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Horndeski gravity is the most general scalar-tensor theory with one scalar field leading to second-order
Euler-Lagrange field equations for the metric and scalar field, and it is based on Riemannian geometry. In
this paper, we formulate an analog version of Horndeski gravity in a symmetric teleparallel geometry which
assumes that both the curvature (general) and torsion are vanishing and gravity is only related to
nonmetricity. Our setup requires that the Euler-Lagrange equations for not only metric and scalar field but
also connection should be at most second order. We find that the theory can be always recast as a sum of the
Riemannian-Horndeski theory and new terms that are purely teleparallel. Due to the nature of nonmetricity,
there are many more possible ways of constructing second-order theories of gravity. In this regard, up to
some assumptions, we find the most general k-essence extension of symmetric teleparallel Horndeski
gravity. We also formulate a novel theory containing higher-order derivatives acting on nonmetricity while
still respecting the second-order conditions, which can be recast as an extension of kinetic gravity braiding.
We finish our study by presenting the FLRW cosmological equations for our model.
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I. INTRODUCTION

The recent observations of the accelerated expansion of
the present Universe [1,2] suggest that general relativity
(GR) needs to be modified on large scales (on infrared
region) or unknown matter such as cosmological constant
or dark energy needs to be introduced. In either case, a
scalar-tensor theory as an extension of GR has been paid
attention to since this new degree of freedom corresponding
to the scalar field could be responsible for the modification
of GR on large scales or the origin of dark energy. If a scalar
degree of freedom is responsible for another (early stage)
accelerated expansion of the Universe called inflation, such
a scalar-tensor theory can accommodate inflation too.
Then, the extensions of a scalar-tensor theory starting
from the Einstein-Hilbert action plus a canonical scalar
field were pursued. The generic function consisting
of a scalar field and its canonical kinetic term was
introduced in k-inflation [3] or k-essence [4,5]. Further,
the second-order derivative term of a scalar field was
formulated in the context of the Galileon theory [6], and

then dark energy kinetic gravity braiding (KGB) [7] and
inflation (G-inflation) [8] models have been proposed. In
addition, the nonminimal coupling (including not only
scalar field but also a kinetic term) to the Einstein tensor [9]
as well as the Ricci scalar has been proposed. All of these
terms are finally accommodated in the context of gener-
alized Galileon theory [10]. Further, that theory was shown
to be equivalent [11] to Horndeski gravity [12], which was
derived more than 50 years ago and is the most general
scalar-tensor theory with one scalar field leading to second-
order Euler-Lagrange field equations for the metric and
scalar field.
Horndeski gravity was formulated in Riemannian geom-

etry, in which the connection is fixed a priori as the Levi-
Civita one and both the torsionless and metric compatibility
conditions are imposed. However, if one regards gravity as
a gauge theory, from the gauge theory viewpoint a con-
nection, that is, a gauge field, could be an independent
variable and its form and/or dynamics should be deter-
mined by taking the variation of an action with respect to it,
rather than it being fixed a priori to be the Levi-Civita one.
This interesting direction for modified gravity begins by
considering a different geometry from the Riemannian one,
which only contains curvature [13,14]. One such possibility
that recently has attained a lot of attention in the literature
is a geometry endowed by torsion (Tλ

μν ¼ Γλ
νμ − Γλ

μν)
or/and nonmetricity (Qαμν ¼ ∇αgμν ≠ 0) with the general
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curvature Rλ
μνα being zero. Those geometries are labeled as

teleparallel geometries and one can construct theories of
gravity within that geometrical framework. One can for-
mulate general teleparallel theories as in [15,16], but
usually, in the literature, those theories are studied by
either setting nonmetricity to zero [17–19] (which are
known as torsional teleparallel theories or metric tele-
parallel gravity) or by setting torsion to zero [20–23]
(which are known as symmetric teleparallel theories). In
the following manuscript, we will concentrate on the sector
where torsion is zero and construct theories of gravity only
with nonmetricity. It turns out that in that framework, it is
possible to formulate a theory that is equivalent to GR but
expressed purely by nonmetricity, which is labeled as the
symmetric teleparallel equivalent of GR (STEGR) [20,24].
One can then modify the STEGR theory and formulate
symmetric teleparallel (ST) modified gravity theories that
in principle are different from the modified theories coming
from GR [25,26].
Following similar routes as in modified gravity based on

GR, there are different ways of modifying STEGR. One
difference is the fact that the connection now has some
extra degrees of freedom (d.o.f.) that are independent of the
metric. Although, the teleparallel condition, i.e. vanishing
total curvature, implies that the form of the connection can
be written in terms of a vector field which acts as a
Stückelberg field associated with diffeomorphisms. Then,
one can always choose a gauge (such as the coincident
gauge) in which the connection vanishes, and then the
theory is no longer diffeomorphism invariant [21,27]. The
simplest modification of STEGR is the so-called fðQÞ
gravity where Q is a particular contraction of a non-
metricity tensor which differs by a boundary term with

respect to the Ricci scalar R
∘
(constructed from the Levi-

Civita connection) [21]. That theory is different from fðR∘ Þ
gravity and has some similarities to the torsional tele-
parallel gravity theory fðTÞ [28,29]. Several applications to
that theory have been studied in the literature [30–39]. One
can also formulate a theory by considering a linear
combination of all the possible quadratic contractions of
the nonmetricity tensor, which is known as newer GR
[21,23,40]. Another route is to consider scalar fields
minimally or nonminimally coupled to the nonmetricity
scalars. In [41,42], such a theory was formulated by
considering nonminimal couplings between a scalar field
and the nonmetricity scalarQ of the formGðϕÞQ. Recently,
it was found that there are scalarized black hole solutions
for some particular coupling functions [43]. Similarly,
one can extend those theories by considering derivatives
of the nonmetricity tensor nonminimally coupled with a
scalar field and, for example, find a particular subset of
that theory which contains the Riemannian theory where
the Riemannian Ricci scalar is nonminimally coupled as

FðϕÞR∘ [44].

The main goal of this manuscript is to formulate the most
general (up to some assumptions) theory in ST gravity with
one additional scalar field containing at most second-order
Euler-Lagrange field equations. This means that we will
formulate an analog version to Horndeski gravity [12]
but now we modify the geometry to be teleparallel and
torsionless as the starting point and find the resulting
Lagrangian after imposing certain conditions. In [45],
the torsional teleparallel version of Horndeksi gravity
was formulated and its form can be recast as a
Lagrangian containing the Riemannian Horndeski gravity
plus new contributions that are purely torsional teleparallel.
It is well known that Riemannian Horndeski has been
constrained for dark energy since the speed of gravity is
almost equal to one [46,47]. However, in the torsional
teleparallel case, it was found that this theory allows for
G5ðϕ; XÞ ¼ G5ðϕÞ to be nontrivial and G4 ¼ G4ðϕ; XÞ
while still having cT ¼ 1, in contrast to the constraints
derived in Riemannian- Horndeski theory [48–51]. This is
possible due to the fact that torsional teleparallel correc-
tions can be set in some ways to compensate the speed of
tensor modes to travel at the speed of light [52]. Further
studies concerning gravitational wave polarizations [53]
and also post-Newtonian parameters of the torsional
Horndeski gravity theory [54] give some evidence that
such alternative description of gravity could be an interest-
ing and new route to explore theories beyond the standard
paradigm of the Riemannian case. Following that, we
would like to find a theory in the ST formalism with the
aim that, in future works, we can perform similar studies to
find if in this framework one can formulate theories that can
alleviate or solve problems of GR.
This manuscript is organized as follows: In Sec. II we

give an introduction to ST gravity where the main ingre-
dients of the underlying framework are defined. In Sec. III
we give general guidelines for the construction of the ST
Horndeski theory. Section IV is devoted to providing a
systematic construction of a subclass of ST extensions of
Horndeski. To do that, first in Sec. IVA we construct the
most general ST Horndeski theory with no higher deriv-
atives acting on purely teleparallel terms, which would be
like considering that nonmetricity only modifies L2 from
the Riemannian Horndeski theory. Then, In Sec. IV B we
construct a possible extension of that theory by considering
teleparallel higher-order derivatives acting on nonmetricity
but still, the theory constructed leads to at most second-
order Euler-Lagrange field equations, which would be a ST
extension of kinetic gravity braiding/cubic Horndeski by
including nonmetricity at the linear level. In Sec. V we
discuss the flat Friedmann-Lemaître-Robertson-Walker
(FLRW) cosmological equations for our formulated theory.
Finally, we conclude our main results in Sec. VI.
The notation of our paper considers the metric signature

ð−þþþÞ, and uses natural units where ℏ ¼ c ¼ 1.
Furthermore, quantities constructed from the Levi-Civita
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connection (such as the Riemannian curvature) will be

denoted with an overcircle (e.g. R
∘
λ
μνβ, Γ

∘
α
μν, etc.), whereas

quantities without any symbol on top will be related to ST
gravity.

II. INTRODUCTION TO SYMMETRIC
TELEPARALLEL GRAVITY

A. Geometrical preliminaries

In metric-affine geometry the metric gμν provides a
notion of angles and distances, while the connection
Γλ

μρ independently defines parallel transport and covariant
derivatives ∇μ [13,14]. ST spacetimes feature a flat (zero
curvature), torsion-free but metric-incompatible connec-
tion, rendering the nonmetricity tensor the main geomet-
rical quantity for the description of gravity [20]. It is per the
definition given by the application of the covariant deriva-
tive onto the metric and therefore symmetric in the last two
indices:

Qλμν ≡∇λgμν ¼ ∂λgμν − Γρ
λμgρν − Γρ

λνgμρ: ð1Þ

The nonmetricity tensor can be split into its irreducible
decomposition under the group of global Lorentz trans-
formations as [55]

ð2Þ

where the first piece is the so-called Weyl part defined as

Wμ ¼
1

4
Qμν

ν; ð3Þ

and the second part is referred to as its traceless part
defined as

ð4Þ

where ελρμν is the Levi-Civita (density) tensor and

Λμ ¼
4

9
ðQν

μν −WμÞ; ð5aÞ

Ωλ
μν ¼ −

�
εμνρσQρσλ þ εμνρλ

�
3

4
Λρ −Wρ

��
; ð5bÞ

qλμν ¼ QðλμνÞ − gðμνWλÞ −
3

4
gðμνΛλÞ ð5cÞ

constitute a vector Λμ, one totally traceless pseudotensor
Ωλ

μν and a totally traceless tensor qλμν, respectively. Notice
that the traceless part of nonmetricity is only traceless in its
last two indices, i.e., . It is also useful to define

the following totally traceless tensor:

�Ωαμν ¼ ϵρσμνΩα
ρσ; ð6Þ

which will be used later for constructing our theory.
A ST connection is characterized by a vanishing torsion

and curvature tensors:

Tλ
μν ≡ Γλ

μν − Γλ
νμ ¼ 0; ð7Þ

Rα
ρμν ≡ ∂μΓα

νρ − ∂νΓα
μρ þ Γα

μβΓβ
νρ − Γα

νβΓβ
μρ ¼ 0; ð8Þ

where Eq. (8) will be referred to as a teleparalellism
condition. One can express the connection as

Γλ
μν ¼ Γ

∘
λ
μν þ Lλ

μνðQÞ; ð9Þ

where

Lλ
μνðQÞ ¼ 1

2
Qλ

μν −QðμλνÞ ð10Þ

is the disformation tensor and

Γ
∘
λ
μν ¼

1

2
gλβð∂μgβν þ ∂νgμβ − ∂βgμνÞ ð11Þ

is the Christoffel symbol associated with the Levi-Civita
connection completely defined through the metric.
Therefore, the torsionless connection consists of 40 inde-
pendent components. By replacing the abovedecomposition
of the connection (9) in the definition of the general
curvature (8) and imposing the teleparallel condition (cur-
vatureless case), one can decompose the curvature tensor as

Rσ
ρμν ¼ R

∘
σ
ρμν −∇∘ νLσ

μρ þ∇∘ μLσ
νρ − Lσ

νλLλ
μρ þ Lσ

μλLλ
νρ

¼ 0; ð12Þ

which tells us that the conditions (7) and (8) allowus to relate
the Riemann tensor associated with the Levi-Civita con-

nection R
∘
σ
ρμν (denoted by a ∘ on top) to the nonmetricity

tensor via quadratic contractions of the disformation tensor
and its Levi-Civita covariant derivatives.
The teleparallelism condition (8) yields for the flat

connection (zero curvature)

Γα
μν ¼ ðΛ−1Þαλ∂μΛλ

ν; ð13Þ

with Λ ∈ GLð4;RÞ, as in torsional teleparallel gravity. The
absence of torsion (7) allows writing the connection as

Γα
μν ¼

∂xα

∂ξλ
∂μ∂νξ

λ; ð14Þ
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where we have parametrized Λα
μ ¼ ∂μξ

α in terms of the
auxiliary field ξα associated to diffeomorphisms (as a
Stückelberg field). Thus, after imposing the torsionless
and curvatureless conditions, the maximum number of
d.o.f. in the nonmetricity part of the connection (disforma-
tion tensor) goes down from 40 d.o.f. to a maximum of 4
independent d.o.f. (that can be expressed via the vector ξμ).
It is worth mentioning that for a given ST theory coupled

to extra fields Φi whose action is Sðgμν;Γλ
μν;ΦiÞ, the

corresponding field equations of the theory are obtained by
varying it with respect to all the fields, which in this case
corresponds to taking variations with respect to the metric,
the torsionless and flat connection, and all the extra fields.
A remarkable property of ST gravity is that one can

completely get rid of the connection by performing a
coordinate transformation

ξμ ¼ xμ ⇒ Γα
μν ¼ 0 ⇒ ∇μ ¼ ∂μ; ð15Þ

which is referred to as fixing coincident gauge. Although we
will not adopt this gauge fixing in the following sections, it is
worth mentioning that it can simplify certain computations,
at the price of full diffeomorphism invariance being given up
and hence physics depending on the coordinates used to
describe it. Other computations, however, for example in
spherical symmetry, become more cumbersome in the
coincident gauge, as it was shown in [56].

B. Two formulations of gravity

With the definitions of curvature and nonmetricity at hand,
we are now ready to provide two equivalent geometric
formulations of GR. In fact, there exists a third description
utilizing torsion, such that these three formulations constitute
the well-known geometric trinity of GR [24].

1. GR à la Einstein

GR à la Einstein is formulated on a Riemannian
spacetime, so the fundamental dynamical object is the
metric gμν and gravity is ascribed to curvature, i.e.

Rα
ρμν ¼ R

∘
α
ρμν ≠ 0, Tλ

μν ¼ 0 and Qλμν ¼ 0. The action is
given by the Einstein-Hilbert action

S ¼ M2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p
R
∘
; ð16Þ

where MPl is the reduced Planck Mass.
In the Palatini formalism, the connection is assumed to

be independent of the metric. It is remarkable that even
when starting from the Einstein-Hilbert action in this
formalism, i.e.,

SPalatini ¼
M2

Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p
gμνRμνðΓÞ; ð17Þ

where g and Γ are treated as independent fields, one still
obtains Einstein’s field equations. This can be seen in the
following way. For a torsion free connection, the variation
with respect to the connection enforces metric compati-
bility of the connection and hence uniquely fixes

Γα
μν ¼ Γ

∘
α
μν, and then variations with respect to the metric

gives the usual Einstein’s equations. Therefore, one has

R ¼ R
∘
in GR à la Einstein giving

10|{z}
gμν

− 2 × 4|ffl{zffl}
diffs

¼ 2 ð18Þ

propagating d.o.f.

2. Symmetric teleparallel equivalent of GR (STEGR)

As mentioned above, ST gravity [20] is formulated on a
flat manifold without torsion, so the fundamental dynami-
cal object is the metric gμν and gravity is ascribed to
nonmetricity, i.e. Rα

ρμν ¼ 0, Tλ
μν ¼ 0, and Qλμν ≠ 0.

Notice that the general curvature is zero but, in general,

the Levi-Civita one R
∘
α
ρμν is nonvanishing. This will be the

framework, in which the rest of the paper is formulated in
and hence is the most interesting for us.
One can construct a generic symmetric quadratic action

described by [21,23,40]

SNewer GR ¼ M2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p
Q; ð19Þ

with

Q ¼ c1Qα
μνQα

μν þ c2Qα
μνQμ

α
ν þ c3QμQμ

þ c4Q̃μQ̃μ þ c5Q̃μQμ; ð20Þ

which consists of all five independent parity-preserving
(because of the symmetry properties of nonmetricity)
contractions quadratic in the nonmetricity, where Qμ ¼
Qμα

α ¼ 4Wμ, Q̃μ ¼ Qα
αμ ¼ Wμ þ 9

4
Λμ and ci are arbitrary

constants. These quadratic contractions can be equivalently
written in terms of the irreducible pieces of the non-
metricity (5)

Q1 ¼ WμWμ; Q2 ¼ ΛμΛμ; Q3 ¼ WμΛμ;

Q4 ¼ �Ωαμν�Ωαμν; Q5 ¼ qλμνqλμν; ð21Þ

such that

Q ¼
X5
i¼1

c̃iQi ¼ LNewer GR: ð22Þ

Keeping the values of ci (or equivalently c̃i) generic, one
obtains a ST theory which is sometimes called “newer GR.”
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It should be noted that Q4 can be also defined as ΩαμνΩαμν

since that scalar is parity preserving. However, for con-
structing more general theories, it is convenient to use the
tensor �Ωαμν as one of the building blocks instead of Ωαμν

for constructing parity preserving theories of gravity.
Choosing the parameters ci in a very specific way,

namely

c1¼
1

4
; c2¼−

1

2
; c3¼−

1

4
; c4¼0; c5¼

1

2
; ð23Þ

or

c̃1¼−
3

2
; c̃2¼

9

32
; c̃3¼

9

4
; c̃4¼

1

24
; c̃5¼−

1

4
; ð24Þ

the scalar constructed in (20) and (22) becomes the so-
called nonmetricity scalar

Q ¼ −
3

2
Q1 þ

9

32
Q2 þ

9

4
Q3 þ

1

24
Q4 −

1

4
Q5

¼ 1

4
QλμνQλμν −

1

2
QλμνQμνλ −

1

4
Qμν

νQμβ
β

þ 1

2
Qμν

νQαμ
α; ð25Þ

giving rise to the STEGR theory when appearing linearly in
the Lagrangian. From the splitting (12), one can construct
the Ricci scalar and obtain that

0 ¼ R ¼ R
∘ þQþ∇∘ μðQμ − Q̃μÞ ⇔

R
∘ ¼ −Qþ∇∘ μðQ̃μ −QμÞ ≔ −Qþ BQ; ð26Þ

where ∇∘ α is the covariant derivative associated to the Levi-
Civita connection, Q being the nonmetricity scalar defined
as (25) and BQ a boundary term. The above equation shows
that the Levi-Civita Ricci scalar differs by a boundary term
from the nonmetricity scalar. This means that the field
equations arising from an action constructed from (25) give
the same equations as Einstein’s field equations. Also, one
finds that the STEGR theory has 2 propagating d.o.f. in
agreement with GR, which is particularly easy to see in the
coincident gauge [24,57].
One can further do a similar computation in the case of

torsional teleparallel gravity where only torsion is different
from zero. In that case, again, one can formulate a theory
with the same dynamics as GR but torsion is responsible of
gravity (see Ref. [17] on such torsional theories). Thus, the
geometrical richness of a general manifold allows us to
describe GR in three equivalent ways [58].
One outstanding property of STEGR in coincident gauge

is that its action becomes

SSTEGRjΓ¼0 ¼
M2

pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p
gμνðΓ∘ αβμΓ

∘
β
να − Γ

∘
α
βαΓ

∘
β
μνÞ;

ð27Þ

which is sometimes called the Einstein action (or Gamma
squared action). In the remainder of this text, we work in
the framework of ST gravity without fixing the coinci-
dent gauge.

