
rest. The conservation of Tmat

μν according to Eq. (7) leads to:

ρ0 þ 3Hðρþ pÞ ¼ 0; ð19Þ

where primes denote derivatives with respect to the
conformal time. This conservation equation together with
the specification of an equation of state pðρÞ completely
characterize the background matter evolution.
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Replacing the ansatz in Eqs. (15)–(18) into the equations
of motion obtained in Sec. II B, we obtain the background
cosmological equations in the Palatini-CS model. Using the
equation for the connection we first find that

f1ðηÞ ¼ f2ðηÞ ¼ f3ðηÞ ¼ HðηÞ; ð20Þ

where H ¼ a0=a the conformal Hubble parameter. We
emphasize that this is the same result as if we had replaced
the FRW metric into the Levi-Civita connection, as in the
metric formalism.
From the metric equations, we obtain the Friedman

equations:

6κH2 ¼ a2ρþ β

�
1

2
θ02 þ a2VðθÞ

�
; ð21Þ

12κ
a00

a
¼ −a2ðρ − 3pÞ þ βðθ02 − 4a2VðθÞÞ: ð22Þ

In addition, we obtain a background equation for the scalar
field:

θ00 þ 2Hθ0 þ a2
dVðθÞ
dθ

¼ 0: ð23Þ

The specific evolution of the scalar field as a function of
time is then determined by the choice of potential VðθÞ. In
this paper, we do not dive into exploring this potential, and
instead keep the system generic.
From these results, we see that α does not appear in the

background equations, which means that the Chern-Simons
interaction is irrelevant. This is because the parity property
of the CS interaction makes it incompatible with the
symmetries of FRW. In particular, for the CS interaction
(and the whole action) to be parity invariant, ϑ must be
parity odd, i.e. transform as P̂½ϑ� ¼ −ϑ under the parity
transformation P̂ [37]. However, on a cosmological back-
ground, ϑ does not depend on the spatial coordinates and
hence does not satisfy the odd transformation required by
the CS interaction. As a result, at the background level,
both metric CS and Palatini-CS theories give the same
equations, which in turn are the same as those in GR with a
minimally coupled scalar field.
The background equations for metric CS theory have

been previously calculated in e.g. [41,42], and agree with
the results obtained in this section.

B. Perturbations

In order to describe the large scale inhomogeneities of
the Universe, it is sufficient to consider linear perturbations
around the FRW background for each field present in the
action.

For the metric, we will have

gμν ¼ gð0ÞμνðηÞ þ δgμνðη; x⃗Þ; ð24Þ

where gð0Þμν is now the FRW metric in Eq. (15), and δgμν a
small linear perturbation that can depend on space and time.
For the scalar field, we will have:

ϑ ¼ θðηÞ þ δϑðη; x⃗Þ; ð25Þ

with δϑðη; x⃗Þ being the linear perturbation around the FRW
solution θðηÞ.
It is known that, because of the symmetries of the

background, it is convenient to decompose the metric
perturbations into SVT: scalar, vector and tensor-type,
depending on how they transform under spatial rotations
[43,44]. In particular, the perturbation δϑ is of scalar-type,
while the 10 components of the metric are decomposed as:

ds2 ¼ −a2ð1þ 2ΨÞdη2 þ a2ð∂iB − SiÞdηdxi
þ a2½ð1 − 2ΦÞδij þ 2∂i∂jEþ ∂iFj þ ∂jFi

þ hij�dxidxj; ð26Þ

where Ψðη; x⃗Þ, Φðη; x⃗Þ, Eðη; x⃗Þ, and Bðη; x⃗Þ are scalar-type
perturbations; Fiðη; x⃗Þ and Siðη; x⃗Þ are vector-type pertur-
bations; hijðη; x⃗Þ are tensor-type perturbations. By con-
struction, the vector and tensor perturbations are transverse,
and the tensor perturbation is additionally traceless:

∂
iFi ¼ ∂

ihij ¼ hii ¼ 0; ð27Þ

where spatial indices are raised and lowered with δij.
In addition, there may be matter perturbations present as

well. A perfect fluid will contain perturbations for its
density, pressure and velocity. Then, there will be three
scalar perturbations: δρ, δp, and δu; and one transverse
vector perturbation δui. Typical fluid models do not have
tensor perturbations, unless they contain an anisotropic
stress. From now on, we assume that matter does not
contribute with tensor perturbations.
This SVT decomposition is useful because for linear

perturbations around FRW, scalar, vector and tensor-type
degrees of freedom decouple from each other, and can
hence be studied separately. Scalar perturbations will
directly impact matter inhomogeneities in the Universe,
vector perturbations typically decay fast and become
observationally irrelevant, while tensor perturbations
describe the propagation of GWs.
In this paper, we will only analyze tensor perturbations,