III. SYMMETRIC TELEPARALLEL
HORNDESKI THEORY

In the Riemannian formulation of gravity, the most
general way to couple a scalar field with the gravitational
degrees of freedom with second-order Euler-Lagrange
field equations is given by the well-known Horndeski
Lagrangian. While containing arbitrary functions of the
scalar field ϕ and its kinetic term X ¼ − 1

2
∂
μϕ∂μϕ, this

theory can only involve the Riemannian curvature tensor

R
∘
μ
νρσ and the second (covariant) derivatives of the scalar

field ∇∘ μ∇
∘
νϕ in a very restricted form, such that the Euler-

Lagrange field equations remain second order. In particular,
the curvature invariants are not allowed to appear freely via
arbitrary functions since they already contain second
derivatives of the metric, and would in general lead to
higher-order equations.
As described in the previous section, in the ST formu-

lation of gravity, nonmetricity is responsible of gravity.
Crucially, the nonmetricity tensor Qλμν only contains first
derviatives of the metric gμν, and no derivatives of the
connection Γα

μν. For this reason, the nonmetricity invar-
iants are allowed to enter the Lagrangian unrestricted
through arbitrary functions. Moreover, one might expect
a Galileon-like higher-derivative structure to also be pos-
sible involving derivatives of the nonmetricity, i.e. second
derivatives of the metric. All of this leads to a much more
general form for a theory coupling a scalar field with
gravity with up to second-order Euler-Lagrange field
equations à la Horndeski. In this section, we will make
the first steps towards the construction of such ST
Horndeski theory.

A. Covariantization prescription
and nonminimal coupling

In order to consider Horndeski interactions in a ST
formulation of gravity, we need a method of covariantizing
scalar fields from tangent spaces to general manifolds. In
pseudo-Riemannian manifolds (where only curvature is
present), the Levi-Civita connection provides a unique
prescription for how to promote locally Lorentz invariant
objects to fully covariant ones, namely through the pro-
cedure
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ημν → gμν; ∂μ → ∇∘ μ; ð28Þ

where the Minkowski metric is lifted to the general metric
on the manifold, and partial derivatives are promoted to
covariant derivatives defined through the Christoffel sym-
bols describing corrections arising in parallel transport.
In ST manifolds (where only nonmetricity is present),

Eq. (28) is no longer the unique possibility, but one may
also covariantize as follows:

ημν → gμν; ∂μ → ∇μ; ð29Þ

using the ST connection instead of the Levi-Civita one.
This alternative prescription includes a nonminimal cou-
pling to nonmetricity, as it can be seen by means of Eq. (9)
which always allows us to perform the following split for
an arbitrary tensor Pα1…

β1…,

∇μPα1…
β1… ¼ ∇∘ μPα1…

β1… þ Lα1
μνðQÞPν…

β1… þ � � �
− Lν

μβ1ðQÞPα1…
ν… −…: ð30Þ

It is therefore expected that the physics will be affected by
the choice of covariantization prescription, and it will be
important when adding matter to the theory.
However, when constructing a theory in the ST frame-

work that couples a scalar field with gravity in the most
general way, as we intend to do here, this becomes just a
parametrization choice provided one allows for both the
scalar field ϕ and nonmetricity tensor Qλμν to enter in the
Lagrangian with complete freedom. This is precisely what

Eq. (30) is telling us; we can either use ∇μ or ∇
∘
μ, together

with Qλμν in the construction of such a theory.

In what follows we choose to work with ∇∘ μ and Qλμν as
building blocks, since it will allow us to make easier contact
with known results from the Riemannian formulation. For

the same reason, we will also include R
∘
α
βμν as an

independent building block, without necessarily splitting
it as in Eq. (12).

B. Variations and field equations

To calculate the equations of motion, we make use of the
principle of stationary action. As mentioned in the previous
section, in the case of ST gravity, variation with respect to
any external fields (scalars, vectors, etc.) as well as with
respect to the metric is performed in the standard way.
Since the connection is treated as an independent

variable in metric affine theories, we will clarify again
here how to correctly vary with respect to it while
simultaneously ensuring that the teleparallelism condi-
tion (8) is always satisfied. To achieve this, there are in
principle two ways. The first way is to take variations with
respect to the flat connection (not the full) which can be

done by replacing the connection as (14) in the studied
action S ¼ Sðgμν;Γλ

μν;ΦiÞ ¼ Sðgμν; ξα;ΦiÞ and varying it
with respect to the vector field ξα. Alternatively, a second
method can be used which relies on the language of
Lagrange multipliers in the action which enforces curvature
and torsion to vanish and vary with respect to a generic
connection Γα

μν. Those Lagrange multipliers are added to
the action as S ¼ Sðgμν;Γλ

μν;ΦiÞ þ λα
βμνRα

βμν þ λα
μνTα

μν.
Then, one performs variations with respect to the full
connection and the Lagrange multipliers, which would give
in the end the same variations as starting from the action
and varying with respect to the flat connection (i.e. varying
with respect to ξα). Both ways are equivalent and eventually
should give the same results in ST theories.
In practice, it turns out that in all the explicit examples

discussed in the following sections, variation with respect
to the connection can trivially never give rise to higher-
order derivative terms. This is due, for example, to the fact
that the terms appearing in the action are at most linear in
derivatives of Qλμν and second-order derivatives of ϕ in the
contractions presented in Sec. IV B. In general, this fact is
not always true, however, such that one needs to be more
careful.

C. Conditions on a symmetric teleparallel
Horndeski theory

Let us now impose some conditions to formulate our
theory. As a first step we enumerate the conditions that
allow formulating a ST Horndeski theory:
(1) The Euler-Lagrange field equations for the dynami-

cal degrees of freedom, namely the scalar field ϕ, the
metric gμν, and the teleparallel connection Γα

μν shall
all be at most second order in their derivatives.

(2) The Lagrangian must be parity preserving.
(3) The Lagrangian shall contain at most quadratic

contractions of the nonmetricity tensor Qλμν.
The first condition ensures the nonexistence of
Ostrogradsky ghosts associated with higher derivative
terms in the theory. Furthermore, the first two of the above
conditions are analogs of the ones defining the Riemannian
Horndeski theory in the curvature formulation. Notice
however that in the ST formulation the connection Γα

μν

is treated as an independent degree of freedom, and as such
it is allowed to have second-order Euler-Lagrange field
equations on its own, provided it satisfies the teleparallel
condition, that is, the vanishing of the total curvature.
Therefore in this formulation, the number of propagating
degrees of freedom will generically be larger. The third
condition is instead of a different nature, not being present
in the Riemannian case. Its adoption follows closely the
torsional teleparallel Horndeski theory formulation [45],
and it is required mostly for technical reasons in order to
limit the otherwise infinite tower of invariants that can be
constructed with both the nonmetricity tensor and deriv-
atives of the scalar field which could in principle be
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included. Further, due to the geometrical nature of sym-
metric teleparallel gravity (nonmetricity has first deriva-
tives of the metric and curvature already has second
derivatives of the metric), there are actually infinite scalars
that one can define with only those properties. That means
that the theory implicitly described by Eq. (35) contains
infinite terms. In this regard, condition three is an additional
condition that we imposed to write down a theory with a
finite Lagrangian. One can also think from the effective
field theory point of view and understand this condition as
the first correction of STEGR and then, the higher-order
contractions of nonmetricity would have a smaller
contribution.
Let us emphasize here that the ST framework is different

from considering the case where both the curvature and
nonmetricity are nonvanishing. As mentioned in previous
sections, the teleparallel (Rα

μνβ ¼ 0) and torsionless
(Tλ

μν ¼ 0) conditions restrict the independent connection
Γλ

μν to be of the form (14), and hence, it carries a maximum
of 4 d.o.f. (from the vector ξλ). Summing up those
maximum d.o.f. coming from the connection with the
maximum d.o.f. coming from the metric (which is 6
d.o.f.) and the extra scalar field (which is 1 d.o.f.) would
give us that the maximum number of d.o.f. for our theory
would be 6þ 4þ 1 ¼ 11 d.o.f. This argument only holds
due to the fact that we will construct theories which are at
most second order in all of the fields ðgμν;Γλ

μν;ϕÞ. Another
equivalent way of doing that counting is to assume the
coincident gauge and set the connection to zero. That gauge
choice would break diffeomorphishs invariance and due to
that, the metric would now have a maximum of 6þ 4 d.o.f.
This counting is consistent with the fact that these two
formalisms, i.e., working with the flat connection (14) and
the metric or working solely with the metric in the coicident
gauge, are equivalent. Yet another equivalent way of
counting the maximum number of d.o.f. coming from
the torsionless and flat connection is the following. A
general connection has 43 ¼ 64 components, which satisfy
second-order Euler-Lagrange field equations and then
require 128 initial conditions. The teleparallel condition
Rα

μνβ ¼ 0 implies 96 equations (¼4 × 4 × 6, since a
general Riemann tensor for a generic connection is only
antisymmetric in the last two indices), while the torsionless
condition Tλ

μν ¼ 0 implies another 24 equations (4 × 6).
Therefore, we are left with 8 independent initial conditions
for the connection, which implies 4 d.o.f. that are related to
the connection.
An easy way to formulate the theory is to first consider

the most general scalar theory in Minkowski spacetime
with a second-order equation of motion and then uplift it to
include gravity by following the Levi-Civita covariantiza-
tion prescription Eq. (28). This is so far exactly the same
procedure that leads to the generalized Galileons which is
equivalent to the Riemannian-Horndeksi theory in the

curvature formulation, precisely because of this coupling
prescription. Therefore, so far, we know that Riemannian-
Horndeski theory is contained as a subcase provided one

uses ∇∘ μ instead of ∇μ:

L
∘
2 ¼ G2ðϕ; XÞ; ð31aÞ

L
∘
3 ¼ −G3ðϕ; XÞ□

∘
ϕ; ð31bÞ

L
∘
4 ¼ G4ðϕ; XÞR

∘ þ G4;Xðϕ; XÞ½ð□
∘
ϕÞ2 −∇∘ μ∇

∘
νϕ∇

∘
μ∇∘ νϕ�;

ð31cÞ

L
∘
5 ¼ G5ðϕ; XÞG

∘
μν∇

∘
μ∇∘ νϕ

−
1

6
G5;Xðϕ; XÞ½ð□

∘
ϕÞ3 þ 2∇∘ ν∇

∘
μϕ∇

∘
ν∇∘ λϕ∇∘ λ∇

∘
μϕ

− 3□
∘
ϕ∇∘ μ∇

∘
νϕ∇

∘
μ∇∘ νϕ�; ð31dÞ

where X ¼ − 1
2
∇∘ μϕ∇

∘
μϕ, and the full Lagrangian will be

L
∘ ¼

X5
i¼1

ciL
∘
i: ð32Þ

Recall that the overcircles denote objects associated to the
Levi-Civita connection. These Riemannian quantities, such
as the Levi-Civita Ricci scalar can be rewritten in terms of

nonmetricity scalars as R
∘ ¼ −Qþ BQ [see Eq. (26)] and

the Levi-Civita Einstein tensor as [see Eq. (12)]

G
∘
μν ¼ 2∇λPλ

μν −
1

2
Qgμν þ PρμνQρσ

σ þ PνρσQμ
ρσ

− 2PρσμQρσ
ν; ð33Þ

with the so-called superpotential being equal to

Pα
μν ¼ −

1

4
Qα

μν þ
1

2
QðμανÞ þ

1

4
gμνQα

−
1

4
ðgμνQβ

αβ þ δαðμQνÞββÞ: ð34Þ

Note that the covariant derivative appearing in the above
equation is with respect to the ST connection. The explicit

nonminimal couplings with the Ricci scalar R
∘
and Einstein

tensor G
∘
μν in L

∘
4 and L

∘
5, respectively, are required in order

to balance terms with higher-than-second derivatives in the
Euler-Lagrange field equations coming from the Galilean-
like structure of second covariant (Levi-Civita) derivatives
of the scalar field. Notice that the structure of the second
derivatives is fixed, while the Gi functions might only
depend on invariants with at most first derivatives.
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Then, due to the covariantization procedure, the
Riemannian-Horndeski theory also appears naturally in
our construction since by upgrading the Galileon fields in
Minkowski spacetime to the case where gravity is switched
on, the theory coincides with the Riemannian-Horndeski
theory. However, in ST gravity, the procedure from
Galileons in Minkowski to the gravity case does not
coincide with the most general theory with second-order
Euler-Lagrange field equations. Let us here now consider a
systematic way of constructing the theory in the ST
framework.
As discussed above, in the Riemannian formulation this

is the end of the line, since we have run out of invariants
with up to first derivatives of the dynamical fields to
construct. This is however not the case in the ST formu-
lation, and there are two ways in which this can be
extended:
(a) Including a dependence in the Gi functions on new

invariants that now can be constructed with the non-

metricity tensor Qλμν and ∇∘ μϕ, which contain at most
first derivatives of the dynamical fields.

(b) Adding new higher-derivative terms with ∇∘ αQλμν,
which contain second derivatives of the metric in
novel ways and likely requiring a precise tuning
analogous to the Galileon structure.

These two directions of generalization are not completely
independent, as for example, following the first one by
adding a new dependence to the Gi functions can generi-
cally give rise to new terms with higher-than-second
derivatives in the Euler-Lagrange field equations that need
to be balanced out by including terms of the form described
in the second option. Much like it happens in Riemannian-
Horndeski theory, we expect that one must include all the
terms that have the same number of second derivatives such
that they can balance each other and prevent the appearance
of higher-order terms in the Euler-Lagrange field equations.
For this reason, it is useful to rely on a power-counting
scheme to organize the operators in indivisible classes that
must be considered together. With this in mind, we propose
the full ST Horndeski Lagrangian to follow a power
counting schematically of the form

Li ¼
X

Nϕ ;NQ≥0
Nϕ≥n≥0

CNϕ;NQ;n

� X
m;r;l≥0

mþ2rþl¼i−2

A
ðn;Nϕ;NQÞ
m;r;l ϕNϕ−n−mð∂ϕÞn

× ð∇∘ ∇∘ ϕÞmR∘ rQNQ−lð∇∘ QÞl
�
; ð35Þ

where

Q ¼ ðWμ;Λμ; qμνρ; �ΩαμνÞ ð36Þ

generically represent the irreducible nonmetricity building

blocks, which count as first derivatives (they contain ∂g),R
∘

stands schematically for the Riemannian curvature tensor

R
∘
μ
νρσ , and the CNϕ;NQ;n and A

ðn;Nϕ;NQÞ
m;r;l coefficients should

have appropriate mass dimensions. In the above
Lagrangian we allow at most second derivatives acting
on the scalar field and the metric. As already mentioned,

due to Eq. (12) the termsR
∘
(that only depend on the metric)

can be always written as Qp and ð∇∘ QÞ terms and then it
would be sufficient to write the above general Lagrangian

without theR
∘
term. However, by including it, one could get

the corresponding Riemannian-Horndeski case easily and
due to that, we will keep it as a building block. This is a
consistent choice that entails no loss of generality, but
where the new terms are organized in a way that puts
Riemannian-Horndeski and the Levi-Civita covariantiza-
tion procedure in the forefront.
The full Lagrangian then will be

L ¼
X
i¼2

ciLi; ð37Þ

where in principle the summation can extend up to arbitrary
i, but after some point, the Lagrangians will become trivial,
i.e. total derivatives.
The above Lagrangians are constructed by considering

nested summations. The inner sum in Eq. (35), between
brackets, is over the different ways of distributing the

factors containing second derivatives, ∇∘ ∇∘ ϕ, R∘ , and ∇∘ Q,

such that they add up to exactly i − 2. Notice that here R
∘

enjoys a special counting inspired by the one from
Riemannian-Horndeski theory. As mentioned above, all
of these terms must be considered together as an indivisible

set (same n, Nϕ, NQ), with relative coefficients A
ðn;Nϕ;NQÞ
m;r;l

that are not free (except for an overall factor), but rather
must be fixed by the requirement of second-order Euler-
Lagrange field equations. This must be verified against
variations with respect to all the fields, ϕ, gμν, and Γα

μν.
Notice however that due to the nature of nonmetricity,
Eq. (1), variations with respect to the connection automati-
cally satisfy this for i ≤ 3.
Importantly, while the proposed counting scheme cannot

tell us anything at this stage about the proper nontrivial
structure needed to achieve second-order Euler-Lagrange
field equations, there cannot be contributions from other
sets (different n, Nϕ, NQ) as their powers of fields and
derivatives would not match, enabling each class to be
studied separately in the search for such a structure. The
added benefit of this arrangement is that once each class
manifestly leads to second-order Euler-Lagrange field
equations, there is complete freedom in how to combine
them. This freedom is realized through the outer sum in
Eq. (35) where the CNϕ;NQ;n coefficients are unconstrained,
and it expresses the generic dependence of the Lagrangian
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functions Giðϕ; ∂ϕ;QÞ associated to each Li. Notice that
once the proper structure has been found, these functions
are actually not necessarily constrained to have a series
expansion as apparently implied by Eq. (35). Finally, all of
these Li Lagrangians can also be combined freely as in
Eq. (37) to form the full ST Horndeski Lagrangian L.

D. Known special cases

The above proposed counting scheme is inspired by the
Riemannian-Horndeski one, with the purpose of acting as a
guiding principle to organize the operators in classes that
independently lead to second-order Euler-Lagrange field
equations. It will be useful as long as we can describe
known cases in a simple way.

1. Quadratic symmetric teleparallel gravity
without a scalar field

Let us consider a theory containing only nonmetricity Q
(Nϕ ¼ 0), and no higher-order terms (i ¼ 2),

L ¼
X
NQ≥0

CNQ
QNQ ≡ fðfQgÞ: ð38Þ

In order to cast this in a useful way, following our third
condition above we further restrict the Lagrangian to be of
the form

L ¼ fðQ1; Q2; Q3; Q4; Q5Þ; ð39Þ

with an arbitrary function depending on the five possible
scalars constructed from the nonmetricity tensor up to
quadratic order [see Eq. (21)]. This theory contains newer
GR in the particular case in which f ¼ Q [see (20)], and
therefore it also contains STEGR. Since the nonmetricity
scalar Q appears naturally in ST gravity and this quantity is
related to the five irreducible scalars as (25), it is convenient
to rewrite the above Lagrangian in terms ofQ instead of one
of the other five scalars, such as L ¼ fðQ;Q1; Q2; Q3; Q4Þ.
That theory is of course equivalent to the above Lagrangian
but both the fðQÞ and STEGR case can be easily obtained
from it in a simpler way. Due to this, we will use this kind of
parametrization for constructing the theory when we add a
scalar field.

2. Riemannian-Horndeski theory

The full Riemannian-Horndeski Lagrangian is recovered
by excluding terms with explicit nonmetricity (NQ ¼ 0)
in Eq. (37), but otherwise keeping everything else.
Schematically we have

L
∘
i¼

X
Nϕ≥n≥0

CNϕ;n

� X
m;r≥0

mþ2r¼i−2

A
ðn;NϕÞ
m;r ϕNϕ−n−mð∂ϕÞnð∇∘ ∇∘ ϕÞmR∘ r

�
;

ð40Þ

where now 2 ≤ i ≤ 5. It is easy to see that this is consistent
with the Lagrangians in Eq. (32). The well-known

Galilean-like structure amounts to fixing the A
ðn;NϕÞ
m;r coef-

ficients, while the arbitrariness of the Giðϕ; XÞ functions is
given by theCNϕ;n coefficients, which are totally free. Thus,
the Riemannian-Horndeski gravity theory is contained in
our formulated theory.

3. Generalized Proca action with the Weyl part
of nonmetricity and no scalar field

One extension that we can immediately construct with-
out much effort comes in the form of a generalized Proca
Lagrangian with only the Weyl part of nonmetricity, i.e.
Wμ, and no scalar field. In terms of the power counting this
is the orthogonal option to Riemannian-Horndeski theory,
namely, we let NQ run while keeping Nϕ ¼ 0,

Li ¼
X
NQ≥0

CNQ

� X
r;l≥0

2rþl¼i−2

A
ðNQÞ
r;l R

∘
rWNQ−lð∇∘ WÞl

�
; ð41Þ

and then we sum over i,

L ¼
X6
i¼2

ciLi: ð42Þ

Note that restricting the construction to only use Q ¼
fWμg is only consistent because of the special form of the
Weyl vector Wμ which, in regard to variations with respect
to the metric gμν, it has the structure analogous to the
gradient of a scalar field

δWμ ⊃
1

4
gαβ∂μðδgαβÞ → −

1

4
δgαβgαβ∂μð…Þ; ð43Þ

where in the first expression we are not showing terms
without derivatives acting on the variation, and the last
expression is obtained by integrating by parts and dis-
regarding terms that are not dangerous in the sense of
leading to higher-order Euler-Lagrange field equations.
Therefore, for the purpose of tracking the cancellation of
higher-derivative terms in the metric equations, we can
make the replacement gαβδgαβ → δΨ, or equivalently write
Wμ ¼ 1

4
∂μΨ. Notice that this is not possible in general, and

in particular it is not valid for Λμ. Variations with respect to
the flat connection lead instead to the same number of
derivatives as those performed with respect to Wμ, so it is
sufficient to only track the latter ones for ensuring their
second-order nature. For these reasons, a theory following
Eqs. (41) and (42) can be made to lead to second-order
Euler-Lagrange field equations on their own by arranging
the Lagrangian in the well-known form [59]
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L2 ¼ G2ðQ1; F
∘
μν; F̃

∘
μνÞ; ð44aÞ

L3 ¼ G3ðQ1Þ∇
∘
μWμ; ð44bÞ

L4 ¼ G4ðQ1ÞR
∘
− 2G4;Q1

½ð∇∘ μWμÞ2 −∇∘ ρWσ∇
∘
σWρ�; ð44cÞ

L5 ¼ G5ðQ1ÞG
∘
μν∇

∘
μWν þ 1

3
G5;Q1

½ð∇∘ μWμÞ3

þ 2∇∘ ρWσ∇
∘
γWρ∇∘ σWγ − 3ð∇∘ μWμÞ∇∘ ρWσ∇

∘
σWρ�

− g5ðQ1ÞF̃
∘
αμF̃

∘
β
μ∇
∘
αWβ; ð44dÞ

L6¼G6ðQ1ÞL
∘
μναβ∇∘ μWν∇

∘
αWβ−G6;Q1

F̃
∘
αβF̃

∘
μν∇∘ αWμ∇

∘
βWν;

ð44eÞ

where L
∘
μναβ is the double dual Riemann tensor, while

F
∘
μν ¼ ∇∘ μWν −∇∘ νWμ and F̃

∘
μν its dual. The Lagrangian L2

is constructed from an arbitrary function that depends on
Q1 and all the possible scalars constructed from Fμν and its
dual respecting the U(1) symmetry. It should be noted that
the theories that we are constructing in this manuscript are
parity preserving, so that, any combination in L2 leading to
parity-violating invariants would not be part of our theory

(such as for example F
∘
μνF̃

∘
μν). Then, the above equation

will produce the same field equations as the generalized
Proca gravity theory but now the vector field would be
associated with the Weyl part of nonmetricity and its vector
field norm with Q1. Although the equations would be
mathematically equivalent, the physical interpretation of
the above model could be different due to the fact that the
Weyl part of nonmetricity is invariant under the dilation
group. Furthermore, since we are working in the framework
of teleparallel gravity (and not metric-affine gravity in
general), the form of the vector Wμ will be constrained
under the condition of having a vanishing curvature.
Extending this construction to include all of the irreducible
components of nonmetricity in full generality is highly
nontrivial and beyond the scope of this paper.

IV. SYSTEMATIC CONSTRUCTION OF A
SUBCLASS OF SYMMETRIC TELEPARALLEL

EXTENSIONS OF HORNDESKI

Constructing the ST Horndeski, that is, the most general
second-order Euler-Lagrange field equation theory con-
taining a scalar field ϕ and nonmetricity Qλμν as described
by the power-counting scheme devised in the previous
section, is a very daunting task. On the road to constructing
such a theory, it is reasonable to exploit such a scheme by

systematically considering each of the Li Lagrangians one
by one, with increasing complexity.

A. Most general action for a scalar and nonmetricity
with no purely teleparallel higher-derivative terms

We begin by formulating the most general theory with a
scalar field and nonmetricity with no purely teleparallel
higher-derivative terms. According to Eq. (35), this would
be L2, which is guaranteed to remain second-order in
general since it is at most first order in derivatives. The
simplified power counting in this scenario is simply

L2 ¼
X

Nϕ;NQ≥0

XNϕ

n¼0

cNϕ;NQ;nϕ
Nϕ−nð∂ϕÞnQNQ

≡ L2ðϕ; ∂ϕ; fQgÞ; ð45Þ

however, similarly to the example given before for the
quadratic ST gravity, we need to specify a closed set of
variables on which L2 above can depend if we hope to
express it in a practically useful way.
In order to account for the possible dependencies that can

enter in Eq. (45), it is useful to classify the invariant
quantities that can be built with Qλμν and the scalar field ϕ
that contain up to first derivatives. For this purpose, we use
the irreducible decomposition of the nonmetricity tensor,
defined in Eq. (5).
First, we consider contractions of nonmetricity up to

quadratic order without a scalar field. These were already
given in Eq. (21). As mentioned in the previous section,
the first part of the theory (without the scalar field
and i ¼ 2) can be written as an arbitrary function of
fðQ;Q1; Q2; Q3; Q4Þ. Since Q is a scalar that appears in
STEGR and it is a linear combination ofQi, we will instead
consider Q, Q1, Q2, Q3, Q4 as a basis of quadratic
invariants that can freely enter as dependencies in L2.
On top of this, the trivial way to incorporate the scalar field
is by purely scalar invariants ϕ and X, just as in typical
Riemannian-Horndeski theory.
Then there are the invariants that can be built from

nontrivial contractions of the nonmetricity tensor and
the gradient of the scalar field. We can classify them in
terms of the number n of powers of ϕ;μ ¼ ∂μϕ. With
one single factor of ϕ;μ, i.e. n ¼ 1, we have only two
possibilities,

I1 ¼ Wμϕ;μ; ð46aÞ

I2 ¼ Λμϕ;μ; ð46bÞ

both with NQ ¼ 1. With n ¼ 2 factors of ϕ;μ instead we
need to use at least two factors of nonmetricity, i.e.NQ ≥ 2,
but on the other hand we cannot have more than two if we
want to stop at quadratic order (while remaining nontrivial,
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that is, not reducible to products of simpler invariants).
Therefore, we have the following eight invariants:

J1 ¼ qλμνWλϕ;μϕ;ν; ð47aÞ

J2 ¼ qλμνΛλϕ;μϕ;ν; ð47bÞ

J3 ¼ �Ωμ
νσWσϕ

;μϕ;ν; ð47cÞ

J4 ¼ �Ωμ
νσΛσϕ

;μϕ;ν; ð47dÞ

J5 ¼ qλαμqλανϕ;μϕ;ν; ð47eÞ

J6 ¼ qλαμ�Ωλα
νϕ

;μϕ;ν ð47fÞ

J7 ¼ �Ωλαμ�Ωλα
νϕ

;μϕ;ν; ð47gÞ

J8 ¼ �Ωλαμ�Ων
λαϕ;μϕ;ν: ð47hÞ

For n ¼ 3 we have a single invariant up to quadratic
contractions:

J9 ¼ qλμνϕ;λϕ;μϕ;ν; ð48Þ

which is actually NQ ¼ 1. Finally, there are three extra
invariants with n ¼ 4 factors of ϕ;μ and quadratic in
nonmetricity, NQ ¼ 2,

J10 ¼ qμνσqλασϕ;μϕ;νϕ;λϕ;α; ð49aÞ

J11 ¼ qμνσ�Ωλα
σϕ;μϕ;νϕ;λϕ;α; ð49bÞ

J12 ¼ �Ωμνσ�Ωλα
σϕ;μϕ;νϕ;λϕ;α: ð49cÞ

In the construction of all the above invariants, we have
taken into consideration the symmetry properties of the
irreducible components of the nonmetricity tensor. Also,
we have taken the condition of having a parity-preserving
theory.
Hence, the most general L2 we can construct under our

assumptions is

L2 ¼ G̃STðQi;ϕ; X; Ii; JiÞ; ð50Þ

where we have introduced the notation

Qi ≔ fQ;Q1; Q2; Q3; Q4g; Ii ≔ fI1; I2g;
Ji ≔ fJ1; J2; J3; J4; J5; J6; J7; J8; J9; J10; J11; J12g: ð51Þ

Furthermore, the above Lagrangian is the ST generalization

of Horndeski’s L
∘
2 Lagrangian, and it also contains the

theory of Eq. (39). Equivalently, we can separate it into the
Riemannian-Horndeski part plus a purely ST contribution

L2¼L
∘
2þL2−ST ¼G2ðϕ;XÞþGSTðQi;ϕ;X;Ii;JiÞ: ð52Þ

It can be of course combined with any other Lagrangian
that stands as independently leading to second-order Euler-
Lagrange field equations. If we only consider a theory
containing no higher-derivative terms acting on nonme-
tricity (a theory that cannot be recast as a purely
Riemannian higher-order theory), then, the others Li will
only correspond to set NQ ¼ 0 which would give us
Horndeski gravity. This means that the most general ST
Horndeski gravity theory without higher-order derivatives
acting on purely teleparallel terms would be given by
the above Lagrangian plus the Riemannian-Horndeski

Lagrangian L
∘
, namely,

L ¼ L
∘ þ L2−ST ¼

X5
i¼2

L
∘
i þ GSTðQi;ϕ; X; Ii; JiÞ; ð53Þ

as long as one remembers that the Riemannian-Horndeski
Gi functions are only dependent on ϕ and X, and only GST
here contains explicit dependence on nonmetricity.
Extending this dependence to i > 2 would require the
inclusion of higher-order terms involving nonmetricity
(that cannot be recast as purely Riemannian gravity), as
described by our power-counting scheme of Eq. (35).
Doing this, in general, is beyond the scope of this work,
but we will examine an example in the following section

and find an extension of L
∘
3.

B. Symmetric teleparallel kinetic gravity braiding
(STKGB) up to linear order in nonmetricity

So far we have discussed a ST extension of Horndeski
theory that does not involve higher-derivative terms with
nonmetricity. The previously formulated theory contains
higher-order derivatives in nonmetricity but only the
particular combinations such that those terms can be purely
written as a Riemannian gravity theory (i.e., L3, L4, and L5

from Horndeski gravity). In terms of the general power-
counting scheme of Eq. (35), this means staying at i ¼ 2,
and letting NQ run (with the restriction of having at most
quadratic contractions of nonmetricity), or, allowing arbi-
trary i but then forcing NQ ¼ 0, which is nothing else than
the Riemannian-Horndeski Lagrangian. Combining these
two possibilities lead to the Lagrangian in Eq. (53), which
is the most general L2. Then, in this section we would like
to explore the possibility of going beyond, and, while we
will not formulate here the most general theory contained in
Eq. (35), we will at least show that there is a path forward
toward the construction of nontrivial extensions.
In this section, we will focus on the extension form

of L3 by considering possible higher-order derivatives
acting on the nonmetricity tensor (that cannot be recast
as purely Riemannian terms). The power-counting scheme
of Eq. (35) for i ¼ 3 specializes to
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L3¼
X

Nϕ ;NQ≥0
Nϕ≥n≥0

CNϕ;NQ;n

×

�X
m;l≥0
mþl¼1

A
ðn;Nϕ;NQÞ
m;l ϕNϕ−n−mð∂ϕÞnð∇∘ ∇∘ ϕÞmQNQ−lð∇∘ QÞl

�
;

ð54Þ

where the condition mþ 2rþ l ¼ 1 forces r ¼ 0, i.e. no
factor of the Riemannian curvature tensor is present. This
condition also implies that the only terms allowed are those

with exactly one factor of second derivatives (either ∇∘ ∇∘ ϕ
or ∇∘ Q). These are expected properties of a ST generali-
zation of cubic Horndeski/kinetic gravity braiding.
The above expression is still very general in that it allows

both the scalar and nonmetricity to enter arbitrarily (generic
Nϕ and NQ). Since in this paper we are interested in
extending Riemannian-Horndeski theory by the inclusion
of nonmetricity, we take the approach to be general in the ϕ
and X dependence and instead incorporate Qαμν gradually.
Therefore, we start by noting as already discussed in
Sec. III that the full Riemannian cubic Horndeski/kinetic
gravity braiding Lagrangian is contained in this scheme
simply as the NQ ¼ 0 terms of the outer sum, in which case
the inner sum collapses to a single type of term with the
second derivatives acting on ϕ,

L
∘
3 ¼ L3ðNQ ¼ 0Þ
¼

X
Nϕ≥0

Nϕ≥n≥0

CNϕ;NQ¼0;n½Aðn;Nϕ;NQ¼0Þ
1;0 ϕNϕ−n−1ð∂ϕÞnð∇∘ ∇∘ ϕÞ�

¼ −G3ðϕ; XÞ□
∘
ϕ; ð55Þ

where the other potential term that could have been

included ϕ;μϕ;ν∇∘ μ∇
∘
νϕ has been removed by integration

by parts. This Lagrangian is known to lead to second-order
Euler-Lagrange field equations. The next step is to include
nonmetricity in the simplest way, that is linearly (NQ ¼ 1).
As we will now show, this will prove to be already
somewhat involved. For NQ ¼ 1 the above schematic
Lagrangian reduces to

L3ðNQ ¼ 1Þ
¼

X
Nϕ≥0

Nϕ≥n≥0

CNϕ;NQ¼1;n½Aðn;Nϕ;NQ¼1Þ
1;0 ϕNϕ−n−1ð∂ϕÞnð∇∘ ∇∘ ϕÞQ

þ A
ðn;Nϕ;NQ¼1Þ
0;1 ϕNϕ−nð∂ϕÞnð∇∘ QÞ�

¼
X
a

½G̃ðaÞ
3 ðϕ; XÞÕa þ FðaÞ

3 ðϕ; XÞÔa�; ð56Þ

where in the first expression we have explicitly developed
the inner sum of Eq. (54) into the two types of terms
described before, and the remaining summation over n and
Nϕ implements the generic dependence on ϕ and X. On the
second equality we resummed that dependence into generic

functions G̃ðaÞ
3 ðϕ; XÞ and FðaÞ

3 ðϕ; XÞ which multiply invar-

iants Õa ∼∇∘ ∇∘ ϕ of the first kind (m ¼ 1, l ¼ 0) and Ôa ∼

∇∘ Q of the second kind (m ¼ 0, l ¼ 1), respectively. These
are invariants linear in Qαμν constructed with ϕ;ρ and one