and leave scalar and vectors for the future. This means that
we will ignore δϑ and only keep the transverse-traceless
metric perturbations hij:

ds2 ¼ aðηÞ2½−dη2 þ ðδij þ hijðη; x⃗ÞÞdxidxj�: ð28Þ
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If we additionally assume, without loss of generality, that
the GW is propagating along the z axis, we can have a
simple explicit expression for hij satisfying (27):

hijðη; x⃗Þ ¼

0
B@

hþðη; zÞ h×ðη; zÞ 0

h×ðη; zÞ −hþðη; zÞ 0

0 0 0

1
CA; ð29Þ

where hþ and h× are the plus and cross polarization of
GWs, respectively. When working with complex quantities,
it will be useful to also introduce the alternative left and
right-handed polarization basis:

hR ¼ hþ − ih×ffiffiffi
2

p ; hL ¼ hþ þ ih×ffiffiffi
2

p : ð30Þ

As we will confirm later on, the GW polarizations h× and
hþ will satisfy a set of coupled equations of motion when
parity symmetry is broken. However, due to the translation
and rotation invariance of the FRW background, as dis-
cussed in [45], the hL and hR polarizations will satisfy
decoupled equations, and hence they can be solved
independently from each other. In what follows, we
calculate the equations of motion for hL;R in the metric
and Palatini formalisms for Chern-Simons gravity.

1. CS: Metric formulation

Here, we rederive the results on tensor perturbations for
metric Chern-Simons gravity. We replace the perturbed
metric (28) and scalar (25)—choosing δϑ ¼ 0—into the
equations of motion obtained in Sec. II A, and expand
linearly in hij.
There will be only two nonvanishing metric equations:

∂
2
ηhR þ 2H∂ηhR − ∂

2
zhR

¼ 2iαðθ00∂η∂zhR þ θ0ð−∂3zhR þ ∂
2
η∂zhRÞÞ

κa2
; ð31Þ

∂
2
ηhL þ 2H∂ηhL − ∂

2
zhL

¼ −
2iαðθ00∂η∂zhL þ θ0ð−∂3zhL þ ∂

2
η∂zhLÞÞ

κa2
: ð32Þ

We confirm that these equations are decoupled form each
other and agree with previous results found in e.g. [21–23].
The left-hand side (lhs) of these equations corresponds to
the equations of motion for GW in GR, whereas the rhs
modifies the GW propagation due to the CS coupling. In
this FRW background, these modifications contain third-
order spatial derivatives but only second-order time deriv-
atives, and thus avoid the Ostrogradski instability. Also,
only two initial conditions will be required to fully specify
the solutions, just like in GR.

While in GR, both hL and hR propagate in the same way,
here we see that the two propagation equations differ by a
sign on the rhs, which evidences the chiral-dependence
introduced by the CS interaction. Also, notice that these
equations only depend on β and on the additional matter
fluid indirectly through their effect on the scale factor a.
Since we will compare to the Palatini formalism later,

where the connection is an independent field, here we also
explicitly show the nonvanishing terms of the perturbed
Levi-Civita connection:

δΓ1
02 ¼ −HhL −

1

2
∂ηhL; δΓ1

01 ¼ −HhR −
1

2
∂ηhR;

δΓ0
12 ¼

1

2
∂ηhL; δΓ0

11 ¼
1

2
∂ηhR;

δΓ2
31 ¼ −

1

2
∂zhL; δΓ1

31 ¼ −
1

2
∂zhR;

δΓ3
21 ¼

1

2
∂zhL; δΓ3

11 ¼
1

2
∂zhR; ð33Þ

which do not have any explicit dependence on the Chern-
Simons interaction.

2. CS: Palatini formulation

We now derive the tensor propagation equations in the
Palatini-CS model. In order to do this, we must start by
complementing the metric and scalar perturbations with a
connection perturbation:

Γμ
αβ ¼ Γð0Þμ

αβ ðηÞ þ δΓμ
αβðη; x⃗Þ; ð34Þ

where Γð0Þμ
αβ is the FRW connection already described in

Eqs. (17) and (20), and δΓμ
αβ is the linear perturbation.