∇∘ λ properly positioned. The summation over “a” loosely
stands for summing over all the possible ways of con-
tracting indices to build such invariants.1

We proceed first to construct all the invariants with no

derivatives acting on Qλαβ, and one factor of ∇∘ μ∇
∘
νϕ,

namely the ones we denote Õa. In what follows, it will
be convenient to work directly with Qαμν instead of its
irreducible components Wμ, Λμ, Ωαμν, and qαμν, as the
variations with respect to the metric take a simpler form,
making it easier to find the appropriate structure that
ensures second-order Euler-Lagrange field equations. We
provide some details about the variations in Appendix B.
One can, later on, reexpress the Lagrangians in terms of
the irreducible components if desired. There are 12 Õa
invariants, which in increasing order in factors of ϕ;ρ ’s are

Õ1 ¼ ϕ;μQμν
ν
□

∘
ϕ; ð57aÞ

Õ2 ¼ ϕ;μQνμ
ν
□

∘
ϕ; ð57bÞ

Õ3 ¼ ϕ;αQβμ
μ∇∘ α∇∘ βϕ; ð57cÞ

Õ4 ¼ ϕ;αQμβ
μ∇∘ α∇∘ βϕ; ð57dÞ

Õ5 ¼ ϕ;μQαμβ∇
∘
α∇∘ βϕ; ð57eÞ

Õ6 ¼ ϕ;μQμαβ∇
∘
α∇∘ βϕ; ð57fÞ

Õ7 ¼ ϕ;μϕ;νϕ;αQμνα□
∘
ϕ; ð57gÞ

Õ8 ¼ ϕ;μϕ;νϕ;αQνβ
β∇∘ μ∇

∘
αϕ; ð57hÞ

Õ9 ¼ ϕ;μϕ;νϕ;αQβν
β∇∘ μ∇

∘
αϕ; ð57iÞ

Õ10 ¼ ϕ;μϕ;νϕ;αQμν
β∇∘ α∇

∘
βϕ; ð57jÞ

1Notice that there need not be the same number of Õa and Ôa
scalars.
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Õ11 ¼ ϕ;μϕ;νϕ;αQβ
μν∇

∘
α∇
∘
βϕ; ð57kÞ

Õ12 ¼ ϕ;μϕ;νϕ;αϕ;ρϕ;σQμνα∇
∘
ρ∇
∘
σϕ; ð57lÞ

where the symmetry property Qαμν ¼ Qανμ has been taken
into account. As explained above, on top of this set of
invariants one can also construct another different set Ôa,

with∇∘ μ acting onQλαβ instead and then only factors of ϕ;ρ,
i.e. no second derivatives of ϕ. However, at the level we are
working on here linear in nonmetricity (NQ ¼ 1) and with
only one factor with second derivatives in total (i ¼ 3), it is
clear that the Ôa can in fact be expressed in terms of the Õa
by integration by parts, as we can always move the
derivative acting on Qλαβ onto some factor of ϕ. Then,
one can absorb this redundancy in a redefinition of the

G̃ðaÞ
3 ðϕ; XÞ, which are so far generic. For completeness, we

list the seven Ôa invariants in Appendix A and show their
relations with those in Eq. (57). This equivalence involves
discarding terms that do not contain second derivatives and
hence belong to L2 rather than L3.
We can now construct Lagrangians that lead to second-

order Euler-Lagrange field equations by carefully examin-
ing the variations with respect to both the scalar field ϕ, the
metric gμν, and the connection Γρ

μν of the invariants in
Eq. (57), allowing them to be multiplied by arbitrary
functions of ϕ and X. We find five independent pair-wise
combinations for which any terms that would lead to
higher-than-second-order Euler-Lagrange field equations
are canceled. These are

L̃ð1Þ
3 ¼ G̃ð1Þ

3 ðϕ; XÞðÕ3 − Õ1Þ
¼ 2G̃ð1Þ

3 ðϕ; XÞϕ;αLμ
βμ½∇

∘
α∇∘ βϕ − gαβ□

∘
ϕ�; ð58aÞ

L̃ð2Þ
3 ¼ G̃ð2Þ

3 ðϕ; XÞðÕ4 − Õ6Þ
¼ G̃ð2Þ

3 ðϕ; XÞðgαβ;μ − Γλ
μαgλβ − Γλ

μβgαλÞ
× ½ϕ;ρgμα∇

∘
ρ∇∘ βϕ − ϕ;μ∇∘ α∇∘ βϕ�; ð58bÞ

L̃ð3Þ
3 ¼ G̃ð3Þ

3 ðϕ; XÞðÕ5 − Õ2Þ
¼ G̃ð3Þ

3 ðϕ; XÞϕ;μðgμβ;α − Γλ
αμgλβ − Γλ

αβgμλÞ
× ½∇∘ α∇∘ βϕ − gαβ□

∘
ϕ�; ð58cÞ

L̃ð4Þ
3 ¼ G̃ð4Þ

3 ðϕ; XÞðÕ10 − Õ9Þ
¼ G̃ð4Þ

3 ðϕ; XÞϕ;αϕ;νðgνρ;μ − Γλ
μνgλρ − Γλ

μρgνλÞ
× ½ϕ;μgβρ − ϕ;βgρμ�∇∘ α∇

∘
βϕ; ð58dÞ

L̃ð5Þ
3 ¼ G̃ð5Þ

3 ðϕ; XÞðÕ11 − Õ7Þ
¼ G̃ð5Þ

3 ðϕ; XÞϕ;ρϕ;νðgνρ;μ − Γλ
μνgλρ − Γλ

μρgνλÞ
× ½ϕ;αgμβ∇∘ α∇

∘
βϕ − ϕ;μ

□

∘
ϕ�; ð58eÞ

where we explicitly expressed the nonmetricity tensor in
terms of the metric and the connection.
Notice that there is a pair missing, as there are terms in Õ8

and Õ12 that cannot be canceled away. Therefore, their
coefficients must be set to zero. It is worth noting that in L3,
the variation with respect to the connection Γα

μν will always
lead automatically to second-order equations due to it
appearing in the above construction without any derivatives
acting on it [see the definition of nonmetricity (1)].
A linear combination of these Lagrangians gives the

most general L3 with NQ ¼ 1,

L3ðNQ ¼ 1Þ ¼
X5
a¼1

L̃ðaÞ
3 : ð59Þ

Finally, we can expand the Lagrangians in terms of the
irreducible components of nonmetricity using the alter-
native basis of 12 invariants

OW1 ¼ Wμϕ
;μ
□

∘
ϕ; ð60aÞ

OW2 ¼ Wαϕ;β∇
∘
α∇∘ βϕ; ð60bÞ

OW3 ¼ Wμϕ
;μϕ;αϕ;β∇∘ α∇

∘
βϕ; ð60cÞ

OΛ1 ¼ Λμϕ
;μ
□

∘
ϕ; ð60dÞ

OΛ2 ¼ Λαϕ;β∇
∘
α∇∘ βϕ; ð60eÞ

OΛ3 ¼ Λμϕ
;μϕ;αϕ;β∇∘ α∇

∘
βϕ; ð60fÞ

OΩ1 ¼ �Ωαβμϕ
;μ∇∘ α∇∘ βϕ; ð60gÞ

OΩ2 ¼ �Ωαβμϕ
;αϕ;βϕ;ν∇

∘
μ∇∘ νϕ; ð60hÞ

Oq1 ¼ qαβμϕ;μ∇∘ α∇∘ βϕ; ð60iÞ

Oq2 ¼ qαβμϕ;μϕ;αϕ;β
□

∘
ϕ; ð60jÞ

Oq3 ¼ qαβμϕ;αϕ;βϕ;ν∇
∘
μ∇∘ νϕ; ð60kÞ

Oq4 ¼ qαβμϕ;μϕ;αϕ;βϕ;ρϕ;σ∇∘ ρ∇
∘
σϕ; ð60lÞ
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where the relation between the two bases is given in
Appendix C. We can also take linear combinations of
these Lagrangians to decouple them as much as possible.
We find

Lð1Þ
3 ¼ ðOW2 −OW1ÞGð1Þ

3 ðϕ; XÞ ≔ O1G
ð1Þ
3 ðϕ; XÞ; ð61Þ

Lð2Þ
3 ¼ ð5OΛ1 þOΛ2 − 4Oq1ÞGð2Þ

3 ðϕ; XÞ
≔ O2G

ð2Þ
3 ðϕ; XÞ; ð62Þ

Lð3Þ
3 ¼ ð3ðOΛ2 −OΛ1Þ þOΩ1ÞGð3Þ

3 ðϕ; XÞ
≔ O3G

ð3Þ
3 ðϕ; XÞ; ð63Þ

Lð4Þ
3 ¼ð3XðOΛ2−OΛ1Þþ2ð3OΛ3þOq2Þ−6Oq3ÞGð4Þ

3 ðϕ;XÞ
≔O4G

ð4Þ
3 ðϕ;XÞ; ð64Þ

Lð5Þ
3 ¼ð3XðOΛ2þOΛ1Þþ2ð3OΛ3−Oq2Þ−OΩ2ÞGð5Þ

3 ðϕ;XÞ
≔O5G

ð5Þ
3 ðϕ;XÞ: ð65Þ

Notice that in contrast with the Riemannian cubic
Horndeski/kinetic gravity braiding, Eq. (55), here it is
not possible to have any of these scalars independently give
second-order Euler-Lagrange field equations, but rather it is
necessary to combine them. This is a novel property of the
ST extension.
To conclude this section, we state explicitly its main

result, namely, a Lagrangian with i ¼ 3 and NQ ≤ 1, which
we call symmetric teleparallel kinetic gravity brading
(STKGB) which would be constructed by adding the
Riemannian kinetic gravity brading term (i.e., G5 ¼ 0,
G4 ¼ 1) with the above teleparallel contribution, namely,

LSTKGB ¼ R
∘ þ L

∘
2 þ L

∘
3 þ

X5
a¼1

LðaÞ
3 ð66Þ

¼ R
∘ þ G2ðϕ; XÞ −G3ðϕ; XÞ□

∘
ϕþO1G

ð1Þ
3 ðϕ; XÞ

þO2G
ð2Þ
3 ðϕ; XÞ þO3G

ð3Þ
3 ðϕ; XÞ

þO4G
ð4Þ
3 ðϕ; XÞ þO5G

ð5Þ
3 ðϕ; XÞ; ð67Þ

which contains L
∘
3 and L

∘
2 as in the Riemannian kinetic

gravity braiding/cubic Horndeski Lagrangian. In principle,
the above systematic procedure can be carried on to higher
NQ in order to incorporate nonmetricity in a more general
way into L3. The steps are clear: first, use the power-
counting scheme of Eq. (54) to identify the relevant kinds
of operators at a given NQ, then construct all the possible
invariants with the appropriate factors of Qλαβ, ϕ;ρ, and ∇μ

(one in the case of L3). Compute the variations with respect
to ϕ, gμν and Γα

μν (the latter not being necessary for L3)

of the operators built with the invariants multiplied by
arbitrary functions of ϕ and X. One needs only to track
terms that can lead to higher-order Euler-Lagrange field
equations. Finally, find the proper combinations of these
operators that ensure the cancellation of such higher-order
terms for all Euler-Lagrange field equations.
It is clear though that this approach becomes increasingly

complicated as the number of possible invariants that can
be constructed increases very quickly with NQ. The same
happened even in L2, where we had to limit the number of
invariants to those containing up to quadratic contractions
of the nonmetricity tensor Qλαβ. Following the same
prescription here, it would only be necessary to go up to
quadratic invariants for L3 as well, of which there are many
more. In contrast to the L2 case, however, here one needs to
then compute the variations of all of them while multiplied
by arbitrary functions of ϕ and X.
Potentially one could also include a more general

dependency on nonmetricity by including the invariants
from Eqs. (21) and (46)–(49) in the arbitrary functions as
well. This equates to letting NQ be arbitrary.

C. Towards the most general symmetric
teleparallel Horndeski theory

The full ST Horndeski should include Li with i > 3 as
well. According to the general power-counting scheme of
Eq. (35), this implies terms with two or more factors of
second derivatives (that cannot be recast as just Riemannian
higher-order terms). For example, terms of the following
form are to be expected in L4 at linear order in non-
metricity,

Qð∇∘ ∇∘ ϕÞ2; ð∇∘ ∇∘ ϕÞ∇∘ Q: ð68Þ

On top of the obvious increase in complexity compared to
the case discussed in the previous section due to the sheer
number of possible invariants that can be built, there is also
a novel ingredient. In contrast to L3, here it is not
guaranteed that the equation for the connection Γρ

μν is
automatically second order, nor that the connection itself
never appears with more than two derivatives acting on it.
Take for example the second term above; we can find the

connection with one derivative acting on it inside the ∇∘ Q
factor. Upon varying with respect to it, this will generate

terms that go like ∇∘ ∇∘ ∇∘ ϕ. Similarly, the scalar field

equation can now have terms like ∇∘ ∇∘ ∇∘ Γ as well.
Special cases like the generalized Proca theory with Wμ

discussed in Sec. III D 3 are known to be safe in this respect
due to the special properties of the Weyl component of
nonmetricity, so it needed not be discussed in detail there,
but generally, the connection and its field equations can no
longer be neglected in the procedure. These facts make the
construction of Li with i > 3 highly nontrivial when
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nonmetricity is included. We leave such efforts for
future work.

V. FLAT FLRW COSMOLOGY IN A SUBCLASS
OF SYMMETRIC TELEPARALLEL

HORNDESKI GRAVITY

As an immediate application of the above construction,
in this section, we will study flat FLRW cosmology for a
subclass of ST Horndeski which we consider to be
constructed from the Riemannian-Horndeski plus the tele-
parallel contributions that are related to L2 and L3, namely

LST−Horn ¼
X5
k¼4

L
∘
kþGSTðQi;ϕ;X;Ii;JiÞþLSTKGB: ð69Þ

As said before, in ST gravity, the connection and the metric
are independent. This means that if one assumes that the
metric follows certain symmetries, it is not guaranteed that
the connection (and then the field equations) will also
respect those symmetries. The simplest way to work in
these theories is to consider that both the connection
(or nonmetricity tensor) and the metric follow the same
symmetries. This can be achieved by choosing the invari-
ance under the same set of Killing vector fields Zζ, with
ζ ¼ f1;…; mg, which gives the following conditions:

ðLZζ
gÞμν ¼ 0; ðLZζ

ΓÞλμν ¼ 0: ð70Þ

The last equation implies that also the nonmetricity tensor
satisfies ðLZζ

QÞαμν ¼ 0.
If one solves the condition (70) for an isotropic and

homogeneous spacetime, the metric would be described by
the FLRW metric that can be written in spherical coor-
dinates ðt; r; ϑ;φÞ for its flat case as

ds2¼−NðtÞ2dt2þaðtÞ2ðdr2þr2dϑ2þr2sin2ϑdφ2Þ: ð71Þ

For the connection part, it is convenient to decompose the
metric as

gμν ¼ −nμnν þ hμν; nμ ¼ ð−N; 0; 0; 0Þ; ð72Þ

and then, we can write the nonmetricity tensor satisfying
(70) as [44]

Qρμν ¼ 2F1nρnμnν þ 2F2nρhμν þ 2F3hρðμnνÞ; ð73Þ

with Fi ¼ FiðtÞ which ensures that the connection does not
contain torsion and depending on the values of the
functions, one can also ensure the flat curvature condition.
This condition can be established in three different ways
which give three different branches. It is worth mentioning
that the above nonmetricity tensor respects cosmological
symmetries and it is easy to notice that always its

pseudotensor part vanishes (Ωλμν ¼ 0). This means that
for cosmology at the background level, we have that

Q4 ¼ J3 ¼ J4 ¼ J6 ¼ J7 ¼ J8 ¼ J11 ¼ J12 ¼ 0: ð74Þ

Hereafter, we will introduce the Hubble parameter as

H ¼ ∂ta
Na

¼ _a
Na

; ð75Þ

where dots are a differentiation with respect to the time
coordinate.2

We can further add extra matter content to our
Lagrangian. Since the connection is independent of the
metric in ST gravity, we can add an arbitrary matter
Lagrangian Lm that not only depends on the metric but
also on the connection, namely

L ¼ LST−Horn þ Lmðgμν;Γλ
μνÞ; ð76Þ

with LST−Horn given by Eq. (69). This choice would
introduce a new matter source that is associated with
assuming that the matter sector is also coupled to the
connection and amounts to a specific choice of covarian-
tization prescription as in Eq. (29). Thus, by taking
variations with respect to the metric and the connection,
we define the energy-momentum tensor and the hyper-
momentum tensor as

Tμν ¼ 2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
LmÞ

δgμν
; Δα

μν ¼ −2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
LmÞ

δΓα
μν

; ð77Þ

which for our case we would choose them in a way that
both respect the cosmological symmetries. Note again here
that the variation of the matter sector with respect to the
connection is established with respect to the flat one (not
the full connection).
For the energy-momentum tensor, we assume the stan-

dard perfect fluid given by

Tμν ¼ ρðtÞnμuν þ pðtÞhμν; ð78Þ

where ρ and p are the energy density and pressure of the
fluid. For the hypermomentum tensor we use the following
one [60]:

Δαμν ¼ ϕðtÞhμαnν þ χðtÞhναnμ þ ψðtÞnαhμν þ ωðtÞnαnμnν
þ ζðtÞϵαμνκnκ; ð79Þ

which is compatible with cosmological symmetries. In
general, this quantity is related to the intrinsic spin
(related to torsion) and the intrinsic dilations and shears

2Note that in [44], dots are differentiation with respect to the
conformal time.
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of nonmetricity. For a theory constructed only with the
nonmetricity tensor, Δ½αμ�ν ¼ 0, meaning that ψ ¼ χ and
then the hypermomentum would be

Δαμν ¼ ϕðtÞhμαnν þ 2ψðtÞnðαhμÞν þ ωðtÞnαnμnν
þ ζðtÞϵαμνκnκ: ð80Þ

By demanding that both LST−Horn and Lm are invariant
under diffeomorphisms separately, we can arrive at the
following energy-momentum-hypermomentum conserva-
tion law [44]:

ffiffiffiffiffiffi
−g

p ∇∘ νTμ
ν ¼ ∇ν∇ρðΔμ

νρ ffiffiffiffiffiffi
−g

p Þ: ð81Þ

It should be noted that the covariant derivatives on the
right-hand side of the above equation are computed with
respect to the teleparallel connection. For ST gravity, we
find that the above equation is given by