We again follow the methodology presented in [40] and
propose the following ansatz for the tensor-type perturba-
tions in δΓμ

αβ:

δΓμ
αβ ¼ B1ðηÞuμγ1αβ þ B2ðηÞγμ2ðβuαÞ þ B3ðηÞ∂μγ3αβ

þ B4ðηÞ∂ðαγμ4βÞ; ð35Þ

where uμ ¼ ða; 0; 0; 0Þ, B1;2;3;4 are general functions that
can depend on the cosmological background, and γ1;2;3;4
are transverse-traceless linear perturbations with the same
structure as (29): each one contains a ðþ;×Þ polarization.
This Ansatz is motivated by the fact that we are only
interested in rank-2 tensor-type perturbations of Γμ

αβ and all
of these perturbations must have been accompanied by
background coefficients that satisfy the FRW symmetries.
For simplicity, and without loss of generality, we will set
B1;2;3;4 ¼ 1, which can be done by redefining appropriately
the tensor perturbations γ1;2;3;4.
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Now that we have an appropriate perturbative ansatz for
the connection, we proceed to replace (25), (28), and (35)
into the equations of motion obtained in Sec. II B and
expand at linear order in the perturbations. Since the metric
carries 1 tensor and the connection carries 4 tensors, we
will initially obtain a total set of 10 coupled linear equations
for all þ and × polarizations. In the right and left-handed
polarization basis, we simplify the system to two decoupled
sets of 5 equations for each circular polarization. The only
difference between L and R polarization equations will be a
sign in all the terms with α, analogously to the equations for
the metric CS model. It is thus convenient to introduce the
general parameter:

αR;L ¼ α · ςR;L; ð36Þ

where ςR ≡ 1, ςL ≡ −1. Using αR;L, we then write both L
and R polarization equations in a compact form. From the
connection equations we obtain:

a2κð∂ηhR;L − ða2γ2R;L þ ∂ηγ4R;LÞÞ
¼ iαR;Lθ0ða2∂zγ2R;L þ ∂η∂zγ4R;LÞ; ð37Þ

a2κð−∂zγ4R;L þ ∂zhR;LÞ ¼ −iαR;Lθ0ðHða2γ2R;L þ ∂ηγ4R;LÞ
− ∂

2
zγ4R;LÞ; ð38Þ

a2κðð2a2γ1R;L þ 2∂ηγ3R;L þ a2γ2R;L þ ∂ηγ4R;LÞ
þ 2Hð2γ3R;L þ hR;LÞÞ

¼ −iαR;Lθ0ð2ða2∂zγ1R;L þ ∂η∂zγ3R;LÞ
þHð2∂zγ3R;L þ ∂zγ4R;LÞÞ; ð39Þ

a2κð2∂zγ3R;L þ ∂zγ4R;LÞ ¼ −iαR;Lθ0ð2∂2zγ3R;L þHða2γ2R;L
þ ∂ηγ4R;LÞÞ: ð40Þ

From the metric equations we obtain:

4aHðaγ1R;L þ ∂ηγ3R;LÞ þ aHða2γ2R;L þ ∂ηγ4R;LÞ
þ aða2∂ηγ1R;L þ ∂

2
ηγ3R;LÞ þ a00ð2γ3R;L þ hR;LÞ

− a∂2zγ3R;L ¼ 0: ð41Þ

We emphasize again that these equations only contain
first-order derivatives of the connection and metric. The
only reason why we see second-order derivatives of the
tensors γ2 and γ4 is because their ansatz in Eq. (35)
contained one derivative. We also see explicitly again that
the Chern-Simons interaction does not appear at all in the
metric equation (41) and instead we see the parameter α
only present in the connection equations.
Next, we proceed to manipulate these equations in order

to obtain a single equation for hL;R, if possible. Because the
left and right-handed polarizations are decoupled, we can

focus only on one circular polarization and recover the
other one replacing α ⟶ −α. We start by using the Fourier
transform to go to momentum space:

γaR;Lðη; zÞ ¼
Z

d3kγ̄aR;Lðη; k⃗Þeik⃗·x⃗;

hR;Lðη; zÞ ¼
Z

d3kh̄R;Lðη; k⃗Þeik⃗·x⃗; ð42Þ

where a ¼ f1; 2; 3; 4g. We will continue assuming that the
wave propagates along z, that is, k⃗ ¼ ð0; 0; kÞ. Importantly,
different kmodes will propagate independently at the linear
perturbation level due to the translation symmetry of the
FRW background.
We first notice that in the set of equations (37)–(40), γ1;2

always appear in the combinations γ̃1 ¼ γ1a2 þ ∂ηγ3 and
γ̃2 ¼ γ2a2 þ ∂ηγ4 such that γ̃1;2 absorb all the derivatives of
γ3;4. As a result, we use (37)–(40) to solve algebraically for
γ̃1;2 and γ3;4 in terms of h and h0, which result into the
following schematic form for the connection perturbation
functions:

γ1R;L ¼ b1hR;L þ c1h0R;L þ d1h00R;L;

γ2R;L ¼ b2hR;L þ c2h0R;L þ d2h00R;L;

γ3R;L ¼ b3hR;L þ c3h0R;L;

γ4R;L ¼ b4hR;L þ c4h0R;L; ð43Þ

where fba; ca; dag are coefficients that depend on the
background functions. After replacing the expressions
found in (43) into Eq. (41) we finally obtain a final
differential equation for the metric perturbations, whose
schematic form is as follows:

h̄00R;L þ
�
2Hþ bnmαnR;Lk

m

1þ fnmαnR;Lk
m

�
h̄0R;L þ

�
1þ cnmαnR;Lk

m

1þ fnmαnR;Lk
m

�

× k2h̄R;L ¼ 0; ð44Þ

where the coefficients bnm, cnm and fnm are given in the
Appendix and are sole functions of time, via the scale factor
a and the background scalar field θ. Here, we have an
implicit sum over n andm in numerators and denominators,
such that n > 0 denotes the power in which α appears, and
m ≥ 0 the power of k. We find that the highest powers of α
appear as b42α4k2, c53α5L;Rk

3, and f42α4k2. We generically
also find m ≤ n. Note that Eq. (44) is written such that it is
manifest that we recover the propagation equation of
motion in GR whenever α → 0.
Notice that the initial metric equation (41) contained

only first-order time derivatives of the metric and hence
required only one metric initial condition. However, after
eliminating the Christoffel perturbations γ1;2;3;4, we obtain a
second-order derivative equation for h in (44), which now
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requires two initial conditions to fix entirely the metric
solution, similarly to GR. This means that Palatini-CS
gravity propagates the same number of helicity-2 polar-
izations as GR and other well-known modified gravity
models such as fðRÞ theories, on a cosmological back-
ground [46]. Nonetheless, Palatini-CS predicts a different
propagation equation for the two helicity-2 polarizations
due to parity violation, contrary to GR and fðRÞ theories
which predict the same propagation equation for left and
right-handed polarizations. Also note that, similarly to fðRÞ
theories, we do expect Palatini-CS to propagate at least one
additional helicity-0 polarization associated to the scalar
field perturbation δθ. The consequence of this and other
helicity polarizations will be left for a future study.
Note that the second-order time derivatives of h in (44)

appear because Eq. (41) contained first-order time deriv-
atives of γ1 and second-order time derivatives of γ3 (while
the first-order time derivative of γ4 does not contribute with
h00 terms since it again appears in the combination γ̃2).
As we did in (33), we are interested in the perturbed

connection coefficients. In order to compare the results
with the ones obtained in the previous section we will make
an expansion around α ¼ 0 (valid when αθ0k=κ ≪ 1) to
quadratic order, to obtain simpler expressions. The nonzero
coefficients in this Palatini formalism are given by:

δΓ1
02 ≈ −Hh̄L −

1

2
∂ηh̄L −

iαθ0k∂ηh̄R;L
a2κ

þOðα2Þ;

δΓ1
01 ≈ −Hh̄R −

1

2
∂ηh̄R þ iαθ0k∂ηh̄R

a2κ
þOðα2Þ;

δΓ0
12 ≈

1

2
∂ηh̄L −

iαθ0k∂ηh̄L
2a2κ

þOðα2Þ;

δΓ0
11 ≈

1

2
∂ηh̄R þ iαθ0k∂ηh̄R

2a2κ
þOðα2Þ;

δΓ2
31 ≈ −

1

2
∂zh̄L þ iαθ0ðk2h̄L −H∂ηh̄LÞ

a2κ
þOðα2Þ;

δΓ1
31 ≈ −

1

2
∂zh̄R −

iαθ0ðk2h̄R −H∂ηh̄RÞ
a2κ

þOðα2Þ;

δΓ3
21 ≈

1

2
∂zh̄L −

iαθ0ðk2h̄L −H∂ηh̄LÞ
a2κ

þOðα2Þ;

δΓ3
11 ≈

1

2
∂zh̄R þ iαθ0ðk2h̄R −H∂ηh̄RÞ

a2κ
þOðα2Þ: ð45Þ

We can see that the procedure is consistent because if we
set α ¼ 0, i.e. the Chern-Simons term does not contribute,
we recover the linearly perturbed Levi-Civita connection,
in agreement with Eq. (33). In addition we see that the
perturbed connection is clearly different to the metric
formalism, with linear and higher-order α terms appearing.
Here, the connection does not depend solely on the metric,
but it also depends on how the background scalar field θ
evolves with cosmological time.