½_ρþ 3Hðρþ pÞ�nμ
¼ fω̈þ ð6H þ F1Þ _ωþ 3½ _H þHð3H þ F1Þ�ω
þ 3ðH þ F2 − F3Þ½ _ψ þ ð3H þ 2F1 þ 2F2Þψ �
þ 3ðH þ F2Þ½ _ϕþ _ψ þ 3Hðϕþ ψÞ�gnμ: ð82Þ

The cosmological equations would be related to varying
the scale factor aðtÞ, the lapse NðtÞ (the two FLRW
equations), the scalar field ϕðtÞ, and finally, the extra
d.o.f. coming from the connection component [which is
related to the functions FiðtÞ]. However, one can eliminate
one of the equations by using the above energy-momen-
tum-hypermomentum conservation law. In the next sec-
tions, instead of presenting the connection equation, we
will instead present the conservation laws.
The cosmological equations can be written as a combi-

nation of the Riemannian-Horndeski part and the ST gravity
part. Since there are three different ways of obtaining a flat
curvature, this means that there will be three different field
equations coming from the different branches.
The first FLRW field equation obtained by varying with

respect to the lapse function can be then written as (see
Ref. [11] for the Riemannian-Horndeski contribution)

−
1

2

�
EST þ

X5
i¼2

Ei

�
¼ κ2ρ; ð83Þ

where

E2 ¼ 2XG2;X −G2; ð84Þ

E3 ¼ 6X _ϕHG3;X − 2XG3;ϕ; ð85Þ
E4 ¼ −6H2G4 þ 24H2XðG4;X þ XG4;XXÞ

− 12HX _ϕG4;ϕX − 6H _ϕG4;ϕ; ð86Þ

E5 ¼ 2H3X _ϕð5G5;X þ 2XG5;XXÞ
− 6H2Xð3G5;ϕ þ 2XG5;ϕXÞ; ð87Þ

where G2;X ¼ ∂G2=∂X, G5;XX ¼ ∂
2G5=∂X2 and so on;

therefore commas denote differentiation.
Now, if one varies the action with respect to the scale

factor aðtÞ one gets the following set of equations:

1

2

�
PST þ

X5
i¼2

Pi

�
¼ −κ2p; ð88Þ

where

P2 ¼ G2; ð89Þ

P3 ¼ −2XðG3;ϕ þ ϕ̈G3;XÞ; ð90Þ

P4 ¼ 2ð3H2 þ 2 _HÞG4 − 12H2XG4;X − 4H _XG4;X

− 8 _HXG4;X − 8HX _XG4;XX þ 2ðϕ̈þ 2H _ϕÞG4;ϕ

þ 4XG4;ϕϕ þ 4Xðϕ̈ − 2H _ϕÞG4;ϕX; ð91Þ

P5 ¼ −2Xð2H3 _ϕþ 2H _H _ϕþ3H2ϕ̈ÞG5;X − 4H2X2ϕ̈G5;XX

þ 4HXð _X −HXÞG5;ϕX þ 2

�
2
d
dt

ðHXÞ þ 3H2X

�
G5;ϕ

þ 4HX _ϕG5;ϕϕ: ð92Þ

Furthermore, the variations with respect to the scalar
field give us

1

a3
d
dt

½a3ðJ þ J STÞ� ¼ Pϕ þ PϕST; ð93Þ

where

J ¼ _ϕG2;Xþ6HXG3;X −2 _ϕG3;ϕþ6H2 _ϕðG4;Xþ2XG4;XXÞ
−12HXG4;ϕXþ2H3Xð3G5;Xþ2XG5;XXÞ
−6H2 _ϕðG5;ϕþXG5;ϕXÞ; ð94Þ

Pϕ ¼ G2;ϕ − 2XðG3;ϕϕ þ ϕ̈G3;ϕXÞ þ 6ð2H2 þ _HÞG4;ϕ

þ 6Hð _X þ 2HXÞG4;ϕX − 6H2XG5;ϕϕ

þ 2H3X _ϕG5;ϕX: ð95Þ

The terms EST, PST, and PϕST are the ST contribution
that will be calculated for each branch in the next sections.
It should be noted that the variation with respect to the
connection only has a contribution from the ST part and
then, the hypermomentum tensor would only contribute in
the connection equation that we will not present in the
following sections since this equation can be omitted by

SEBASTIAN BAHAMONDE et al. PHYS. REV. D 107, 104024 (2023)

104024-16



considering (81). The cosmological equations for the ST
Horndeski pieces are involved. Then, we will show the
equations by splitting them into all the contributions as
follows:

EST ¼ −GST þ 2XGST;X þ EQi
þ EIi þ EJi þ E

GðiÞ
3

; ð96Þ

PST ¼ GST þ PQi
þ PIi þ PJi þ P

GðiÞ
3

; ð97Þ

J ST ¼ _ϕGST;X þ J Qi
þ J Ii þ J Ji þ J

GðiÞ
3

; ð98Þ

PϕST ¼ GST;ϕ þ PϕQi
þ PϕIi þ PϕJi þ P

ϕGðiÞ
3

: ð99Þ

Note again that in our convention, commas denote deriv-
atives. The first terms in the above equation correspond to
the fϕ; Xg derivative contributions which are independent
on the connection branch, and then, they have the same
form for all cosmological branches. The other terms are

split in contributions from Qi, Ii, Ji as (51) and GðiÞ
3

denoting the STKGB contributions. For all the branches,
the scalar field contribution coming from GST is the same
and it is given by

J Qi
¼ J Ii ¼ J Ji ¼ PϕQi

¼ 0; ð100Þ

PϕIi ¼
I1
_ϕ
GST;I1 þ

I2
_ϕ
GST;I2 ; ð101Þ

PϕJi ¼ 2
J1
_ϕ
GST;J1 þ 2

J2
_ϕ
GST;J2 þ 2

J5
_ϕ
GST;J5 þ 3

J9
_ϕ
GST;J9

þ 4
J10
_ϕ
GST;J10 ; ð102Þ

where the invariants take different forms for the branches
but the form of the equations can be written in the same
way. The contribution from STKGB has a different
behavior for the different branches. Hereafter, we will
show the cosmological equations for each branch but since
the equations coming from Ji and STKGB are cumber-
some, we will show them in Appendix D. Note that those
branches are obtained by taking the nonmetricity tensor
as (73) and then by setting Fi in a way that satisfies the
teleparallel condition, that is, vanishing general curvature.

A. Branch 1: F1 =K, F2 = −H, F3 = 0

The first branch which gives us a vanishing general
curvature is obtained when the functions appearing in the
nonmetricity tensor (73) become

F1 ¼ K; F2 ¼ −H; F3 ¼ 0; ð103Þ

with K ¼ KðtÞ. The function K is related to an extra degree
of freedom coming from the connection (or nonmetricity).

The form of the scalars related to the extension of L2 can be
written in terms of the following two scalars:

Q ¼ 6H2; Q1 ¼ −
1

4
ð3H þ KÞ2; ð104Þ

from where one finds that

Q2¼−
16

81

�
−3

ffiffiffiffiffiffiffiffiffi
−Q1

p
þ

ffiffiffiffiffiffiffi
6Q

p 	
2; Q3¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q2

p
; ð105Þ

I1¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2XQ1

p
; I2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2XQ2

p
;

J1¼−3X
ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q2

p
J2¼−3XQ2; J5¼−6XQ2; ð106Þ

J9 ¼ −3X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2XQ2

p
; J10 ¼ 9X2Q2;

Q4 ¼ J3 ¼ J4 ¼ J6 ¼ J7 ¼ J8 ¼ J11 ¼ J12 ¼ 0: ð107Þ

The scalars appearing in the STKGB theory [see (61)–(65)]
become

O1 ¼ −
3Hð3HþKÞ _ϕ2

2N2
; O2 ¼ −

7

3
; O3 ¼ −

7

9X
;

O4 ¼
7

9X
; O5 ¼ −

14HðH −KÞ _ϕ2

N2
: ð108Þ

Since some of the STKGB scalars are related by some
factors or by X, it is then convenient to introduce the
following function:

Ḡð2Þ
3 ðϕ; XÞ ¼ 9

7
XðGð5Þ

3 ðϕ; XÞ − Gð4Þ
3 ðϕ; XÞÞ − 3

7
Gð3Þ

3 ðϕ; XÞ

þ Gð2Þ
3 ðϕ; XÞ: ð109Þ

Then, the cosmological equations coming from STKGB

would depend only on Gð1Þ
3 ðϕ; XÞ and Ḡð2Þ

3 ðϕ; XÞ.
The contributions from ST gravity appearing in the first

cosmological equation (83) with (96) are

EQi
¼ 1

18
H2ð216GST;Q − 81GST;Q1

− 16GST;Q2
þ 36GST;Q3

Þ

−
1

18
HKð27GST;Q1

− 16GST;Q2
þ 12GST;Q3

Þ; ð110Þ

EIi ¼ −
ffiffiffiffiffiffiffiffiffi
X=2

p
3

ð3GST;I1ð6H þ KÞ þ 4GST;I2ðK − 2HÞÞ;
ð111Þ

while the corresponding contributions form the second
FLRW (88) with (97) become
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PQi
¼ 1

54
½Hð3Hð−216GST;Q þ 81GST;Q1

þ 16GST;Q2
− 36GST;Q3

Þ þ 81 _GST;Q1
þ 16 _GST;Q2

− 36ð _GST;Q3
þ 6 _GST;QÞÞ þ _Hð−216GST;Q þ 81GST;Q1

þ 16GST;Q2
− 36GST;Q3

Þ�

þ 1

54
K½3Hð27GST;Q1

− 16GST;Q2
þ 12GST;Q3

Þ þ 27 _GST;Q1
− 16 _GST;Q2

þ 12 _GST;Q3
�

þ _K

�
GST;Q1

2
−
8GST;Q2

27
þ 2GST;Q3

9

�
; ð112Þ

PIi ¼
ffiffiffiffiffiffiffiffiffi
X=2

p
9

½3Hð9GST;I1 − 4GST;I2Þ þ 9 _GST;I1 − 4 _GST;I2 �

þ 1

18
ð9GST;I1 − 4GST;I2Þϕ̈: ð113Þ

It should be noted again that the contributions coming from

Ji and GðiÞ
3 are written in Appendix D 1.

Finally, the energy-momentum-hypermomentum conser-
vation law for this branch (82) is reduced to

½_ρþ3HðρþpÞ�nμ
¼fω̈þð6HþKÞ _ωþ3½ _HþHð3HþKÞ�ωgnμ: ð114Þ

Clearly, when Gi ¼ Gð1Þ
3 ¼ Ḡð2Þ

3 ¼ 0 and GST ¼ −fðQÞ,
the equations coincide with the flat FLRW equations for
fðQÞ gravity reported in [30,44].

B. Branch 2: F1 = 2H + 1
KN

dK
dt , F2 = −H, F3 =K

The second branch giving a zero curvature is obtained by
setting the functions

F1 ¼ 2H þ
_K

KN
; F2 ¼ −H; F3 ¼ K; ð115Þ

where K ¼ KðtÞ is an additional degree of freedom that
comes from nonmetricity. In this branch, we find that all the
teleparallel scalars depend on N, H, K, dK=dt, and X. The
form of the scalars appearing in GST can be rewritten in
terms of three scalars, which can be chosen to be

Q ¼ 9HK þ 6H2 þ 3 _K
N

;

Q1 ¼ −
1

4N2

�
5HN þ

_K
K

�
2
;

Q2 ¼ −
4

9N2

�
HN þ

_K
K
− 2KN

�
2; ð116Þ

giving us

Q3 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q2

p
; I1 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2XQ1

p
;

I2 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2XQ2

p
; ð117Þ

J1 ¼
1

2
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Q1ð48Q1 − 72Q3 − 9Q2 þ 32QÞ

p
;

J2 ¼
1

2
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Q2ð48Q1 − 72Q3 − 9Q2 þ 32QÞ

p
; ð118Þ

J5 ¼−
2J21
3XQ1

; J9 ¼X
ffiffiffiffiffiffiffi
3J5

p
; J10 ¼−

3

2
XJ5; ð119Þ

Q4 ¼ J3 ¼ J4 ¼ J6 ¼ J7 ¼ J8 ¼ J11 ¼ J12 ¼ 0: ð120Þ

For this branch, the scalars appearing in the STKG theory
are not related as in the previous branch. They behave as

O1 ¼ −
3HX
K

ð5HK þ _KÞ; ð121Þ

O2¼H

�
28X _K
K

−32KX

�
þ28H2X−12

ffiffiffiffiffiffi
2X

p
Kϕ̈; ð122Þ

O3 ¼ −
12HX
K

ðHK þ _K − 2K2Þ; ð123Þ

O4 ¼ −
36HX2 _K

K
− 36H2X2 þ 24

ffiffiffi
2

p
KX3=2ϕ̈; ð124Þ

O5 ¼
36HX2 _K

K
þ 36H2X2 þ 12

ffiffiffi
2

p
KX3=2ϕ̈: ð125Þ

Thus, the corrections coming to the ST contributions in the
flat FLRW equations for the first FLRWequation (83) with
(96) are
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EQi
¼ 1

18
½H2ð216GST;Q − 225GST;Q1

− 16GST;Q2
− 60GST;Q3

Þ þ 2 _Kð27GST;Q þ 16GST;Q2
þ 6GST;Q3

Þ�

þ 1

9
HKð81GST;Q þ 16GST;Q2

þ 30GST;Q3
Þ −H _K

9K
ð45GST;Q1

þ 16GST;Q2
þ 36GST;Q3

Þ

−
_K2ð9GST;Q1

þ 16GST;Q2
þ 12GST;Q3

Þ
18K2

; ð126Þ

EIi ¼ −
ffiffiffiffiffiffi
2X

p

3K
½3GST;I1ð5HK þ _KÞ þ 4GST;I2ðHK þ _K − K2Þ�; ð127Þ

while for the second FLRW equation (88) with (97) we find

PQi
¼ 1

54
½Hð3Hð−216GST;Q þ 225GST;Q1

þ 16GST;Q2
þ 60GST;Q3

Þ þ 225 _GST;Q1
þ 16 _GST;Q2

þ 60 _GST;Q3

− 216 _GST;QÞ þ _Hð−216GST;Q þ 225GST;Q1
þ 16GST;Q2

þ 60GST;Q3
Þ�

þ 1

27
K½−3ðHð81GST;Q þ 16GST;Q2

þ 30GST;Q3
Þ þ 10 _GST;Q3

þ 27 _GST;QÞ − 16 _GST;Q2
�

− _K

�
3GST;Q þ 2

27
ð8GST;Q2

þ 15GST;Q3
Þ
�
þ 1

K

�
1

54
_Kð3Hð45GST;Q1

þ 16GST;Q2
þ 36GST;Q3

Þ þ 45 _GST;Q1

þ 16 _GST;Q2
þ 36 _GST;Q3

Þ þ 1

54
K̈ð45GST;Q1

þ 16GST;Q2
þ 36GST;Q3

Þ
�

−
_K2

K2

�
1

6
5GST;Q1

þ 2

27
ð4GST;Q2

þ 9GST;Q3
Þ
�
; ð128Þ

PIi ¼
ffiffiffiffiffiffiffiffiffi
X=2

p
9

½3Hð15GST;I1 þ 4GST;I2Þ þ 15 _GST;I1 þ 4 _GST;I2 � þ
1

18
ð15GST;I1 þ 4GST;I2Þϕ̈: ð129Þ

The contributions from Ji and GðiÞ
3 are written in the Appendix D 2. Finally, the conservation equation (82) leads to

½_ρþ 3Hðρþ pÞ�nμ ¼


ω̈þ

�
8H þ

_K
K

�
_ωþ 3

�
_H þH

�
5H þ

_K
K

��
ω − 3K

�
_ψ þ

�
5H þ 2

_K
K

�
ψ

��
nμ: ð130Þ

In principle, one would need to solve the above equation for
K to determine the form of the extra d.o.f. of nonmetricity
and then use this in the FLRW equations and the modified
Klein-Gordon one. This set of cosmological equations are
more involved than in the previous branch. Note that again
the equations coincide with the ones reported for the case of
fðQÞ gravity or newer GR in their respective limit [44].

C. Branch 3: F1 = −K − 1
K
dK
dt , F2 =K −H, F3 =K

The last branch satisfying the condition of having a flat
curvature is obtained when

F1 ¼ −K −
_K
K
; F2 ¼ K −H; F3 ¼ K; ð131Þ

where again KðtÞ is an additional degree of freedom related
to nonmetricity. Similarly, as in the previous branch, we
obtain that the scalars coming from GST are

Q¼−9HKþ6H2−
3 _K
N

; Q1¼−
ð−3HNþ _K

Kþ4KNÞ2
4N2

;

Q2¼−
4ðHNþ _K

Kþ2KNÞ2
9N2

; ð132Þ

from which one can reconstruct all the other ones:

Q3¼−
ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q2

p
; I1¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2XQ1

p
; I2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2XQ2

p
; ð133Þ

J1 ¼
1

2
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Q1ð48Q1 − 72Q3 − 9Q2 þ 32QÞ

p
;

J2 ¼
1

2
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Q2ð48Q1 − 72Q3 − 9Q2 þ 32QÞ

p
; ð134Þ

J5¼−
2J21
3XQ1

; J9¼−X
ffiffiffiffiffiffiffi
3J5

p
; J10¼−

3

2
XJ5; ð135Þ
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Q4 ¼ J3 ¼ J4 ¼ J6 ¼ J7 ¼ J8 ¼ J11 ¼ J12 ¼ 0: ð136Þ

One can notice that the relationships between the scalars
have the same form as the previous branch but with
different signs in I1, I2, and J9.
The scalars appearing in the STKG theory have the same

form:

O1 ¼ −
3HX
K

ð3HK − _K − 4K2Þ; ð137Þ

O2 ¼ −
4HX
K

ð7 _K þ 8K2Þ − 28H2X − 12
ffiffiffiffiffiffi
2X

p
Kϕ̈; ð138Þ

O3 ¼
12HX
K

ðHK þ _K þ 2K2Þ; ð139Þ

O4 ¼
36HX2 _K

K
þ 36H2X2 þ 24

ffiffiffi
2

p
KX3=2ϕ̈; ð140Þ

O5 ¼ −
36HX2 _K

K
− 36H2X2 þ 12

ffiffiffi
2

p
KX3=2ϕ̈; ð141Þ

where again we notice that they have a similar structure as
Branch 2.
Thus, the teleparallel contribution to the FLRW

equations [(83) with (96) and (88) with (97)] for the third
branch become

EQi
¼ 1

18
½H2ð216GST;Q − 81GST;Q1

− 16GST;Q2
þ 36GST;Q3

Þ − 2 _Kð27GST;Q þ 2ð9GST;Q1
þ 8GST;Q2

þ 9GST;Q3
ÞÞ�

þ 1

9
HKð−81GST;Q þ 54GST;Q1

− 16GST;Q2
þ 6GST;Q3

Þ þH _K
9K

½27GST;Q1
− 16GST;Q2

þ 12GST;Q3
�

−
_K2

18K2
½9GST;Q1

þ 16GST;Q2
þ 12GST;Q3

�; ð142Þ

EIi ¼
ffiffiffiffiffiffi
2X

p

3K
½GST;I1ð−9HK þ 3 _K þ 6K2Þ þ 4GST;I2ðHK þ _K þ K2Þ�; ð143Þ

PQi
¼ 1

54
½Hð3Hð−216GST;Q þ 81GST;Q1

þ 16GST;Q2
− 36GST;Q3

Þ þ 81 _GST;Q1
þ 16 _GST;Q2

− 36ð _GST;Q3
þ 6 _GST;QÞÞ

þ _Hð−216GST;Q þ 81GST;Q1
þ 16GST;Q2

− 36GST;Q3
Þ� þ 1

27
K½3Hð81GST;Q − 54GST;Q1

þ 16GST;Q2
− 6GST;Q3

Þ

− 54 _GST;Q1
þ 16 _GST;Q2

− 6 _GST;Q3
þ 81 _GST;Q� þ _K

�
3GST;Q − 2GST;Q1

þ 16GST;Q2

27
−
2GST;Q3

9

�

þ 1

K

�
1

54
_Kð−3Hð27GST;Q1

− 16GST;Q2
þ 12GST;Q3

Þ − 27 _GST;Q1
þ 16 _GST;Q2

− 12 _GST;Q3
Þ

−
1

54
K̈ð27GST;Q1

− 16GST;Q2
þ 12GST;Q3

Þ
�
þ

_K2

K2

�
GST;Q1

2
−
8GST;Q2

27
þ 2GST;Q3

9

�
; ð144Þ

PIi ¼
ffiffiffiffiffiffiffiffiffi
X=2

p
9

½3Hð9GST;I1 − 4GST;I2Þ þ 9 _GST;I1 − 4 _GST;I2 � þ
1

18
ð9GST;I1 − 4GST;I2Þϕ̈; ð145Þ

where again we have displayed the cosmological contributions coming from Ji and GðiÞ
3 in Appendix D 3.

The conservation equation (82) for this branch becomes

½_ρþ 3Hðρþ pÞ�nμ ¼


ω̈þ

�
6H − K −

_K
K

�
_ωþ 3

�
_H þH

�
3H − K −

_K
K

��
ωþ 3K½ _ϕþ _χ þ 3Hðϕþ χÞ�

�
nμ; ð146Þ

which again gives us an extra equation for K. One can mention that the form of the equations is very similar to the previous
branch but there are some different signs appearing in the equations. Therefore, even though both branches look similar, the
cosmological dynamics might give different descriptions of the Universe. The daunting task of analyzing their properties
and consequences in detail is beyond the scope of this paper and will be pursued in the future.
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VI. CONCLUSIONS

Scalar-tensor theories have attracted a lot of attention
since they are simple models that can explain observations
such as dark energy or inflation. One of the most famous
theories concerning them is Horndeski gravity which is the
most general theory with one scalar field leading to second-
order Euler-Lagrange equations, although the word “most”
is true under certain assumptions that sometimes are not
explicitly said. One of them is the fact that Horndeski found
his theory by assuming a manifold that only contains
curvature, which is the Riemannian geometry. If one
modifies the geometry as a starting point to construct
theories of gravity, then the resulting theory would be
different. As a family of theories, Riemannian-Horndeski
has a very varied phenomenology, but also highly patho-
logical subclasses and severe observational constraints in
some scenarios. Moreover, finding suitable UV comple-
tions has proven to be difficult [61]. For this reason, it is
important to explore other possible extensions of GR by
including scalar fields coupled to gravity. For this task, we
focused on the construction of another unexplored route
related to geometry based purely on nonmetricity and
possible couplings with a scalar field.
For this reason, we formulated a theory of gravity within

the same idea of Horndeski but in a torsionless and flat
geometry (zero curvature and torsion) endowed with non-
metricity (∇αgμν ≠ 0). In that geometry, nonmetricity is
responsible for generating the gravitational interactions,
and then, the metric and the flat connection are independent
fields. Since the definition of the nonmetricity tensor
contains only first derivatives of the metric, there is a
larger array of possibilities that lead to second-order Euler-
Lagrange field equations. As we have explained throughout
this manuscript, the form of the Horndeski ST gravity
Lagrangian can always be recast as the sum of the
Riemannian-Horndeski gravity Lagrangian plus a new
additional piece which exists only due to nonmetricity.
This means that even though the geometry assumed is
different from the Riemannian case, still, the Riemannian-
Horndeski theory is obtained. Then, the generic implicit
form of the theory can be written as Eq. (35) with the
unspecified form of the coefficients such that the theory
respects the condition of being at most second order.
In order to formulate the theory, in Sec. IVA we first

concentrated on its simplest construction which is by
considering that there are no higher-order derivatives acting
on nonmetricity such that those terms cannot be recast as
purely Riemannian contributions. By assuming that, it is
possible to write down an explicit form for the resulting
Lagrangian which is expressed in Eq. (53) and it has the
form of Horndeski plus a new independent function GST
which would correspond to the most general form of L2 in a
ST framework (within the condition of having at most
quadratic contractions of nonmetricity). That theory is the
analogous version of the torsional Horndeski gravity theory

presented in [45]. It should be noted here that the number of
invariants obtained in the torsional case for the extension of
L2 is smaller (12) compared to the nonmetricity teleparallel
case (21). The reason for this is the fact that nonmetricity
carries more d.o.f. than torsion and then, it is possible to
write many more invariants from nonmetricity (and then
couple them with a scalar field).
After formulating the teleparallel L2 extension, we

studied the case where higher-order derivatives can act
not only on the metric independent components (which
give Horndeski) but also in the nonmetricity sector which
could lead to purely teleparallel higher-order invariant
contributions. The general form of that general case can
be schematically written as in Eq. (35) and we showed two
different theories which respect the second-order condition
and have derivatives acting on the nonmetricity tensor. The
systematic way of constructing them requires finding the
correct counterbalance terms which cancel the higher-order
derivatives after performing variations. The first example,
which was presented in Sec. III D 3, with this property is
the generalized Proca action with only the Weyl part of the
nonmetricity tensor. Due to the mathematical nature of this
irreducible mode of nonmetricity, then, one can easily
notice that the generalized Proca action formulated in
Ref. [59] can be obtained from choosing the vector field
to be the Weyl part of nonmetricity Wμ and its vector field
norm is Q1 ¼ WμWμ. Thus, the mathematical form of this
Lagrangian is identical to the one presented in Ref. [59].
Secondly, we formulated a ST analogous version of the so-
called kinetic gravity braiding/cubic Horndeski theory [7]
by finding the corresponding L3 extensions coming from
nonmetricity with couplings between derivatives of the
scalar field and nonmetricity scalars which are linear in
nonmetricity. The final form of that theory, which we
labeled as symmetric teleparallel kinetic gravity braiding
theory was presented in Eq. (67). Again, our theory
contains the Riemannian kinetic braiding theory. In
Sec. IV C, we commented on a way of systematically
finding possible extensions to other higher-order terms
such as purely teleparallel L4 or L5 but we leave that
construction for future works.
After formulating the theory, we presented the flat

cosmological FLRW equations in Sec. V by considering
a theory constructed from the L2 extension and the STKGB
theory. To do this, we impose the condition that the flat
connection satisfies the cosmological symmetries. That
condition implies that there are three different branches
of cosmological equations since the condition leading to a
curvatureless manifold provides three different ways where
the connection is homogeneous and isotropic. This means
that there would be three different sets of equations
depending on the branch of the connection. Those equa-
tions generalize previous studies where particular cases of
our theory can be obtained, such as fðQÞ gravity, or newer
GR [44]. One important aspect of those cosmological
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equations is the fact that the ST contributions are highly
nontrivial even at the background level. In the torsional
case [45], the torsional teleparallel contributions from
the cosmological equations can be written only in term
of just four scalars ðϕ; X; T; I2Þ but in our ST Horndeski
case, the equations depend on many more invariants
(ϕ; X;Qi; Ii; J1; J2; J5; J9; J10). Furthermore, in the non-
metricity case, there are three sets of cosmological equa-
tions while in the torsion one, there is only one branch in
flat FLRW. This suggests that the phenomenology of the
cosmological equations for the ST Horndeski case would
be richer than both the teleparallel torsional and
Riemannian-Horndeski case. It would be interesting then
to study those cosmological equations to find out if our
theory can accommodate the cosmological observations
correctly.
In Fig. 1 we present a schematic representation of

possible different theories which belong to our ST
Horndeski gravity theory. In the lower corner of the figure,
we showed the sector where there are no higher-order
derivatives acting on nonmetricity, and the Riemannian-
Horndeski is switched off. Then, the theory is given
by (53). One can notice that several previous theories
can be obtained from assuming several limits related to
GST. The theories presented in the figure are only some
examples of known theories since the Lagrangian contains
a much richer form that could give theories of gravity that
have not been presented before. On the upper center part of
the diagram, we present the two examples of theories
containing derivatives acting on nonmetricity (that cannot
be recast as purely Riemannian) and still respecting the
conditions of having second-order Euler-Lagrange field
equations. Finally, the upper right part of the corner
represents the limit of the well-known Horndeski gravity
theory. Recall that the last part of the diagram leading to
GR would be equivalent to the lowest part of the diagram
which leads to STEGR (since those two theories have the
same equations of motion, i.e., the Einstein’s field equa-
tions). It is worth mentioning that due to the nature of ST
gravity, the maximum number of d.o.f. that Horndeski ST
gravity can have is 11 d.o.f. However, the propagating
d.o.f. of the theory would depend on the theory chosen
and a Hamiltonian analysis is needed to understand that.
In addition, the theory constructed does not have
Ostrogradsky ghosts but depending on the theory, one
could have other types of instabilities (as it happens in
Riemannian-Horndeksi gravity).
One potential problem of our formulated theory is the

possibility of having strongly coupled modes around
FLRW and Minkowski since there are some known ST
theories [such as fðQÞ] that might suffer from that problem
[30]. Furthermore, fðQÞ is also part of our theory, so that, if
one insists on trying to avoid those issues, one would need
to eliminate such dependence in our Lagrangian. After

saying this, still, the number of propagating degrees of
freedom in fðQÞ is under debate. For example, in [66], the
authors found that fðQÞ has 8 d.o.f. while in [30] the
authors claimed that the maximum number of d.o.f. is 6.
The study of cosmology has been mainly devoted to
understanding the first branch, so to our knowledge, there
is still not a final conclusion regarding strongly coupled
modes around FLRW for all the branches for fðQÞ gravity.
Moreover, the analysis for more general theories (using
Hamiltonian analysis and perturbation theory) has not been
studied yet.
Let us remark here that the cosmological equations of

our theory have a much richer structure than in the
Riemannian-Horndeski case. The reason for this is the
fact that our constructed theory contains the Riemannian-
Horndeski as a subset and new additional degrees of
freedom related to nonmetricity appear. Furthermore, due
to the nature of symmetric teleparallel geometry, there are
three sets of cosmological field equations. In this regard,
the structure of our theory has a richer cosmology than the
standard Horndeski and the repercussions in cosmology
need to be studied further in the future with great detail.
One important theory present in our construction is fðQÞ
gravity. Obviously, that theory does not appear in the
Riemannian-Horndeski and different studies [34,35,37,67]
have shown that already this theory can explain dark energy
purely with nonmetricity and the σ8 is reduced within this
framework. However, as explained above, one must take
those results with caution due to the strong coupling
problem. For that reason, our constructed theory which
contains both fðQÞ, Riemannian-Horndeski, and new
symmetric theories of gravity, can help one understand
the role of nonmetricity in cosmology and to solve the
strong coupling problem for this sector by allowing new
degrees of freedom as considered in our theory.
Since our formulated theory contains Horndeski gravity,

it is expected that the speed of tensor modes would be in
general different from one. However, as the theory is more
general, it is expected to have more possibilities satisfying
the condition cT ¼ 1 while still keeping nontrivial cou-
plings in the Riemannian-Horndeski sector given by G4

or G5, as well as to evade bounds from GW decay [68,69]
and/or from GW induced instabilities [70]. Actually, this
argument was already proved in [52] for the torsional
Horndeski gravity case where it was found that theory can
still provide cT ¼ 1 while having G4 and G5 being non-
trivial. As a future work, we would like to explore this
property in our ST theory presented in this manuscript. It
would be interesting to study the radiative stability of
theories within this framework, extending known results
from Riemannian-Horndeski and beyond Horndeski theo-
ries where a weakly broken Galilean symmetry ensures
their nonrenormalization [62,63], as well as how the
positivity bounds derived from the analyticity properties
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of the scattering amplitudes around Minkowski might be
affected in the presence of the extra gravitational d.o.f.
There are also plenty of applications that one can further
consider for the future such as scalarized black holes or
studying the possibility of explaining the cosmological

observations by our presented theory. Those studies will be
pursued in the future to then analyze if our presented theory
can solve the recent tensions in observational cosmology
and inspect if our theory can be considered as a potentially
viable extension of GR.

FIG. 1. Relationship between symmetric teleparallel Horndeski gravity and various theories are known in the literature. The blue
blocks are theories that need symmetric teleparallel gravity and the red ones are purely Riemannian theories (See Refs. [64,65]).
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APPENDIX A: REDUNDANT INVARIANTS
LINEAR IN SECOND DERIVATIVES AND IN Qαμν

These are all the possible invariants that can be con-

structed linear in ∇∘ λQαμν and then only factors of ϕ;ρ,

Ô1 ¼ ∇∘ μQμν
ν ¼ 4∇∘ μWμ; ðA1aÞ

Ô2 ¼ ∇∘ μQνμ
ν; ðA1bÞ

Ô3 ¼ ϕ;μϕ;ν∇∘ μQνα
α; ðA1cÞ

Ô4 ¼ ϕ;μϕ;ν∇∘ μQαν
α; ðA1dÞ

Ô5 ¼ ϕ;μϕ;ν∇∘ αQαμν; ðA1eÞ

Ô6 ¼ ϕ;μϕ;ν∇∘ αQμαν; ðA1fÞ

Ô7 ¼ ϕ;μϕ;νϕ;αϕ;β∇∘ μQναβ: ðA1gÞ

Multiplying these operators by generic functions of ϕ and
X, they can all be expressed up to total derivatives in terms
of the operators in Eq. (57) as follows:

F1Ô1 ¼ F1;XÕ3 − 4F1;ϕI1; ðA2aÞ

F2Ô2 ¼ F2;XÕ4 − F2;ϕ

�
9

4
I2 þ I1

�
; ðA2bÞ

F3Ô3 ¼ −F3ðÕ1 þ Õ3Þ þ F3XÕ8 þ 8F3ϕXI1; ðA2cÞ

F4Ô4 ¼ −F4ðÕ2 þ Õ4Þ þ F4XÕ9 þ 2F4;ϕX

�
9

4
I2 þ I1

�

ðA2dÞ

F5Ô5 ¼ −2F5Õ5 þ F5XÕ11 − F5ϕϕ
;αϕ;μϕ;νQαμν ðA2eÞ

F6Ô6 ¼ −F6ðÕ5 þ Õ6Þ þ F6;XÕ10 − F6;ϕϕ
;αϕ;μϕ;νQαμν;

ðA2fÞ

F7Ô7 ¼ −F7ðÕ7 þ 2Õ10 þ Õ11Þ þ F7;XÕ12

þ 2F7;ϕXϕ;αϕ;μϕ;νQαμν: ðA2gÞ

In the context of the construction of L3, we are allowed
to discard the last term of each of these equations (the
ones with ϕ derivatives of the Fi functions), as they do
not contain second derivatives and therefore belong
in L2.