IV. GRAVITATIONAL WAVES

Chern-Simons has been analyzed in the context of both
early and late-time cosmology. During early times, the
scalar ϑ can describe the inflationary field or some addi-
tional primordial field [9,47–52], in which case it is
relevant to determine the statistical initial conditions of
the inhomogeneities in the Universe. In that context,
previous authors have analyzed the behavior of GWs
and the prediction for its power spectrum, which deter-
mines the GWs generated during the early Universe. These
chiral GWs can also affect higher-order correlation func-
tions of primordial matter perturbations. During late times,
the scalar field may describe a new component, such as
dark matter [46,53–57] or dark energy. In the context of
GWs, this late-time scalar field can affect how GWs from
astrophysical sources propagate toward us, which has been
recently constrained with current binary black hole GWs
in [24].
In this section, we will discuss the phenomenology of the

propagation of GWs in Palatini-CS, and compare to metric
CS gravity. In both formalisms we find the following
schematic linear equation for L and R polarizations in
momentum space:

h̄00R;Lðη; kÞ þ 2ΞR;Lðη; kÞh̄0R;Lðη; kÞ þ ω2
R;Lðη; kÞh̄R;L

× ðη; kÞ ¼ 0; ð46Þ

where the coefficients ΞR;Lðη; kÞ and ωR;Lðη; kÞ generi-
cally depend on time due to the cosmological expansion
and momentum k. This equation is analogous to a
damped harmonic oscillator, with natural frequency ω
and friction Ξ.
If we assume that ΞR;L and ωR;L evolve on cosmological

timescales, while the period of the GW is much shorter, i.e.
H ≪ k, we can solve (46) using the WKB approach [58].
Under this approximation, the leading-order solution is
given by

h̄R;Lðη; kÞ ≈ A�
R;Le

−
R

ΞR;Ldηe�i
R

ΩR;Ldη; ð47Þ

where we have introduced arbitrary proportionality
constants A�

R;L that depend on the initial conditions,
and we have introduced the net oscillation frequency Ω2≡
ω2 − Ξ2. Note that for each polarization L or R, there will
be two independent solutions to (46), which correspond to
the two possible signs in the complex exponential in
Eq. (47), which describe waves propagating along z in
opposite directions. As a comparison, in GR ΞR ¼ ΞL ¼ H
and ωR ¼ ωL ¼ k, so that both polarizations propagate in
the same way and their evolution only depends on the
cosmological expansion history through H. The modifica-
tions to GR come in Eq. (47) via the integration ofΞR;L −H
and ωR;L − k from the time of emission to the time of
detection.
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From Eq. (47) we see that the L and R polarizations can
suffer an amplitude change and/or a phase change. When
ΞR ≠ ΞL we say that there is amplitude birefringence since
the amplitude evolution of the GWs depends on the
polarization. In this case, the polarization can change
e.g. from purely linear (when jhLj ¼ jhRj) to elliptical
jhLj ≠ jhRj. For this reason, we say that amplitude bire-
fringence changes the ellipticity of the GW polarization.
When ωR ≠ ωL we say that there is velocity birefrin-

gence since the dispersion relation (which determines the
phase evolution and the velocity propagation of the signal)
depends on the polarization. In particular, ωR;LðkÞ is the
dispersion relation of the GWs,1 from which we can obtain
the propagation velocity as the group velocity of the waves
vR;L ¼ ∂ωR;L=∂k. For a monochromatic wave (i.e. fixed
value of k), a polarization-dependent velocity will lead to a
phase shift between hL and hR that can be interpreted as a
rotation of the polarization plane. See Fig. 1 for a toy
illustration of amplitude and velocity birefringence (see
also a review on GW polarization in [59]). See also in [25] a
compilation of other parity-breaking gravity models that
exhibit amplitude and velocity birefringence, and their
effect on GWs. In GR, GWs do not change their polar-
izations during cosmological propagation, and hence do not
suffer from amplitude nor velocity birefringence.
If we had a wavepacket, with a wide range of wave-

lengths, and the propagation velocity depended on k, then
the L and R polarizations would have a dispersive velocity
that would induce phase distortions in the GW signal
during propagation [60–64]. Similarly, if Ξ depended on k,
it would lead to amplitude distortions during propagation.

In the case of GWs from binary systems, whose phase and
amplitude evolution is predicted by GR, these distortions
can be observed and used to constrain parity-breaking
modified gravity theories.
As previously discussed, the Chern-Simons interaction in

the metric formalism contains higher derivative terms, and
thus this theory must be considered as an EFTwhere the CS
corrections toGRare small. For this reason, in this sectionwe
will make a small α approximation: αkθ0=κ ≪ 1.2 In metric
CS, the GW equation of motion (46) has the following
coefficients:

ω2
R;L ¼ k2; ð48Þ

2ΞR;L ≈ 2H −
2ðθ00 − 2θ0HÞkαR;L

κa2
−
4θ0ðθ00 − 2θ0HÞðkαÞ2

κ2a4

þOððkαÞ3Þ; ð49Þ

where the expression in Eq. (48) is exact (for any α),
whereas in Eq. (49) we have made the small α approxi-
mation (the general expression for any α is rather simple
and is presented explicitly in the Appendix). Here, even
powers in α will not break parity symmetry, whereas odd
powers in α will break parity. We thus confirm previous
results on the fact that CS induces amplitude birefringence
but no velocity birefringence. This means that during
propagation, the ratio jh̄L=h̄Rj will suffer modifications
with respect to GR, but the relative phase between h̄L and
h̄R will be the same as in GR. In particular, depending on
the sign of the second term in the rhs of Eq. (49), one
polarizationwill grow exponentially in timewhile the other
one will decay exponentially, according to Eq. (47).
We emphasize that while previous analyses have focused

on making a linear expansion in α, we see in Eq. (49) that
there are higher-order terms but one expects them to be
suppressed. Nevertheless, the third term on the rhs of
Eq. (49) is still expected to bring modifications to GR by
introducing a frequency-dependent amplitude modulation
of the GW signal.
Next, we discuss the results on Palatini–Chern-Simons.

While in this theory there is no need to impose a priori that
the CS interaction is small, we will do so motivated by
current observations from binary mergers, which have been
shown to be in agreement with GR so far [6]. In this
formalism, we obtain the following ω coefficient for the
GW propagation equation:

ω2
R;L≈k2−

3θ0ð2aθ00Hþa00θ0−4aH2θ0ÞðkαÞ2
a5κ2

þOððkαÞ3Þ:
ð50Þ

From Eq. (50) we see that the dispersion relation of GWs is
modified with respect to GR, and the leading correction

FIG. 1. For a basis of two linear GW polarizations, hþ and h×,
any GW polarization can be described as a vector in the (hþ, h×)
plane. This diagram illustrates how a GW polarization changes in
time (black and gray vectors show a polarization that rotates
counterclockwise as time evolves) when it has a given elliptical
polarization (blue contour). The red dotted and red dashed
contours show examples of polarizations with a different polari-
zation plane (but same ellipticity) and different ellipticity (but
same polarization plane), respectively.

1Note that technically the dispersion relation of the GWs will
be set by ΩðkÞ instead of ωðkÞ. However, in the approximation
that k=H ≫ 1 and when all the modifications of gravity describe
small corrections from GR, then Ω ≈ ω.

2We also assume that θ evolves on cosmological timescales
such that θ00 ∼ θ0H.

CHIRAL GRAVITATIONAL WAVES IN … PHYS. REV. D 107, 104025 (2023)

104025-9



goes as α2. This means that this correction does not violate
parity and, in this case, it also goes as k2 which means that
it introduces a time-dependent (yet frequency-independent)
correction to the propagation speed of GWs.3 Observations
from cosmic rays [65] and from the binary neutron star
merger GW170817 [66] and its electromagnetic counter-
parts [67,68] set tight bounds on the propagation speed
cT of GWs compared to the speed of light today: jcT − 1j <
10−15 [26]. If we consider Palatini-CS as a late-time
cosmological modification of gravity, we can calculate
the GW speed from Eq. (50) and impose the following
constraint:

jcT − 1j ≈ 3H0jθ00ðθ000 −H0θ
0
0Þj

�
α

κ

�
2 ≲ 10−15; ð51Þ

where the subscript 0 refers to the value today, and we have
assumed a dark-energy dominated Universe. From (51) we
thus obtain a constraint on the combined behavior of α and θ
during late times.4 This result means that linear effects would
have to be smaller than jαθ00H0=κj≲Oð10−7Þ, unless a
special cancellation was causing cT to be so close to 1.
Note that the next-to-leading order correction ðkαÞ3 in

Eq. (50) will bring phase distortions that are distinct from
GR and can also be constrained with LIGO/Virgo data

[27,29]. From (51), those effects could still be of order
10−21ðk=H0Þ, which can be measurable with current and
planned GW detectors since ground-based GW detectors
are sensitive to k ∼ 10–103 Hz and thus k=H0 ∼ 1019–1021.
The previous analyses [27,29] assumed a specific simple
time evolution for these k3 correction terms, that may not
correspond to that predicted in Palatini-CS depending on
how θ evolves. We will leave a detailed quantitative
analysis on these higher-order effects for the future, but
since the phase evolution of GWs is measured to great
precision, these effects have the potential to give one of the
tightest constraints on Palatini-CS. Indeed, if we were to
take the results of [29] at face value (ignoring time
evolution assumptions), one would obtain an estimate of
jαθ00H0=κj3 ≲Oð10−42Þ.5 This means that the linear effects
would be, at most, of order jαθ00H0=κj≲Oð10−14Þ, which
is much more constraining that the GW propagation speed
result in Eq. (51). This result emphasizes the fact that a
purely linear expansion in α may not always be the
appropriate truncation order since higher-order smaller
terms may still be easier to observe and provide crucial
about the theory.
On the other hand, for Ξ we find the following

expression in Palatini-CS:

2ΞR;L≈2H−
2ðθ00−2θ0HÞkαR;L

κa2
−
2ð3a3H2θ0θ00 þ3a2Ha00θ02−9a3H3θ02−a3θ0θ00k2þ2a3Hθ02k2Þα2

a7κ2
þOððkαÞ3Þ: ð52Þ

From here we see that the leading-order correction is
exactly the same as in the metric CS formalism
[cf. Eq. (49)]. The expressions now differ in the next-to-
leading correction with α2.
When the deviations fromGRare assumed to be small and

the linear α term is dominant, it is then possible to translate
current GW constraints for metric CS gravity [24] (which
truncate the α expansion to linear order) directly onto
constraints for Palatini-CS. These constraints roughly give6:

jðθ000 − 2θ00H0Þj
�

k
H0

��
α

κ

�
≲Oð1Þ; ð53Þ

but since k=H0 ∼ 1019–1021 for the LIGO frequency sensi-
tivity range, this means that the linear effects are of order
jαθ00H0=κj≲Oð10−20Þ, which is much tighter than the
velocity and cubic phase distortions previously discussed.
Note that amplitude birefringence is a frequency-dependent
effect that distorts a binary waveform, due to the k depend-
ence of ΞR;L in Eq. (52). In the work of [24], the authors
ignored this k dependence for simplicity, and obtained a
constraint that could be interpreted as valid for k ∼ 100 Hz,
which is the frequency of maximum sensitivity for LIGO. A
future analysis including the frequency dependence of
amplitude birefringence will have to be performed, which
is expected to improve the results of [24] by a few orders of
magnitude. In addition, forecasts on CS constraints due to
amplitude birefringence for future GW detectors such as
LISA have been performed in [21,69], which show that
current constraints could be further improved by a few more
orders of magnitude.
In summary, Palatini-CS makes novel predictions that

induce velocity modifications to GR, contrary to metric
GR. Nevertheless, we have found that these new effects

6The constraint in (53) is technically valid only when
ðθ00 − 2θ0HÞ does not vary with conformal time, since that is the
assumption made in [24]. For other time evolutions the constraints
may vary since current detected GW sources are present at redshift
up to z ∼ 1 and may have considerably time variations.

5This has been estimated taking their parameter ζ < 10−16 m
[29] and making it dimensionless by calculating ζH0.

4Note that Palatini-CS predicts a time-varying cTðηÞ and
observations constrain the averaged velocity over a time window
between emission to detection. Since the source for GW170817
was really close (with redshift z ≈ 0.01), in (51) we assume cT to
be effectively constant at its value today.

3Recall that the propagation speed is determined by the group
velocity, calculated as ∂ω=∂k so that a k2 correction in ω2 leads to
a frequency-independent change in the GW group velocity.
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may yield weaker constraints than those of amplitude
birefringence, due to the fact that they appear as higher-
order corrections in the Chern-Simons coupling. This means
that in practice metric and Palatini-CS will behave similarly
when observing the propagation of astrophysical GWs.
Nevertheless, a future comprehensive analysis on scalar
cosmological perturbations will confirm whether Palatini-
CS gravity predicts any other late-time features that could be
distinct frommetricCS and falsifiablewith galaxy surveys or
cosmic microwave background observations.

V. DISCUSSION

In this paper we have studied Chern-Simons (CS)
modified gravity using the Palatini approach—dubbed
Palatini–-Simons gravity. Here, the metric and the con-
nection are considered to be independent dynamical fields.
We obtain the full nonlinear equations of motion and
confirm that they contain only up to first-order derivatives
of the metric and connection, and hence avoid the insta-
bilities that appear in the usual metric CS formalism due to
higher-derivative interactions. These equations determine
in a dynamical way the relationship between the metric and
the connection, and we find that the connection generally
differs from the Levi-Civita connection.
In order to illustrate what new features Palatini-CS

exhibits compared to metric Chern-Simons, we analyze
the cosmological evolution of the Universe, focusing on the
background expansion history and on the propagation of
gravitational waves. While at the background level, both
theories make the same predictions, we find that they differ
at the level of cosmological perturbations.
We find that, contrary to the metric CS model, Palatini-