APPENDIX B: VARIATIONS

Variations with respect to ϕ of the invariants in Eq. (57),
multiplied by generic functions of ϕ and X are (only
keeping terms which contain at least three derivatives)

δϕðG̃ð1Þ
3 Õ1Þ ⊃ G̃ð1Þ

3Xϕ
;μϕ;ρQμν

νð∇∘ ρ□
∘
ϕ −□

∘ ∇∘ ρϕÞ þ G̃ð1Þ
3 ½Qμν

νð□
∘ ∇∘ μϕ −∇∘ μ

□

∘
ϕÞ þ ϕ;μ

□

∘
Qμν

ν�; ðB1aÞ

δϕðḠð2Þ
3 Õ2Þ ⊃ G̃ð2Þ

3Xϕ
;μϕ;ρQνμ

νð∇∘ ρ□
∘
ϕ −□

∘ ∇∘ ρϕÞ þ Ḡð2Þ
3 ½Qνμ

νð□
∘ ∇∘ μϕ −∇∘ μ

□

∘
ϕÞ þ ϕ;μ

□

∘
Qνμ

ν�; ðB1bÞ

δϕðG̃ð3Þ
3 Õ3Þ ⊃ G̃ð3Þ

3Xϕ
;ρϕ;αQβμ

μ½∇∘ ρ∇
∘
α∇∘ βϕ −∇∘ α∇∘ β∇∘ ρϕ� þ G̃ð3Þ

3 ½Qβμ
μð∇∘ β

□

∘
ϕ −□

∘ ∇∘ βϕÞ þ ϕ;α∇
∘
β∇∘ αQβμ

μ�; ðB1cÞ

δϕðG̃ð4Þ
3 Õ4Þ ⊃ G̃ð4Þ

3Xϕ
;ρϕ;αQμβ

μ½∇∘ ρ∇
∘
α∇∘ βϕ −∇∘ α∇∘ β∇∘ ρϕ� þ G̃ð4Þ

3 ½Qμβ
μð∇∘ β

□

∘
ϕ −□

∘ ∇∘ βϕÞ þ ϕ;α∇
∘
β∇∘ αQμβ

μ�; ðB1dÞ

δϕðG̃ð5Þ
3 Õ5Þ ⊃ G̃ð5Þ

3Xϕ
;ρϕ;μQαμβ½∇

∘
ρ∇
∘
α∇∘ βϕ −∇∘ α∇∘ β∇∘ ρϕ� þ G̃ð5Þ

3 ½Qαμβð∇
∘
α∇∘ β∇∘ μϕ −∇∘ μ∇∘ α∇∘ βϕÞ þ ϕ;μ∇∘ β∇∘ αQαμβ�; ðB1eÞ
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δϕðG̃ð6Þ
3 Õ6Þ ⊃ G̃ð6Þ

3Xϕ
;μϕ;ρQμαβð∇

∘
ρ∇
∘
α∇∘ βϕ −∇∘ α∇∘ β∇∘ ρϕÞ þ G̃ð6Þ

3 ½ϕ;μ∇∘ α∇∘ βQμαβ þQμαβð∇
∘
μ∇∘ α∇∘ βϕ −∇∘ α∇∘ β∇∘ μϕÞ�; ðB1fÞ

δϕðG̃ð7Þ
3 Õ7Þ ⊃ G̃ð7Þ

3Xϕ
;μϕ;νϕ;ρϕ;αQμναð∇

∘
ρ□
∘
ϕ −□

∘ ∇∘ ρϕÞ þ G̃ð7Þ
3 ϕ;νϕ;μϕ;α

□

∘
Qμνα

þ G̃ð7Þ
3 ϕ;νQμνα½2ϕ;μð□

∘ ∇∘ αϕ −∇∘ α
□

∘
ϕÞ þ ϕ;αð∇∘ μ

□

∘
ϕ −□

∘ ∇∘ μϕÞ�; ðB1gÞ

δϕðG̃ð8Þ
3 Õ8Þ ⊃ G̃ð8Þ

3Xϕ
;μϕ;νϕ;ρϕ;αQνβ

βð∇∘ ρ∇
∘
μ∇
∘
αϕ −∇∘ μ∇

∘
α∇
∘
ρϕÞ þ G̃ð8Þ

3 ϕ;αϕ;μϕ;ν∇∘ μ∇
∘
αQνβ

β

þ G̃ð8Þ
3 ϕ;αQνβ

β½2ϕ;νð∇∘ α□
∘
ϕ −□

∘ ∇∘ αϕÞ þ ϕ;μð∇∘ μ∇
∘
α∇
∘
νϕ −∇∘ ν∇∘ μ∇

∘
αϕÞ�; ðB1hÞ

δϕðG̃ð9Þ
3 Õ9Þ ⊃ G̃ð9Þ

3Xϕ
;μϕ;νϕ;ρϕ;αQβν

βð∇∘ ρ∇
∘
μ∇
∘
αϕ −∇∘ μ∇

∘
α∇
∘
ρϕÞ þ G̃ð9Þ

3 ϕ;αϕ;μϕ;ν∇∘ μ∇
∘
αQβν

β

þ G̃ð9Þ
3 ϕ;αQβν

β½2ϕ;νð∇∘ α□
∘
ϕ −□

∘ ∇∘ αϕÞ þ ϕ;μð∇∘ μ∇
∘
α∇
∘
νϕ −∇∘ ν∇∘ μ∇

∘
αϕÞ�; ðB1iÞ

δϕðG̃ð10Þ
3 Õ10Þ ⊃ G̃ð10Þ

3X ϕ;μϕ;νϕ;ρϕ;αQμν
βð∇∘ ρ∇

∘
β∇
∘
αϕ −∇∘ β∇

∘
α∇
∘
ρϕÞ þ G̃ð10Þ

3 ϕ;αϕ;μϕ;ν∇∘ β∇
∘
αQμν

β

þ G̃ð10Þ
3 Qμν

β½ϕ;αϕ;νð∇∘ β∇
∘
α∇
∘
μϕ −∇∘ μ∇∘ β∇

∘
αϕÞ þ ϕ;μϕ;νð∇∘ β□

∘
ϕ −□

∘ ∇∘ βϕÞ
þ ϕ;αϕ;μð∇∘ β∇

∘
α∇
∘
νϕ −∇∘ ν∇∘ β∇

∘
αϕÞ�; ðB1jÞ

δϕðG̃ð11Þ
3 Õ11Þ ⊃ G̃ð11Þ

3X ϕ;μϕ;νϕ;ρϕ;αQβ
μνð∇

∘
ρ∇
∘
β∇
∘
αϕ −∇∘ β∇

∘
α∇
∘
ρϕÞ þ G̃ð11Þ

3 ϕ;αϕ;μϕ;ν∇∘ β∇
∘
αQβ

μν

þ G̃ð11Þ
3 Qβ

μν½ϕ;αϕ;νð∇∘ β∇
∘
α∇
∘
μϕ −∇∘ μ∇∘ β∇

∘
αϕÞ þ ϕ;μϕ;νð∇∘ β□

∘
ϕ −□

∘ ∇∘ βϕÞ
þ ϕ;αϕ;μð∇∘ β∇

∘
α∇
∘
νϕ −∇∘ ν∇∘ β∇

∘
αϕÞ�; ðB1kÞ

δϕðG̃ð12Þ
3 Õ12Þ ⊃ G̃ð12Þ

3X ϕ;μϕ;νϕ;ρϕ;σϕ;αϕ;βQμναð∇∘ β∇
∘
ρ∇
∘
σϕ −∇∘ ρ∇

∘
σ∇
∘
σϕÞ þ G̃ð12Þ

3 ϕ;μϕ;νϕ;ρϕ;σϕ;α∇∘ ρ∇
∘
σQμνα

þ 2G̃ð12Þ
3 Qμναϕ

;μϕ;νϕ;σ½ϕ;ρð∇∘ ρ∇
∘
σ∇
∘
αϕ −∇∘ α∇∘ ρ∇

∘
σϕÞ þ ϕ;αð∇∘ σ□

∘
ϕ −□

∘ ∇∘ σϕÞ�
þ G̃ð12Þ

3 ϕ;νϕ;ρϕ;σϕ;αQμναð∇
∘
ρ∇
∘
σ∇
∘
μϕ −∇∘ μ∇∘ ρ∇

∘
σϕÞ; ðB1lÞ

Variations with respect to gμν are (only keeping terms
with at least three derivatives)

δ

δgμν
ðG̃ð1Þ

3 Õ1Þ ⊃ −G̃ð1Þ
3 ϕ;αgμν□

∘ ∇∘ αϕ; ðB2aÞ

δ

δgμν
ðḠð2Þ

3 Õ2Þ ⊃ −Ḡð2Þ
3 ϕ;μ

□

∘ ∇∘ νϕ; ðB2bÞ

δ

δgμν
ðG̃ð3Þ

3 Õ3Þ ⊃ −G̃ð3Þ
3 ϕ;αgμν□

∘ ∇∘ αϕ; ðB2cÞ

δ

δgμν
ðG̃ð4Þ

3 Õ4Þ ⊃ −G̃ð4Þ
3 ϕ;α∇

∘
μ∇∘ α∇∘ νϕ; ðB2dÞ

δ

δgμν
ðG̃ð5Þ

3 Õ5Þ ⊃ −G̃ð5Þ
3 ϕ;μ

□

∘ ∇∘ νϕ; ðB2eÞ

δ

δgμν
ðG̃ð6Þ

3 Õ6Þ ⊃ −G̃ð6Þ
3 ϕ;α∇

∘
α∇∘ μ∇∘ νϕ; ðB2fÞ

δ

δgμν
ðG̃ð7Þ

3 Õ7Þ ⊃ −G̃ð7Þ
3 ϕ;μϕ;νϕ;α∇∘ α□

∘
ϕ; ðB2gÞ

δ

δgμν
ðG̃ð8Þ

3 Õ8Þ ⊃ −G̃ð8Þ
3 ϕ;αϕ;βϕ;ρgμν∇∘ ρ∇

∘
α∇
∘
βϕ; ðB2hÞ

δ

δgμν
ðG̃ð9Þ

3 Õ9Þ ⊃ −G̃ð9Þ
3 ϕ;ρϕ;νϕ;αgβμ∇∘ β∇

∘
α∇
∘
ρϕ; ðB2iÞ

δ

δgμν
ðG̃ð10Þ

3 Õ10Þ ⊃ −G̃ð10Þ
3 ϕ;ρϕ;νϕ;αgβμ∇∘ ρ∇

∘
α∇
∘
βϕ; ðB2jÞ

δ

δgμν
ðG̃ð11Þ

3 Õ11Þ ⊃ −G̃ð11Þ
3 ϕ;μϕ;νϕ;α

□

∘ ∇∘ αϕ; ðB2kÞ

δ

δgμν
ðG̃ð12Þ

3 Õ12Þ⊃−G̃ð12Þ
3 ϕ;μϕ;νϕ;αϕ;ρϕ;σ∇∘ α∇

∘
ρ∇
∘
σϕ; ðB2lÞ
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Variations with respect to the connection do not give rise to
terms containing third derivatives, since it enters in the
scalars without any derivatives acting on it.

APPENDIX C: INVARIANTS LINEAR IN SECOND
DERIVATIVES AND IN IRREDUCIBLE

COMPONENTS OF Qαμν

The invariants in Eq. (57) can be broken into the
irreducible components of nonmetricity:

Õ1 ¼ ϕ;μQμν
ν
□

∘
ϕ ¼ 4OW1; ðC1aÞ

Õ2 ¼ ϕ;μQνμ
ν
□

∘
ϕ ¼ 9

4
OΛ1 þOW1; ðC1bÞ

Õ3 ¼ ϕ;αQβμ
μ∇∘ α∇∘ βϕ ¼ 4OW2; ðC1cÞ

Õ4 ¼ ϕ;αQμβ
μ∇∘ α∇∘ βϕ ¼ 9

4
OΛ2 þOW2; ðC1dÞ

Õ5 ¼ ϕ;μQαμβ∇
∘
α∇∘ βϕ

¼ OW2 þ
1

4
OΛ2 þ

1

2
OΛ1 þ

1

6
OΩ1 þOq1; ðC1eÞ

Õ6 ¼ ϕ;μQμαβ∇
∘
α∇∘ βϕ

¼ OW1 þOΛ2 −
1

4
OΛ1 −

1

3
OΩ1 þOq1; ðC1fÞ

Õ7 ¼ ϕ;μϕ;νϕ;αQμνα□
∘
ϕ

¼ −2XOW1 −
3

2
XOΛ1 þOq2; ðC1gÞ

Õ8 ¼ ϕ;μϕ;νϕ;αQνβ
β∇∘ μ∇

∘
αϕ ¼ 4OW3; ðC1hÞ

Õ9 ¼ ϕ;μϕ;νϕ;αQβν
β∇∘ μ∇

∘
αϕ ¼ 9

4
OΛ3 þOW3; ðC1iÞ

Õ10 ¼ ϕ;μϕ;νϕ;αQμν
β∇∘ α∇

∘
βϕ

¼ OW3 − XOΛ2 þ
1

4
OΛ3 þ

1

6
OΩ2 þOq3; ðC1jÞ

Õ11 ¼ ϕ;μϕ;νϕ;αQβ
μν∇

∘
α∇
∘
βϕ

¼ −2XOW2 þOΛ3 þ
1

2
XOΛ2 −

1

3
OΩ2 þOq3; ðC1kÞ

Õ12 ¼ ϕ;μϕ;νϕ;αϕ;ρϕ;σQμνα∇
∘
ρ∇
∘
σϕ

¼ −2XOW3 −
3

2
XOΛ3 þOq4; ðC1lÞ

where the alternative basis of 12 invariants constructed
using the irreducible components of nonmetricity are
defined as follows:

OW1 ¼ Wμϕ
;μ
□

∘
ϕ; ðC2aÞ

OW2 ¼ Wαϕ;β∇
∘
α∇∘ βϕ; ðC2bÞ

OW3 ¼ Wμϕ
;μϕ;αϕ;β∇∘ α∇

∘
βϕ; ðC2cÞ

OΛ1 ¼ Λμϕ
;μ
□

∘
ϕ; ðC2dÞ

OΛ2 ¼ Λαϕ;β∇
∘
α∇∘ βϕ; ðC2eÞ

OΛ3 ¼ Λμϕ
;μϕ;αϕ;β∇∘ α∇

∘
βϕ; ðC2fÞ

OΩ1 ¼ �Ωαβμϕ
;μ∇∘ α∇∘ βϕ; ðC2gÞ

OΩ2 ¼ �Ωαβμϕ
;αϕ;βϕ;ν∇

∘
μ∇∘ νϕ; ðC2hÞ

Oq1 ¼ qαβμϕ;μ∇∘ α∇∘ βϕ; ðC2iÞ

Oq2 ¼ qαβμϕ;μϕ;αϕ;β
□

∘
ϕ; ðC2jÞ

Oq3 ¼ qαβμϕ;αϕ;βϕ;ν∇
∘
μ∇∘ νϕ; ðC2kÞ

Oq4 ¼ qαβμϕ;μϕ;αϕ;βϕ;ρϕ;σ∇∘ ρ∇
∘
σϕ: ðC2lÞ

APPENDIX D: FLRW COSMOLOGICAL
EQUATIONS FOR Ji AND STKGB

CONTRIBUTIONS

In Sec. V we computed the FLRW for the contributions
coming from the theory (69). However, the explicit form for
the contributions from Ji and STKG was omitted due to its
cumbersome expressions. For completeness, we present
them here.
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1. First branch

For the first branch (see Sec. VA), the contributions from Ji for the two flat FLRW equations are the following:

EJi ¼ 2KXð3GST;J1H − 4Hð−5GST;J10X þ GST;J2 þ 2GST;J5Þ þ 3
ffiffiffi
2

p
GST;J9

ffiffiffiffi
X

p
Þ

−
4

3
HXðHð9GST;J1 þ 18GST;J10X − 4GST;J2 − 8GST;J5Þ þ 6

ffiffiffi
2

p
GST;J9

ffiffiffiffi
X

p
Þ

þ 2

3
K2X½3GST;J1 þ 4ð−6GST;J10X þ GST;J2 þ 2GST;J5Þ�; ðD1Þ

PJi ¼
2

9
X½ _Hð9GST;J1 − 4ð−3GST;J10X þ GST;J2 þ 2GST;J5ÞÞ þ 3H2ð9GST;J1 − 4ð−3GST;J10X þGST;J2 þ 2GST;J5ÞÞ

þHð12 _GST;J10X þ 9 _GST;J1 − 4 _GST;J2 − 8 _GST;J5 þ 9
ffiffiffiffiffiffi
2X

p
GST;J9Þ þ 3

ffiffiffiffiffiffi
2X

p
_GST;J9 �

þ K

�
2

9
Xð3Hð−3GST;J1 þ 4GST;J2 þ 8GST;J5Þ − 12Xð3GST;J10H þ _GST;J10Þ − 3 _GST;J1 þ 4 _GST;J2 þ 8 _GST;J5Þ

þ 2

9

ffiffiffiffiffiffi
2X

p
ϕ̈ð4ð−6GST;J10X þ GST;J2 þ 2GST;J5Þ − 3GST;J1Þ

�

þ ϕ̈

�
2

9

ffiffiffiffiffiffi
2X

p
Hð9GST;J1 − 4ð−6GST;J10X þ GST;J2 þ 2GST;J5ÞÞ þ 2GST;J9X

�

þ 2

9
X _K½4ð−3GST;J10X þ GST;J2 þ 2GST;J5Þ − 3GST;J1 �; ðD2Þ

and the contributions from the STKG (the two FLRW plus the scalar field contribution) are

E
GðiÞ

3

¼ 2HKX½Xð28Ḡð2Þ
3;X − 3Gð1Þ

3;XÞ þ 28Ḡð2Þ
3 − 3Gð1Þ

3 � −H2X½2Xð28Ḡð2Þ
3;X þ 9Gð1Þ

3;XÞ þ 84Ḡð2Þ
3 þ 27Gð1Þ

3 �; ðD3Þ

P
GðiÞ

3

¼ 1

3
X½

ffiffiffiffiffiffi
2X

p
ð56HḠð2Þ

3;ϕ − 28KḠð2Þ
3;ϕ þ 18HGð1Þ

3;ϕ þ 3KGð1Þ
3;ϕÞ þ 28ð2 _H þ 3H2 − _KÞḠð2Þ

3 þ 3ð6 _H þ 9H2 þ _KÞGð1Þ
3 �

þ 1

3

ffiffiffiffiffiffi
2X

p
ϕ̈½Xð56HḠð2Þ

3;X − 28KḠð2Þ
3;X þ 18HGð1Þ

3;X þ 3KGð1Þ
3;XÞ þ 28ð2H − KÞḠð2Þ

3 þ 3ð6H þ KÞGð1Þ
3 �; ðD4Þ

J
GðiÞ

3

¼ 0; ðD5Þ

P
GðiÞ

3

¼ O1G
ð1Þ
3;ϕ þO2Ḡ

ð2Þ
3;ϕ; J

GðiÞ
3

¼ 1

_ϕ
O1G

ð1Þ
3;ϕ½2Gð1Þ

3 þ _ϕ2Gð1Þ
3;X� þ

1

_ϕ
O2½2Ḡð2Þ

3 þ _ϕ2Ḡð2Þ
3;X�: ðD6Þ

2. Second branch

For the second branch (see Sec. V B), the contributions from Ji for the two flat FLRW equations are

EJi ¼
8X _K
3K

½Hð9GST;J1 − 18GST;J10X þ 4GST;J2 þ 8GST;J5Þ þ 3
ffiffiffiffiffiffi
2X

p
GST;J9 � þ KX½15GST;J1H

− 4Hð10GST;J10X þ GST;J2 − 4GST;J5Þ þ 6
ffiffiffiffiffiffi
2X

p
GST;J9 � þ

4

3
H2X½15GST;J1 − 18GST;J10X

þ 4GST;J2 þ 8GST;J5 � þ
4X _K2

3K2
ð3GST;J1 − 18GST;J10X þ 4GST;J2 þ 8GST;J5Þ þ 8

ffiffiffi
2

p
GST;J9HX3=2

þ X _K½3GST;J1 − 4ð10GST;J10X þ GST;J2 − 4GST;J5Þ� −
16

3
K2Xð3GST;J10X þGST;J2 − GST;J5Þ; ðD7Þ
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PJi ¼
2

9
X½−Hð3Hð15GST;J1 þ 4GST;J2 þ 8GST;J5Þ þ 15 _GST;J1 þ 4 _GST;J2 þ 8 _GST;J5Þ

− _Hð15GST;J1 þ 4GST;J2 þ 8GST;J5Þ þ 12XðGST;J10ð _H þ 3H2Þ þ _GST;J10HÞ − 3
ffiffiffiffiffiffi
2X

p
ð3GST;J9H þ _GST;J9Þ�

þ 1

K

�
_K
�
2

9
Xð−3Hð9GST;J1 þ 4GST;J2 þ 8GST;J5Þ þ 12Xð3GST;J10H þ _GST;J10Þ − 9 _GST;J1 − 4 _GST;J2 − 8 _GST;J5Þ

−
2

9

ffiffiffiffiffiffi
2X

p
ϕ̈f9GST;J1 þ 4ð−6GST;J10X þGST;J2 þ 2GST;J5Þg

�
−
2

9
XK̈ð9GST;J1 þ 4ð−3GST;J10X þ GST;J2 þ 2GST;J5ÞÞ

�

þ K

�
1

9
Xð3Hð4ð6GST;J10X þGST;J2 − 4GST;J5Þ − 15GST;J1Þ þ 24 _GST;J10X − 15 _GST;J1

þ 4 _GST;J2 − 16 _GST;J5Þ þ
1

9

ffiffiffi
2

p ffiffiffiffi
X

p
ϕ̈ð4ð12GST;J10X þGST;J2 − 4GST;J5Þ − 15GST;J1Þ

�

þ ϕ̈

�
−
2

9

ffiffiffiffiffiffi
2X

p
Hð15GST;J1 þ 4GST;J2 þ 8GST;J5Þ þ

16

3

ffiffiffi
2

p
GST;J10HX3=2 − 2GST;J9X

�

þ 2X _K2

9K2
ð9GST;J1 þ 4ð−3GST;J10X þ GST;J2 þ 2GST;J5ÞÞ þ

1

9
X _Kð4ð6GST;J10X þ GST;J2 − 4GST;J5Þ − 15GST;J1Þ; ðD8Þ

and the contributions from GðiÞ
3 for the two flat FLRW equations are

E
GðiÞ

3

¼ 1

K
½72HX3 _KðGð5Þ

3;X − Gð4Þ
3;XÞ þ 2HX2 _Kð90Gð5Þ

3 − 3ð30Gð4Þ
3 þ Gð1Þ

3;X þ 4Gð3Þ
3;XÞ þ 28Gð2Þ

3;XÞ

− 3HX _Kð3Gð1Þ
3 þ 12Gð3Þ

3 − 28Gð2Þ
3 Þ� þ K½−24

ffiffiffi
2

p
X5=2ðGð5Þ

3;ϕ þ 2Gð4Þ
3;ϕÞ − 8HX2ð9Gð5Þ

3 þ 18Gð4Þ
3

− 6Gð3Þ
3;X þ 8Gð2Þ

3;XÞ þ 8HXð6Gð3Þ
3 þGð2Þ

3 Þ þ 24
ffiffiffi
2

p
X3=2Gð2Þ

3;ϕ� þ 72H2X3ðGð5Þ
3;X − Gð4Þ

3;XÞ
þ 2X2½6ð15H2 − 2 _KÞGð5Þ

3 − 6ð15H2 þ 4 _KÞGð4Þ
3 þH2ð−15Gð1Þ

3;X − 12Gð3Þ
3;X þ 28Gð2Þ

3;XÞ�
þ X½24 _KGð2Þ

3 − 3H2ð15Gð1Þ
3 þ 12Gð3Þ

3 − 28Gð2Þ
3 Þ�; ðD9Þ

P
GðiÞ

3

¼ 1

3K
½

ffiffiffiffiffiffi
2X

p
ϕ̈ð−4Gð2Þ

3 K2 þ 36Gð5Þ
3 XK2 þ 72Gð4Þ

3 XK2 − 24XGð3Þ
3;XK

2 þ 32XGð2Þ
3;XK

2 − 56Gð2Þ
3 HK

− 144Gð5Þ
3 HXK þ 144Gð4Þ

3 HXK − 72HX2Gð5Þ
3;XK þ 72HX2Gð4Þ

3;XK þ 30HXGð1Þ
3;XK þ 24HXGð3Þ

3;XK

− 56HXGð2Þ
3;XK − 28Gð2Þ

3
_K − 72Gð5Þ

3 X _K þ 72Gð4Þ
3 X _K þ 3Gð1Þ

3 ð10HK þ _KÞ þ 12Gð3Þ
3 ð−2K2 þ 2HK þ _KÞ

− 36X2 _KGð5Þ
3;X þ 36X2 _KGð4Þ

3;X þ 3X _KGð1Þ
3;X þ 12X _KGð3Þ

3;X − 28X _KGð2Þ
3;XÞ�

þ X
3K2

½−72
ffiffiffi
2

p
HK2Gð5Þ

3;ϕX
3=2 − 36

ffiffiffi
2

p
K _KGð5Þ

3;ϕX
3=2 þ 72HK2

ffiffiffi
2

p
Gð4Þ

3;ϕX
3=2 þ 36K

ffiffiffi
2

p
_KGð4Þ

3;ϕX
3=2

− 108Gð5Þ
3 H2K2X þ 108Gð4Þ

3 H2K2X þ 36Gð5Þ
3

_K2X − 36Gð4Þ
3

_K2X − 72Gð5Þ
3 K2 _HX þ 72Gð4Þ

3 K2 _HX

− 36Gð5Þ
3 KK̈X þ 36Gð4Þ

3 KK̈X − 84Gð2Þ
3 H2K2 þ 28Gð2Þ

3
_K2 − 56Gð2Þ

3 K2 _H þ 32Gð2Þ
3 K2 _K − 28Gð2Þ

3 KK̈

þ 3Gð1Þ
3 ð15H2K2 þ 10 _HK2 þ K̈K − _K2Þ þ 12Gð3Þ

3 ð3H2K2 þ 2ð _H − _KÞK2 þ K̈K − _K2Þ
þ 30HK2

ffiffiffi
2

p ffiffiffiffi
X

p
Gð1Þ

3;ϕ þ 3K
ffiffiffi
2

p ffiffiffiffi
X

p
_KGð1Þ

3;ϕ − 24
ffiffiffi
2

p
K3

ffiffiffiffi
X

p
Gð3Þ

3;ϕ þ 24HK2
ffiffiffi
2

p ffiffiffiffi
X

p
Gð3Þ

3;ϕ þ 12K
ffiffiffi
2

p ffiffiffiffi
X

p
_KGð3Þ

3;ϕ

− 56
ffiffiffi
2

p
HK2

ffiffiffiffi
X

p
Gð2Þ

3;ϕ þ 32K3
ffiffiffi
2

p ffiffiffiffi
X

p
Gð2Þ

3;ϕ − 28
ffiffiffi
2

p
K

ffiffiffiffi
X

p
_KGð2Þ

3;ϕ�; ðD10Þ
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J
GðiÞ

3

¼ 1

_ϕ
O1G

ð1Þ
3;ϕ½2Gð1Þ

3 þ _ϕ2Gð1Þ
3;X� þ

4 _ϕ

K
½ð7H þ 3KÞ _K þHKð7H þ KÞ�Gð2Þ

3 þ 12K _ϕ2Gð2Þ
3;ϕ

þ 2H _ϕ3

K
½7HK þ 7 _K − 8K2�Gð2Þ

3;X −
12 _ϕ3

K
½ð3H þ KÞ _K þ 3HKðH þ KÞ�Gð4Þ

3 − 12K _ϕ4Gð4Þ
3;ϕ

−
9H _ϕ5

K
ðHK þ _KÞGð4Þ

3;X þ 6 _ϕ3

K
Gð5Þ

3 ½ð6H − KÞ _K þ 3HKð2H − KÞ� − 6K _ϕ4Gð5Þ
3;ϕ

þ 9H _ϕ5

K
½HK þ _K�Gð5Þ

3;X þ 1

_ϕ
O3½2Gð3Þ

3 þ _ϕ2Gð3Þ
3;X�; ðD11Þ

P
GðiÞ

3

¼ O1G
ð1Þ
3;ϕ þO2G

ð2Þ
3;ϕ þO3G

ð3Þ
3;ϕ þO4G

ð4Þ
3;ϕ þO5G

ð5Þ
3;ϕ: ðD12Þ

3. Third branch

For the third branch (see Sec. V C), the contributions from Ji for the two flat FLRW equations are

EJi ¼ −
1

3K
½8X _KðHð3GST;J1 þ 18GST;J10X − 4GST;J2 − 8GST;J5Þ þ 3

ffiffiffi
2

p
GST;J9

ffiffiffiffi
X

p
Þ�

þ KX½21GST;J1H þ 4Hð10GST;J10X þGST;J2 − 4GST;J5Þ þ 6
ffiffiffi
2

p
GST;J9

ffiffiffiffi
X

p
�

þ 4

3
H2Xð−9GST;J1 − 18GST;J10X þ 4GST;J2 þ 8GST;J5Þ þ

4X _K2

3K2
ð3GST;J1 − 18GST;J10X þ 4GST;J2 þ 8GST;J5Þ

þ X _Kð9GST;J1 þ 4ð10GST;J10X þGST;J2 − 4GST;J5ÞÞ −
8

3
K2Xð3GST;J1 þ 6GST;J10X þ 2GST;J2 − 2GST;J5Þ

− 8
ffiffiffi
2

p
GST;J9HX3=2; ðD13Þ

PJi ¼
2

9
X½ _Hð9GST;J1 − 4ð−3GST;J10X þ GST;J2 þ 2GST;J5ÞÞ þ 3H2ð9GST;J1 − 4ð−3GST;J10X þGST;J2 þ 2GST;J5ÞÞ

þHð12 _GST;J10X þ 9 _GST;J1 − 4 _GST;J2 − 8 _GST;J5 þ 9
ffiffiffi
2

p
GST;J9

ffiffiffiffi
X

p
Þ þ 3

ffiffiffiffiffiffi
2X

p
_GST;J9 �

þ 1

K

�
_K



2

9
Xð3Hð3GST;J1 − 4GST;J2 − 8GST;J5Þ þ 12Xð3GST;J10H þ _GST;J10Þ þ 3 _GST;J1 − 4 _GST;J2 − 8 _GST;J5Þ

þ 2

9

ffiffiffiffiffiffi
2X

p
ϕ̈ð3GST;J1 − 4ð−6GST;J10X þGST;J2 þ 2GST;J5ÞÞ

�
þ 2

9
XK̈ð3GST;J1 − 4ð−3GST;J10X þGST;J2 þ 2GST;J5ÞÞ

�

þ K

�
−
1

9
Xð3Hð21GST;J1 þ 4ð6GST;J10X þ GST;J2 − 4GST;J5ÞÞ þ 24 _GST;J10X

þ 21 _GST;J1 þ 4 _GST;J2 − 16 _GST;J5Þ −
1

9

ffiffiffi
2

p ffiffiffiffi
X

p
ϕ̈ð21GST;J1 þ 4ð12GST;J10X þ GST;J2 − 4GST;J5ÞÞ

�

þ ϕ̈

�
2

9

ffiffiffi
2

p
H

ffiffiffiffi
X

p
ð9GST;J1 − 4ð−6GST;J10X þ GST;J2 þ 2GST;J5ÞÞ þ 2GST;J9X

�

−
2X _K2

9K2
½3GST;J1 − 4ð−3GST;J10X þ GST;J2 þ 2GST;J5Þ� −

1

9
X _K½21GST;J1 þ 4ð6GST;J10X þ GST;J2 − 4GST;J5Þ�; ðD14Þ

and the contributions from GðiÞ
3 for the two flat FLRW equations are
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E
GðiÞ

3

¼ 1

K
½72HX3 _KðGð4Þ

3;X −Gð5Þ
3;XÞ þ 2HX2 _Kð−90Gð5Þ

3 þ 90Gð4Þ
3 þ 3Gð1Þ

3;X þ 12Gð3Þ
3;X − 28Gð2Þ

3;XÞ þ 3HX _Kð3Gð1Þ
3

þ 12Gð3Þ
3 − 28Gð2Þ

3 Þ� þ K½−24
ffiffiffi
2

p
X5=2ðGð5Þ

3;ϕ þ 2Gð4Þ
3;ϕÞ − 8HX2ð9Gð5Þ

3 þ 18Gð4Þ
3 − 3Gð1Þ

3;X − 6Gð3Þ
3;X þ 8Gð2Þ

3;XÞ
þ 8HXð3Gð1Þ

3 þ 6Gð3Þ
3 þGð2Þ

3 Þ þ 24
ffiffiffi
2

p
X3=2Gð2Þ

3;ϕ� þ 72H2X3ðGð4Þ
3;X −Gð5Þ

3;XÞ
− 2X2½6ð15H2 þ 2 _KÞGð5Þ

3 þ ð24 _K − 90H2ÞGð4Þ
3 þH2ð9Gð1Þ

3;X − 12Gð3Þ
3;X þ 28Gð2Þ

3;XÞ�
þ X½24 _KGð2Þ

3 − 3H2ð9Gð1Þ
3 − 12Gð3Þ

3 þ 28Gð2Þ
3 Þ�; ðD15Þ

P
GðiÞ

3

¼
ffiffiffiffiffiffi
2X

p
ϕ̈

3K
½−4Gð2Þ

3 K2 þ 36Gð5Þ
3 XK2 þ 72Gð4Þ

3 XK2 − 12XGð1Þ
3;XK

2 − 24XGð3Þ
3;XK

2 þ 32XGð2Þ
3;XK

2 þ 56Gð2Þ
3 HK

þ 144Gð5Þ
3 HXK − 144Gð4Þ

3 HXK þ 72HX2Gð5Þ
3;XK − 72HX2Gð4Þ

3;XK þ 18HXGð1Þ
3;XK − 24HXGð3Þ

3;XK

þ 56HXGð2Þ
3;XK þ 3Gð1Þ

3 ð−4K2 þ 6HK − _KÞ þ 28Gð2Þ
3

_K þ 72Gð5Þ
3 X _K − 72Gð4Þ

3 X _K

− 12Gð3Þ
3 ð2K2 þ 2HK þ _KÞ þ 36X2 _KGð5Þ

3;X − 36X2 _KGð4Þ
3;X − 3X _KGð1Þ

3;X − 12X _KGð3Þ
3;X þ 28X _KGð2Þ

3;X�

þ X
3K2

½72HK2
ffiffiffi
2

p
Gð5Þ

3;ϕX
3=2 þ 36K

ffiffiffi
2

p
_KGð5Þ

3;ϕX
3=2 − 72

ffiffiffi
2

p
HK2Gð4Þ

3;ϕX
3=2 − 36

ffiffiffi
2

p
K _KGð4Þ

3;ϕX
3=2

þ 108Gð5Þ
3 H2K2X − 108Gð4Þ

3 H2K2X − 36Gð5Þ
3

_K2X þ 36Gð4Þ
3

_K2X þ 72Gð5Þ
3 K2 _HX − 72Gð4Þ

3 K2 _HX

þ 36Gð5Þ
3 KK̈X − 36Gð4Þ

3 KK̈X þ 84Gð2Þ
3 H2K2 − 28Gð2Þ

3
_K2 þ 56Gð2Þ

3 K2 _H þ 32Gð2Þ
3 K2 _K þ 28Gð2Þ

3 KK̈

− 12Gð3Þ
3 ð3H2K2 þ 2ð _H þ _KÞK2 þ K̈K − _K2Þ þ 3Gð1Þ

3 ð9H2K2 þ ð6 _H − 4 _KÞK2 − K̈K þ _K2Þ
−

ffiffiffiffiffiffi
2X

p
ð12K3Gð1Þ

3;ϕ − 18HK2Gð1Þ
3;ϕ þ 3K _KGð1Þ

3;ϕ þ 24K3Gð3Þ
3;ϕ þ 24HK2Gð3Þ

3;ϕ

þ 12K _KGð3Þ
3;ϕ − 32K3Gð2Þ

3;ϕ − 56HK2Gð2Þ
3;ϕ − 28K _KGð2Þ

3;ϕÞ�; ðD16Þ

J
GðiÞ

3

¼ 1

_ϕ
O1G

ð1Þ
3;ϕ½2Gð1Þ

3 þ _ϕ2Gð1Þ
3;X� þ

4 _ϕ

K
½HðK2 − 7 _KÞ − 7H2K þ 3K _K�Gð2Þ

3 þ 12K _ϕ2Gð2Þ
3;ϕ

−
2H _ϕ3

K
½7HK þ 7 _K þ 8K2�Gð2Þ

3;X −
12 _ϕ3

K
½3HðK2 − _KÞ − 3H2K þ K _K�Gð4Þ

3 − 12K _ϕ4Gð4Þ
3;ϕ

þ 9H _ϕ5

K
ðHK þ _KÞGð4Þ

3;X −
6 _ϕ3

K
Gð5Þ

3 ½3Hð2 _K þ K2Þ þ 6H2K þ K _K� − 6K _ϕ4Gð5Þ
3;ϕ

−
9H _ϕ5

K
½HK þ _K�Gð5Þ

3;X þ 1

_ϕ
O3½2Gð3Þ

3 þ _ϕ2Gð3Þ
3;X�; ðD17Þ

P
GðiÞ

3

¼ O1G
ð1Þ
3;ϕ þO2G

ð2Þ
3;ϕ þO3G

ð3Þ
3;ϕ þO4G

ð4Þ
3;ϕ þO5G

ð5Þ
3;ϕ: ðD18Þ
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