CS introduces the effect of GW velocity birefringence, in
which the dispersion relation of GWs is modified with
respect to GR, and is generically different for the two GW
polarizations. Nevertheless, we show that for a small CS
coupling parameter, there is an overall shift in the GW
propagation speed cT , regardless of the polarization. By
considering Palatini-CS as a modified gravity theory
affecting the late-time cosmological evolution of the
Universe, we discuss observational bounds on cT and
obtain initially weak constraint on Palatini-CS. We also
discuss higher-order corrections to GR that break parity and
induce phase distortions of the waveform, such that they are
easier to observe and lead to much tighter constraints than
those from cT .
Furthermore, we show that, similarly to metric Chern-

Simons, Palatini–Chern-Simons predicts GW amplitude
birefringence, a phenomenon where the amplitude evolu-
tion of the GWs depends on their polarization. While the
specific way in which amplitude birefringence happens in
metric and Palatini-CS theories is generally different, they
do coincide in the limit in which the modifications to
general relativity are small. Thinking again of Palatini-CS
as late-time cosmological model, we thus apply current

metric CS constraints directly to Palatini-CS. The bound is
found to be much tighter than those coming from velocity
birefringence, and are expected to improve in the future.
This highlights the fact that Palatini-CS is expected to
behave similarly to metric CS when observing the propa-
gation of astrophysical GWs.
Given the constraints on late-time Palatini-CS, in the

future it will be interesting to analyze this gravity theory in
different contexts. For example, metric Chern-Simons has
been widely studied as a possible inflationary theory, in
which case the power spectrum of primordial matter
and GWs is modified with respect to canonical parity-
preserving inflationary models, and could be constrained
using observations from galaxy surveys and the cosmic
microwave background. The cosmological calculations
performed in this paper could be then extended to
calculate the primordial power spectrum and analyze
the Palatini-CS predictions.
Finally, it would also be interesting to analyze Palatini-CS

as modifications to GR in inhomogeneous environments. For
instance, tests on metric CS have been performed, using
Solar System [70] and binary pulsar [71,72] observations. It
is possible to use these observations to constrain Palatini-CS,
which would require to analyze its predictions on spherically
symmetric backgrounds. Relatedly, metric CS has also been
shown to produce a modification on the emitted GW from
compact objects, using perturbative approaches [73–76] as
well as nonlinear numerical simulations [13]. The same
analyses could now be performed with Palatini-CS to obtain
its predictions. Since Palatini-CS is already a first-order
derivative theory, it will not require any additional approxi-
mation to be solved numerically, contrary to metric CS
gravity.
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APPENDIX: GW EQUATION

We write here all of the coefficients bnm, cnm, and fnm
that determine the propagation equation of GWs in the
Palatini-CS model, according to Eq. (44). These coeffi-
cients are expressed solely in terms of the scale factor a and
the background scalar field θ.
The bnm coefficients are

b11 ¼
2θ00 − 10Hθ0

a2κ
; ðA1Þ

b20 ¼
12aH3θ02 − 6aH2θ0θ00 − 6Ha00θ02

a5κ2
; ðA2Þ
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b22 ¼
14Hθ02 − 4θ0θ00

a4κ2
; ðA3Þ

b33 ¼
2θ02θ00 − 6Hθ03

a6κ3
; ðA4Þ

b42 ¼
2aH2θ03θ00 − 4Ha00θ04 − 4aH3θ04

a9κ4
: ðA5Þ

The cnm coefficients are

c11 ¼
3θ0

a2κ
; ðA6Þ

c22 ¼
3θ02

a4κ2
; ðA7Þ

c20 ¼
9aH2θ02 − 6aHθ0θ00 − 3a00θ02

a5κ2
; ðA8Þ

c33 ¼
−θ03

a6κ3
; ðA9Þ

c31 ¼
9aHθ02θ00 þ 8a00θ03 − 10a2H2θ03

a7κ3
; ðA10Þ

c42 ¼
−ðaH2θ04 þ 3aHθ03θ00 þ 7a00θ04Þ

a9κ4
; ðA11Þ

c53 ¼
2a00θ05 þ 2aH2θ05

a11κ5
: ðA12Þ

The fnm coefficients are

f11 ¼
3θ0

a2κ
; ðA13Þ

f20 ¼
3H2θ02

a4κ2
; ðA14Þ

f22 ¼
3θ02

a4κ2
; ðA15Þ

f31 ¼
5H2θ03

a6κ3
; ðA16Þ

f33 ¼
θ03

a6κ3
; ðA17Þ

f42 ¼
2H2θ04

a8κ4
: ðA18Þ

Next, we also write the explicit expression for the
coefficient ΞL;R in Eq. (46) for the metric CS model:

ΞL;R ¼ αR;Lθ
00kþ a2κH

2αR;Lθ
0kþ a2κ

: ðA19Þ
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